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Abstract
In this paper, we show qualitative results for the solutiohgorward-backward
parabolic equations, where the forward or backward bebaviepends on the gra-
dient of the solution.

1. Introduction and motivations

In [4], [5], [6] the following parabolic initial boundary Vae problem is considered:

1) U = ¢"(Uuxx, In (=1, 1)x[0, T),
2) Uy(—1,t) = ux(1,t) =0, Vtel0, T),
(©) u(x, 0) = up(x), Vx e (-1,1),

where ¢ is a nonlinear function of clas€? such thaty’(0) = 0. Without any con-
straint on the sign ofp”, (1), (2), (3) is a forward-backward problem, well-posed if
¢”(uy) > 0 and ill-posed ifp”(uy) < 0. Backward problems are in general very diffi-
cult to solve. Indeed, the heat equation= k Au with k < 0 is an ill-posed problem
for t > 0 in most functional classes, includirgf® or analytic functions. On the other
hand, forward-backward equations appear frequently inyniaaportant physical mod-
els and this justifies the interest around them. If we chap®® = (1/2) In(1 + o?)

in (1), we obtain the classical Perona—Malik equation:

1-ug U
T (14 u22 "

4) Ut

The forward or backward behaviour of (4) is determined retpgely by the conditions
|ux| < 1 or|ux| > 1. This equation was introduced in 1990 by the engineers f@nRe
and J. Malik in [17], as a tool to analyze edge detection andyérsegmentation prob-
lems in computer vision; see also [10] for the connectionsveen the Perona—Malik
equation and the Mumford—Shah functional.

The Perona—Malik problem represents a paradox which has etobgen solved,
despite the intense research devoted to it in recent yeadeed, from the analytical
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point of view, there does not exist an acceptable definitibweak solution. Only the
following facts are known about classical solutions ([@]1]):

e if ug is subsonigi.e. |ugk(X)| < 1, Vx € (=1, 1), then the problem has a unique
global classical solution, which remains subsonic for flefs;

e if ug is transonic i.e. ¢”(ugx) changes sign in-{1, 1] and the classical solution
exist, it can not be global ([11]). It is proved ([6]) that fer transonic solution we
have necessarily

1
T< 4/ In(1 + ud (x)) dx.
-1

The paradox lies in the fact that numerical schemes for thatemn do not show
significant instabilities, despite the expected ill-pasesks ([3]); recall also the expli-
cit construction by Hdllig [8] of a piecewise affine functianfor which the equation
ur = [¢(ux)]x has an infinite number of local Lipschitz continuous solusioln order
to explain this situation, Kichenassamy in [12] proposedotiom of generalized solu-
tion for the initial value problem related to the Perona—Malik &ipn, for infinitely
differentiable data. This definition closely follows theafares of numerical solutions
(see [14] for more details), but the assumptions on theainiiatum are unrealistic
in concrete signal processing problems. Therefore, theareh on the Perona—Malik
equation is still open.

A first result of the present paper concerns the followingatigas:

2
1—ug

5) U = —(1+ u§)2

Uxx = F(uy).

This kind of equations appears e.g. in [1] and describesimeanl diffusion phenomena
in hydrology. We consider the initial boundary value prable

(6) U = ¢"(Uuxx — G(u), in (=1, 1)x[0, T),
@) Ux(—1,t) = uy(1,t) =0, Vtel0,T),
(8) u(x, 0) = up(x), Vxe(-1,1),

which is the formal gradient flow associated to the functiona

1 s
Hy(U) = / [plu) + oWl dx, 0(9) = [O G(r) dr,

and its generalization to am-dimensional open domaif®

9) Uy = div[<p/(|Vu|)|z—zJ —G(u), in @x][0,T),
(20) z—z =0, on aQx][0,T),

(11) u(x, 0) = ug(x), VYx e Q.
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Equation (9) appears in a reaction-diffusion model progobg Cohen and Murray
in [2], which describes a diffusive mechanism of a populatextending the classi-
cal Fickian diffusion. We also mention [7], [9], [15], [16]18], where the following
quasilinear diffusive equation is considered:

U = Ag(u).

