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Abstract
We discuss an analogy between the deformations of hyperlstiictures on a
knot complement and of certain nearly ordinary Galois regnéations.

0. Introduction

Let p be an odd prime number, and |€, be the Galois group of the maximal
algebraic extensioQp ; of Q unramified outsidep and the infinite placeco. A
two-dimensional continuous representatiorof G, is called nearly p-ordinaryif its
restriction to a decomposition subgroup, at p is conjugate to an upper triangular

representation:
g U
olo N( e )
P 0 s,

whereg, and§, are characters and, is a continuous function oD. In addition, o
is called p-ordinary if &,[;, = 1, nearly p-extraordinaryif u, = 0, or p-extraordinary
if o is p-ordinary and nearlyp-extraordinary, wherd, is the inertia subgroup ap
(also see Definition 1.2 in Subsection 1.1).

Let k be a finite field of characteristip, and let

5: Gp — GLa(K)

be a continuous, absolutely irreducible, odd, andrdinary Galois representation. Then
we assume that det), # 1 (also see Assumption 1.3 in Subsection 1.1). Moreover, we
assume that the deformation theorygfs cleanly unobstructedfor the definition, see
Assumption 2.5 in Subsection 2.2), and the following
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ASSUMPTIONO.1. (1) If ¢ is full, i.e., the image ofo containsSLy(k), then
detg is isomorphic to neithey, =t nor u(P2/2, whereu: G, — F} is the modp
cyclotomic character.

(2) If ¢ is tame i.e., if the orderq of the image ofp is prime to p, thenq is not
divisible by p — 1.

Here we denote byC, a p-adic completion of an algebraic closure @f,, and
throughout this paper, we fix an embedding@finto C,. Thus the algebraic closure
Q of Q in C is also considered as a subfield ©f, and any extension a@, will be
considered inC,. Becausep is cleanly unobstructed, theniversal ordinary deform-
ation spaceaefj'0 of ¢ is locally p-adic bianalytic toCp. If ¢ is also p-extraordinary,
then we see that thaniversal nearly extraordinary deformation spaﬁi%”eo of o is
locally p-adic bianalytic toC, by applying some results in [20] (see Subsection 2.3).
Let X, be eitherBE%o or 36%”80. We denote byx, the point corresponding to a deform-
ation ¢ when we identifyX, with a p-adic analytic space.

Our purpose in this paper is to show the following

Theorem 0.2. Let x in X, be a p-ordinary point. Then there exists an element
t of I, such that the map

Xp = Cp: X = tro(r)

is p-adic bianalytic in a neighborhood opxwherer is an element of J that is called
“monodromy over p(seeSubsection 2.1)

Theorem 0.2 is an arithmetic analogue of a theorem (Theor@&rb€ow) on the
deformations of hyperbolic structures on a knot complement

Before we introduce the statement of Theorem 0.3, we exia@ilackground of this
paper. Arithmetic topology is a study that views 3-dimensiotopology and algebraic
number theory as analogies from the viewpoint of group thaoid Galois theory, which
have appeared recently in the classification of mathemadtiegs first described in some
works by B. Mazur in 1960s, and has been developed by M. Kapr&hoMorishita and
A. Reznikov etc. since the latter half of 1990s. That fundataleconcept is based on
analogies between knots and prime numbers. We recall a padsic analogies (for a
precise account, see Morishita [18]):
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3-dimensional topology algebraic number theory

K: knot <«~—> p: prime

Sl R3U{o0} =S SpedF, <> SpecZ U {oo}

m(SH=()~2z <« nf{(SpedF,) ~ Gal(F p/Fp)
=(o)~1Z

() = {1 < ni'(Specz) ~ GalQ""/Q) = {1}

G :=m(S\Int(Vk)) = 11(S\K) «— Gp:=Gal@p)/Q)

(Vk: atubular neighborhoof K) ~7(Specz \ {(p)})

o0V — Vg <«~— SpeoQ, — SpecZ,

Di :=m1(@Vk) = (I, m|[m,1]=1) <«— Dy:=Gal@Qp/Qp) =~ 7{(SpecQ,)

m1(Vk) =2m(SH) =()~Z <« nf{(Specz,) ~ Gal@,"/Qp) ,
~ Gal(F p/Fp) ~ 7 (SpecF,)
=(o)~7

