Hu, G. and Wang, K.
Osaka J. Math.
48 (2011), 959-986

ON STOCHASTIC LOGISTIC EQUATION WITH
MARKOVIAN SWITCHING AND WHITE NOISE

GUIXIN HU and KE WANG
(Received January 4, 2010, revised May 7, 2010)

Abstract

This paper mainly concerns with the stochastic logisticatign with Markovian
switching and white noise. We represent the unique globsitige solution and show
some properties such as the stochastic permanence, gttlatieity. The main con-
tribution of this paper is to demonstrate that the soluti®rasymptotically stable in
distribution. Moreover, the similar results for the stodasilpin—Ayala equation
with Markovian switching and white noise are yielded by thensaway. Finally, we
give the definition of the stochastic equilibrium solutiomdaprove the existence and
uniqueness of such equilibrium solution of stochastic dogiequation.

1. Introduction

Stochastic modelling has come to play an important role imyrtranches of sci-
ence and industry. Stochastic stability has been one of the active areas in stochas-
tic analysis and many mathematicians have devoted thedt gnéerest to it. There are
many types of stochastic stability. X. Mao [28] investigathdee types of stochastic
stability for non-linear stochastic differential equatiostability in probability, p-th mo-
ment stability and almost sure stability. However such iites are too strong and the
solution will sometimes not converge to the equilibriumtesthut converge to a random
variable in distribution. This is the concept of another artpnt stochastic stability:
stability in distribution (see e.g., [29], [30]). J. Bao, a@t [3] investigated stability in
distribution of neutral stochastic differential delay atjans with Markovian switching.

There are many articles on the stability of stochastic difiéial equation, but up
to the authors’ best knowledge there are few works on stahii distribution. Es-
pecially, there are no articles on stability in distributi@f stochastic logistic equa-
tions with Markovian switching. Logistic equation is of cearthe most important and
most widely used mathematical model to describe the growthialogical species. To
demonstrate that the theories of stochastic stability pmicable in population dynam-
ics, we discussed the autonomous stochastic logistic iequaith Markovian switching
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and white noise of the form,

X(t)
K(E()

ont > 0 with initial conditionsX(0) = x and&(0) =i, where&(t) be a right-continuous
Markov chain taking values in a finite state sp&e= {1, 2,..., N} and B(t) be the
1-dimensional standard Brownian motion and we always sspploat the Markov chain
£(t) is Fi-adapted but independent of the Brownian motiB(t). For Equation (1),
X(t) denotes the density of the resource population at time(-) is called the in-
trinsic growth rate,K(-) is usually referred as the environmental carrying cagaoit
saturation level, and2?(-) representing the intensity of the noises. Equation (1) can
be regarded as the results of the followihgequations

1) dX(t) = r(s(t))X(t)[l— }dt +o(E@)X() dB(Y)

dX(t) = r(i)X(t)[l— %] dt +o(@i))X(t)dB({t), i€S
switching from one to the others according to the movemerthefMarkov chain.
Jiang et al. [15] studied the logistic equation with randoantyrbation, they mainly
investigated the existence and uniqueness, global avitgcof the positive solution
and the maximum likelihood parameter estimation. In [1@Indi et al. discussed non-
autonomous logistic equation with random perturbation ciwvhis described by the
Itd equation

dN(t) = N(b)[alt) — b(t)N(t) dt + a(t) dB(t)], t > 0.

In [17] Jiang et al. gave the global stability in probabiland stochastic permanence of
a non-autonomous logistic equation with random pertuobatFor the logistic equation
with random perturbation, Jiang et al. gave these very itapbrand interesting results,
so the contributions of their result for logistic equati@nciear. In our paper, we con-
sidered the stochastic logistic equation with Markoviantsing and white noise, that
is we considered the color noise, say telegraph noise kEe#idewhite noise in logis-
tic model. Differenting from the exists results, we give tability in distribution and
prove the existence and uniqueness of the stochastic eguiti solution for the sto-
chastic biological model for the first time. The stochastipigbrium solution plays
the same role as the deterministic stationary solution.

When ignoring the perturbation of Markov chain and white apiwe get the au-
tonomous logistic modedl X(t) = r X(t)(1 — X(t)/K) dt from Equation (1). It is well
known that this equation has two stationary solutions 0 andx = K. When intro-
ducing uncertainty (color noise and white noise) into thisdel by the way of Equa-
tion (1), we transform the deterministic problem into cepending stochastic problem
and obtain only the stationary solution= 0, which is the same as in the deterministic
case, but can not obtain another stationary solution qooretingx = K in determin-
istic model. But in the real world, it is this equilibrium thhas great significance in
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the sense of bionomics. So from the view of biology, the feiitg problem is im-
portant and instructive, i.e., under the perturbation e toises, whether or not the
probability distribution ofX(t) will converge weakly to a stationary distribution which
is analogous td<. When only taking white noise into account, Polansky [33jwered
this question. The author showed that there exists a Gamstabdtion which plays
the same role as in the deterministic stationary solukca K under some conditions
(see also [32]). If we refer the stationary solutisn= K as a Dirac delta distribution,
then this Dirac delta distribution will degenerate into an@®aa distribution under the
perturbation of the white noise. Then under the perturbatibboth Markov chain and
white noise, what does this Dirac delta distribution becemdis is the main problem
that we will investigate and resolve in our paper.

We note that the coefficients of Equation (1) do not satisfy lthear growth con-
dition, though they are local Lipschitz continuous. Morepwhe state space of our
model is not the whole space but (Bp0). Therefore many well known results on sto-
chastic boundedness and stability for stochastic difteakequations can not be used
for Equation (1) directly, this results in many difficultiés deal with it. So the signif-
icant contribution of our paper is therefore clear.

