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Abstract
This paper mainly concerns with the stochastic logistic equation with Markovian

switching and white noise. We represent the unique global positive solution and show
some properties such as the stochastic permanence, global attractivity. The main con-
tribution of this paper is to demonstrate that the solution is asymptotically stable in
distribution. Moreover, the similar results for the stochastic Gilpin–Ayala equation
with Markovian switching and white noise are yielded by the same way. Finally, we
give the definition of the stochastic equilibrium solution and prove the existence and
uniqueness of such equilibrium solution of stochastic logistic equation.

1. Introduction

Stochastic modelling has come to play an important role in many branches of sci-
ence and industry. Stochastic stability has been one of the most active areas in stochas-
tic analysis and many mathematicians have devoted their great interest to it. There are
many types of stochastic stability. X. Mao [28] investigatedthree types of stochastic
stability for non-linear stochastic differential equation: stability in probability,p-th mo-
ment stability and almost sure stability. However such stabilities are too strong and the
solution will sometimes not converge to the equilibrium state but converge to a random
variable in distribution. This is the concept of another important stochastic stability:
stability in distribution (see e.g., [29], [30]). J. Bao, etal. [3] investigated stability in
distribution of neutral stochastic differential delay equations with Markovian switching.

There are many articles on the stability of stochastic differential equation, but up
to the authors’ best knowledge there are few works on stability in distribution. Es-
pecially, there are no articles on stability in distribution of stochastic logistic equa-
tions with Markovian switching. Logistic equation is of course the most important and
most widely used mathematical model to describe the growth of biological species. To
demonstrate that the theories of stochastic stability are applicable in population dynam-
ics, we discussed the autonomous stochastic logistic equation with Markovian switching
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and white noise of the form,

(1) d X(t) D r (� (t))X(t)

�
1� X(t)

K (� (t))

�
dt C � (� (t))X(t) d B(t)

on t � 0 with initial conditionsX(0)D x and� (0)D i , where� (t) be a right-continuous
Markov chain taking values in a finite state spaceS D {1, 2, : : : , N} and B(t) be the
1-dimensional standard Brownian motion and we always suppose that the Markov chain� (t) is Ft -adapted but independent of the Brownian motionB(t). For Equation (1),
X(t) denotes the density of the resource population at timet , r ( � ) is called the in-
trinsic growth rate,K ( � ) is usually referred as the environmental carrying capacity, or
saturation level, and� 2( � ) representing the intensity of the noises. Equation (1) can
be regarded as the results of the followingN equations

d X(t) D r (i )X(t)

�
1� X(t)

K (i )

�
dt C � (i ))X(t) d B(t), i 2 S

switching from one to the others according to the movement ofthe Markov chain.
Jiang et al. [15] studied the logistic equation with random perturbation, they mainly

investigated the existence and uniqueness, global attractivity of the positive solution
and the maximum likelihood parameter estimation. In [16] Jiang et al. discussed non-
autonomous logistic equation with random perturbation which is described by the
Itô equation

d N(t) D N(t)[a(t) � b(t)N(t) dt C �(t) d B(t)], t � 0.

In [17] Jiang et al. gave the global stability in probabilityand stochastic permanence of
a non-autonomous logistic equation with random perturbation. For the logistic equation
with random perturbation, Jiang et al. gave these very important and interesting results,
so the contributions of their result for logistic equation is clear. In our paper, we con-
sidered the stochastic logistic equation with Markovian switching and white noise, that
is we considered the color noise, say telegraph noise besides the white noise in logis-
tic model. Differenting from the exists results, we give thestability in distribution and
prove the existence and uniqueness of the stochastic equilibrium solution for the sto-
chastic biological model for the first time. The stochastic equilibrium solution plays
the same role as the deterministic stationary solution.

When ignoring the perturbation of Markov chain and white noise, we get the au-
tonomous logistic modeld X(t) D r X (t)(1� X(t)=K ) dt from Equation (1). It is well
known that this equation has two stationary solutionsx D 0 and x D K . When intro-
ducing uncertainty (color noise and white noise) into this model by the way of Equa-
tion (1), we transform the deterministic problem into corresponding stochastic problem
and obtain only the stationary solutionx D 0, which is the same as in the deterministic
case, but can not obtain another stationary solution corresponding x D K in determin-
istic model. But in the real world, it is this equilibrium that has great significance in
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the sense of bionomics. So from the view of biology, the following problem is im-
portant and instructive, i.e., under the perturbation of the noises, whether or not the
probability distribution ofX(t) will converge weakly to a stationary distribution which
is analogous toK . When only taking white noise into account, Polansky [33] answered
this question. The author showed that there exists a Gamma distribution which plays
the same role as in the deterministic stationary solutionx D K under some conditions
(see also [32]). If we refer the stationary solutionx D K as a Dirac delta distribution,
then this Dirac delta distribution will degenerate into a Gamma distribution under the
perturbation of the white noise. Then under the perturbation of both Markov chain and
white noise, what does this Dirac delta distribution become? This is the main problem
that we will investigate and resolve in our paper.

We note that the coefficients of Equation (1) do not satisfy the linear growth con-
dition, though they are local Lipschitz continuous. Moreover, the state space of our
model is not the whole space but (0,C1). Therefore many well known results on sto-
chastic boundedness and stability for stochastic differential equations can not be used
for Equation (1) directly, this results in many difficultiesto deal with it. So the signif-
icant contribution of our paper is therefore clear.

The rest of this paper is arranged as follows. In Section 2, werepresent an ex-
plicit expression of the unique solution of Equation (1) andshow that it is positive,
p-th moment bounded, stochastic permanence and global attractivity. In Section 3, we
give the main results of this paper: Stochastic logistic equation with Markovian switch-
ing and white noise is asymptotically stable in distribution. In Section 4, we devote
our interest to the Gilpin–Ayala system and give some similar results as in Section 2
and Section 3. In Section 5, we prove the existence and uniqueness of the globally
asymptotically stable stochastic equilibrium solution for Equation (1). Our main results
demonstrate that there is a trend that the distribution of the state of the system will be
gradually stable.

2. Stochastic permanence and global attractivity of Equation (1)

Let � (t) be a right-continuous Markov chain taking values in a finite state spaceS D {1, 2, : : : , N} with generator0 D (
i j )N�N given by

P{� (t C Æ) D j j � (t) D i } D �
i j Æ C o(Æ) if i ¤ j ,
1C 
i j Æ C o(Æ) if i D j ,

whereÆ > 0. Here
i j � 0 is the transition rate fromi to j and 
i j > 0 if i ¤ j while


i i D �X
j¤i


i j .

