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Abstract
We discuss an analogy between the deformations of hyperbolic structures on a

knot complement and of certain nearly ordinary Galois representations.

0. Introduction

Let p be an odd prime number, and letGp be the Galois group of the maximal
algebraic extensionQ{p,1} of Q unramified outsidep and the infinite place1. A
two-dimensional continuous representation% of Gp is called nearly p-ordinary if its
restriction to a decomposition subgroupDp at p is conjugate to an upper triangular
representation:

%jDp �
� "% u%

0 Æ%
�

,

where"% and Æ% are characters andu% is a continuous function ofDp. In addition,%
is called p-ordinary if "%jI p D 1, nearly p-extraordinaryif u% D 0, or p-extraordinary
if % is p-ordinary and nearlyp-extraordinary, whereI p is the inertia subgroup atp
(also see Definition 1.2 in Subsection 1.1).

Let k be a finite field of characteristicp, and let

N% W Gp ! GL2(k)

be a continuous, absolutely irreducible, odd, andp-ordinary Galois representation. Then
we assume that detN%jI p ¤ 1 (also see Assumption 1.3 in Subsection 1.1). Moreover, we
assume that the deformation theory ofN% is cleanly unobstructed(for the definition, see
Assumption 2.5 in Subsection 2.2), and the following
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ASSUMPTION 0.1. (1) If N% is full, i.e., the image ofN% containsSL2(k), then
det N% is isomorphic to neither�, ��1 nor �(p�1)=2, where� W Gp ! F�p is the mod p
cyclotomic character.
(2) If N% is tame, i.e., if the orderq of the image of N% is prime to p, then q is not
divisible by p� 1.

Here we denote byCp a p-adic completion of an algebraic closure ofQp, and
throughout this paper, we fix an embedding ofNQ into Cp. Thus the algebraic closureNQ of Q in C is also considered as a subfield ofCp, and any extension ofQp will be
considered inCp. BecauseN% is cleanly unobstructed, theuniversal ordinary deform-

ation spaceX2,o
p of N% is locally p-adic bianalytic toCp. If N% is also p-extraordinary,

then we see that theuniversal nearly extraordinary deformation spaceX2,neo
p of N% is

locally p-adic bianalytic toCp by applying some results in [20] (see Subsection 2.3).
Let Xp be eitherX2,o

p or X2,neo
p . We denote byx% the point corresponding to a deform-

ation % when we identifyXp with a p-adic analytic space.
Our purpose in this paper is to show the following

Theorem 0.2. Let x0 in Xp be a p-ordinary point. Then there exists an element� of Ip such that the map

Xp ! Cp I x% 7! tr %(� )

is p-adic bianalytic in a neighborhood of x0, where� is an element of Ip that is called
“monodromy over p” (seeSubsection 2.1).

Theorem 0.2 is an arithmetic analogue of a theorem (Theorem 0.3 below) on the
deformations of hyperbolic structures on a knot complement.

Before we introduce the statement of Theorem 0.3, we explainthe background of this
paper. Arithmetic topology is a study that views 3-dimensional topology and algebraic
number theory as analogies from the viewpoint of group theory and Galois theory, which
have appeared recently in the classification of mathematics. It was first described in some
works by B. Mazur in 1960s, and has been developed by M. Kapranov, M. Morishita and
A. Reznikov etc. since the latter half of 1990s. That fundamental concept is based on
analogies between knots and prime numbers. We recall a part of basic analogies (for a
precise account, see Morishita [18]):
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3-dimensional topology algebraic number theory
K : knot  ! p: prime
S1 ,!R3[{1}D S3 SpecFp ,!SpecZ[{1}�1(S1)Dhl i'Z  ! �ét

1 (SpecFp)'Gal(NF p=Fp)Dh� i' OZ�1(S3)D {1}  ! �ét
1 (SpecZ)'Gal(Qunr=Q)D {1}

GK WD�1(S3n Int(VK ))D�1(S3nK )  ! Gp WDGal(Q{p,1}=Q)
(VK : a tubular neighborhoodof K ) '�ét

1 (SpecZn{(p)})�VK ,!VK  ! SpecQp ,!SpecZp

DK WD�1(�VK )'hl , m j [m, l ]D1i  ! Dp WDGal( NQp=Qp)'�ét
1 (SpecQp)�1(VK )'�1(S1)Dhl i'Z  ! �ét