The choicesp(u) = u/(K + u?) or ¢(u) = ue " make the equation a forward-backward
one. In order to obtain a well-posed problem, some possiyglarizations are pro-
posed, for example the well known Cahn—Hilliard equatign= A¢(u) — € A%u or
the Sobolev equation; = A¢(u) + € Au;. Therefore, we consider also the regular-
ized problem:

(12) U = ¢ (Ux)Uxx — €Uxxxx,  IN (=1, 1)x [0, T),
(13) ux(—1,t) = ux(1,t) =0, Vtel0,T),
(14) Uox(—1,t) = Uxx(1,1) =0, Vt [0, T),
(15) u(x, 0) = up(x), Vx e (-1,1).

Finally, we show the global nonexistence of solutions foe thitial boundary value
problem related to the equations:

U = ¢ (UUxx £ U% in (=1, 1)x (0, +00).

2. Preliminaries

For the sake of completeness, we expose a result of exiseamtainiqueness of
the solution for subsonic initial data (due to Kawohl and éwuf11]).

Theorem 2.1. Let us consider the following problem

(16) Uy = ¢”(Uyx)Uxx, in (o1, 02) x [0, T),
a7) Uyx(o1,t) = Ux(op, t) =0, Vte][O0,T),
(18) u(x, 0) = ug(x), Vx € (o1, 02),

where ¢ is a nonlinear function of class €such thaty’(0) = 0, convex for|uy| < K
and concave foluy| > K. Let us assume thatyte C2%([o1, 0]), « € (0, 1), satisfies
|uox| < K in [o1, 02]. Then there exists T> 0 such that the problen(16), (17), (18)
admits a unique classical solution u. Furthermorguy, uy, uxyx are Hoélder-continuous
with exponentx in X and«/2 in t.
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Proof. In order to prove the existence, we modify the funttooutside the in-
terval [01, 0] in order to obtain a uniformly parabolic problem:

o(o0), , if o €lo1,07],
¥ (o) = 1 9(02) + (0 — 02)¢'(02) + @q)”(@), if o> oy,
Ry
@(01) + (0 — o1)¢'(01) + %(p//(dl), if o <o.

In this way, ¥” > ¢ > 0 andv’ is increasing. Then, the new problem:

(19) wy = ¥ (wx)wxx, N (o1, 02) x [0, T),
(20) wy(o1, 1) = wy(oz,t) =0, Vtel[0,T),
(22) w(X, 0) = up(X), VX € (01, 02),

admits a classical solutiom ([13]). Let us setwy = v; the problem (19), (20),
(21) becomes:
v = [ (W)vy]x, N (o1, 02) x [0, T),
v(og,t) = v(o2,t) =0, Vtel0,T),

U(X, O) = U()X(X), VX € (O‘l, 02).
We can apply the weak maximum principle, therefore:

sup fwx(X, 1)l = sup [u(X, t)] = supluox(x)| < K.
(01,02)%[0,T) (01,02)%[0,T) (01,02)

The functionw is not only the solution of the problem (19), (20), (21), bigocaof
(16), (17), (18). Concerning the uniqueness, let us asshataitand v are two differ-
ent solutions of the problem. We can write:

1d [ 72

sat ), (u—v)?dx = ; (u— v)(uf — ve) dx

= [ U= ) U — ¥ (0 v dx

o1

— [ - o) - v ol dx

o1

T /UZ(Ux — v)[¥' () — ¥/ (v)] dx,



QUALITATIVE PROPERTIES FORPERONA-MALIK TYPE EQUATIONS 917
due to the boundary condition. Singe is monotonically increasing, we have:

(ux — v)[¥'(ux) — ¥'(v)] = 0.

Therefore:
lOI/l(u Ydx<0=u= O
2dt ), v < = .