The rest of this paper is arranged as follows. In Section 2 repgesent an ex-
plicit expression of the unique solution of Equation (1) asftbw that it is positive,
p-th moment bounded, stochastic permanence and globattatiya In Section 3, we
give the main results of this paper: Stochastic logisticatign with Markovian switch-
ing and white noise is asymptotically stable in distribaotioln Section 4, we devote
our interest to the Gilpin—Ayala system and give some simmiésults as in Section 2
and Section 3. In Section 5, we prove the existence and umigseof the globally
asymptotically stable stochastic equilibrium solutiom Exguation (1). Our main results
demonstrate that there is a trend that the distribution efstiate of the system will be
gradually stable.

2. Stochastic permanence and global attractivity of Equatin (1)

Let £(t) be a right-continuous Markov chain taking values in a finitetes space
S ={1, 2,..., N} with generatorl” = (¥ij)nxn Qiven by

%ijd + o(5) if i#],

Pie+o) =i e =i = (PP 80 7D

wheres > 0. Herey;; > 0 is the transition rate from to j andy;; > 0 if i # j while

Vi =—2Vu-

i#

We note that almost every sample patt ¢f) is a right continuous step function with
a finite number of sample jumps in any finite subintervaRqf := [0, co). Throughout
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this paper we assume that the Markov chi(n) is irreducible. Under this condition, the
Markov chain has a unique stationary (probability) disttidw 7z = (774, 772, ..., 7N) €
R™N which can be determined by solving the following linear emra

al' =0
subject to

N
Z]Tk =1andm >0, Vkes.
k=1

If the Markov chain&(-) is irreducible, then the system will switch from any regime
to any other regime. Denote by*'(t), t > O the solution of Equation (1) with initial
conditionsX(0) = x > 0 and&(0) =i €S, Let & (t) be the Markov chain starting from
statei € S att = 0. SinceX*!(t), t > 0 denotes the population size, so only positive
solutions are of interest.

In this paper, for Equation (1) we let

r = maxr(i), K*= max K(i), o*= maxof(i),
1<i=N 1<i=<N 1<i=<N

re = 12'5”1\1 r@), K.= ginan K@), o= 12?'an o(i).
We also assume that

(H) r(@i) >0, K(@i)>0,i €5;

(Hp) ry — (0*)? > 0.

DEFINITION 2.1. The Equation (1) is said to be stochastically permaifefar
any ¢ € (0, 1), there exist positive constanis= §(¢), x = x(¢), such that

Itim+inf P{IX®)| = x} =1~—¢, Itim+inf P{X(t) =6} <1-—¢

where X(t) is the solution of the equation with the initial conditiod§0) = x and

£00) =1i.

DEFINITION 2.2. Let X(t), Y(t) be two arbitrary solutions of Equation (1) with
initial values X(0), Y(0) respectively. If

lim | X(t)—=Y(@{) =0 a.s.
t—o0
then we say that Equation (1) is globally attractive.

The two definitions above can also be found in [4], [19].
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Lemma 2.1 (see e.g. [17] or [4]). Let f(t) be a nonnegative function defined on
[0,+00) such that {t) is integrable orf0,+00) and is uniformly continuous dj®,+o0),
thenlimi_ f(t) =0.

Theorem 2.2. SupposgH,) holds. Then there exists a unique continuous positive
solution X¢'(t) to Equation (1)which can be expressed as

@
XHi(t) = { . exp{— | () dst [ o) d B(s)}

1GE0) t ! -
+/0 KE©) exp{—/s A(S(r))err/s o(&(r))dB(r)} ds} , t>0

for any initial conditions X0) = x > 0 and £(0) =i € S, where A-) =r(-) —
(1/2)0%(-).

Proof. Letr; > 0 be the first jumping time of(t), at this stopping timery, &(t)
jumps from the staté to j, while o > 7; is the next jumping time. Without loss of
generality, we only need to show that foe [z, 72), the solution satisfies

®) XX (t) = XXM (),

In fact fort € [0, 1], in the view of [16] (namely, the result of Theorem 2.2) Equa
tion (2) holds, so

X4 (1) = [% exp{— [0  AE(9) ds + /0 o) d B(s)}

(4) "
" r(E(9) {_ & i [ oo }d ]
+/(; exp /S A(E(v)) v—l—/s o(€(v))dB(v); ds| .

K(E(s)

Then fort € [y, 2), we observe from Equation (4) that

X+(t) . ;exp{— /Ot A(g(s))ds+/;o(g(s))da(s)}
x exp{— [ Aeends+ [ oo B(s)}

T1 T1

N fofl r(é(s)) exp{— /SH A () dv + /SH o(£(v)) d B(v)}

K(S(f)) t
xexp{—/ A(s(v))dv—l—[ a(&(v))dB(v)} ds

1 1

[ Dl [ s [ st asn) o
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1 1 1
= [; exp{—/0 A(g(s))ds—k/O o(i}(s))dB(s)}
RGO [
+/; KEO) exp{ /S A W) dv /S 6($(v))dB(v)} ds}

t t
X exp{— / AE W) dv + / o(E))d B(v)}

1

L rE(9) t t
+/f1 K(&(9)) ex"{‘ / A @) dv + / o(é(v))ds(v)}ds

1 t t
= mexp{—/t A(S(v))dwr/r G(E(v))dB(v)}

1 1

L r(E(s) t :
+/f1 K(&(9)) ex"{‘ / A ) dv + / o(é(v))ds(v)}ds

= (@)

which is the required assertion Equation (3). [l

REMARK 1. The conclusion of Theorem 2.2 in this paper can not be oédai
directly from Theorem 2.2 of [16]. Because Theorem 2.2 of] [démands every co-
efficient function is a bounded continuous function but tlefficient function here is
stochastic and not continuous.