We note that almost every sample path of� ( � ) is a right continuous step function with
a finite number of sample jumps in any finite subinterval ofRC WD [0, 1). Throughout
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this paper we assume that the Markov chain� ( � ) is irreducible. Under this condition, the
Markov chain has a unique stationary (probability) distribution � D (�1, �2, : : : , �N) 2
R1�N which can be determined by solving the following linear equation

�0 D 0

subject to

NX
kD1

�k D 1 and�k > 0, 8k 2 S.

If the Markov chain� ( � ) is irreducible, then the system will switch from any regime
to any other regime. Denote byXx,i (t), t � 0 the solution of Equation (1) with initial
conditionsX(0)D x > 0 and� (0)D i 2 S, Let �i (t) be the Markov chain starting from
statei 2 S at t D 0. SinceXx,i (t), t � 0 denotes the population size, so only positive
solutions are of interest.

In this paper, for Equation (1) we let

r � D max
1�i�N

r (i ), K � D max
1�i�N

K (i ), � � D max
1�i�N

� (i ),

r� D min
1�i�N

r (i ), K� D min
1�i�N

K (i ), �� D min
1�i�N

� (i ).

We also assume that
(H1) r (i ) > 0, K (i ) > 0, i 2 S;
(H2) r� � (� �)2 > 0.

DEFINITION 2.1. The Equation (1) is said to be stochastically permanentif for
any " 2 (0, 1), there exist positive constantsÆ D Æ("), � D �("), such that

lim inf
t!C1 P{jX(t)j � �} � 1� ", lim inf

t!C1 P{jX(t)j � Æ} � 1� "
where X(t) is the solution of the equation with the initial conditionsX(0) D x and� (0)D i .

DEFINITION 2.2. Let X(t), Y(t) be two arbitrary solutions of Equation (1) with
initial values X(0), Y(0) respectively. If

lim
t!1 jX(t) � Y(t)j D 0 a.s.

then we say that Equation (1) is globally attractive.

The two definitions above can also be found in [4], [19].
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Lemma 2.1 (see e.g. [17] or [4]). Let f(t) be a nonnegative function defined on
[0,C1) such that f(t) is integrable on[0,C1) and is uniformly continuous on[0,C1),
then limt!1 f (t) D 0.

Theorem 2.2. Suppose(H1) holds. Then there exists a unique continuous positive
solution Xx,i (t) to Equation (1)which can be expressed as
(2)

Xx,i (t)D�1

x
exp

�� Z t

0
A(� (s)) dsCZ t

0
� (� (s)) d B(s)

�

CZ t

0

r (� (s))

K (� (s))
exp

�� Z t

s
A(� (� )) d�CZ t

s
� (� (� )) d B(� )

�
ds

��1

, t �0

for any initial conditions X(0) D x > 0 and � (0) D i 2 S, where A( � ) D r ( � ) �
(1=2)� 2( � ).

Proof. Let �1 > 0 be the first jumping time of� (t), at this stopping time�1, � (t)
jumps from the statei to j , while �2 > �1 is the next jumping time. Without loss of
generality, we only need to show that fort 2 [�1, �2), the solution satisfies

(3) Xx,i (t) D XXx,i (�1), j (t).

In fact for t 2 [0, �1], in the view of [16] (namely, the result of Theorem 2.2) Equa-
tion (2) holds, so

(4)

Xx,i (�1) D �
1

x
exp

�� Z �1

0
A(� (s)) dsC Z �1

0
� (� (s)) d B(s)

�

C Z �1

0

r (� (s))

K (� (s))
exp

�� Z �1

s
A(� (v)) dv C Z �1

s
� (� (v)) d B(v)

�
ds

��1

.

Then for t 2 [�1, �2), we observe from Equation (4) that

1

Xx,i (t)
D 1

x
exp

�� Z �1

0
A(� (s)) dsC Z �1

0
� (� (s)) d B(s)

�

� exp

�� Z t

�1

A(� (s)) dsC Z t

�1

� (� (s)) d B(s)

�

C Z �1

0

r (� (s))

K (� (s))
exp

�� Z �1

s
A(� (v)) dv C Z �1

s
� (� (v)) d B(v)

�

� exp

�� Z t

�1

A(� (v)) dv C Z t

�1

� (� (v)) d B(v)

�
ds

C Z t

�1

r (� (s))

K (� (s))
exp

�� Z t

s
A(� (v)) dv C Z t

s
� (� (v)) d B(v)

�
ds
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D �
1

x
exp

�� Z �1

0
A(� (s)) dsC Z �1

0
� (� (s)) d B(s)

�

C Z �1

0

r (� (s))

K (� (s))
exp

�� Z �1

s
A(� (v)) dv � Z �1

s
� (� (v)) d B(v)

�
ds

�

� exp

�� Z t

�1

A(� (v)) dv C Z t

�1

� (� (v)) d B(v)

�

C Z t

�1

r (� (s))

K (� (s))
exp

�� Z t

s
A(� (v)) dv C Z t

s
� (� (v)) d B(v)

�
ds

D 1

Xx,i (�1)
exp

�� Z t

�1

A(� (v)) dv C Z t

�1

� (� (v)) d B(v)

�

C Z t

�1

r (� (s))

K (� (s))
exp

�� Z t

s
A(� (v)) dv C Z t

s
� (� (v)) d B(v)

�
ds

D (XXx,i (�1), j (t))�1

which is the required assertion Equation (3).

REMARK 1. The conclusion of Theorem 2.2 in this paper can not be obtained
directly from Theorem 2.2 of [16]. Because Theorem 2.2 of [16] demands every co-
efficient function is a bounded continuous function but the coefficient function here is
stochastic and not continuous.

REMARK 2 (see e.g. [17], [18], [27]). Suppose that a stochastic processX(t) on
t � 0 satisfies the condition

(5) EjX(t) � X(s)j� � cjt � sj1C� , 0� s, t <1
for some positive constants�, � and c. Then there exists a continuous modificationQX(t) of X(t), which has the property that for every
 2 (0,�=�), there exists a random
variableh(!) > 0 such that

P

�! W sup
0�s, t<1, 0<jt�sj<h(!)

j QX(t, !) � QX(s, !)jjt � sj
 � 2

1� 2�

� D 1.

That is almost all sample path ofX(t) is locally but uniformly Hölder-continuous with
exponent
 .

REMARK 3. If the equation defined on [t0, 1), then the initial time can bet0,
that is

Xx,i (t)D�1

x
exp

�� Z t

t0

A(� (s)) ds�Z t

t0

� (� (s)) d B(s)

�

CZ t

t0

r (� (s))

K (� (s))
exp

�� Z t

s
A(� (� )) d� �Z t

s
� (� (� )) d B(� )

�
ds

��1

, t � t0.



ON STOCHASTIC LOGISTIC EQUATION 965

REMARK 4. If we replacex 2 RC by a positive random variable in Equation (2),
the formula still holds.

Following [17], we can prove Lemma 2.3, Lemma 2.4 and Theorem2.5.