3. Statements

3.1. The one-dimensional case.The following result is an extension of The-
orem 3.1 in [6].

Theorem 3.1. Let us suppose that:uR?> — R is a C! solution of (5), where
F: R — R satisfies the hypothesis(E/o) = F(c)/o. Let us assume that there exists
a positive constant C such that

(22) ux(x,t) > C, V(x,t)eR2
Then the functionw: R? — R, uniquely defined by

(23) u(w(x, t), —t) = x, V(x,t) € R?,
is a C! solution of (5).

The following results are an extension of the classicalnests and maximum-
minimum principles obtained by Ghisi and Gobbino in [5].

Theorem 3.2. Let us suppose that:J—1, 1] x [0, T) — R is a C? solution of
(6), (7), (8),with G a non-negative function. Lgt be an even non-negative function
of class G, such thaty’(0) = 0. Then the function t— H,(u(x, t)) is non-increasing
and for every t,t; € [0, T) such that { <t,, we obtain

to 1
(24) H, (u(x, t1)) — Hy(u(x, t2)) = / /1[ut]2 dx dt.
ty -
Additionally:
(25) Ju(x, t2) = u(X, 2)llLz@-1,1) < {Hy(Uo)}2 - [ty — to] 2,

Let us assume thap satisfies also - ¢'(0) > 0, Yo € R. Then for every(x,t) €
[-1, 1]x [0, T), we have

(26) u(x, t) < maxuoe(x): x € [-1, 1]};
27) u(x, t) > min{up(x): x € [-1, 1]}.
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Furthermore for every pe [1, +o0] and every te [0, T):
(28) u, Ol o1, = Tuo()lLp(-1,2))-

Corollary 3.3. Let u: [-1,1]x[0,T) — R be a C solution of (6), (7), (8),with
G a non-negative function. Let us assume thpais an even non-negative function of
class @, such thato - ¢'(c) > 0, Vo € R and ¢’(0) = 0.
e If ug(x) >0, Vx € [-1, 1], then ux, t) >0, V(x,t) € [-1, 1] x [0, T).
e |If ug is boundedthen u is bounded.

Corollary 3.4. With the same hypothesis @orollary 3.3and assuming ¢1> 0,
the L2-norm of |-, t) is monotonically decreasing for 0.

Theorem 3.5. Let u: [-1,1]x [0, T) — R be a C solution of (6), (7), (8),with
G a non-negative increasing function of clas$. @ et us suppose that satisfies all
the hypothesis of th€heorem 3.2and additionallyy is convex in a neighborhood 6f
Then for every te [0, T):

lux(X, Ol Li-1,19) = lUox(X)IL2(=1,2))-

Theorem 3.6. Let us suppose that:J—1, 1] x [0, T) — R is a C? solution of
(6), (7), (8),with G a non-negative increasing function of class$. Cet us set

M(t) := max{ux(x, t): x € [-1, 1]}, m(t) := min{uyx(x, t): x € [-1, 1]}
If ¢ is convex in an intervajoy, o7], with o1 < o5, then
(29) M(0) <02 = M(t) <02, m(0)>o01 = m(t) >01, Vte[0,T).
Similarly, if ¢ is concave in the intervdloy, o], then
(30) M(0) > 0 = M(t) = 02, mM(0) <01 = m(t) <o1, Vte[0,T).

Theorem 3.7. Let us suppose that:J—1, 1] x [0, T) — R be a C solution of
(12), (13), (14), (15)and lety be an even non-negative function of clas§ €uch that
o-¢'(0) >0, Vo € R and ¢’(0) = 0. We have the following results.

e For every(x,t) e [-1, 1]x [0, T):

(32) u(x, t) < max{ue(x): x € [-1, 1]};
(32) u(x, t) = min{fug(x): x € [—1, 1]}.

e For every te [0, T):

(33) [u(X, t)llLee(-1,1)) = Uo(X) [l L2e((~1,1))-
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3.2. The n-dimensional case. In the following, 2 is an open set oR" with
piecewiseC! boundary and exterior normal. The results are an extension of The-
orems 2.14 and 2.15 of [5].