REMARK 2 (see e.g. [17], [18], [27]). Suppose that a stochasticggeX(t) on
t > 0 satisfies the condition

() EIX() —X(@)I* <cft —s[**, 0=<st<o0

for some positive constants, 8 and c. Then there exists a continuous modification
X(t) of X(t), which has the property that for evepye (0, 8/c), there exists a random
variable h(w) > 0 such that

X(t, ) — X(s, 2
P{a): sup |X(t, @) — X(s, o) < } _ 1
0<s, t<co, 0<|t—s|<h(w) It —s|” 1—-2-7

That is almost all sample path of(t) is locally but uniformly Hoélder-continuous with
exponenty .

REMARK 3. If the equation defined org[ oo), then the initial time can bdy,
that is

. t t
xx"(t)z{iexp{— [ AE(S) ds— / o(s(s»dB(s)}

to to

+ /to t :((é(z))) exp{— / " AG() dr— / ta(é(r))ols(f)} ds}l, -
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REMARK 4. If we replacex € R™ by a positive random variable in Equation (2),
the formula still holds.

Following [17], we can prove Lemma 2.3, Lemma 2.4 and Theofeh

Lemma 2.3. Let X(t) be a solution ofEquation (1)with initial value X% (0) =
X > 0, then

E(XP()) < [K*(r* L W2 - 1)(0*)2)],) = M(p).

M
Proof. By the generalised It6 formula, we can easily know

dXP(t) = pXPH(t) dX(t) + % p(p — DXPA(D)(AX(1))?

X(t)
K(&(t))

+ 5 p(p— DX () dt.

= pre)XP) (1- oy ) 4+ o) a0

Integrating from O tot and taking expectation yields

t
EXP(t) = xP +/O pE(r(g(s))xp(s)(l— K)((S((Ss);)))) ds

t
+ /O %p(p — DE[XP(s)0?(£(9)] ds,

dE XP(t)
dt

i X(t)
= Er(E(t))Xp(t)(l_ K(s(t)))

+ 50— DEDXPOEW] EXI(0)= X,

So we can see that

d E XP(t) 1 r&())
T = ECEOXP0) + 5p(p - DEDCOEO] - E[ S 0]

< EXP) + 5 (P — )" PEIXPR)] — = EXPHD)

1 *
< pEX ()] |1 + (- 107 | - L IEX 1,
Let p> 1 be chosen such that the initial value

4 (12 (- D)
M«

O<x<K*
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Then by the standard comparison theorem we know that

o+ (12— D)

[EXP@NYP <K r

So
E(XP(t)) = M(p).

This completes the proof of Lemma 2.3. O

Lemma 2.4. Let X(t) be a solution ofEquation (Lwith the initial value X' (0) =
x > 0, then almost every sample path oftXis uniformly continuous on ¢ 0.

Proof. We rewrite Equation (1) as
t t
X(t) = x + /0 F(5,£(9), X(8)) ds + /0 o(s. £(5), X(5)) dB(S),

where f(s,£(s), X(s)) =r (§(s)) X()[1-X(s)/K (§(s))] and g(s,£(s), X(s)) = (§(5)) X(s).
X(s)

Then
p
K(E(s) )

1_ 2p 2p 1— |:( _ﬁ)ZP}
= SEFPEENXPE + 3E (1~ 1)

X2P(s) }
K2P(£(s))
Mﬁm}

(K, )2p

1—

E(If(s &(s), X)IP) = E(r P(E()XP(s)

< SEPEEXP(E + 2 2|1+
< S0PM@p) + 201+

=: F(p),

and
E(l9(s, £(), X(9))IP) = E(0*(6(s)XP(s)) < (6%)PM(p) =: G(p).

By the moment inequality (cf. Friedman [8] or Mao [28]) and Hél inequality, we
have that, for< t; <t, < oo and p > 2,

EIX(t2) — X(W)|” < zp—lE( " 15 £(8), X)) ds)p
th
73 p
o(s, £(5), X(5)) dB(S)

ty

+ 2P 1E
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t
< 2Pt - tl)plE(/ |f(s, &(s), X(9)IP dS)
t
_ 1)7P/2 t2
+ 29-1['p(—pz l)} (.~ )" 2% [ g6, €6, X ds
1
-1 p/2
< 2Pt — t)PF(p) + 2"1[%] (t2 — 12)**G(p)

_1y7P/2
< 21, tl)p/z{l + [M} }[F(p) +G(p)]

We see from Remark 2 that almost every sample patX@j is locally but uniformly
Hélder-continuous with exponent for every y € (0, p — 2/2p) and therefore almost
every sample path oK(t) is uniformly continuous ort > 0. This completes the proof
of Lemma 2.4. O

Theorem 2.5. Supposeg(H1) and (H,) hold, X*i(t) and XVi(t) are solutions of
Equation (1)with initial values X (0) = x > 0 and X''(t) = y > 0. Then

Jim |X*I(t) — XY (t)] =0 for almost all € .

Proof. Consider a Lyapunov functiovi(t) which is defined by
V(t) = |log X* (t) — log XY/ (t)|, t > 0.
Then the generalised 1t6 formula implies that

rE)
K(&(1))

Thus, a direct calculation of the right differentidt V (t) of V(t) along the solutions yields

d(log X*'(t) — log XY (t)) = — (XX (t) — XY (1)) dt.

dtV(t) = sgnX*i(t) — XY (t)) d(log X* (t) — log XY (t))

IG0)
©) ~TKE®)

< —%|Xx'i(t) _ XYi ()] dt.

| XX () — XY (1) dt

Integrating (6) from O ta we obtain

V() + }r(— /Ot|xxvi(s) — XYi(s)| ds < V(0) < co.

So,
| XX (t) — XY (t)| € L0, +00).
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Therefore from Lemma 2.1 and Lemma 2.4 we get

Jim |X*¥(t) — XY (t)] =0 for almost all w € .
—>+00

This completes the proof of Theorem 2.5. ]

From Theorem 2.5 we can see that the positive solutions offitmu (1) attract
each other. In fact, any positive solution can be regardedrasttractor of Equa-
tion (1).