1 (SpecZp)'Gal(Qunr
p =Qp)'Gal(NF p=Fp)'�ét

1 (SpecFp)Dh� i' OZ
{1}! IK WD hmi! DK !hl i! {1}  ! {1}! I p! Dp!h� i! {1}

It is known that theknot group GK of K reflects the tangled condition ofK . On
the other hand, the “tangled condition” ofp is reflected in the Galois groupGp. Under
such an analogy, the following question arises: is there an analogy between the theories
of representations of groupsGK and Gp? In the case of one-dimensional representa-
tions, an answer of the question is an analogy between the classical Alexander–Fox
theory and the classical Iwasawa theory (see Morishita [18] etc.). As a non-abelian
generalization of this analogy, K. Fujiwara first pointed out some analogies between
deformation theory of hyperbolic structures on a knot complement and ofp-ordinary
Galois representations that were mainly developed by H. Hida and B. Mazur in [5] (see
also Mazur [16]). Next, M. Morishita concretely formulated such analogies in [17] (see
also Morishita–Terashima [19] and Morishita [18]).

In order to explain his works in detail, we recall some basic results in Culler–Shalen
[4]. Let K in S3 be a hyperbolic knot. Then we have the holonomy representation

%h W GK ! PSL2(C)

associated to the hyperbolic structure onS3 n Int(VK ). It is known that%h can be lifted
to a representation inSL2(C). The character spaceXK WD Hom(GK ,SL2(C))==SL2(C) is
an affine complex algebraic set. We considerXK as a deformation space of%h. Here,
for a tubular neighborhoodVK of K , we call DK D �1(�VK ) the peripheral subgroup
of GK , which is a free abelian group generated by ameridian mand alongitude l of
K , and the subgroupIK generated by onlym the inertia subgroupof GK . The triple
(GK , m, l ) is called theperipheral systemof K (see Burde–Zieschang [3]). It should
be noted that the restriction of aSL2(C)-representation% of GK to DK is conjugate to
an upper triangular representation becauseDK is abelian.
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We denote by�% the character of%. M. Morishita gave an arithmetic analogue
(see Theorem 1.4 in Subsection 1.2) of the following

Theorem 0.3 (cf. Thurston [23], Zhou [25]). If �0 in XK is the character of a
lift of %h, then the map

XK ! C I �% 7! tr %(m)

is bianalytic in a neighborhood of�0.

On the other hand, we studied deformation theory of nearlyp-extraordinary rep-
resentations ofGp in our previous work [20]. In this paper, we focus on the fact that%h is locally abelian, and give another arithmetic analogue ofTheorem 0.3 not only in
the case whereN% is p-ordinary but also in the case whereN% is nearly p-extraordinary
by applying some results in [20] (see Theorems 2.6 and 2.8 in Subsection 2.3). In the
proof, we give an arithmetic analogue of the peripheral system of K . Theorem 0.2
follows from Theorems 2.6 and 2.8.

The remainder of this paper is organized as follows. Section1 presents some pre-
liminaries. In Subsection 1.1, we recall some basic resultson deformation theory of
Galois representations, and in Subsection 1.2, we review anarithmetic analogue of The-
orem 0.3 given by Morishita [17]. Section 2 presents the proofof Theorem 0.2. In
Subsection 2.1, we introduce two elements of a certain quotient of Dp, which give an
arithmetic analogue of a meridianm and a longitudel of K . In Subsection 2.2, we
study the universal nearly ordinary deformation spaceX2,no

p of N%. Our spaceXp is a

subspace ofX2,no
p . Next, we construct ap-adic analytic map8 from X2,no

p to Cp. In
Subsection 2.3, we give the proof by using this map. In Section 3, we introduce some
examples ofN% that satisfies all assumptions in Theorem 0.2.

1. Preliminaries

1.1. Review of Mazur’s deformation theory. Let p be an odd prime number,
and letk be a finite field of characteristicp. Let n be a positive integer, and let

N% W Gp ! GLn(k)

be a continuous homomorphism. Throughout this subsection,we fix p, k, and N%.
Let C be the category of complete noetherian local rings with residue fieldk. A mor-

phism ofC is a homomorphism of complete noetherian local rings inducing the identity
on residue fields. Two liftings% and%0 of N% to an objectR in C are calledstrictly equiva-
lent if they are conjugate by an element of the kernel of the homomorphismGLn(R) !
GLn(k). A strict equivalence class of liftings ofN% to R is called adeformationof N% to R.
By Mazur [13, Proposition 1], ifN% is absolutely irreducible, then there exist auniversal
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deformation ring Rn in C and auniversal deformation

%n W Gp ! GLn(Rn)

of N% that satisfy the following universal property: for any given object R in C and any
deformation% to R of N%, there exists a unique morphism' W Rn ! R such that the
composition of%n with the induced homomorphism' W GLn(Rn) ! GLn(R) is equal to% as a deformation. The ringRn is uniquely determined up to canonical isomorphism.
We put

Xn
p WD Homcont

W(k)-alg(R
n, Cp),

and call it theuniversal deformation spaceof N%, whereW(k) is the ring of Witt vectors
of k.