Lemma 2.3. Let X(t) be a solution ofEquation (1)with initial value Xx,i (0)D
x > 0, then

E(X p(t)) � �K ��r � C (1=2)(p� 1)(� �)2

r�
��p WD M(p).

Proof. By the generalised Itô formula, we can easily know

d Xp(t) D pXp�1(t) d X(t)C 1

2
p(p� 1)X p�2(t)(d X(t))2

D pr (� (t))X p(t)

��
1� X(t)

K (� (t))

�
dt C � (� (t)) d B(t)

�

C 1

2
p(p� 1)X p(t)� 2(� (t)) dt.

Integrating from 0 tot and taking expectation yields

E Xp(t) D xp C Z t

0
pE

�
r (� (s))X p(s)

�
1� X(s)

K (� (s))

��
ds

C Z t

0

1

2
p(p� 1)E[X p(s)� 2(� (s)] ds,

i.e.,

d E Xp(t)

dt
D Er (� (t))X p(t)

�
1� X(t)

K (� (t))

�

C 1

2
p(p� 1)E[X p(t)� 2(� (t)], E Xx,i (0)D xp.

So we can see that

d E Xp(t)

dt
D E(r (� (t))X p(t))C 1

2
p(p� 1)E[X p(t)� 2(� (t))] � E

�
r (� (t))

K (� (t))
(X pC1(t))

�

� r �E Xp(t)C 1

2
p(p� 1)(� �)2E[X p(t)] � r�

K � E(X pC1(t))

� pE Xp(t)

��
r � C 1

2
(p� 1)(� �)2

� � r�
K � [E Xp(t)]1=p

�
.

Let p � 1 be chosen such that the initial value

0< x < K � r � C (1=2)(p� 1)(� �)2

r� .
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Then by the standard comparison theorem we know that

[E(X p(t))]1=p � K � r � C (1=2)(p� 1)(� �)2

r� .

So

E(X p(t)) � M(p).

This completes the proof of Lemma 2.3.

Lemma 2.4. Let X(t) be a solution ofEquation (1)with the initial value Xx,i (0)D
x > 0, then almost every sample path of X(t) is uniformly continuous on t� 0.

Proof. We rewrite Equation (1) as

X(t) D x C Z t

0
f (s, � (s), X(s)) dsC Z t

0
g(s, � (s), X(s)) d B(s),

where f (s,� (s),X(s))Dr (� (s))X(s)[1�X(s)=K (� (s))] and g(s,� (s),X(s))D� (� (s))X(s).
Then

E(j f (s, � (s), X(s))jp) D E

�
r p(� (s))X p(s)

����1� X(s)

K (� (s))

����
p�

� 1

2
(Er2p(� (s))X2p(s)C 1

2
E

��
1� X(s)

K (� (s))

�2p�

� 1

2
(Er2p(� (s))X2p(s)C 22p�2E

�
1C X2p(s)

K 2p(� (s))

�

� 1

2
(r �)2pM(2p)C 22p�2

�
1C M(2p)

(K�)2p

�
DW F(p),

and

E(jg(s, � (s), X(s))jp) D E(� 2(� (s)X p(s)) � (� �)pM(p) DW G(p).

By the moment inequality (cf. Friedman [8] or Mao [28]) and Hölder inequality, we
have that, for< t1 < t2 <1 and p > 2,

EjX(t2) � X(t1)jp � 2p�1E

�Z t2

t1

j f (s, � (s), X(s))j ds

�p

C 2p�1E

����
Z t2

t1

g(s, � (s), X(s)) d B(s)

����
p
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� 2p�1(t2 � t1)p�1E

�Z t2

t1

j f (s, � (s), X(s))jp ds

�

C 2p�1

�
p(p� 1)

2

�p=2
(t2 � t1)(p�2)=2E

Z t2

t1

jg(s, � (s), X(s))jp ds

� 2p�1(t2 � t1)pF(p)C 2p�1

�
p(p� 1)

2

�p=2
(t2 � t1)p=2G(p)

� 2p�1(t2 � t1)p=2�1C �
p(p� 1)

2

�p=2�
[F(p)C G(p)],

We see from Remark 2 that almost every sample path ofX(t) is locally but uniformly
Hölder-continuous with exponent
 for every 
 2 (0, p � 2=2p) and therefore almost
every sample path ofX(t) is uniformly continuous ont � 0. This completes the proof
of Lemma 2.4.

Theorem 2.5. Suppose(H1) and (H2) hold, Xx,i (t) and Xy,i (t) are solutions of
Equation (1)with initial values Xx,i (0)D x > 0 and Xy,i (t) D y > 0. Then

lim
t!C1jXx,i (t) � Xy,i (t)j D 0 for almost all ! 2 �.

Proof. Consider a Lyapunov functionV(t) which is defined by

V(t) D jlog Xx,i (t) � log Xy,i (t)j, t � 0.

Then the generalised Itô formula implies that

d(log Xx,i (t) � log Xy,i (t)) D � r (� (t))

K (� (t))
(Xx,i (t) � Xy,i (t)) dt.

Thus, a direct calculation of the right differentialdCV(t) of V(t) along the solutions yields

(6)

dCV(t) D sgn(Xx,i (t) � Xy,i (t)) d(log Xx,i (t) � log Xy,i (t))

D � r (� (t))

K (� (t))
jXx,i (t) � Xy,i (t)j dt

� � r�
K � jXx,i (t) � Xy,i (t)j dt.

Integrating (6) from 0 tot we obtain

V(t)C r�
K �

Z t

0
jXx,i (s) � Xy,i (s)j ds� V(0)<1.

So,

jXx,i (t) � Xy,i (t)j 2 L1[0, C1).



968 G. HU AND K. WANG

Therefore from Lemma 2.1 and Lemma 2.4 we get

lim
t!C1jXx,i (t) � Xy,i (t)j D 0 for almost all ! 2 �.

This completes the proof of Theorem 2.5.

From Theorem 2.5 we can see that the positive solutions of Equation (1) attract
each other. In fact, any positive solution can be regarded asan attractor of Equa-
tion (1).

Lemma 2.6. Let � (t) be a right-continuous Markov chain taking values in a finite
state spaceS D {1, 2, : : : , N}, then

E

�
exp

�Z t

t0

� (� (s)) d B(s)

�� � exp

�
(� �)2

2
(t � t0)

�
, 0� t0 � t .

Proof. Applying the generalised Itô formula, we obtain

exp

�Z t

t0

� (� (s)) d B(s)

� D 1C Z t

t0

� (� (s)) exp

�Z s

t0

� (� (� )) d B(� )

�
d B(s)

C 1

2

Z t

t0

� 2(� (s)) exp

�Z s

t0

� (� (� )) d�� ds

� 1C Z t

t0

� (� (s)) exp

�Z s

t0

� (� (� )) d B(� )

�
d B(s)

C (� �)2

2

Z t

t0

exp

�Z s

t0

� (� (� )) d�� ds.