{(}=>lk:=(M—=Dk—>()=>{1} «<— {1}=>1y—=>Dp—(o)—={1)

It is known that theknot group G of K reflects the tangled condition ¢f. On
the other hand, the “tangled condition” pfis reflected in the Galois grou@,. Under
such an analogy, the following question arises: is thereratogy between the theories
of representations of groupgSx and Gp? In the case of one-dimensional representa-
tions, an answer of the question is an analogy between thssicé Alexander—Fox
theory and the classical Iwasawa theory (see Morishita [18]).e As a non-abelian
generalization of this analogy, K. Fujiwara first pointedt @@me analogies between
deformation theory of hyperbolic structures on a knot canmnt and ofp-ordinary
Galois representations that were mainly developed by Hatidd B. Mazur in [5] (see
also Mazur [16]). Next, M. Morishita concretely formulated Buanalogies in [17] (see
also Morishita—Terashima [19] and Morishita [18]).

In order to explain his works in detail, we recall some basguits in Culler—Shalen
[4]. Let K in S® be a hyperbolic knot. Then we have the holonomy representati

on: Gk — PSL(C)

associated to the hyperbolic structure $h\ Int(Vx). It is known thato, can be lifted
to a representation iBLy(C). The character spacgx := Hom(Gk,SL(C))//SL(C) is
an affine complex algebraic set. We considgy as a deformation space of,. Here,
for a tubular neighborhoo®/x of K, we call Dx = 71(0Vk) the peripheral subgroup
of Gk, which is a free abelian group generated bynaridian mand alongitude | of
K, and the subgroupx generated by onlyn the inertia subgroupof Gg. The triple
(Gk, m, 1) is called theperipheral systenof K (see Burde—Zieschang [3]). It should
be noted that the restriction of SL,(C)-representation of Gk to Dk is conjugate to
an upper triangular representation becalbge is abelian.
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We denote byy, the character op. M. Morishita gave an arithmetic analogue
(see Theorem 1.4 in Subsection 1.2) of the following

Theorem 0.3 (cf. Thurston [23], Zhou [25]). If xo in Xk is the character of a
lift of op, then the map

Xk = C; xo = tro(m)
is bianalytic in a neighborhood of.

On the other hand, we studied deformation theory of nearlgxtraordinary rep-
resentations of5, in our previous work [20]. In this paper, we focus on the fdwitt
on is locally abelian, and give another arithmetic analogudteéorem 0.3 not only in
the case where@ is p-ordinary but also in the case whepeis nearly p-extraordinary
by applying some results in [20] (see Theorems 2.6 and 2.8bs&tion 2.3). In the
proof, we give an arithmetic analogue of the peripheral sysof K. Theorem 0.2
follows from Theorems 2.6 and 2.8.

The remainder of this paper is organized as follows. Sectigmesents some pre-
liminaries. In Subsection 1.1, we recall some basic resuftsdeformation theory of
Galois representations, and in Subsection 1.2, we reviearitimetic analogue of The-
orem 0.3 given by Morishita [17]. Section 2 presents the prfTheorem 0.2. In
Subsection 2.1, we introduce two elements of a certain gubtf D, which give an
arithmetic analogue of a meridiam and a longitudd of K. In Subsection 2.2, we
study the universal nearly ordinary deformation sp&t%é“’ of o. Our spaceX, is a
subspace ot{%”". Next, we construct g-adic analytic map® from 36%“0 to Cp. In
Subsection 2.3, we give the proof by using this map. In Seciiowe introduce some
examples ofp that satisfies all assumptions in Theorem 0.2.