Throughout this paper, we denote by0 the maximalp-profinite abelian quotient of
Gp, and fix a topological generator
 of 0. Let 3k be the Iwasawa algebraW(k)[[0]].
Let gp be the image of an elementg in Gp by the natural surjectionGp onto 0, and
let [gp] be the image ofgp by the natural injection of0 into 3�

k .
When n D 1, the universal deformation ringR1 and the universal deformation%1

of N% are described explicitly in the following

Lemma 1.1 (Mazur [13], §1.4). Let N%W Gp ! k� be a character, and let Q%W Gp !
W(k)� be the Teichmüller lifting ofN%. Then the universal deformation ring R1 of N% is
isomorphic to3k , and the universal deformation%%%1 of N% is given by

%%%1(g) D Q%(g) � [gp]

for an element g in Gp.

Next, in order to discuss the case wheren D 2, we restrict the deformation theory
of N% to deformations ofN% that satisfy prescribed conditions.

DEFINITION 1.2. When L is an arbitrary Galois extension overQ, we denote
by Dp and I p a decomposition subgroup and the inertia subgroup atp in Gal(L=Q)
respectively. LetR be an object inC. Then a two-dimensional representation

% W Gal(L=Q) ! GL2(R)

or its representation spaceV is called nearly p-ordinary if there exists a non-trivial
Dp-stable sub-R-module V1 that is a direct summand ofV of R-rank 1. Moreover,
if there exists a non-trivialDp-stable sub-R-module V2 of R-rank 1 such thatV D
V1 � V2, then we say that% (or V) is nearly p-extraordinary. In addition, if V1 is
exactly equal to the sub-R-moduleV I p of I p-invariants ofV , then we say that% (or V)
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is p-ordinary, p-extraordinaryrespectively. If p is understood, we refer top-ordinary
(resp. p-extraordinary) as simply ordinary (resp. extraordinary).

If % is nearly p-ordinary, then, up to conjugation, the restriction of% to Dp has
the form � "% u%

0 Æ%
�

,

for characters"%, Æ% W Dp ! R�, and a continuous functionu% W Dp ! R. If % is nearly
p-extraordinary, thenu% is a zero function. In addition, if% is p-ordinary, then"% is
trivial on I p.

Let D be the condition being either nearlyp-ordinary, p-ordinary, nearly p-
extraordinary orp-extraordinary. Then we assume thatN% satisfies the conditionD,
and the following

ASSUMPTION 1.3. " N% is not equal toÆ N% on I p.

If N% is absolutely irreducible and satisfies Assumption 1.3, then there exist auni-
versal D-deformation ring R2,D in C and auniversalD-deformation%2,D of N% such
that anyD-deformation% of N% to R in C is induced from%2,D by a unique morphism
R2,D ! R by Hida [11, Proposition 5.38], Mazur [13, Proposition 3], and [20, The-
orem 0.3]. We put

X2,D
p WD Homcont

W(k)-alg(R
2,D, Cp),

and call it theuniversalD-deformation spaceof N%.

1.2. Review of Morishita’s analogy. Let p be an odd prime number, and let

N% W Gp ! GL2(Fp)

be a continuous, absolutely irreducible, odd, and nearlyp-ordinary Galois representa-
tion. Then we assume thatN% satisfies Assumption 1.3, and fix a continuous characterÆ W Gp ! Z�p so that the modp reduction ofÆ is detN%. By Hida [11, §5.4.4], we have

the universal nearly ordinary deformation ring R2,no,Æ of N% with fixed determinantÆ.
Recall that the restriction of aSL2(C)-representation% of a knot groupGK to its pe-

ripheral subgroupDK is conjugate to an upper triangular representation. Morishita’s con-
cept in [17] is that Homcont

W(k)-alg(R
2,no,Æ,Cp) may be thought of as an arithmetic analogue of

the character spaceXK in Theorem 0.3 in the introduction. BecauseR2,no,Æ is isomorphic
to the universal ordinary deformation ringR2,o of N%, the space Homcont