Lemma 2.6. Let&(t) be a right-continuous Markov chain taking values in a finite
state spaceS = {1, 2,..., N}, then

E[exp{/&)t o(&(s))d B(s)}] < exp{ (6;)2 (t —to)}, 0<ty=t.

Proof. Applying the generalised 1t6 formula, we obtain

0

exp{ f o) d B(s)} 1+ [ o) exp{ /to CoE() d B(r)} dB(s)
+ % /tot o2(£(s)) exp{/t:cr(é(r)) dr} ds

<1+ /tot o (£()) exp{/t: o(£(1)) d B(f)} dB(s)

(O,*)Z t S
+ 5 /toexp{/to U(&(r))dr}ds.

Taking expectation on both sides yields

t t S
E exp{/ o(£(s) dB(s)} =1+ %E/t o2(£(9)) exp{/ o(&(7)) dr} ds

fo fo

<1+ (“2*)2 /t E exp{/sa(é(r)) dr} ds.
to to

Then the Gronwall's inequality implies that

E[exp{ft: o(£(s)) d BSH < exp{ ("2*)2 (t— to)}

which is the required assertion. ]

Lemma 2.6 is different from Lemma 2.1 of [16] since here th&edgnand has a
Markov chain and the result is a inequality. The following e implies that Equa-
tion (1) is stochastic uniform permanence.
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Lemma 2.7. SupposgH;) and (H,) hold. Then the solution % (t) with the ini-
tial conditions X0) = x and&(0) =i has the property that

min(x, K*(r*;*(o—*)z)) < EXI(t) < max(x, r*rK*).

r

Proof. We rewrite Equation (1) as

t t ]
X (t) = x + /0 r(£(s))X*'(s) ds— /0 %(X“(s))zds

t .
+/ o (£(s))X*'(s) dB(s).
0

Taking expectation yields

X,i _ ! X,i _ ‘ r(é(s)) X, i 2
EX (t)_x+[0 E(r(&(s))X™'(s)) ds /OE[K(;%(S))(X (s))}ds
ie.,
dEXI(t) iy e[ TEM) o, 2:| Xi (Q) —
e U O O) E[ KX O] EXNO=x.

By Jensen’s inequality we show that

dEX*i(t)
dt

r(()
K(E(1)

< PFE XN (1) — }2— E(X (1))?

— E( )X (1) E[ (xx"(t))z]

= PEXY ()~ L EXY V)2

Considering the following logistic equation, based on woady differential equation,
which is described by

Me o
., y(0) = x.
T y(0) = x

®) y =rty-

The solution of Equation (8) satisfies

*K*
y(t) < max(x, ! p ) when t > 0.

*

So, making use of the comparison principle for Equation (¥ &quation (8), we get

EXXI(t) < max(x, r rK )

*



970 G. HJ AND K. WANG

Let YY%i(t) = 1/X*(t), x > 0, then by Itd6 formula one can get

)
K(&(t))} a

dY¥*i() = [(Uz(é(t)) —TEONY() +
— o (EW)Y*(t) dB().

That is

(£(9)
KEE) °°

v = 2+ [ @) - e i) +
t
_ /0 o (E(8))(YY*1 () d B(s).

Taking expectation one can get

Uxipy _ L ‘ 2 1/x,i r((s)
EYY (t)—;+/0 E[(o (6(8) ~ T Y (9) + K(S(s))}d
ie.,
dEYY*i(t) 5 i r(&(t))
— = E[(a () —rEONY () + @(t))}

< ((e*)? = )EYYV* (1) + Ir<—*

*

From the comparison principle we get

UXi (1) < 1 re )
EYYHU() < max(x, —K*(r* —099)

Consequently, by Jensen’s inequality,

1 X, 1 _ X1 1 r
X0 = Egr =EYO < ”‘ax(;' m)

Then we can derive directly that

EX*(t) > min(x, Kol = (7)) _*(G*)z)).

r

This completes the proof of Lemma 2.7. ]

Lemma 2.8. Supposd€H;) and (H;) hold. Then the solution oEquation (1)obeys

lim E - 1
S X)X

=0 uniformly in (x,y,i)e M x M xS,
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for any compact subset M @0, +00).

Proof. Theorem 2.2 implies that

XXi(t)  X¥i(t)

i exp{— /Ot [r (&(s)) — GZLZ(S))} ds} -exp{— /Ot a(s) dB(s)}

‘ 1 1

X
= % - % exp{—[r* - (U;)Z}t} -exp{— /Ot o(s) dB(s)}.

Noting that—B(t) is also a Brownian motion iB(t) is. So by Lemma 2.4 and condi-

tion (Hz), we get
)2 t
exp{—(r* — (02) )t} -E exp{—/0 o(s) dB(s)}

1 1

IA

‘ 1 1

X*i(t) XYi)|~|x vy
< % —~ )—1/ exp{—(r* — (cr*)z)t}-

Then lettingt — +oo produce

lim E

t—o0

1 1
‘xxyi(t) B xw(t)‘ =0

It is obvious that this limit is uniformly in any compact s@bhsM of (0, +o0) for
X,y € M. The proof of Lemma 2.8 is complete. []

Lemma 2.9. The solutions ofEquation (1)satisfy

. . 0[2
QX )X (1)) < max(xy, ﬁ),

wherea = 2r* + (0*)?, B = (2r,)/K*.
Proof. By the generalized Itd6 formula we obtain
dOX* ()X (1)
= XY'(t) d X (t) + X (t) d X (1) + dXO (1) - d XY (1)
- [zEox X

4
K@)
+ 20 ()XY ()X (t) d B(t)

XXX (1) + XP (1) + (o (E W)X (1) X! (t)} dt
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= [(ZV (D) + (EONHXOX (1)

)
K(()
+ 20 (£()) XY (1) X*'(t) d B(t).