1. Preliminaries

1.1. Review of Mazur's deformation theory. Let p be an odd prime number,
and letk be a finite field of characteristip. Let n be a positive integer, and let

6: Gp — GLy(K)

be a continuous homomorphism. Throughout this subsectienfix p, k, ando.
Let C be the category of complete noetherian local rings withdresifieldk. A mor-
phism of C is a homomorphism of complete noetherian local rings imy¢he identity
on residue fields. Two liftings ande’ of ¢ to an objectR in C are calledstrictly equiva-
lent if they are conjugate by an element of the kernel of the homphism GL,(R) —
GL,(k). A strict equivalence class of liftings @fto R is called adeformationof ¢ to R.
By Mazur [13, Proposition 1], ib is absolutely irreducible, then there existiaiversal
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deformation ring R in C and auniversal deformation
0": Gp — GLy(R")

of o that satisfy the following universal property: for any givebjectR in C and any
deformationg to R of @, there exists a unique morphisg: R" — R such that the
composition ofe" with the induced homomaorphism: GL,(R") — GL,(R) is equal to

o as a deformation. The rin®" is uniquely determined up to canonical isomorphism.
We put

xp = Honf,\‘}(”ﬁ)_mg(R”, Cp),

and call it theuniversal deformation spacaef o, whereW(Kk) is the ring of Witt vectors
of k.

Throughout this paper, we denote bythe maximalp-profinite abelian quotient of
Gy, and fix a topological generator of I'. Let Ay be the Iwasawa algebnd/(K)[T'].
Let g, be the image of an elemegtin G, by the natural surjectioG, onto I', and
let [gp] be the image ofg, by the natural injection of” into A[.

Whenn = 1, the universal deformation rin§! and the universal deformatiost
of o are described explicitly in the following

Lemma 1.1 (Mazur [13], §1.4). Letp: G, — k™ be a characterand leto: G, —
W(K)* be the Teichmiiller liting ob. Then the universal deformation ring*Rf 5 is
isomorphic toAx, and the universal deformatiogt of o is given by

2'(9) = 2(9) - [gy]
for an element g in G.

Next, in order to discuss the case where- 2, we restrict the deformation theory
of o to deformations ofp that satisfy prescribed conditions.

DEerINITION 1.2. WhenL is an arbitrary Galois extension ové&y, we denote
by D, and I, a decomposition subgroup and the inertia subgroup &t Gal(L/Q)
respectively. LetR be an object inC. Then a two-dimensional representation

0: Gal(L/Q) — GLy(R)

or its representation spacé is called nearly p-ordinaryif there exists a non-trivial
D,-stable subR-module V; that is a direct summand of of R-rank 1. Moreover,
if there exists a non-trivialD ,-stable subR-module V, of R-rank 1 such thaty =
V1 & V,, then we say thap (or V) is nearly p-extraordinary In addition, if V; is
exactly equal to the suB-moduleV'» of I,-invariants ofV, then we say thap (or V)
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is p-ordinary, p-extraordinaryrespectively. Ifp is understood, we refer tp-ordinary
(resp. p-extraordinary) as simply ordinary (resp. extraordinary)

If o is nearly p-ordinary, then, up to conjugation, the restriction @fto D, has

the form
& U
0 &)

for characters,, 8,: Dp — R*, and a continuous function,: D, — R. If ¢ is nearly
p-extraordinary, ther, is a zero function. In addition, ib is p-ordinary, thene, is
trivial on .

Let D be the condition being either nearlg-ordinary, p-ordinary, nearly p-
extraordinary orp-extraordinary. Then we assume thatsatisfies the conditiorD,
and the following

ASSUMPTION 1.3. ¢&; is not equal tod; on Ip.

If o is absolutely irreducible and satisfies Assumption 1.3n ttieere exist auni-
versal D-deformation ring RP in C and auniversal D-deformationg?? of g such
that anyD-deformationg of ¢ to R in C is induced frome?? by a unique morphism
R>P — R by Hida [11, Proposition 5.38], Mazur [13, Proposition 3],daj20, The-
orem 0.3]. We put

X7 = Hom{{i, ig(R*™, Cp),
and call it theuniversal D-deformation spacef o.
1.2. Review of Morishita’s analogy. Let p be an odd prime number, and let
0: Gp — GLy(Fp)

be a continuous, absolutely irreducible, odd, and nearlyrdinary Galois representa-
tion. Then we assume that satisfies Assumption 1.3, and fix a continuous character
8: Gp — Zy so that the modp reduction ofs is deto. By Hida [11, 8§5.4.4], we have

the universal nearly ordinary deformation ring 2R°® of o with fixed determinans.
Recall that the restriction of &L,(C)-representatiop of a knot groupGg to its pe-