Taking expectation on both sides yields

E exp

�Z t

t0

� (� (s)) d B(s)

� D 1C 1

2
E
Z t

t0

� 2(� (s)) exp

�Z s

t0

� (� (� )) d�� ds

� 1C (� �)2

2

Z t

t0

E exp

�Z s

t0

� (� (� )) d�� ds.

Then the Gronwall’s inequality implies that

E

�
exp

�Z t

t0

� (� (s)) d Bs

�� � exp

�
(� �)2

2
(t � t0)

�

which is the required assertion.

Lemma 2.6 is different from Lemma 2.1 of [16] since here the integrand has a
Markov chain and the result is a inequality. The following Lemma implies that Equa-
tion (1) is stochastic uniform permanence.
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Lemma 2.7. Suppose(H1) and (H2) hold. Then the solution Xx,i (t) with the ini-
tial conditions X(0)D x and � (0)D i has the property that

min

�
x,

K�(r� � (� �)2)

r �
� � E Xx,i (t) � max

�
x,

r �K �
r�

�
.

Proof. We rewrite Equation (1) as

Xx,i (t) D x C Z t

0
r (� (s))Xx,i (s) ds� Z t

0

r (� (s))

K (� (s))
(Xx,i (s))2 ds

C Z t

0
� (� (s))Xx,i (s) d B(s).

Taking expectation yields

E Xx,i (t) D x C Z t

0
E(r (� (s))Xx,i (s)) ds� Z t

0
E

�
r (� (s))

K (� (s))
(Xx,i (s))2

�
ds,

i.e.,

(7)
d E Xx,i (t)

dt
D E(r (� (t))Xx,i (t)) � E

�
r (� (t))=K (� (t))

(Xx,i (t))2

�
, E Xx,i (0)D x.

By Jensen’s inequality we show that

d E Xx,i (t)

dt
D E(r (� (t))Xx,i (t)) � E

�
r (� (t))

K (� (t))
(Xx,i (t))2

�

� r �E Xx,i (t) � r�
K � E(Xx,i (t))2

� r �E Xx,i (t) � r�
K � (E Xx,i (t))2.

Considering the following logistic equation, based on ordinary differential equation,
which is described by

(8) y0 D r �y� r�
K � y2, y(0)D x.

The solution of Equation (8) satisfies

y(t) � max

�
x,

r �K �
r�

�
when t � 0.

So, making use of the comparison principle for Equation (7) and Equation (8), we get

E Xx,i (t) � max

�
x,

r �K �
r�

�
.
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Let Y1=x,i (t) D 1=Xx,i (t), x > 0, then by Itô formula one can get

dY1=x,i (t) D �
(� 2(� (t)) � r (� (t)))Y1=x,i (t)C r (� (t))

K (� (t))

�
dt

� � (� (t))Y1=x,i (t) d B(t).

That is

Y1=x,i (t) D 1

x
C Z t

0
(� 2(� (s)) � r (� (s)))(Y1=x,i (s))C r (� (s))

K (� (s))
ds

� Z t

0
� (� (s))(Y1=x,i (s) d B(s).

Taking expectation one can get

EY1=x,i (t) D 1

x
C Z t

0
E

�
(� 2(� (s)) � r (� (s)))Y1=x,i (s)C r (� (s))

K (� (s))

�
ds,

i.e.,

d EY1=x,i (t)

dt
D E

�
(� 2(� (t)) � r (� (t)))Y1=x,i (t)C r (� (t))

K (� (t))

�

� ((� �)2 � r�)EY1=x,i (t)C r �
K� .

From the comparison principle we get

EY1=x,i (t) � max

�
1

x
,

r �
K�(r� � (� �)2)

�
.

Consequently, by Jensen’s inequality,

1

E
Xx,i (t) � E

1

Xx,i (t)
D EY1=x,i (t) � max

�
1

x
,

r �
K�(r� � (� �)2)

�
.

Then we can derive directly that

E Xx,i (t) � min

�
x,

K�(r� � (� �)2)

r �
�

.

This completes the proof of Lemma 2.7.

Lemma 2.8. Suppose(H1) and (H1) hold. Then the solution ofEquation (1)obeys

lim
t!1 E

���� 1

Xx,i (t)
� 1

Xy,i (t)

���� D 0 uniformly in (x, y, i ) 2 M � M � S,
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for any compact subset M of(0,C1).

Proof. Theorem 2.2 implies that���� 1

Xx,i (t)
� 1

Xy,i (t)

����
D ����1x � 1

y

���� exp

�� Z t

0

�
r (� (s)) � � 2(� (s))

2

�
ds

� � exp

�� Z t

0
� (s) d B(s)

�

� ����1x � 1

y

���� exp

���r� � (� �)2

2

�
t

� � exp

�� Z t

0
� (s) d B(s)

�
.

Noting that�B(t) is also a Brownian motion ifB(t) is. So by Lemma 2.4 and condi-
tion (H2), we get

E

���� 1

Xx,i (t)
� 1

Xy,i (t)

���� �
����1x � 1

y

���� exp

���r� � (� �)2

2

�
t

� � E exp

�� Z t

0
� (s) d B(s)

�

� ����1x � 1

y

���� exp

��(r� � (� �)2)t

�
.

Then lettingt !C1 produce

lim
t!1 E

���� 1

Xx,i (t)
� 1

Xy,i (t)

���� D 0.

It is obvious that this limit is uniformly in any compact subset M of (0, C1) for
x, y 2 M. The proof of Lemma 2.8 is complete.

Lemma 2.9. The solutions ofEquation (1)satisfy

E(Xx,i (t)Xy,i (t)) � max

�
xy,

�2

�2

�
,

where� D 2r � C (� �)2, � D (2r�)=K �.
Proof. By the generalized Itô formula we obtain

d(Xx,i (t)Xy,i (t))

D Xy,i (t) d Xx,i (t)C Xx,i (t) d Xy,i (t)C d Xx,i (t) � d Xy,i (t)

D �
2r (� (t))Xx,i (t)Xy,i (t)

� r (� (t))

K (� (t))
Xx,i (t)Xy,i (t)(Xx,i (t)C Xy,i (t))C (� (� (t)))2Xy,i (t)Xx,i (t)

�
dt

C 2� (� (t))Xy,i (t)Xx,i (t) d B(t)
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D �
(2r (� (t))C (� (� (t)))2)Xx,i (t)Xy,i (t)

� r (� (t))

K (� (t))
Xx,i (t)Xy,i (t)(Xx,i (t)C Xy,i (t))

�
dt

C 2� (� (t))Xy,i (t)Xx,i (t) d B(t).