Theorem 3.8. Let u: @ x [0, T) — R be a C solution of (9), (10), (11),with
G a non-negative functigriet us suppose thap is an even non-negative function of
class @, such thato -¢'(c) > 0, Vo € R and ¢’(0) = 0. We have the following results.
e Forevery(x,t) e Q x[0, T):

(34) u(x, t) < max{ug(x): x € QJ;
(35) u(x, t) = min{ue(X): x € Q}.

e For every pe[1, +oo] and for every te [0, T):
(36) [ux, OllLe) = luo(X)|lLre)-

In the n-dimensional case, the total variation estimateudé true only in the case
of radial solutions.

Theorem 3.9. Let Q be an open disc irR". Let u: @ x[0,T) - R be a C
radial solution of (9), (10), (11),with G an increasing non-negative function. Let us
suppose thatp is an even non-negative function of clas$, Guch thato - ¢'(¢c) > 0,
Vo € R and ¢’(0) = 0, convex in a neighborhood & Then

(37) [Vu(x, )Ly = VuoX) Ly, Yt el[0,T).

4. Remarks

1. As it is well known, the Cauchy problem for the backward thequation is ill-
posed in the backward directidn< 0 in most function spaces. However, we can prove
a result of local existence provided the initial data areyii?, the space of Gevrey
functions with exponent /2; this can be easily seen e.g. using the Fourier transform.
In this case, also the solution belongsyt§?. However, this Gevrey class is not stable
for products and it seems that a similar result in the noalir@ase can not be true.

2. We notice that all the above results apply to the clas$tesbna—Malik equation,
which corresponds to the choigg(o) = (1/2) log(1+ o?). Another interesting case
corresponds to the choiag(o) = (62 — 1)?, which appears in several applications in-
cluding nonlinear elasticity and phase transition models.

3.  An explicit example of functiorF satisfying the assumptions in Theorem 3.1 is
F(o) = ci/o, with c € R.

4. Theorem 3.6 is our main result. It asserts that if the daiy(®r,0) takes on values
inside the interval of convexity of, thenuy(x, t) assumes values in this interval for
all times; that is, if the initial datum is subsonic, the smo remains subsonic. In the



920 C. Pocci

same way, ifux(x, 0) is outside the interval wherg is concave, themy(x,t) remains
in this interval for all times. This means that uf is transonic, also the solution will
be transonic.

5. Corollary 3.4 shows thé&?-stability of the solution. Corollary 3.3 and 3.4 for the
problem (12), (13), (14), (15) are still true.

5. Proofs

In this Section, we give the proofs of our results. Let us prdheorem 3.1.

Proof of Theorem 3.1. We show that the functian defined by (23), satisfies
the equation (5). Hypothesis (22) assures that the functies u(x, —t) is bijective
for everyt e R and its inverse functiorx — w(x, t) is of classC!. By derivation of
(23), we obtain:

1
Ue(w(x, 1), 1)’
—uc(w(X, t), =t) + ux(w(x, t), =t) - wi(x, t) =0
U (w(x, t), —t)

Ue(w(x, 1), 1)’

Ux(w(X, 1), —=t) - wx(X, 1) = 1 = wy(X, t) =

= U)[(X, t) =

Assumption (22) guarantees that the denominatorg,0find w; are not zero, therefore
their expressions are well defined. Thus:

o (we(, O)wex = [/ (wa(, D)l = [

[ ux(w(x, 1), —t)
N [1 + u2(w(x, t), —t)

wy(X, 1)
1+ wa(x, t)i|x

} = [¢/(Ux(w(x, 1), =t))]x.

Hence:

[‘p/(wx)]x £ F(wy) = [QO/(UX(U), —t)]x - wx £ F(wy).