ripheral subgrou is conjugate to an upper triangular representation. Mdashcon-

ceptin [17] is that HorW("l(‘)_alg(RZ'”°5,Cp) may be thought of as an arithmetic analogue of

the character spacex in Theorem 0.3 in the introduction. BecauRé"® is isomorphic

to the universal ordinary deformation rifRf*° of g, the space Ho(jj(",})_alg(RZ'“°5,Cp) can

be identified with the universal ordinary deformation spﬁéé? of ¢ if ¢ is p-ordinary by
Hida [11, Proposition 5.43 (ii)].
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On the other handgp is modular, i.e., isomorphic to the modg reduction of a
p-adic representatiop; associated to g-ordinary Hecke eigenfornf by Khare [12,
Theorem 1.1]. LetT?° be theuniversal ordinary Hecke algebréor o (for the def-
inition, see Mazur [14, 86, p.125, Definition]). Th&r?° is a finite flat A¢-algebra.
Moreover, from the construction df2°, we have a mapping fronR?° to T2°, and
it is known that the mapping is surjective. Here we assume R3& is isomorphic to
T2°. Note that it is conjectured that this isomorphism alway&$dsee Mazur [14,
86, Conjecture]). In fact, many cases of this conjectureeshaw been proved thanks
to the work of Wiles [24] (and others). For example, if
e p=>5,

e ( is absolutely irreducible when restricted @(+/(—1)(P-1/2p), and
e Assumption 1.3 is satisfied op,
then the conjecture is true by Hida [11, Theorem 5.29].

Let Q. be the subextension of the maximal algebraic extensiof afnramified
outside p and the infinite placeco with Galois group being isomorphic t@,. Then
we have the following

Theorem 1.4 (Morishita [17], (8.4)). Let o be as aboveand let % be an arith-
metic point OBE%". Take an element in |, that is mapped to a generator Gal(Qo./Q).
Then the map

%%0 — Cp; X > tro(y)
is p-adic bianalytic in a neighborhood ofx

2. Proof of the main theorem

2.1. Arithmetic analogue of the peripheral system of a knot. Let p be an
odd prime number, lek be a finite field of characteristip. Let

6: Gp — Gla(k)

be a continuous, absolutely irreducible, odd, gndrdinary Galois representation. Then
we assume that satisfies Assumption 1.3. Létbe the splitting field op and letL(P) be
the maximal prop extension oL unramified outsidg andoo. We putP := Gal(L(P)/L),

C := Gal(L/Q), andIT := Gal(L(P’/Q). Then we have the short exact sequence

1-P—-1I1—-C-—1.

The quotientIT of G, is called thep-completion of G relative too. It is known that
all litings o: Gp — GL2(R) of ¢ to R in C, factor throughIT (see Boston [1, p. 182]).
Throughout this subsection, we regardas a homomorphism frorl.

We consider the associated inertia subgrdupnd decomposition subgroup in
I1 relative to the fixed embedding: Q — Qp, so thatl is the image of the iner-
tia subgroup of Gal®,/Q,) in I (via the map induced by) and D is the image of
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the full group GalQp/Qp). Let 1° and D° be prop Sylow subgroups inl and D
respectively. Becausg is p-ordinary, the images of and D by ¢ are contained in

the subgroupBj(k) of upper triangular matrices of the for é I

group By(k) of upper triangular matrices, respectively. The subgrog(k) of matrices
1 %
01
by =’ the natural homomorphism frorB;(k) to B,(k)/Uz(k) and by =z the one from

Ba(k) to By(k)/Ux(K). Then 19 is isomorphic to the kernel of’ o g|; and D is iso-
morphic to the kernel ofr 0g|p. Thus we see thalt® is normal inl and D° is normal
in D. Moreover,A:=1/1% is a cyclic group of order prime t@, and B := D/D° is
an abelian group of order prime to. The natural inclusion C D induces an injec-
tion A — B. By Schur—Zassenhaus’ theorem (see Boston [1, Propogi#dn]), we
have a lifting A< | and a compatible liftingB — D. Fix such liftings, and identify
A (resp.B) with its image inl (resp.D). Then we have semi-direct product decom-
positions| = Ax 1% and D = B x DC.