W(k)-alg(R
2,no,Æ,Cp) can

be identified with the universal ordinary deformation spaceX2,o
p of N% if N% is p-ordinary by

Hida [11, Proposition 5.43 (ii)].
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On the other hand,N% is modular, i.e., isomorphic to the modp reduction of a
p-adic representation% f associated to ap-ordinary Hecke eigenformf by Khare [12,
Theorem 1.1]. LetT2,o be theuniversal ordinary Hecke algebrafor N% (for the def-
inition, see Mazur [14, §6, p. 125, Definition]). ThenT2,o is a finite flat3k-algebra.
Moreover, from the construction ofT2,o, we have a mapping fromR2,o to T2,o, and
it is known that the mapping is surjective. Here we assume that R2,o is isomorphic toT2,o. Note that it is conjectured that this isomorphism always holds (see Mazur [14,
§6, Conjecture]). In fact, many cases of this conjecture have now been proved thanks
to the work of Wiles [24] (and others). For example, if
• p � 5,
• N% is absolutely irreducible when restricted toQ(

p
(�1)(p�1)=2 p), and

• Assumption 1.3 is satisfied onN%,
then the conjecture is true by Hida [11, Theorem 5.29].

Let Q1 be the subextension of the maximal algebraic extension ofQ unramified
outside p and the infinite place1 with Galois group being isomorphic toZp. Then
we have the following

Theorem 1.4 (Morishita [17], (8.4)). Let N% be as above, and let x0 be an arith-
metic point ofX2,o

p . Take an element
 in I p that is mapped to a generator ofGal(Q1=Q).
Then the map

X2,o
p ! Cp I x% 7! tr %(
 )

is p-adic bianalytic in a neighborhood of x0.

2. Proof of the main theorem

2.1. Arithmetic analogue of the peripheral system of a knot. Let p be an
odd prime number, letk be a finite field of characteristicp. Let

N% W Gp ! GL2(k)

be a continuous, absolutely irreducible, odd, andp-ordinary Galois representation. Then
we assume thatN% satisfies Assumption 1.3. LetL be the splitting field ofN% and letL (p) be
the maximal pro-p extension ofL unramified outsidep and1. We putP WDGal(L (p)=L),
C WD Gal(L=Q), and5 WD Gal(L (p)=Q). Then we have the short exact sequence

1! P ! 5! C ! 1.

The quotient5 of Gp is called thep-completion of Gp relative to N%. It is known that
all liftings %W Gp ! GL2(R) of N% to R in C, factor through5 (see Boston [1, p. 182]).
Throughout this subsection, we regardN% as a homomorphism from5.

We consider the associated inertia subgroupI and decomposition subgroupD in5 relative to the fixed embeddingv W NQ ,! NQp, so that I is the image of the iner-
tia subgroup of Gal(NQp=Qp) in 5 (via the map induced byv) and D is the image of
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the full group Gal(NQp=Qp). Let I 0 and D0 be pro-p Sylow subgroups inI and D
respectively. BecauseN% is p-ordinary, the images ofI and D by N% are contained in

the subgroupB0
2(k) of upper triangular matrices of the form

�
1 �
0 �

�
and in the sub-

group B2(k) of upper triangular matrices, respectively. The subgroupU2(k) of matrices

of the form
�

1 �
0 1

�
is the normalp-Sylow subgroup inB0

2(k) and B2(k). We denote

by � 0 the natural homomorphism fromB0
2(k) to B0

2(k)=U2(k) and by� the one from
B2(k) to B2(k)=U2(k). Then I 0 is isomorphic to the kernel of� 0 Æ N%jI and D0 is iso-
morphic to the kernel of� Æ N%jD. Thus we see thatI 0 is normal in I and D0 is normal
in D. Moreover, A WD I =I 0 is a cyclic group of order prime top, and B WD D=D0 is
an abelian group of order prime top. The natural inclusionI � D induces an injec-
tion A ,! B. By Schur–Zassenhaus’ theorem (see Boston [1, Proposition(2.1)]), we
have a lifting A ,! I and a compatible liftingB ,! D. Fix such liftings, and identify
A (resp. B) with its image in I (resp. D). Then we have semi-direct product decom-
positions I D AË I 0 and D D B Ë D0.