From the hypothesis=(1/0) = F(o)/oc and from the expressions aby and wy,
it follows:

[¢'(wx)]x £ Fwx) = [¢'(u]x - u_];( + FL(JI;I(X)

o' u)lx = F(ux) U
N Uy Uy

= Wy,

that isw solves (5). O

In order to establish Theorem 3.2, we need the following Itesu
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Proposition 5.1. Let u: [-1, 1] x [0, T) — R be a solution of class €of (6),
(7), (8), with G: R — R of class C. Let us suppose that and  are functions of
class @ satisfying the following hypothesis
e ¢ is an even non-negative function such tlgaf0) = 0O;

e y/(0)=0.
Then

@ 5[ vwa=- [ voucswac [ o ewax
d 1
gt [ 1w + oy ax
(39) o .
-4/ o) dx- / ()t [0 (U)o — G
Proof. The identities (38) and (39) follow immediately frdmtegration by parts.
d ! ! ’ _ ! / ”
gt [ vax= [ veuax= [ w0l - sw] dx
1 1
— IR - [ v e dx- [ vwewdx
1 1

From (7) and from the assumption @n, the boundary terms are zero and the identity
(38) follows. Analogously, since € C?, we have:

d 1
gt [ v+ o ax
1 , d 1
= /_1W (ux)uxe dX + P /_1 ®(u) dx
! / " d !
= [ vl - Gl dx+ 5 [ o
! / " ! / E !
= [ w0l ouud dx— [ wic@ldx+ 5 [ owax

Let us integrate by parts the previous integrals; using thentlary condition (7) and
the hypothesis, we have:

1 1
(40) / Ul (Ut dx = = / 1 00ule (e)uod dx

and

1 1
(a1) / Y @IC( dx = - [ [V(0)u]G) dx



922 C. Pocci

Therefore, by (40) and (41), we obtain:
d 1
o [ o + oy dx
tJa

1 1 1
_ / I (U)o (U2, dX + / I (U G(U) dx + & / (u) dx,
—1 -1 -1

dt
which proves (39). O

The proof of Theorem 3.2 will be obtained by a suitable chat¢he functiony
in the previous identities.

Proof of Theorem 3.2. Let us show (24). With the choijce= ¢ in (39), we have:

1 1 1
% [1[¢(UX) + (I)(U)] dx = — /;l (p//(ux)uxxut dx + % /;1 d)(u) dx
1

1
=— /_1[ut + G(U)Ju dx + % /1 d(u) dx

1 1 d rt
- _ 2 _ —_
= /_1[ut] dx /—1 G(u)ug dx + T /—1 @(u) dx

1
= / [u]? dx.
-1
Therefore:

H, (u(x, t2)) — Hy (u(x, t2))

1 1
- / ol 1) + B(u(x, )] dx— / ol 1) + O(u(x, )] dx

1o 1
= / / [u]? dx dt
1 -1

Using (24) and the Holder inequality we obtain that:

t2
/ ut(x, r) dr
t1

t2
< | lue(X, D)llez-1,1ydr

t

(X, 1) — U(k, 1) Lat.ay = ‘
L2((-1,1))

to ) 1/2 1o
= ( llue(x, T)||||_2((_1,1))df) -ty — 1o /
1

= [Hy (u(x, tr)) — Hy(u(x, t2))]72 - |ty — to] /2
< {Ho(uo)} %+ |ty — o] V2.

that is (24).
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Now we prove the maximum and minimum principles, respeltiy26) and (27)
for the solution. Let us set:

Y(o) = {?0 —K)* :I Z i i K = maxug(x): x € [-1, 1]}.

We notice thaty is a non-negative convex function of cla€$. Moreover:

1 1
/ ¥(u(x, 0))dx = / Y(up(X))dx =0, Vtel0,T),
-1 -1

sinceug(x) < K. Applying (38) with this choice ofy and havingy(0)-o -¢'(0) = 0,
¥'(0) - G(o) = 0, the function

1
t— /_1 w(u(x, t)) dx

is non-negative and non-increasing. Then:

fl Y(u(x,1))dx=0= ¥ (u(x,t)) =0, YVt € [0, T) = u(x,t) < K
-1

which proves (26). The proof of (27) may be easily obtainefindey

0 if o>K,

V(o) = {(U LK) i o <K K = min{up(x): x € [-1, 1]}

and arguing as above.

Let us prove thelL P estimates oru.

We remark that, in the case when= +o0, the estimate follows immediately from
(26) and (27), which ensure the boundedness.off p < +o0, let us set the function:

¥(0) = [o|".