So

Xx,i (t)Xy,i (t)

D xyC Z t

0

�
(2r (� (s))C (� (� (s)))2)Xx,i (s)Xy,i (s)

� r (� (s))

K (� (s))
Xx,i (s)Xy,i (s)(Xx,i (s)C Xy,i (s))

�
ds

C Z t

0
2� (� (s))Xy,i (s)Xx,i (s) d B(s).

Taking expectation we derive that

E(Xx,i (t)Xy,i (t)) D xyC Z t

0
E

�
(2r (� (s))C (� (� (s)))2)Xx,i (s)Xy,i (s)

� r (� (s))

K (� (s))
Xx,i (s)Xy,i (s)(Xx,i (s)C Xy,i (s))

�
ds,

i.e.,

(9)

d E[Xx,i (t)Xy,i (t)]

dt
D E

�
(2r (� (t))C (� (� (t)))2)Xx,i (t)Xy,i (t)

� r (� (t))

K (� (t))
Xx,i (t)Xy,i (t)(Xx,i (t)C Xy,i (t))

�

with the initial value E(Xx,i (0)Xy,i (0)) D xy. Furthermore, Jensen’s inequality im-
plies that

d E(Xx,i (t)Xy,i (t))

dt
D E

�
(2r (� (t))C (� (� (t)))2)Xx,i (t)Xy,i (t)

� r (� (t))

K (� (t))
Xx,i (t)Xy,i (t)(Xx,i (t)C Xy,i (t))

�

� E

�
(2r � C (� �)2)Xx,i (t)Xy,i (t) � 2r�

K �(Xx,i (t)Xy,i (t))3=2
�

D (2r � C (� �)2)E(Xx,i (t)Xy,i (t)) � 2r�
K �E(Xx,i (t)Xy,i (t)))3=2
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� (2r � C (� �)2)E(Xx,i (t)Xy,i (t)) � 2r�
K �(E(Xx,i (t)Xy,i (t)))3=2

D �E(Xx,i (t)Xy,i (t)) � �(E(Xx,i (t)Xy,i (t)))3=2.

Considering the ordinary differential equation

(10) z0 D �z� �z3=2, z(0)D xy.

Clearly, Equation (10) is a Bernoulli type equation and its’solution is given by

z(t) D �
1

(1=pxy� �=�) exp(�(�=2)t)C �=�
�2

, t � 0.

Furthermore, we can show that

z(t) � max

�
xy,

�2

�2

�
.

The required assertion follows from the comparison principle for Equation (9) and
Equation (10).

Lemma 2.10. EjXx,i (t)j1=2 � {max[x, (r �K �)=r�]}1=2, 8t � 0.

Proof. It is easy to prove by Lemma 2.7 and Cauchy inequality.

REMARK 5. Lemma 2.10 guarantees that for any (x, i ) 2 (0,C1)�S, the family
of transition probabilities{p(t, x, i , dy� { j }) W t � 0} is tight. That is, for any" > 0
there is a compact subsetM D M(", x, i ) of (0,C1) such that

p(t, x, i , M � S) � 1� ", 8t � 0.

Lemma 2.11. Let M be a compact subset of(0, C1). Then the solution of
Equation (1)obeys

(11) lim
t!C1 EjXx,i (t) � Xy,i (t)j1=2 D 0 uniformly in (x, y, i ) 2 M � M � S.

Proof. By Cauchy inequality, Lemma 2.6 and Lemma 2.7, we can check that

EjXx,i (t) � Xy,i (t)j1=2 D E

�
(Xx,i (t)Xy,i (t))1=2���� 1

Xx,i (t)
� 1

Xy,i (t)

����
1=2�

� (E(Xx,i (t)Xy,i (t)))1=2�E

���� 1

Xx,i (t)
� 1

Xy,i (t)

����
�1=2

� �max

�
xy,

�2

�2

��1=2����1x � 1

y

���� exp{�(r� � (� �)2)t}.
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Letting t !C1 yields the assertion (11).

REMARK 6. The explicit expression of the solution is not necessary in the proof
of this paper although itself is interesting and meaningful. In fact, it is only used in
the proof of Lemma 2.8. However, we can prove it with the following method: Let
Y1=x,i (t) D 1=Xx,i (t), x > 0, then by Itô formula one can get

dY1=x,i (t) D �
(� 2(� (t)) � r (� (t)))Y1=x,i (t)C r (� (t))

K (� (t))

�
dt

� � (� (t))Y1=x,i (t) d B(t).

So

Y1=x,i (t) � Y1=y,i (t) D 1

x
� 1

y
C Z t

0
(� 2(� (s)) � r (� (s)))(Y1=x,i (s) � Y1=y,i (s)) ds

� Z t

0
� (� (s))(Y1=x,i (s) � Y1=y,i (s)) d B(s).

Taking expectation we get

EjY1=x,i (t) � Y1=y,i (t)j � ����1x � 1

y

����C
Z t

0
((� �)2 � r�)EjY1=x,i (s) � Y1=y,i (s)j ds.

Then Gronwall’s inequality implies that

EjY1=x,i (t) � Y1=y,i (t)j � ����1x � 1

y

���� exp{�(r� � (� �)2)t}.

Letting t !1 yields the result of Lemma 2.8.

Of course the explicit solution has another use, that is it can reveal the existence
of the unique global positive solution. But this can be seen in [30] on p. 353 (namely,
Theorem 10.2).

3. Stability in distribution

Based on the results of Section 2 of Equation (1), we are goingto prove the main
result of our paper: Equation (1) is stable in distribution.First we introduce some no-
tations. Lety(t) denote the (0,C1)�S-valued process (X(t),� (t)). Then y(t) is a time
homogeneous Markov process. Letp(t, x, i , dy� { j }) denote the transition probability
density of the processy(t). Let P(t, x, i , A � D) denote the transition probability of
of the event{y(t) 2 A � D} with the initial value y(0) D (x, i ), where A is a Borel
measurable set of (0,C1), D is a subset ofS, and

P(t, x, i , A� D) DX
j2D

Z
A

p(t, x, i , dy� { j }).
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Denote byP((0,1) � S) the space of all probability measures on (0,1) � S. For
p1, p2 2 P((0,1) � S) define the metricdL as follows:

dL(p1, p2) D sup
f 2L
�����

NX
iD1

Z
(0,1)

f (x, i )p1(dx, i ) � NX
iD1

Z
(0,1)

f (x, i )p2(dx, i )

�����,
where

L D { f W (0,1) � S! R W j f (x, i ) � f (y, j )j � jx � yj C ji � j j, j f ( � � � )j � 1}.

DEFINITION 3.1. The processy(t) is said to be asymptotically stable in distribu-
tion if there exists a probability measure�( � � � ) on (0,1)�S such that the transition
probability densityp(t,x, i ,dy�{ j }) of y(t) converges weakly to�(dy�{ j }) as t !1
for every (x, i ) 2 (0,1) � S.