Let F, be the intermediate field in the extensi@p/Q,, that is fixed by the kernel
of the natural mapping from G&(,/Qp) to B such that Gal,/Qj) is isomorphic to
B. Then we have the following

and in the sub-

of the form ( ) is the normalp-Sylow subgroup inB5(k) and By(k). We denote

Lemma 2.1 (Mazur [14], 88, Lemma). There exist elements and v in 1° and
o in DO with the following properties
(1) The subgroup B— D is in the centralizer ofr.
(2) If F, contains no primitive p-th root of, then the element is trivial. Otherwise
it satisfies the following commutation relation with elenseaf B: for g € B,

gvgfl — vﬁ(g),

whereji: B — Zj is the Teichmdiller lifting of the mod p cyclotomic characterB —
F7, which defines the natural action of B on the subgroup of p-tits@f unity in F.
Exponentiation above refers to the operation of raising &ment in a pro-p-group to
a p-adic unit power.

(3) The elementggrg™? (g € B), v, and o} generate [§ as a pro-p group.

(4) The closed normal subgroup generated by the elemgntg™ (g € B), and v} is
equal to P.

After conjugatingp, if necessary, we may assume that the imag&8of> D by o
is a subgroup of diagonal matrices @i,(k) and thatA C B maps to matrices of the

form ((1) S) Let R? be the universal deformation ring ¢f Then we may regard the

universal deformation op as a homomorphism
0%: 11 - GLy(R?),

that is determined only up to strict equivalence. We can shq@ in its strict
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equivalence class so that the imageRoby o2 lies in the image irGL,(R?) of the sub-
group of diagonal matrices dbL,(W(k)), where the mappin@L(W(k)) — GLy(R?)
is induced from the natural homomorphism(k) — R?. Moreover, we may arrange fit,
so that the image oA by o? lies in the image inGL,(R?) of the subgroup of diagonal

matrices ofGLy(W(k)) of the form (é S)

We now assume Assumption 0.1. Letv and o be elements inD® having the
properties stipulated in Lemma 2.1. First, we see @#t) is a diagonal matrix in
GL»(R?) by Lemma 2.1 (1) and Assumption 1.3. Second, we obtain thewing

2(y— (10
CLAIM 2.2. o%(v) = (0 1).
Proof. If g is full, this claim is the same as Mazur [14, §9, Claim].glfis tame,
it follows from Lemma 2.1 (2) directly because we see tRatcontains no primitive
p-th root of 1 by Assumption 0.1 (ii). Hence is equal to 1. O

Finally, we considep?(r). We put

=5 4)

Let R>° be the universal ordinary deformation ring @ We denote byz° the natural
epimorphismR? — R?°, and by 0?° the induced homomorphism? o p?. Because

0%°(z) is contained in the subgroup of matrices of the fo(ré I) in GLy(R?9), the

epimorphismzn® factors throughR' := R?/(a — 1,¢). We denote byz’ the natural
projection R> — R/, and bym; the mappingR’ — R%° induced byr°. Let

Q/i In— GLZ(R/)

be the induced homomorphisa] o 2. Then we see that' is p-ordinary by Lemma 2.1
(3). Therefore, by the universality &°, there exists a unique homomorphism R?° —

R with 7’ = m, o 7°. Thus we obtain an endomorphism o 7, on R>°. BecauseR?°

is noetherian, and; o 7 is surjective, we see that it is an isomorphism. Heneeo
7o), 0 020 is equal top?° up to conjugation. Then we haves(o my), o tr 02° = tr o?°.
Becausep is absolutely irreducible, we see that; (o 2), is the identity by Mazur [15,
§25, Proposition 1]. Hence we see tiRt° is equal toR?/(a — 1, ¢).

Similarly, we let R>€° (resp. R%"®9 be the universal (resp. nearly) extraordinary

deformation ring ofo when g is p-extraordinary. Then we see th&"®°is equal to
R?/(b, c), and thatR>° is equal toR?/(a— 1, b, ¢). Hence we obtain the following