For p € [2, +00), ¥ is a non-negative convex function of clagd. Thus, by (38), the
function t — ff1|u(x, t)|P dx is non-increasing in time and (28) follows. In the case
when p € [1,2), ¢ is not of classC?, although it is convex. However, we can approxi-
mate it with a family{v.(c)}..0 Of functions satisfying the following conditions:

e for everye > 0, . is a convex function of clas€?, such thaty! (o) - G(o) > 0
and y/(0) = 0;

e Y. (o) = |o| uniformly onR, for ¢ — O*.

Applying (38) to ¥ and using the assumptions, we obtain that the function
ffl ve(u(x, t)) is non-increasing, thus:

1 1
/ Ye(u(x, t)) dx < / Ve (Up(X)) dX.
-1 1
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Letting ¢ — 0", (28) is established also in this case. [l

The proof of Corollary 3.3 is a direct consequence of Theo&#n In particular,
the non-negativity of the solution yields immediately from (27) while the bounded-
ness is obtained applying (28) with = +oc.

Concerning the proof of Corollary 3.4, from the Corollan 3ve obtain that the
solutionu and thenu - G(u) are non-negative.

df1 1d [* !
m[EIUIEZ«—l,l»} ~ 24t /_1 utdx = /_1 Hu dx

1
= /_ U[Sﬂ//(ux)uxx - G(U)] dx.

1

Integrating by parts, we obtain:

i|:}|u|2 ] = —/1 '(uy)u dx—/1 uG(u) dx
di| 2™ =1y _l‘P xJHx i :

The integrands at the right-hand side of the previous ark hoh-negative, therefore:

dfi .,
i34t an] <0
We prove Theorem 3.5.

Proof of Theorem 3.5. Let us consider a family.(o)}c-0 Of functions satisfy-
ing the following conditions:
e for everye > 0, . is a convex function of clas€?, such thato - ¢/(c) > O,
¥/(0)=0 andy/(c) = 0, if |o| = o0}
e Y. (o) — |o| uniformly on R, pere — O*.
From (39), for everyt € [0, T):

d 1 1
o / (U dx = — / P ()¢ (U2, dx
(42) -1 -1

1
4 / UG dx.

Integrating by parts the last term and applying this idgntit /., we obtain:

d 1 1
= / V() dx = — / U ()" (U2, dx
(43) -t -

- / 1 ¥ (Ux)G'(U)ux dx.
-1
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The integrands in the right hand side of (43) are non-negatihereforet —
f_ll ¥e(Ux(X, t)) dX is non-increasing:

1 1
/ Ye(ux(X, 1)) dx < / Ve (Uox (X)) dX.

The conclusion follows passing to the limit as— O*. []
Let us establish Theorem 3.6.

Proof of Theorem 3.6. We prove (29); the boundary conditigf) implies
M(0) > 0, thuso, > 0. We analyze separately the cases> 0 ando, = 0. For

the first one, we introduce the function:

o—op, If o> o0y,

V(o) = {0'

if o <oo.

Then, we consider a familyy.(o)}e~o satisfying:

1. for evere > 0, ¥, is a convex function of clas€?, with o - y/(c) > 0 and
Y!(0) =0 if o ¢ o1, 02];

2. Y. — v uniformly onR, for ¢ — 0*;

3. ¥/(0)=0, for everye > 0 (here we use the assumptiop > 0).

Applying (42) to . and lettinge — 0, we have:

d 1
at /4 ¥(uy) dx < 0.
Hence:
1 1
0= [ vt dx= [ ot dx

Since M(0) < o7, we find:

1
/_ () = 0= Y(ux(x, 1) = O,

thereforeuy(x,t) < o, for every &,t) € [-1,1]x[0,T). If o, = 0, we need to distinguish
two casesip”(0) = 0 andg”(0) > 0. In the first one, we can find a family/.(o)}c-0
that satisfies the first two requests of the previous casentuthe third one and we
can conclude in the same way of the case> 0. In the second case, there exists an
interval [o1, 5], with & > 0, where¢”(c) > 0. Arguing as in the case, > 0, we have
M(t) <o, YVt € [0, T) and the conclusion follows by taking the limit far — 0. The
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other implication in (29) can be analogously proved defining

o1—o, if o <oy,

Vi) = {0, ' if o>o01.