Equation (1) is asymptotically stable in distribution if the processy(t) is asymp-
totically stable in distribution.

Theorem 3.1. Equation (1)is asymptotically stable in distribution.

Lemma 3.2. For any compact subset M of(0,1),

lim
t!1 dL(p(t, x, i , � � � ), p(t, y, j , � � � )) D 0,

uniformly holds in x, y 2 M and i, j 2 S.

Lemma 3.3. For any (x, i ) 2 (0,1) � S, {p(t, x, i , � � � ) W t � 0} is Cauchy in
the spaceP((0,1) � S) with metric dL.

The proofs of Lemma 3.2 and Lemma 3.3 repeated the proofs of [30] on
pp. 212–216, so we omit the proofs here.

Proof of Theorem 3.1. By Lemma 3.3,{p(t, 0, 1, � � � )W t � 0} is Cauchy in the
spaceP((0,1) � S) with metric dL. So there is a unique�( � � � ) 2 P((0,1) � S)
such that

lim
t!1 dL(p(t, 0, 1, � � � ), �( � � � )) D 0.

Furthermore, by Lemma 3.2, for any (x, i ) 2 (0,1) � S,

(12)

lim
t!1 dL(p(t, x, i , � � � ), �( � � � ))
� lim

t!1[dL(p(t, 0, 1, � � � ), �( � � � ))C dL(p(t, x, i , � � � ), p(t, 0, 1, � � � ))]
D 0.
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Fig. 1. Sample path of logistic equation (13), (14) and (15).

In view of the fact that the weak convergence of probability measures is a metric con-
cept (see [14]), Equation (12) indicates that for any (x, i ) 2 (0,1) � S, the transi-
tion probabilities{p(t, x, i , � � �) W t � 0} converge weakly to the probability measure�(� � �) 2 P((0,1) � S). By the definition of asymptotically stable in distribution we
complete the proof.

REMARK 7. We note that the state space of Equation (1) is not the wholespace
but (0,C1). Therefore the results of stability in distribution in [30] can not be used
for Equation (1) directly, this results in some difficultiesto deal with it.

EXAMPLE . Consider the following logistic system with regime switching

(13) d X(t) D r (� (t))X(t)

�
1� X(t)

K (� (t))

�
dt C � (� (t))X(t) d B(t)

where B(t) is a standard Brownian motion,� (t) is a right-continuous Markov chain
taking value in a two-state spaceS D {1, 2}. So we may regard this system as the
result of the following two equations switching from one to another according to the
movement of the Markov chain

(14) d X(t) D r (1))X(t)

�
1� X(t)

K (1)

�
dt C � (1)X(t) d B(t),

wherer (1)D 2.5, K (1)D 3, � (1)D 1;

(15) d X(t) D r (2)X(t)

�
1� X(t)

K (2)

�
dt C � (2)X(t) d B(t),
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where r (2)D 3, K (2)D 9, � (2)D 1.5. Let the the jump matrix of the Markov chain� (t) be �
0.1 0.9
0.3 0.7

�
,

We observe that the SDE (14) (green) and (15) (red) are all stable in distribution,
after switching, the whole system (13) (blue) is sill stablein distribution. Because it is
only a statistical result, it can not be accurate as the deterministic model.

4. Generalized results

The Gilpin–Ayala equation, based on ordinary differentialequation, is usually de-
noted by

(16) PN(t) D N(t)[a(t) � b(t)N� (t)] (� > 0)

where� is a parameter to modify the classical logistic model. When establishing math-
ematical model to describe the growth of the population, we can make the model more
effective by adjusting the value of� > 0. Some detailed studies about this model may
be found in [9, 10]. Jiang et al. [17] considered the randomized model (17) based
on (16) with intensity�2(t)

(17) d N(t) D N(t)[a(t) � b(t)N� (t)dt C �(t) d B(t)] (t � 0)

with the initial valueN(0)D N0 (N0 is a positive random variable), where� > 0 is an
odd number,B(t) is the 1-dimensional standard Brownian motion. Herea(t), b(t) and�(t) are bounded continuous functions defined on [0,1), a(t) > 0, b(t) > 0 and N0 is
independent ofB(t).

For the stochastic Gilpin–Ayala equation with Markovian switching,

(18) d X(t) D r (� (t))X(t)

�
1� X� (t)

K (� (t))

�
dt C � (� (t))X(t) d B(t)

with initial conditions X(0)D x and� (0)D i , where� (t) be a right-continuous Markov
chain taking values in a finite state spaceS D {1, 2, : : : , N}, � > 1 and B(t) is the
1-dimensional standard Brownian motion. LetX(t) be a solution of Equation (18), then
the generalised Itô formula implies that

(19)

d X� (t) D X� (t)���r (� (t))C �(� � 1)

2
� 2(� (t)) � � r (� (t))

K (� (t))
X� (t)� dt

C �� (� (t)) d B(t)

�
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Let Y(t) D X� (t) then Equation (19) is equivalent to

(20)

dY(t) D Y(t)

���r (� (t))C �(� � 1)

2
� 2(� (t)) � � r (� (t))

K (� (t))
Y(t)

�
dt

C �� (� (t)) d B(t)

�

with the initial valuesY(0)D x� > 0 and� (0)D i 2 S.
For Equation (18), we assume that

(H1)� r (i ) > 0, K (i ) > 0, i 2 S;
(H2)� r� � [(� C 1)=2](� �)2 > 0.

Note that Equation (20) is similar with Equation (1). So by the similar methods
as in Section 2, we can give the analogous results for Equation (20) as Equation (1).
Then we can directly derive the following results for Equation (18) and here omit the
detailed proofs.

Theorem 4.1. Suppose(H1)� holds. Then for any initial conditions X(0)D x > 0
and � (0) D i 2 S, Equation (15)has a unique continuous positive solution which is
given by

(Xx,i (t))�
D �

1

x� exp

���� Z t

0
A(� (s)) ds�Z t

0
� (� (s)) d B(s)

��

C� Z t

0

r (� (s))

K (� (s))
exp

���� Z t

s
A(� (� )) d� �Z t

s
� (� (� )) d B(� )

��
ds

��1

, t � 0

where A( � ) D r ( � ) � (1=2)� 2( � ).
Lemma 4.2. Suppose(H1)� and (H2)� hold. Then

lim
t!C1j(Xx,i (t))� � (Xy,i (t))� j D 0 for almost all ! 2 �,

where Xx,i (t) and Xy,i (t) are solutions ofEquation (18)with initial values Xx,i (0)D
x > 0, � (0)D i 2 S and Xy,i (t) D y > 0, � (0)D i 2 S respectively.