Proposition 2.3 (cf. [20], Corollary 2.2). If g is p-extraordinary and satisfie&s-
sumptions 1.3and 0.1, then the kernel of the natural epimorphism frord°Ro R?€° of
o is a principal ideal.
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Thus, onlyt and o are essential generators of a decomposition subgroup in the
deformation theory of. As we have stated in the introduction, the generatothat
comes from Frobenius element ovpris an arithmetic analogue of a longitudieof
a knot K. Another generator in a quotient ofl, may be thought of as an arith-
metic analogue of a meridiam of K. In particular, if o is p-extraordinary, then
0%"®q[r,0]) is trivial in GLy(R?), wherep?"®°is the homomorphism % o? induced
by 7"°: R? = R?"®% Recall that, in knot theory, the tripleS, m, ) consisting of
the knot groupGy, a meridianm and a longitudd of a knotK is called the periph-
eral system ofK. We consider the tripleI{, 7, o) to be an arithmetic analogue of
the peripheral system df. Here, we call an element df, (resp.Dp) that maps tor
(resp.o) by the natural mappingnonodromy over gresp.Frobenius over jp

2.2. Universal nearly ordinary deformation space. Let p>5 be a prime num-
ber, and letk be a finite field of characteristip. Let

0: Gp — GL(k)

be a continuous, absolutely irreducible, odd, gndrdinary Galois representation. Then
we assume thad satisfies Assumption 1.3. Recall that the restrictiorodb a decom-
position subgroupD, at p of G, is isomorphic to an upper triangular representation
with diagonal characters; and é;, and that the charactey; is trivial and §; is non-
trivial on the inertia subgroup, at p. Note that the restriction of a charactef D

to 1, has a unique extensiarf» to G,. Let 36}) be the universal deformation space of

eg", and Iet%f,'o (resp.xf,*”") be the universal (resp. nearly) ordinary deformation epac
of o. Then we have the following

Lemma 2.4 (cf. Hida [11], p.310). There is a one-to-one correspondence
Gpy-1 G
X 0l o (0@ (7))
Here we assume the following

ASSUMPTION 2.5.  The universal ordinary deformation rilRj:° of o is isomorphic
to Ak, and the universal deformation ririgf of o is isomorphic to a power series ring in
two variables overAy = W(K)[T']. Then, we say that the deformation theory @fis
cleanly unobstructedsee Mazur [14, p. 120, Definition]).

We see thatt’;® and X}, are isomorphic to HOffj, 4(Ak,Cp) by Assumption 2.5
and Lemma 1.1, respectively. On the other hand, f§fim, (A, Cp) is identified with
the p-adic unit disc®, := {t € C, | |t|p < 1} by sendingy to ¢(y) — 1, where|x|,
means thep-adic absolute value, angd is a fixed topological generator df. Hence
we can identifyaef;”0 with the p-adic analytic spac®,x®,. Under this identification,
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we regardaﬁ;”O as ap-adic analytic space, and we denote Xy:= (s,, t,) the point
in ®, x ®, corresponding to a deformatian in 36%“0.

Moreover, we assume that satisfies Assumption 0.1, and letbe a monodromy
over p. Then we defined to be the p-adic analytic map

D 1’%”0—> Cp: X > tro().
We described explicitly. By the above argument, we have

tro(t) = g,(1) + 8,(7)
= (143, -851(‘[)) - £o(T).

Becausego ® (sfp)fl is p-ordinary, we have the unique homomorphism: R>° —
Cp corresponding t@ ® (efp)*l. On the other hand, the universal deformation ring

of the character det is isomorphic toA, by Lemma 1.1. Leto! be the universal
deformation of dep, and let: be an isomorphism such that det° is equal to: o *
as a deformation. Then we have

8y £, 1(r) = detl ® (¢5") (1)
= gooto@'(r)
= deto(7) - (o © )([p))-
Let ¢! be the universal deformation @1‘5”, and letgi: Ay — Cp be the homo-
morphism corresponding tmfp. Then we have
£0(7) = g1 0 €X(1)

= (1) pa((ry).

Recall that the restriction of, -e;l ande, to |, factor through the group’, and that
we have Lemma 2.1 (4) and Claim 2.2. Hence there exist nam-geadic integersa
andb in Zj such that ¢o o t)([7p]) = @o(y)? and pa([zp]) = ¢1(y)°. Thus we obtain

D(Sp: tp) = {1 + (detd)()(L + 5,)%} - EE(T)@ +1,)°.