We prove (30); the boundary condition (7) gives immediatbly conclusion in the case
02 < 0. Thus, we can suppose > 0 ande > 0, in such a way thad,—e¢ > max{0,01}.
Let us choose the following function:

0, if o <o0y—c¢,

Ve(o) = {

k(o), if o >o0p—c¢,

wherek is a positive function for whichy, is convex, of clas<?, sucho - /(o) <0
and vy (o) =0, Yo > o,. With these requests, using (42) we find:

d 1

JR— >

T [1 Ye(uy) dx > 0.
Hence:

1 1
/ Ye(ux(x, t)) dx > / Ye(Uox (X)) dX.
1 _1

The hypothesigV (0) > o, yields

1
/_ (o) x>

that isM(t) > o,—¢, Vt €[0,T). We can conclude by calculating the limit for— 0*.
In a similar way we can prove the other implication. O

In order to prove Theorem 3.7, we need the following result.

Proposition 5.2. Let u: [-1, 1] x [0, T) — R be a C solution of (12), (13),
(14), (15);let us assume thap and ¥ are functions of class €and C° respectively
satisfying the next requests
e ¢ is an even non-negative function such thgf0) = 0;

e yY’(0)=0.
Then
(44)

d [t Lo
af,l‘”(“)dx—‘/ﬂ () - Uy - ¢'(uy) dx

1 1
—e/ w”’(u)-ui-uxxdx—e[ Y'(u)-uZ, dx, Vtel[o,T).
-1 -1
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Proof. We can argue as in the proof of (38). Integration bytspgields:
d 1 1 1
o [v@dx= [ wudx= [ 5@ @t et dx
dt /4 -1 -1
1
= ' (u)¢'(ux) ;iil - /1 ¥ (U)uxg'(ux) dx
1
— e ool B+ € [0 @t dx
-1

The boundary terms are null due to (13) and (14), then:

d ! ! 4 ’ ! "
@) g [ vax=- [ vueGidxe [ 0 @uumndx
-1 -1 -1
Let us integrate by parts the second integral in the rightdhside of (45):
1 1
/ ¥ (U)UxUyxx dX = [¥(U)UxUx] X224 —f [¥" (U)uy]xUxx dX
-1 -1
1
= _/ [W”(U)Ui + 9" (U)uxx]uxx dXx
-1
1 1
= —f xp”’(u)uiuxxdx—/ ¥ (uyu, dx.
-1 -1
Substituting the previous expression in (45), we obtain).(44 O

We prove Theorem 3.7.

Proof of Theorem 3.7. We choose

0 if o=<K,

(O,’ _ K)Z' if o>K, K= maX{UO(X): X e [_1, 1]}

(o) = {

The C?2 function v is convex and non-negative. Using (44) and arguing as in thefp
of Theorem 3.2, we have (31). From (31) and (32), we have (33). O

As in the one-dimensional case, we need the following reisulbrder to prove
Theorem 3.8.

Proposition 5.3. Let u: Q x[0,T) - R be a C solution of (9), (10), (11),with
G: R — R; let us assume thap and v are functions of class € such that
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e ¢ is an even non-negative function such tig&f0) = 0;
e y'(0)=0.
Then

d n /
" gt [ vax=— [ v@rvule(vu) ax
—/ Y (u)G()dx, Vtelo,T).
Q

The identity (46) can be easily established as (38) via matemn by parts and
Theorem 3.8 can be proved arguing as in Theorem 3.2.

Concerning then-dimensional problem, we can take := {x € R": |x] < R}; if
we consideru = u(r, t) with r = |x|, the problem (9), (10), (11) becomes:

@'(ur)
r
(48) u(0,t) =u (R, t) =0, Vtel0,T).

(47) U = @"(ur)urr + (n—1) —G(u), V(1) (0 R x[0,T)

In order to prove Theorem 3.9, we need the following result.