XXT) XY ()X (t) + Xy*i(t))} dt

So
Xx'i(t)Xy'i(t)
t ' ‘
= XY+/O {(ZF(E(S))Jr(G(E(S)))Z)XX"(s)xY"(s)

1)
K((©)
t

+ / 20 (£(3)) XY (5) X*'(s) d B(S).
0

XX ()XY (8)(X* (s) + x%‘(s))} ds

Taking expectation we derive that

EOc X0 0) =xy+ [ Ef@r(e(e) + @ 909

_ }i(é((ss?))) X*H(8) XY (8)(X* (s) + Xy'i(S))} ds,
ie.,
d E[Xx,iétt)xy’i )] _ E{(ZI’ (E(D)) + (g(g(t)))Z)XX,i (t)Xy!i (t)
9)

G0
K(E®)

X)X O (1) + XV"(t))}
with the initial value E(X*!(0)XY1(0)) = xy. Furthermore, Jensen’s inequality im-
plies that

dax““””“”’=E{@maor+w@am%x“a»0%0

dt
K(é(t))x OO+ X0
< E|:(2r* + (U*)Z)Xx,i(t)XYvi(t) — K*(Xx’i(f;;(y’i(t))3/2:|
2r,

= @7+ @PEXOXO) ~ g s o x0T )2
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2r,

K (EOC! (X7 ()72

= aB(X XY (B) - BEX OX )

< @ + (@ P)EXR XM () —

Considering the ordinary differential equation
(10) 7 =az— BZ%? z(0) = xy.

Clearly, Equation (10) is a Bernoulli type equation and #elution is given by

1 2
= , > 0.
2 { (1/ VXY — B/a) exp((a/2)) 1 fJa } =

Furthermore, we can show that

Z(t) < max(xy, Z—z)

The required assertion follows from the comparison prilecifor Equation (9) and
Equation (10). []

Lemma 2.10. E|X*(t)|Y? < {max[x, (r*K*)/r.]}¥?, vt > 0.
Proof. It is easy to prove by Lemma 2.7 and Cauchy inequality. []

REMARK 5. Lemma 2.10 guarantees that for anmyij € (0,+o00) xS, the family
of transition probabilitieg p(t, x, i, dy x {j}): t > 0} is tight. That is, for anys > 0
there is a compact subsiét = M(e, X, i) of (0, +00) such that

p(t,x,i, MxS)>1—¢, Vt=>D0.

Lemma 2.11. Let M be a compact subset @¢d, +oc). Then the solution of
Equation (1)obeys

1y lim E|X*(t) — XY'(t)[Y2 =0 uniformly in (X,y,i) €M x M xS.

1 1

Proof. By Cauchy inequality, Lemma 2.6 and Lemma 2.7, we deatk that
XXi(t)  XYi(t)

l/2:|
1 1

XXi(t)  Xvi(t)

E[X4I(t) — XY (1) 2 = E[(X*"(t)xy”(t))“2

< (E(x“(t)xyvi(t»)lfz(E‘

2 1/2
< |:max(xy, %)} 1

)1/2
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Letting t — 400 yields the assertion (11). [l

REMARK 6. The explicit expression of the solution is not necessarthe proof
of this paper although itself is interesting and meaningtul fact, it is only used in
the proof of Lemma 2.8. However, we can prove it with the foilog method: Let
YIXi(t) = 1/X%I(t), x > 0, then by Itd formula one can get

E)
K(s(t))} a

dYV*i(t) = [(02(5 (£) —rEENYV (1) +
— o ()Y (1) dB(t).
So
. ) 1 1 t . .
Y0 =Y @) = 2= [ (o(E(9) - TEONY ) - Y (o) ds
Xy 0
t
- / o (E(S)(YY*! (s) — Y¥(s)) d B(s).
0
Taking expectation we get

X,i il 1 1 ! * X,i Al
E[YY*(t) = Y (1)] < ;—9‘ +/0 ((6¥)? = r.)E|Y*I(s) — YV (5)| ds.

Then Gronwall’'s inequality implies that

EIYYX(t) — YY) < |= — =| expl—(r+ — (6)2)t).

Letting t — oo yields the result of Lemma 2.8.

Of course the explicit solution has another use, that is it iveal the existence
of the unique global positive solution. But this can be seeifi3D] on p.353 (namely,
Theorem 10.2).

3. Stability in distribution

Based on the results of Section 2 of Equation (1), we are gangrove the main
result of our paper: Equation (1) is stable in distributidiirst we introduce some no-
tations. Lety(t) denote the (0400) x S-valued processX(t),£(t)). Theny(t) is a time
homogeneous Markov process. Lgft, x,i,dyx {j}) denote the transition probability
density of the procesg(t). Let P(t, X, i, A x D) denote the transition probability of
of the event{y(t) € A x D} with the initial valuey(0) = (X, i), where A is a Borel
measurable set of (B;00), D is a subset of, and

P(t, X, i, Ax D):Z/Ap(t,x,i,dyx{j}).

jeD
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Denote byP((0, o) x S) the space of all probability measures on €0) x S. For
p1, P2 € P((0, 00) x S) define the metricd, as follows:

N N
A (P, p2) = ?ﬂ;/wm) f(x, 1) pa(dx, i)—i;/wm) F(x, 1) pa(dx, i)‘,

where
L={f:(0,00)xS—>R:|f(xi)—f(y, DI<Ix=yl+1|i —jl, [T(- x )] <1}.

DEFINITION 3.1. The procesyg(t) is said to be asymptotically stable in distribu-
tion if there exists a probability measund- x -) on (0,00) x S such that the transition
probability densityp(t,x,i,dyx{j}) of y(t) converges weakly tar(dyx{j}) ast — oo
for every &, i) € (0,00) x S.

Equation (1) is asymptotically stable in distribution ifetiprocessy(t) is asymp-
totically stable in distribution.