2.3. Proof of Theorem 0.2. Let p > 5 be a prime number, and l&tbe a finite
field of characteristicp. Let

o: Gp — Glo(k)

be a continuous, absolutely irreducible, odd, andrdinary Galois representation. Then
we assume thad satisfies Assumptions 1.3, 2.5, and 0.1.
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2, 2, . . .

Le_t 3EP° (resp_._%D n")_be the unlyersal (rgsp. nearly) ordinary deformation epaic

0, which is identified with thep-adic analytic space, (resp.®, x ®p). Then we
obtain the following

Theorem 2.6. Let % be a point in3€%°. Then the map
by %%’0 — Cp: X = tro(r)
is p-adic bianalytic in a neighborhood ofyx

Proof. By the argument in the previous subsection, for anptpg in ©,, there
exists a non-zerg-adic integera in Z, such that

Do(s,) = D(s,, 0) = 85 P(T){1 + (deto)(r)(1 + )%}
Thus @q is everywhere locallyp-adic bianalytic. L]

Next, we consider the case whegeis also p-extraordinary. LetR?€° be the uni-
versal extraordinary deformation ring @f Then we obtain the following

Lemma 2.7. The Krull dimension of R®®is equal tol.

Proof. Remark thap is modular, i.e., isomorphic to the mogl reduction of a
p-adic representatiop¢ associated to g-ordinary Hecke eigenfornf on SLy(Z) by
Khare [12, Theorem 1.1]. Moreover, the universal ordinarjodeation 0>° of ¢ is
also modular by Assumption 2.5, that is, we can take a prmitirdinary A-adic form
F such that the strict equivalence class of the Galois reptaen o» associated to
F is equal tog?° (see Hida [9], [10]), where\ = Ag,.

By our assumptions and Proposition 2.3, we see that thestsexisingle element
u in Ag such that

R%:€0 ~ Ax/(U).

Because the Krull dimension ofy is equal to 2 andu is not unit in Ay, the Krull
dimension of R?° is equal to either 1 or 2. We assume that the Krull dimension of
R2€js equal to 2. Theru must be equal to 0. Hencg?®° is isomorphic toAy, and

the universal extraordinary deformati@R ¢° is equal top?° as a deformation. Because
0%° is p-extraordinary, the restriction afr to D, must be diagonalizable. TheA
must have complex multiplication, i.e., all arithmetic sjadizations of 7 have com-
plex multiplication by Ghate—Vatsal [6, Theorem 0.3]. Om thther hand,f does not
have complex multiplication becaudeis of level 1 (see Ribet [21, p.34]). Hence the
arithmetic specializatiorf,, at weightw of F, which is the corresponding-stabilized
form of f, does not have complex multiplication. This is a contradict ]
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. We denote b)BE%’eO (resp.%%”e‘) the universal (resp. nearly) extraordinary deform-
ation space op. We have a one-to-one correspondence

2,neo ~, 4+2,e0 1
Xy XU x Xy

induced by the correspondence in Lemma 2.4. Thus we may Sﬂ'ﬁ\‘i\? and 36%”60 as
subspaces 0196%”". Then we obtain the following

Theorem 2.8. Let % be a p-ordinary point inx%“eo. Then the map
Dy %%’”e°—> Cp; Xo > tro(z)
is p-adic bianalytic in a neighborhood ofyx

Proof. By Lemma 2.7, we see thfﬂ%e" is a finite set. If3€%e0 is a non-empty
set andxp = (S, 0) is an element oﬁﬁf)*eo, then there exists a neighborhotdof xg in

xﬁ“ef’ such that the intersection &f and 36%9" consists of onlyx,. By the argument in
the previous subsection, for any poimst,t,) in ¢/, there exist non-zerp-adic integers
a andb in Z, such that

01(t,) = B(S0, ty) = 2" (1)L + (Aetd)()(L + )} (L + t,)°.
Thus @, is p-adic bianalytic in a neighbourhood a&f. O
Theorem 0.2 follows from Theorems 2.6 and 2.8.