Proposition 5.4. Let u [0,R]x[0,T) — R be a C solution of (47), (48),with G
of class C; let us assume thap and v are C? functions verifying the next requests
e ¢ is an even non-negative function of clas$ €atisfying¢’(0) = 0;

e y'(0)=0.
Then Vt € [0, T):

d
dt

R
(49) (-1 f V() (U3 dr
0

R R
|ty dr == [Certy e o dr
0 0

R
- [ rws . vie, )
0

Proof. Integrating by parts, we have:
d
dt

R
= / "y (U )upe dr
0

R
/ e Ly (u) dr
0

R /
= / I’n_llp/(ur)[(»o“(ur)Urr +(n— 1)M - G(U)i| dr
0

r r
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=/OR 1y (ur)[so”(ur)unlrdr+(n—1)/ oty )| S
- ety G dr
/ [ ) (U e dr+(n—1)f i) (52 ar
- Sy G, dr

- 0= 22 ) g (e

r " (Ur)Ury

R o R
+(n—1)/0 r Ly (ur) = AC) dr—/o r" Ly’ (U )G/ (u)u, dr.

and (49) follows. []

Indicating with w,_1 the (— 1)-dimensional Hausdorff measure of the unit sphere
in R", we have:

R
VU, Dl = @na / F 2y, (r, 1) dr.
0
We establish Theorem 3.9.

Proof of Theorem 3.9. We can apply (49) to a fam{ly.(o)}..o of functions
verifying the following requests:
e for everye > 0, . is a convex function of clas€?, such thaty’/(0) = 0 and
Y (o) =0, if |o] = ov;
e Y.(o) — |o| uniformly on R, for ¢ — OF;
o o-Yyl(o) >0, for everyc € R and everye > 0.
In this way, ¥/ (c)¢"(0) = 0 andy/(o)¢'(c) = O for everyo € R. Therefore the func-

tiont — fOanfle(ur) dr is non-increasing:

R R
[ e yar < [t s dr
0 0
and the theorem follows as— OF. O

6. An example of global non-existence of solution

In this section, we show examples of global non-existencgobition for problems
related to the equations:

U = ¢"(Ux)uxx £ U2,
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whereg is a C? non-negative even function, such thef0) = 0, with suitable hypoth-
esis on the initial datum.

EXAMPLE 6.1. Let us consider the following problem:

(50) Ur = @"(Uuyy + U2, in (=1, 1)x (0, +00);
(51) Ux(—1,t) = uy(1,t) =0, Vt > O;
(52) u(x, 0) = up(x), Vxe(-1,1).

We prove that it does not exist a global solution of (50), (5BR2) if ug is a non-
negative function satisfying:

1
/ Uo(x) dx > 0.

1

Indeed, integrating the equation with respectxtowe have:

d 1 1 1
—[ udx:[ uzdx—i—/ @" (Uy)Uxx dX
dt J, 1 1
1

1
- [ W2 dx + ¢/ (Ux(L, 1)) — ¢/ (U (1, 1)) = / W2 dx,
-1

-1

due to the boundary condition (51). Holder inequality yseld

1 1
<Ir_ 12 2
[1udx_|[ 1, 1] [/1u dx]

Hence

1/2 2

1 1
:>(/ udx) 52/ u? dx.
1 1

d [t 1/t z
R >
dt/_1de_2(/_1UdX)'

Solving the previous inequality with initial datum (52), viied:

udx> I .
1 2—1t /7, up(x) dx

/1 2[}1 Up(X) dx

Therefore, lettingt — t* = 2/(f711 Uo(X) dx), we have:

1
/ u(x, t) dx — +o0,
~1

i.e. the solution blows up in a finite time.
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EXAMPLE 6.2. We consider the equation

Ut = wﬁ(ux)uxx - u2,

with the conditions (51) and (52) anﬂfl Up(X) dx < 0. Arguing as above, we obtain

udx < I .
1 241t [7, ug(x) dx

/1 2 ffl Uo(X) dx

Thus,t — t* = —2/([_11 Up(x) dx) yields f_ll u(x, t) dx — —oo.
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