Let Fv be the intermediate field in the extensionNQp=Qp that is fixed by the kernel
of the natural mapping from Gal(NQp=Qp) to B such that Gal(Fv=Qp) is isomorphic to
B. Then we have the following

Lemma 2.1 (Mazur [14], §8, Lemma). There exist elements� and � in I 0 and� in D0 with the following properties:
(1) The subgroup B,! D is in the centralizer of� .
(2) If Fv contains no primitive p-th root of1, then the element� is trivial. Otherwise,
it satisfies the following commutation relation with elements of B: for g 2 B,

g�g�1 D � Q�(g),

where Q�W B! Z�p is the Teichmüller lifting of the mod p cyclotomic character�W B!F�p , which defines the natural action of B on the subgroup of p-th roots of unity in Fv.
Exponentiation above refers to the operation of raising an element in a pro-p-group to
a p-adic unit power.
(3) The elements{g�g�1 (g 2 B), �, and � } generate D0 as a pro-p group.
(4) The closed normal subgroup generated by the elements{g�g�1 (g 2 B), and �} is
equal to I0.

After conjugating N%, if necessary, we may assume that the image ofB ,! D by N%
is a subgroup of diagonal matrices inGL2(k) and thatA � B maps to matrices of the

form
�

1 0
0 �

�
. Let R2 be the universal deformation ring ofN%. Then we may regard the

universal deformation ofN% as a homomorphism

%2 W 5! GL2(R2),

that is determined only up to strict equivalence. We can choose %2 in its strict
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equivalence class so that the image ofB by %2 lies in the image inGL2(R2) of the sub-
group of diagonal matrices ofGL2(W(k)), where the mappingGL2(W(k)) ! GL2(R2)
is induced from the natural homomorphismW(k) ! R2. Moreover, we may arrange it,
so that the image ofA by %2 lies in the image inGL2(R2) of the subgroup of diagonal

matrices ofGL2(W(k)) of the form
�

1 0
0 �

�
.

We now assume Assumption 0.1. Let� , � and � be elements inD0 having the
properties stipulated in Lemma 2.1. First, we see that%2(� ) is a diagonal matrix in
GL2(R2) by Lemma 2.1 (1) and Assumption 1.3. Second, we obtain the following

CLAIM 2.2. %2(�) D �
1 0
0 1

�
.

Proof. If N% is full, this claim is the same as Mazur [14, §9, Claim]. IfN% is tame,
it follows from Lemma 2.1 (2) directly because we see thatFv contains no primitive
p-th root of 1 by Assumption 0.1 (ii). Hence� is equal to 1.

Finally, we consider%2(� ). We put

%2(� ) D �
a b
c d

�
.

Let R2,o be the universal ordinary deformation ring ofN%. We denote by�o the natural
epimorphismR2 � R2,o, and by%2,o the induced homomorphism�o� Æ %2. Because

%2,o(� ) is contained in the subgroup of matrices of the form
�

1 �
0 �

�
in GL2(R2,o), the

epimorphism�o factors throughR0 WD R2=(a � 1, c). We denote by� 0 the natural
projection R2 � R0, and by�1 the mappingR0 ! R2,o induced by�o. Let

%0 W 5! GL2(R0)
be the induced homomorphism� 0� Æ %2. Then we see that%0 is p-ordinary by Lemma 2.1
(3). Therefore, by the universality ofR2,o, there exists a unique homomorphism�2W R2,o!
R0 with � 0 D �2 Æ �o. Thus we obtain an endomorphism�1 Æ �2 on R2,o. BecauseR2,o

is noetherian, and�1 Æ �2 is surjective, we see that it is an isomorphism. Hence (�1 Æ�2)� Æ %2,o is equal to%2,o up to conjugation. Then we have (�1 Æ �2)� Æ tr %2,o D tr %2,o.
BecauseN% is absolutely irreducible, we see that (�1 Æ �2)� is the identity by Mazur [15,
§25, Proposition 1]. Hence we see thatR2,o is equal toR2=(a � 1, c).