Theorem 3.1. Equation (1)is asymptotically stable in distribution.
Lemma 3.2. For any compact subset M @0, co),
Nm de(p(t, X, i, - < -), pt, y, , - x -)) =0,
uniformly holds in xye M and i, j € S.

Lemma 3.3. For any (x,1i) € (0,00) x S, {p(t, X,i, - x -):t >0} is Cauchy in
the spaceP((0, oo) x S) with metric d..

The proofs of Lemma 3.2 and Lemma 3.3 repeated the proofs Of (B
pp.212-216, so we omit the proofs here.

Proof of Theorem 3.1. By Lemma 3.8p(t,0,1,- x -): t > 0} is Cauchy in the
spaceP((0, co) x S) with metric dp. So there is a unique (- x -) € P((0, o0) x S)
such that

lim du(p(t, 0,1, x ), 7(- x -)) = 0.

Furthermore, by Lemma 3.2, for any,() € (0, c0) x S,
Nm de (p(t, X, i, - x -), 7(- x )

(12) = lim [de(p(t, 0,1, - x -), (- x -)) +de(p(t, X, i, - > -), p(t, 0, 1, - x -))]
=0.
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Fig. 1. Sample path of logistic equation (13), (14) and (15).

In view of the fact that the weak convergence of probabilitgasures is a metric con-
cept (see [14]), Equation (12) indicates that for amyij € (0, c0) x S, the transi-
tion probabilities{p(t, x, i, - x -): t > 0} converge weakly to the probability measure
(- x-) € P((0, o0) x S). By the definition of asymptotically stable in distributiave
complete the proof. ]

REMARK 7. We note that the state space of Equation (1) is not the wimdee
but (0,+00). Therefore the results of stability in distribution in [36an not be used
for Equation (1) directly, this results in some difficulties deal with it.

ExampPLE. Consider the following logistic system with regime swittn

X(t)
K(E()

where B(t) is a standard Brownian motiorg(t) is a right-continuous Markov chain
taking value in a two-state spa&= {1, 2. So we may regard this system as the
result of the following two equations switching from one toother according to the
movement of the Markov chain

(13) dX(t)=r (E(t))X(t)[l - :| dt + o (£(t)) X(t) d B(t)

t)
(14) dX(t) = r(l))X(t)[l— Fl)} dt + o (1)X(t) d B(t),
wherer(1) = 2.5, K(1) =3, 0(1) = 1;

X(t)

(15) dX(t) = r(2)X(t)[1— }dt + o(2)X(t) dB(t),

K(2)
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wherer(2) = 3, K(2) =9, 0(2) = 1.5. Let the the jump matrix of the Markov chain

§(t) be
0.1 0.9
0.3 0.7)
We observe that the SDE (14) (green) and (15) (red) are dlesia distribution,

after switching, the whole system (13) (blue) is sill stailaistribution. Because it is
only a statistical result, it can not be accurate as the ohtéstic model.

4. Generalized results

The Gilpin—Ayala equation, based on ordinary differenégluation, is usually de-
noted by

(16) N(t) = N(®)[a(t) —b®ON’(®)] (6 > 0)

where6 is a parameter to modify the classical logistic model. Whstaldishing math-
ematical model to describe the growth of the population, we make the model more
effective by adjusting the value @f > 0. Some detailed studies about this model may
be found in [9, 10]. Jiang et al. [17] considered the randewchimodel (17) based
on (16) with intensitya?(t)

17) dN(t) = N(O[a(t) — b(t)N?(t)dt + a(t) dB(t)] (t > 0)

with the initial valueN(0) = No (No is a positive random variable), whefie> 0 is an
odd number,B(t) is the 1-dimensional standard Brownian motion. He(g), b(t) and
a(t) are bounded continuous functions defined o), a(t) > 0, b(t) > 0 and Ny is
independent ofB(t).

For the stochastic Gilpin—Ayala equation with Markovian teWing,

X°(t) ]
18 dX(t) = O)X(@)|1— ——— | dt t))X(t) d B(t
(18) (t) =r (M) ()[ KED) + o (§(1))X(t) dB(t)
with initial conditions X(0) = x and&(0) =i, where&(t) be a right-continuous Markov
chain taking values in a finite state spage= {1, 2,..., N}, # > 1 and B(t) is the

1-dimensional standard Brownian motion. L¢t) be a solution of Equation (18), then
the generalised It6 formula implies that

00 =1 2y o EQ)
5o ) O

+ 0o (&())d B(t)}

dX’(t) = x"(t)[(er(g(t)) + X"(t)) dt

(19)
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Let Y(t) = X°(t) then Equation (19) is equivalent to

06 —1) » r()
5 © (§(t))—9K@(t))

+ 0o (&(t)d B(t)]

dy(t) = Y(t)[(er(s(t)) + Y(t)) dt

(20)

with the initial valuesY(0) = x? > 0 and&(0) =i € S.

For Equation (18), we assume that
(Hyp r(i) >0, K(i) >0,i €5;
(H2)g 1+ = [(6 4 1)/2)(0*)* > 0.

Note that Equation (20) is similar with Equation (1). So by thimilar methods
as in Section 2, we can give the analogous results for Equgfi®) as Equation (1).
Then we can directly derive the following results for Eqaati(18) and here omit the
detailed proofs.

Theorem 4.1. Suppos€H;)y holds. Then for any initial conditions () = x > 0
and £(0) =i € S, Equation (15)has a unique continuous positive solution which is
given by

(X ()’

= {x_19 exp{e (— /O t A(E(s)) ds— /O t o (&(s)) dB(S))}

0 /Ot lr((é((sg))) exp{@ (— /St A(E(T)) dr—/st o(&(7)) dB(r))} ds}_l, t=0

where A-) =r1(-)—(1/2)c?(-).