Lemma 4.3. Suppose(H1)� and (H2)� hold. Then the solution Xx,i (t) with the
initial conditions X(0)D x and � (0)D i has the property that

min

�
x� , [r� � ((� C 1)=2)(� �)2]K�

r �
� � E(Xx,i (t))�
� max

�
x� , [r � C ((� � 1)=2)(� �)2]K �

r�
�
.
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Lemma 4.4. Suppose(H1)� and (H2)� hold. Then

lim
t!1 E

���� 1

(Xx,i (t))� � 1

(Xy,i (t))�
���� D 0 uniformly in (x, y, i ) 2 M � M � S,

for any compact subset M of(0,C1).

Lemma 4.5. The solution ofEquation (18)obeys

E((Xx,i (t))� (Xy,i (t))� ) � max

�
(xy)� , (2r � C (2� � 1)(� �)2)2K �

4r 2�
�
.

Lemma 4.6. The solution ofEquation (18)satisfies

Ej(xx,i (t))� j1=2 � �max

�
x� , (r � C [(� � 1)=2](� �)2)K �

r�
��1=2

, 8t � 0.

Lemma 4.7. The solution ofEquation (18)has the property that

lim
t!C1 Ej(Xx,i (t))� � (Xy,i (t))� j1=2 D 0 uniformly in (x, y, i ) 2 M � M � S.

By the same argument as in Section 3 we have the following theorem.

Lemma 4.8. Suppose(H1)� and (H2)� hold. Then the solution ofEquation (18)
satisfies: the transition probability densityNp(t, x, i , dy� { j }) of ((Xx,i (t))� , �i (t)) con-
verges weakly to�(dy� { j }) as t!1 for every (x, i ) 2 (0,1)� S, where�(� � �) is
a probability measure on(0,1) � S.

Let P(t, x, i , A� D) denote the probability of the event{(Xx,i (t), � (t)) 2 A� D},
A is a Borel measurable set of(0,C1), D is a subset ofS. Then

P(t, x, i , A� D) D P(Xx,i (t) � y, �i (t) 2 D) DX
j2D

Z y

0
p(t, x, i , ds� { j }),

where y2 (0,C1).

Theorem 4.9. Equation (18)is asymptotically stable in distribution.

Proof. Lemma 4.8 implies that

P(Xx,i (t) � z, �i (t) 2 D) D P((Xx,i (t))� � z� , �i (t) 2 D)

DX
j2D

Z z�
0

Np(t, x, i , ds� { j })
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converges weakly to
P

j2D

R z�
0 �(ds� { j }) as t ! 1 since the transition probability

density Np(t, x, i , dy � { j }) of ((Xx,i (t))� , �i (t)) converges weakly to�(dy � { j }) as
t !1. Let NsD s1=� , then

X
j2D

Z z�
0
�(ds� { j }) DX

j2D

Z z

0
�(Ns)��1�(dNs� { j }).

So P(Xx� ,i (t) � z,�i (t) 2 D) converges weakly to
P

j2D

R z
0 �(Ns)��1�(dNs�{ j }). So there

is a probability measure�(t)��1�(dt�{ j }) on (0,1)�S such that the transition proba-
bility density p(t,x, i ,dy�{ j }) of (Xx,i (t),�i (t)) converges weakly to�(t)��1�(dt�{ j }).
This completes the proof of Theorem 4.9.

5. Stochastic equilibrium solution

The classical deterministic logistic equation has a globally asymptotically stable
equilibrium solution which has the great ecological significance. When considering the
random factors, the classical deterministic logistic equation becomes the stochastic lo-
gistic equation. One may ask what does the equilibrium solution become? As far as
we know, this is an important problem which has not been solved until now. In order
to investigate this issue more better. We firstly need to givea reasonable definition of
the stochastic equilibrium solution for the stochastic system. Here the stochastic equi-
librium solution is a counterpart of the constant solution of the deterministic system.
The deterministic constant solutionx D x(t), t � 0 should satisfy
• For any Nt � 0, y(t) D x(t C Nt) D x(t), t � 0.

That is, equilibrium solution should have the time translation invariance. So we
have the following definition for stochastic equilibrium solution.

For stochastic differential equation with Markovian switching

(21) d X(t) D f (t, � (t), X(t)) dt C g(t, � (t), X(t)) d B(t).

We give the definition as follows:

DEFINITION 5.1. The solutionX D X(t), t � 0 is said to be a (strictly) stochastic
equilibrium solution of Equation (21) if for anyNt � 0, the solution processY(t) WD
X(t C Nt) and X(t) have the same finite-dimensional distributions.

That is to say that if the solutionX(t) of Equation (21) is the strictly stochastic
process, thenX(t) is said to be a (strictly) stochastic equilibrium solution.

If besides, any of the solutionY(t) of Equation (21) converges toX(t) in distribu-
tion as t !1, then X(t) is said to be globally asymptotically stable.

Similarly, if the solutionX(t) of Equation (21) is a wide stochastic process, then
X(t) is said to be a wide stochastic equilibrium solution of Equation (21).
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DEFINITION 5.2. The solution of Equation (21) is said to be weakly uniqueif
any two solutionsY(t) and X(t) have the same distribution providedY(0) and X(0)
have the same distribution.

Here we need extend the definition of Brownian motionBt to �1 < t <1 as in
[2] (p. 547) or [37].

Theorem 5.1. Suppose that Markov chain� (t) is irreducible and the solution of
Equation (1)is defined on R. ThenEquation (1)has a globally asymptotically stable
stochastic equilibrium solution. Moreover, this equilibrium solution is weak unique.

Proof. Let the asymptotic stationary distribution of Markov� ( � ) be N� and Xn(t),
t � �n be the solution of Equation (1) with the initial valueX(�n) D 1, then by Re-
mark 3 we have

Xn(t) D �
e� R t�n A(� (s)) dsCR t�n � (� (s)) d Bs C Z t

�n

r (� (s))

K (� (s))
e� R t

s A(� (� )) d�CR t
s � (� (� )) d B� ds

��1

,

where A( � ) D r ( � ) � � 2( � )=2. Particularly

Xn(0)D �
e� R 0�n A(� (s)) dsCR 0�n � (� (s)) d Bs C Z 0

�n

r (� (s))

K (� (s))
e� R 0

s A(� (� )) d�CR 0
s � (� (� )) d B� ds

��1

D �
e� R n

0 A(N� (s)) dsCR n
0 � (N� (s)) d NBs C Z n

0

r ( N� (s))

K ( N� (s))
e� R n

s A(N� (� )) d�CR n
s � (N� (� )) d NB� ds

��1

D X1, N� (n),

where

N� (t) D � (t � n), NB D Bt�n � B�n.

By Theorem 3.1, the sequence{Xn(0), nD 0,1,: : :} of random variables is convergence
in distribution. Denote�(�) the limit of {Xn(0),nD 0,1,:::} in the sense of distribution.
On the other hand, by assumption (H1) and (H2), it is evident that

lim
n!1 e� R 0�n A(� (s)) dsCR 0�n � (� (s)) d Bs D 0.