Similarly, we let R2,eo (resp. R2,neo) be the universal (resp. nearly) extraordinary
deformation ring of N% when N% is p-extraordinary. Then we see thatR2,neo is equal to
R2=(b, c), and thatR2,eo is equal toR2=(a� 1, b, c). Hence we obtain the following

Proposition 2.3 (cf. [20], Corollary 2.2). If N% is p-extraordinary and satisfiesAs-
sumptions 1.3and 0.1, then the kernel of the natural epimorphism from R2,o to R2,eo ofN% is a principal ideal.
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Thus, only � and � are essential generators of a decomposition subgroup in the
deformation theory ofN%. As we have stated in the introduction, the generator� that
comes from Frobenius element overp is an arithmetic analogue of a longitudel of
a knot K . Another generator� in a quotient of I p may be thought of as an arith-
metic analogue of a meridianm of K . In particular, if N% is p-extraordinary, then%2,neo([� ,� ]) is trivial in GL2(R2), where%2,neo is the homomorphism�neo� Æ%2 induced
by �neoW R2 � R2,neo. Recall that, in knot theory, the triple (GK , m, l ) consisting of
the knot groupGK , a meridianm and a longitudel of a knot K is called the periph-
eral system ofK . We consider the triple (5, � , � ) to be an arithmetic analogue of
the peripheral system ofK . Here, we call an element ofI p (resp. Dp) that maps to�
(resp.� ) by the natural mappingmonodromy over p(resp.Frobenius over p).

2.2. Universal nearly ordinary deformation space. Let p� 5 be a prime num-
ber, and letk be a finite field of characteristicp. Let

N% W Gp ! GL2(k)

be a continuous, absolutely irreducible, odd, andp-ordinary Galois representation. Then
we assume thatN% satisfies Assumption 1.3. Recall that the restriction ofN% to a decom-
position subgroupDp at p of Gp is isomorphic to an upper triangular representation
with diagonal characters" N% and Æ N%, and that the character" N% is trivial and Æ N% is non-
trivial on the inertia subgroupI p at p. Note that the restriction of a character" of Dp

to I p has a unique extension"Gp to Gp. Let X1
p be the universal deformation space of

"GpN% , and letX2,o
p (resp.X2,no

p ) be the universal (resp. nearly) ordinary deformation space
of N%. Then we have the following

Lemma 2.4 (cf. Hida [11], p. 310). There is a one-to-one correspondence

X2,no
p ' X2,o

p � X1
pI % 7! �%
 �"Gp% ��1

, "Gp% �
.

Here we assume the following

ASSUMPTION 2.5. The universal ordinary deformation ringR2,o of N% is isomorphic
to 3k , and the universal deformation ringR2 of N% is isomorphic to a power series ring in
two variables over3k D W(k)[[0]]. Then, we say that the deformation theory ofN% is
cleanly unobstructed(see Mazur [14, p. 120, Definition]).

We see thatX2,o
p andX1

p are isomorphic to Homcont
W(k)-alg(3k ,Cp) by Assumption 2.5

and Lemma 1.1, respectively. On the other hand, Homcont
W(k)-alg(3k ,Cp) is identified with

the p-adic unit discDp WD {t 2 Cp j jt jp < 1} by sending' to '(
 ) � 1, wherej�jp
means thep-adic absolute value, and
 is a fixed topological generator of0. Hence
we can identifyX2,no

p with the p-adic analytic spaceDp�Dp. Under this identification,
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we regardX2,no
p as a p-adic analytic space, and we denote byx% WD (s%, t%) the point

in Dp �Dp corresponding to a deformation% in X2,no
p .

Moreover, we assume thatN% satisfies Assumption 0.1, and let� be a monodromy
over p. Then we define8 to be thep-adic analytic map

8 W X2,no
p ! CpI x% 7! tr %(� ).

We describe8 explicitly. By the above argument, we have

tr %(� ) D "%(� )C Æ%(� )

D (1C Æ% � "�1% (� )) � "%(� ).

Because% 
 �"Gp% ��1
is p-ordinary, we have the unique homomorphism'0 W R2,o !

Cp corresponding to% 
 �"Gp% ��1
. On the other hand, the universal deformation ring

of the character detN% is isomorphic to3k by Lemma 1.1. Let%1 be the universal
deformation of detN%, and let � be an isomorphism such that det%2,o is equal to� Æ %1

as a deformation. Then we have

Æ% � "�1% (� ) D det(%
 ("Gp% )�1)(� )

D '0 Æ � Æ %1(� )

DAdet N%(� ) � ('0 Æ �)([�p]).

Let "1 be the universal deformation of"GpN% , and let'1 W 3k ! Cp be the homo-

morphism corresponding to"Gp% . Then we have

"%(� ) D '1 Æ "1(� )

De"GpN% (� ) � '1([�p]).

Recall that the restriction ofÆ% � "�1% and "% to I p factor through the group0, and that
we have Lemma 2.1 (4) and Claim 2.2. Hence there exist non-zero p-adic integersa
and b in Zp such that ('0 Æ �)([�p]) D '0(
 )a and '1([�p]) D '1(
 )b. Thus we obtain

8(s%, t%) D {

1CA(det N%)(� )(1C s%)a
} �e"GpN% (� )(1C t%)b.