3. Examples

In this section, we introduce some examplesgoivhich satisfies all assumptions
in Theorem 0.2. For a choice of weight in the set{12, 16, 18, 20, 22, 26 we denote
by f, = > a,q" the unique cuspidal newform 08L,(Z) of that weightw. For any
prime numberp, we denote by

Ow,p: Gp = GLx(Fy)

the mod p reduction of the unique continuous semi-simple represientassociated to
f,, which has the property that

tr éw,p(m) =4q (mOd p)v and de@w,p(m) = Iw_l (mOd p)

for any prime numbet # p, whereo; is the Frobenius element &t Note thato,, , is
odd, and satisfies Assumption 1.3uif< p. If a, # 0 (mod p), theng,, p is p-ordinary
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and satisfies Assumption 2.5 by Gouvéa [7, pp.192-193], Mfir p. 120, Corol-
lary 2], and Boston [14, Proposition (6.3), Example]. We dgwd many examples of
suchg,, p there. If g, , is full, i.e., the image of,,, containsSLy(Fp), then o, , is
absolutely irreducible, and ifv # 0, 2, (p + 1)/2 (mod p — 1), theng,, , satisfies As-
sumption 0.1 (i). Forf,, it is known that there exist only finitely many primgssuch
that 0., is not full by Swinnerton-Dyer [22, Theorem 4]. Moreover, riaexist only 2
pairs such thap,, , is absolutely irreduciblep-ordinary, and tame i.e., the order of the
image ofo,,p is prime to p. Such pairs are

(w, p) = (12, 23), (16, 31).

Therefore we obtain the following explicit examples fpr< 400 in the case where
Ouw,p is full.

ExampLE 3.1. |If a pair (v, p) appears in the following list:

=12, 17< p < 65063, p # 23, 691, 2411,

=16, 19< p <397, p # 31, 59,

=18, 23=< p = 397,

= 20, 29< p <397, p # 283,

=22, 29< p <397, p # 131,

= 26, 31=< p = 397,

then g, is absolutely irreducible, oddp-ordinary and full, and satisfies Assump-
tions 1.3, 2.5 and 0.1 (i).

e o 0 0 o o
E g & &g &g &

Next, we introduce some examples @f , that is alsop-extraordinary. Letf,, ,
be the modp reduction of f,,. By Gross [8], if f,, , hascompanion formtheng,,,
is p-extraordinary. A computer search by Elkies, extended WinAtshowed that there
exist pairs @, p) such thatg,, , is full and f, , has companion form. Fop < 3500,
such pairs are

(w, p) = (16, 397), (18, 271), (20, 139), (20, 379), (26, 107).
On the other handf, , is equal to its own companion form when
(w, p) = (12, 23), (16, 31).

Then g, p is tame andp-extraordinary. By Mazur [13]p,, for these 2 pairs argpe-
cial S-representationsin particular, the image 0., , is isomorphic to the symmetric
group &. Hence the order of the image ¢f, , is not divisible by p — 1. Thus we
obtain the following

EXAMPLE 3.2. If a pair (v, p) is one of these 7 pairs, thed, , is absolutely
irreducible, odd, andp-extraordinary, and satisfies Assumptions 1.3, 2.5 and 0.1.
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Remark that we have not known unfortunately whether theausal extraordinary
deformation spac&%eo of 0u,p is Non-empty wheneveg,, ,, is full. However we see

that 36%60 is non-empty for @, p) = (12, 23), (16, 31) by the following

Proposition 3.3. For each pair(w, p) = (12, 23), (16, 31)the universal extraor-
dinary deformation ring R®° of g, , is isomorphic toZp.

Proof. By Boston—Mazur [2, p.13, Computation], we see #hat, is a generic
specialS;-representation (for the definition, see also Boston—Ma2ug.3]). For such
a representation, an explicit description of the univedsformation space is given in
Boston—Mazur [2, §3.3]. In fact, leth be the maximal ideal oZ,[ Ty, T2, T5] (=~ R?).
Then there exist power seriefs and g in m such that

f(T, To, To) =Ty — T, + Tz (mod m?),
g(T1, T, Ts) = 3Ty — 3T, — 3Tz (mod m?),
by Boston—Mazur [2, Proposition 12]. Then the universal mady deformation ring of

Ow,p IS isomorphic toZ p[ Ty, T2, T3] /(9, T1) by Boston—Mazur [13, Proposition 13 (c)].
Moreover, we see that

R~ Z,[ Ty, T2, Tal /(9, Ta, f) = Z
by [13, Lemmas 6 and 8]. []
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