Lemma 4.2. SupposgHi)y and (Hy), hold. Then

Jim [(X* (1)) — (XY (t))?| =0 for almost all w € 2,

where X (t) and XVi(t) are solutions ofEquation (18)with initial values X'(0) =
x>0,0)=iesSand X'(t)=y>0,&(0)=i €S respectively.

Lemma 4.3. SupposeH;)s and (Hz)y hold. Then the solution % (t) with the
initial conditions X(0) = x and &(0) =i has the property that

o [r—((0 +1)/2)(* V1K,
, P

min[x

] < E(X¥ (1)
5 max[xg, [ + (60— 1/2)0")2] K*}_

Iy
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Lemma 4.4. SupposgHi), and (Hy), hold. Then

lim E 1 1
e | OOTOY T OT)

=0 uniformly in (x,y,i)e M x M xS,

for any compact subset M @0, +00).

Lemma 4.5. The solution ofEquation (18)obeys

(O )00 () = maf ey, BRI

Lemma 4.6. The solution ofEquation (18)satisfies

E|(xX* (t))"]2 < {max(x(’, (" +100 - 1)/2](0*)2)K*)}1/2, vt > 0.

I

Lemma 4.7. The solution ofEquation (18)has the property that

Jim E|(X* (1)) — (X¥'(1))?|¥2 =0 uniformly in (x,y,i) € M x M xS.
—>+00
By the same argument as in Section 3 we have the followingréneo

Lemma 4.8. SupposgHi)s and (Hz)s hold. Then the solution oEquation (18)
satisfies the transition probability density(t, X, i, dy x {j}) of (X*(1))?, & (t)) con-
verges weakly tar(dy x {j}) as t — oo for every(x,i) € (0,00) x S, wheren (- x ) is
a probability measure orf0, co) x S.

Let P(t, x,i, A x D) denote the probability of the eveftX* (t), £(t)) € A x D},
A is a Borel measurable set @0, +oc), D is a subset ofS. Then

P(t, X, i, Ax D) = P(X¥/(t) <y, &(t) € D) =Z/y p(t, X, i, dsx {j}),
0

jeD
where ye (0, +00).
Theorem 4.9. Equation (18)is asymptotically stable in distribution.

Proof. Lemma 4.8 implies that

P(X*(t) < 2, &(t) € D) = P(X*' (1))’ <7, &(t) € D)

= Z/o p(t, x,i,dsx {j})

jeD
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converges weakly I(ZjeD fof) 7(dsx {j}) ast — oo since the transition probability
density p(t, x, i, dy x {j}) of ((X*(t))?, & (t)) converges weakly tor(dy x {j}) as
t — oo. Let 5 =s’, then

zZ z o1
d i} = 8)’ “m(ds .
> [ wtasxiin= Y [ o trsx (i

jeD jeD

So P(XX"i(t) < z,&(t) € D) converges weakly t3_, o, f5 #(5)° 1w (dSx{j}). So there
is a probability measure(t)’ -1z (dtx{j}) on (0,00) xS such that the transition proba-
bility density p(t,x,i,dyx{j}) of (X*(t),& (t)) converges weakly to(t)’ 1z (dtx{j}).
This completes the proof of Theorem 4.9. ]

5. Stochastic equilibrium solution

The classical deterministic logistic equation has a glgbabymptotically stable
equilibrium solution which has the great ecological siguifice. When considering the
random factors, the classical deterministic logistic ¢igmabecomes the stochastic lo-
gistic equation. One may ask what does the equilibrium swlubecome? As far as
we know, this is an important problem which has not been sblwatil now. In order
to investigate this issue more better. We firstly need to giveasonable definition of
the stochastic equilibrium solution for the stochastictesys Here the stochastic equi-
librium solution is a counterpart of the constant solutidntiee deterministic system.
The deterministic constant solution= x(t), t > 0 should satisfy
e For anyt >0, y(t) = x(t +1) = x(t), t > 0.

That is, equilibrium solution should have the time trarislatinvariance. So we
have the following definition for stochastic equilibriumlstion.

For stochastic differential equation with Markovian switah

(21) dX(t) = f(t, &(t), X(t)) dt + g(t, £(t), X(t)) d B(t).
We give the definition as follows:

DEFINITION 5.1. The solutionX = X(t), t > 0 is said to be a (strictly) stochastic
equilibrium solution of Equation (21) if for any > 0, the solution proces¥(t) :=
X(t +t) and X(t) have the same finite-dimensional distributions.

That is to say that if the solutioX(t) of Equation (21) is the strictly stochastic
process, therX(t) is said to be a (strictly) stochastic equilibrium solution

If besides, any of the solutioN(t) of Equation (21) converges t&(t) in distribu-
tion ast — oo, then X(t) is said to be globally asymptotically stable.

Similarly, if the solution X(t) of Equation (21) is a wide stochastic process, then
X(t) is said to be a wide stochastic equilibrium solution of Bopra(21).
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DEFINITION 5.2. The solution of Equation (21) is said to be weakly unidgfue
any two solutionsY(t) and X(t) have the same distribution provided(0) and X(0)
have the same distribution.

Here we need extend the definition of Brownian moti&nto —oco <t < oo as in
[2] (p.547) or [37].

Theorem 5.1. Suppose that Markov chaif(t) is irreducible and the solution of
Equation (1)is defined on R. TheEkquation (1)has a globally asymptotically stable
stochastic equilibrium solution. Moreovehis equilibrium solution is weak unique.

Proof. Let the asymptotic stationary distribution of Markd{#) be 7 and X(t),

t > —n be the solution of Equation (1) with the initial vali&(—n) = 1, then by Re-
mark 3 we have

—n K(&(9))

where A(-) =r(-) —o?(-)/2. Particularly

t -1
Xn(t) = [ef‘n AEE) dst /', o (EE) dBs / me—f; AE(D) dr+ [ o (5(x) dB, ds} ,

0 -1
X(0) = [e 15, AEE) dst [ o6() dBs / TEO) - 2 acydr+Potetr dB, ds}

—n K((9))
- -1
_ [e— 13 AE(S) dst[g o E(s) dBs / " TEO) - AG@) dr D o) B, ds}
o K((s)
= X (n),

where

£(t) =&(t—n), B=Bun—B..