2.3. Proof of Theorem 0.2. Let p� 5 be a prime number, and letk be a finite
field of characteristicp. Let

N% W Gp ! GL2(k)

be a continuous, absolutely irreducible, odd, andp-ordinary Galois representation. Then
we assume thatN% satisfies Assumptions 1.3, 2.5, and 0.1.
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Let X2,o
p (resp.X2,no

p ) be the universal (resp. nearly) ordinary deformation space ofN%, which is identified with thep-adic analytic spaceDp (resp.Dp � Dp). Then we
obtain the following

Theorem 2.6. Let x0 be a point inX2,o
p . Then the map

80 W X2,o
p ! CpI x% 7! tr %(� )

is p-adic bianalytic in a neighborhood of x0.

Proof. By the argument in the previous subsection, for any point s% in Dp, there
exists a non-zerop-adic integera in Zp such that

80(s%) D 8(s%, 0)De"GpN% (� ){1CA(det N%)(� )(1C s%)a}.

Thus80 is everywhere locallyp-adic bianalytic.

Next, we consider the case whereN% is also p-extraordinary. LetR2,eo be the uni-
versal extraordinary deformation ring ofN%. Then we obtain the following

Lemma 2.7. The Krull dimension of R2,eo is equal to1.

Proof. Remark thatN% is modular, i.e., isomorphic to the modp reduction of a
p-adic representation% f associated to ap-ordinary Hecke eigenformf on SL2(Z) by
Khare [12, Theorem 1.1]. Moreover, the universal ordinary deformation %2,o of N% is
also modular by Assumption 2.5, that is, we can take a primitive ordinary3-adic form
F such that the strict equivalence class of the Galois representation %F associated to
F is equal to%2,o (see Hida [9], [10]), where3 D 3Fp .

By our assumptions and Proposition 2.3, we see that there exists a single element
u in 3k such that

R2,eo' 3k=(u).

Because the Krull dimension of3k is equal to 2 andu is not unit in3k , the Krull
dimension ofR2,eo is equal to either 1 or 2. We assume that the Krull dimension of
R2,eo is equal to 2. Thenu must be equal to 0. HenceR2,eo is isomorphic to3k , and
the universal extraordinary deformation%2,eo is equal to%2,o as a deformation. Because%2,o is p-extraordinary, the restriction of%F to Dp must be diagonalizable. ThenF
must have complex multiplication, i.e., all arithmetic specializations ofF have com-
plex multiplication by Ghate–Vatsal [6, Theorem 0.3]. On the other hand,f does not
have complex multiplication becausef is of level 1 (see Ribet [21, p. 34]). Hence the
arithmetic specializationfw at weightw of F , which is the correspondingp-stabilized
form of f , does not have complex multiplication. This is a contradiction.
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We denote byX2,eo
p (resp.X2,neo

p ) the universal (resp. nearly) extraordinary deform-
ation space ofN%. We have a one-to-one correspondence

X2,neo
p ' X2,eo

p � X1
p

induced by the correspondence in Lemma 2.4. Thus we may viewX2,eo
p andX2,neo

p as

subspaces ofX2,no
p . Then we obtain the following

Theorem 2.8. Let x0 be a p-ordinary point inX2,neo
p . Then the map

81 W X2,neo
p ! CpI x% 7! tr %(� )

is p-adic bianalytic in a neighborhood of x0.

Proof. By Lemma 2.7, we see thatX2,eo
p is a finite set. IfX2,eo

p is a non-empty

set andx0 D (s0, 0) is an element ofX2,eo
p , then there exists a neighborhoodU of x0 in

X2,neo
p such that the intersection ofU andX2,eo

p consists of onlyx0. By the argument in
the previous subsection, for any point (s0, t%) in U , there exist non-zerop-adic integers
a and b in Zp such that

81(t%) D 8(s0, t%) De"GpN% (� ){1CA(det N%)(� )(1C s0)a}(1C t%)b.

Thus81 is p-adic bianalytic in a neighbourhood ofx0.

Theorem 0.2 follows from Theorems 2.6 and 2.8.