So we get that

lim
n!1 Xn(0)D �Z 0

�1
r (� (s))

K (� (s))
e� R 0

s A(� (� )) d�CR 0
s � (� (� )) d B� ds

��1 WD ��.
Obviously,�� has the same distribution as�( � ). So we claim that the solutionX�� (t),
t � 0 of Equation (1) with the initial valueX(0) D �� is the stochastic equilibrium
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solution of Equation (1). Following we will prove this assertion. By Theorem 2.2,
Remark 3 and Remark 4 we derive that

X��, N� (t) D �
1�� e� R t

0 A(� (� )) d�CR t
0 � (� (� )) d B� C Z t

0

r (� (s))

K (� (s))
e� R t

s A(� (� )) d�CR t
s � (� (� )) d B� ds

��1

D �
e� R t

0 A(� (� )) d�CR t
0 � (� (� )) d B� Z 0

�1
r (� (s))

K (� (s))
e� R 0

s A(� (� )) d�CR 0
s � (� (� )) d B� ds

C Z t

0

r (� (s))

K (� (s))
e� R t

s A(� (� )) d�CR t
s � (� (� )) d B� ds

��1

WD [ I1 C I2]�1,

where

I1 D e� R t
0 A(� (� )) d�CR t

0 � (� (� )) d B� Z 0

�1
r (� (s))

K (� (s))
e� R 0

s A(� (� )) d�CR 0
s � (� (� )) d B� ds

D e� R t
0 A(� (� )) d�CR t

0 � (� (� )) d B� Z �t

�1
r (� (sC t))

K (� (sC t))
e� R 0

sCt A(� (� )) d�CR 0
sCt � (� (� )) d B� ds

D Z �t

�1
r (� (sC t))

K (� (sC t))
e� R t

sCt A(� (� )) d�CR t
sCt � (� (� )) d B� ds

and

I2 D Z t

0

r (� (s))

K (� (s))
e� R t

s A(� (� )) d�CR t
s � (� (� )) d B� ds

D Z 0

�t

r (� (sC t))

K (� (sC t))
e� R t

sCt A(� (� )) d�CR t
sCt � (� (� )) d B� ds.

So

(22) X��, N� (t) D [ I1 C I2]�1 D �Z 0

�1
r (� (sC t))

K (� (sC t))
e� R t

sCt A(� (� )) d�CR t
sCt � (� (� )) d B� ds

��1

.

Therefore for anyNt � 0

(23)

X��, N� (t C Nt) D �Z 0

�1
r (� (sC t C Nt))
K (� (sC t C Nt))e� R tCNt

sCtCNt A(� (� )) d�CR tCNt
sCtCNt � (� (� )) d B� ds

��1

D �Z 0

�1
r ( Q� (sC t))

K ( Q� (sC t))
e� R t

sCt A(Q� (� )) d�CR t
sCt � (Q� (� )) d QB� ds

i�1
,

where Q� (s) D � (sC Nt), QBs D BsCNt � BNt , s� 0.

It can be seen from (22) and (23) thatX��, N� (t C Nt), t � 0 and X��, N� (t) have the same
finite-dimensional distributions. By the definition of stochastic equilibrium solution,



ON STOCHASTIC LOGISTIC EQUATION 983

X��, N� (t), t � 0 is the stochastic equilibrium solution of Equation (1). ByTheorem 3.1,
it is globally asymptotically stable and weak unique. In theproof of this theorem we
use the fact that: If two stochastic processes compounded bya number of stochastic
processes which have the same finite-dimensional distribution in the same way, then
the two stochastic process have the same finite-dimensionaldistribution.

6. Discussion and conclusion

Owing to its theoretical and practical significance, the deterministic biological sys-
tem and its generalization form have been extensively studied and many important re-
sults on the global dynamics of solutions have been given. Asmentioned above, logistic
equation and Gilpin–Ayala equation are the most important basically models to describe
the growth of the the single-species. When not taking into the random factors, one can
establish the deterministic mathematical models to predict the long-time behavior of the
biological population accurately. For the classical autonomic logistic equation, its equi-
librium solution called the carrying capacity, is a simple mathematical expression. But
in the real world, the population systems are often subject to various types of environ-
mental noises, so it is important to discover whether such noises affect the results or not.
Therefore such problem is advanced naturally: as the basically models that describe the
growth of the single-species, whether or not stochastic logistic equation and stochastic
Gilpin–Ayala equation with Markovian switching can give some prediction of the long
run behavior of the biological population in random environments? Obviously, this is an
important and meaningful problem in the theoretical and practical biology.

The results in our paper demonstrate that, the population growth law which is
described by the stochastic logistic equation or stochastic Gilpin–Ayala equation with
Markovian switching is different from the deterministic model because of the impact of
randomness or uncertainty. Because of the random factors, we can not get the accurate
result as the deterministic system. But we can give the statistics law of the state from
the mathematical model. The main result of our paper is that the model in our paper
is asymptotically stable in distribution. This is an important result in the ecological
theory. Its importance can be seen from the following example, when we throw a coin
randomly, although we can not know it appears positive or negative for the next time,
we know exactly that the probability it appears positive or negative is 1=2.

Theoretically, the important problem is how to get this statistical law of the long-
time behavior of this model. When only white noise is taken into account, it has been
showed that there exists a Gamma distribution which can be determined by the corres-
ponding model (see [32]). When the system is perturbed by thecolor, whether there
are white noises or not, what is this statistics law and how toget it from the model
are not known up to now. In our paper, we haven’t solved this problem absolutely. But
we proved the existence and the uniqueness of this statistics law. So our work provided
a necessary foundation for solving this problem ulteriorlyand this will be one of the
most important contributions in the theory of the biology.
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We firstly proved that the distribution of the solution of Equation (1) convergence
in distribution and then proved that Equation (1) had a unique globally asymptotically
stable stochastic equilibrium solution. The important ecological significance is: Be-
cause of the randomness of the system, we can not exactly knowthe state of the sys-
tem in a specific moment. But when time is long enough, we can know from our
results that the distribution of the state of the system willbe gradually stable in the
sense of statistical.

The result of stochastic equilibrium solution in Section 5 is new and it is an im-
portant result for the stochastic system. It needs to be further studied for the general
non-linear stochastic differential equation.

References

[1] W.J. Anderson: Continuous-Time Markov Chains, Springer, New York, 1991.
[2] L. Arnold: Random Dynamical Systems, Springer, Berlin,1998.
[3] J.H. Bao, Z.T. Hou and C.G. Yuan:Stability in distribution of neutral stochastic differential

delay equations with Markovian switching, Statist. Probab. Lett.79 (2009), 1663–1673.
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