By Theorem 3.1, the sequen¢¥,(0), n=0,1,...} of random variables is convergence
in distribution. Denoter(-) the limit of { X,(0),n =0,1,...} in the sense of distribution.
On the other hand, by assumption;jHand (H), it is evident that

lim e /% AGE) st/ o) ds _ g

n—o0

So we get that

lim Xa(0) = [ /_ i %e—ff N de+ 2 0(6(0) d, ds]l i

Obviously, 7* has the same distribution ag-). So we claim that the solutioX™ (t),
t > 0 of Equation (1) with the initial valueX(0) = =* is the stochastic equilibrium
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solution of Equation (1). Following we will prove this assen. By Theorem 2.2,
Remark 3 and Remark 4 we derive that

t -1
T (1) = [ L o i AcE) o as. [ TE©) - Ae) dr+/ oe) dB. ds}
T o K((s)

0
_ [e—/; A () dr+ 3 0(6(r) dB, / TE(S) 12 Ay det [0 otemydBe 4q
-0 K(§(9))

/‘t r((s)) o J AE@) drt [l o (E() dB. ds:|l
o K((s)

= [l 4 174,
where

0
I, = g Jo A dr+ [ o) dB, / TEE) 12 AgE) e+ o) B g
—oo K(&(3))

—t
— g Jo A drt [y oe(2) dB: / TEGHY) 2, A art 2, o) dB g
— K(§(s+1))

_ / TrEGHY) A o) B gg
—o K(E(s+1))

and
CrE@E) g t
| :/ ZOW)) o AE@) dr+ [ o(6() dBr g
27 Jo K(E(s)
— / ’ TESHY) - Ac@) el o a8 gg
_ K(E(s+1))
So

0 -1
TEGHY) - M) ar o dB ds] .

@ xro=tnnt=| [ O

Therefore for anyt > 0

T _ R -1
XTE 4+ T) = / IR ot A o) a8 g
o KEG+E+D)

_ [ /0 FEGHY) 1, AGE)dr+ [, o€ d, ds]’l,
—oo K(E(s+1))

(23)

where
g(S)zé(S—i-f), ész st — B, s>0.

It can be seen from (22) and (23) th¥f 7 (t +1), t > 0 and X" "7 (t) have the same
finite-dimensional distributions. By the definition of shastic equilibrium solution,
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X7 (t), t > 0 is the stochastic equilibrium solution of Equation (1). Byeorem 3.1,
it is globally asymptotically stable and weak unique. In fheof of this theorem we
use the fact that: If two stochastic processes compounded bymber of stochastic
processes which have the same finite-dimensional diswibuh the same way, then
the two stochastic process have the same finite-dimensgis@ibution. O

6. Discussion and conclusion

Owing to its theoretical and practical significance, theedwministic biological sys-
tem and its generalization form have been extensively studnd many important re-
sults on the global dynamics of solutions have been givenmaAstioned above, logistic
equation and Gilpin—Ayala equation are the most importasidally models to describe
the growth of the the single-species. When not taking ineordmdom factors, one can
establish the deterministic mathematical models to ptebe long-time behavior of the
biological population accurately. For the classical aatoit logistic equation, its equi-
librium solution called the carrying capacity, is a simplathematical expression. But
in the real world, the population systems are often subatarious types of environ-
mental noises, so it is important to discover whether sudbesoaffect the results or not.
Therefore such problem is advanced naturally: as the dbsioadels that describe the
growth of the single-species, whether or not stochastigstisgequation and stochastic
Gilpin—Ayala equation with Markovian switching can give semprediction of the long
run behavior of the biological population in random envir@nts? Obviously, this is an
important and meaningful problem in the theoretical andtfical biology.

The results in our paper demonstrate that, the populatiawtpr law which is
described by the stochastic logistic equation or stochdstipin—Ayala equation with
Markovian switching is different from the deterministic neddecause of the impact of
randomness or uncertainty. Because of the random fact@gan not get the accurate
result as the deterministic system. But we can give thessizdilaw of the state from
the mathematical model. The main result of our paper is thatnhodel in our paper
is asymptotically stable in distribution. This is an imgort result in the ecological
theory. Its importance can be seen from the following examnphen we throw a coin
randomly, although we can not know it appears positive oratieg for the next time,
we know exactly that the probability it appears positive egative is 12.

Theoretically, the important problem is how to get thisistatal law of the long-
time behavior of this model. When only white noise is taketo iaccount, it has been
showed that there exists a Gamma distribution which can kermdeed by the corres-
ponding model (see [32]). When the system is perturbed byctber, whether there
are white noises or not, what is this statistics law and hovgeb it from the model
are not known up to now. In our paper, we haven't solved thiblem absolutely. But
we proved the existence and the uniqueness of this statistic So our work provided
a necessary foundation for solving this problem ulteriatyd this will be one of the
most important contributions in the theory of the biology.
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We firstly proved that the distribution of the solution of Edjon (1) convergence
in distribution and then proved that Equation (1) had a uaiglobally asymptotically
stable stochastic equilibrium solution. The importantlegwal significance is: Be-
cause of the randomness of the system, we can not exactly kmwtate of the sys-
tem in a specific moment. But when time is long enough, we caswkfrom our
results that the distribution of the state of the system Wl gradually stable in the
sense of statistical.

The result of stochastic equilibrium solution in Sectionsbnew and it is an im-
portant result for the stochastic system. It needs to béndurstudied for the general
non-linear stochastic differential equation.
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