3. Examples

In this section, we introduce some examples ofN% which satisfies all assumptions
in Theorem 0.2. For a choice of weightw in the set{12, 16, 18, 20, 22, 26}, we denote
by fw D P

anqn the unique cuspidal newform onSL2(Z) of that weightw. For any
prime numberp, we denote by

N%w, p W Gp ! GL2(Fp)

the mod p reduction of the unique continuous semi-simple representation associated to
fw, which has the property that

tr N%w, p(�l ) � al (mod p), and detN%w, p(�l ) � lw�1 (mod p)

for any prime numberl ¤ p, where�l is the Frobenius element atl . Note that N%w, p is
odd, and satisfies Assumption 1.3 ifw < p. If ap ¥ 0 (mod p), then N%w, p is p-ordinary
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and satisfies Assumption 2.5 by Gouvêa [7, pp. 192–193], Mazur[14, p. 120, Corol-
lary 2], and Boston [14, Proposition (6.3), Example]. We canfind many examples of
such N%w, p there. If N%w, p is full, i.e., the image ofN%w, p containsSL2(Fp), then N%w, p is
absolutely irreducible, and ifw ¥ 0, 2, (pC 1)=2 (mod p� 1), then N%w, p satisfies As-
sumption 0.1 (i). Forfw, it is known that there exist only finitely many primesp such
that N%w, p is not full by Swinnerton-Dyer [22, Theorem 4]. Moreover, there exist only 2
pairs such thatN%w, p is absolutely irreducible,p-ordinary, and tame i.e., the order of the
image of N%w, p is prime to p. Such pairs are

(w, p) D (12, 23), (16, 31).

Therefore we obtain the following explicit examples forp < 400 in the case whereN%w, p is full.

EXAMPLE 3.1. If a pair (w, p) appears in the following list:
• w D 12, 17� p � 65063, p ¤ 23, 691, 2411,
• w D 16, 19� p � 397, p ¤ 31, 59,
• w D 18, 23� p � 397,
• w D 20, 29� p � 397, p ¤ 283,
• w D 22, 29� p � 397, p ¤ 131,
• w D 26, 31� p � 397,
then N%w, p is absolutely irreducible, odd,p-ordinary and full, and satisfies Assump-
tions 1.3, 2.5 and 0.1 (i).

Next, we introduce some examples ofN%w, p that is alsop-extraordinary. Let fw, p

be the modp reduction of fw. By Gross [8], if fw, p has companion form, then N%w, p

is p-extraordinary. A computer search by Elkies, extended by Atkin, showed that there
exist pairs (w, p) such that N%w, p is full and fw, p has companion form. Forp < 3500,
such pairs are

(w, p) D (16, 397), (18, 271), (20, 139), (20, 379), (26, 107).

On the other hand,fw, p is equal to its own companion form when

(w, p) D (12, 23), (16, 31).

Then N%w, p is tame andp-extraordinary. By Mazur [13],N%w, p for these 2 pairs arespe-
cial S3-representations. In particular, the image ofN%w, p is isomorphic to the symmetric
group S3. Hence the order of the image ofN%w, p is not divisible by p � 1. Thus we
obtain the following

EXAMPLE 3.2. If a pair (w, p) is one of these 7 pairs, thenN%w, p is absolutely
irreducible, odd, andp-extraordinary, and satisfies Assumptions 1.3, 2.5 and 0.1.
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Remark that we have not known unfortunately whether the universal extraordinary
deformation spaceX2,eo

p of N%w, p is non-empty wheneverN%w, p is full. However we see

that X2,eo
p is non-empty for (w, p) D (12, 23), (16, 31) by the following

Proposition 3.3. For each pair (w, p) D (12, 23), (16, 31),the universal extraor-
dinary deformation ring R2,eo of N%w, p is isomorphic toZp.

Proof. By Boston–Mazur [2, p. 13, Computation], we see thatN%w, p is a generic
specialS3-representation (for the definition, see also Boston–Mazur [2, §2.3]). For such
a representation, an explicit description of the universaldeformation space is given in
Boston–Mazur [2, §3.3]. In fact, letm be the maximal ideal ofZp[[T1, T2, T3]] (' R2).
Then there exist power seriesf and g in m such that

f (T1, T2, T3) � T1 � T2 C T3 (mod m2),

g(T1, T2, T3) � 3T1 � 3T2 � 3T3 (mod m2),

by Boston–Mazur [2, Proposition 12]. Then the universal ordinary deformation ring ofN%w, p is isomorphic toZp[[T1, T2, T3]]=(g, T1) by Boston–Mazur [13, Proposition 13 (c)].
Moreover, we see that

R2,eo' Zp[[T1, T2, T3]]=(g, T1, f ) ' Zp

by [13, Lemmas 6 and 8].
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