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Abstract
In this paper we discuss th€* well-posedness for second order hyperbolic
equationsPu = 32u — a(t, x) 32u = f with two independent variableg, (x). As-
suming that theC™ function a(t, x) > 0 verifies3°a(0, 0) # 0 with somep and that
the discriminantA(x) of a(t, x) vanishes of finite order at = 0, we prove that the
Cauchy problem forP is C> well-posed in a neighbourhood of the origin.

1. Introduction

In this paper we deal with th€> well-posedness of the Cauchy problem for a
second order hyperbolic operator with two independentaizes P = 92 — a(t, x) 92,
(t, x) € RZ%

1.1 {Pu:atzu—a(t,x) a2u = f,

' u(0, x) = up(x), 8;u(0, x) = uy(x)
near the origin ofR?, where we always assume that, x) > 0. In [11] and [12],
assuming thag(t, x) is real analytic in { x), it is proved that the Cauchy problem
for P is C* well-posed. On the other hand, in [4], the authors give a tarerample
involving a functiona(t) € C*([0, T]), positive fort > 0, such that the Cauchy prob-
lem for P = 32 — a(t) 82 is not C* well-posed. The main feature of thit) is that
da(t)/dt changes sign infinitely many times wheén, 0. There are many works trying
to extend theC> well-posedness result in [11] without the analyticity asgtions on
a(t, x) (see for example, [1], [2], [3], [5], [8], [10], [13]).

In this paper we assume thaft, x) is of classC™ in (t,x) and essentially a poly-
nomial int and we discuss th€> well-posedness question under this rather general
assumption. Ifa(0,0)# 0 thenP is strictly hyperbolic and ifa(0,0) = d;a(0,0)= 0 but
32a(0, 0)# 0 then P is effectively hyperbolic at (0, 0) and hence the Cauchy jemob
is C>* well-posed for any lower order term (see [7], [11]). Thus waymassume that
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a(0,0) = &a(0, 0) = 32a(0, 0) = 0 without restrictions as far as tf@> well-posedness
is concerned. We assume that there ip @ N, p > 3 such that

(1.2) 8°a(0, 0) # 0.
Then applying the Malgrange preparation theorem we can write
(1.3) a(t, x) = e(t, X)(t" +ai()tP* + - - - + ap(x))

wheree, ay, ..., ap are of classC® in a neighbourhood of the origin arg0, 0) # 0.
Let A(x) be the discriminant o&(t, x)/e(t, x) as a polynomial irnt. We call A(x) the
discriminant ofa(t, x). We now assume that there gse N such that

(1.4) (%)qA(O) £ 0.

Then we have

Theorem 1.1. Assume(1.2) and (1.4). Then the Cauchy problerfL.1) is C*
well-posed in a neighbourhood of the origin.

One can easily generalize Theorem 1.1 a little bit as follows

Theorem 1.I. Assume that ft, x), j =1,...,r are functions of class € and
verify the conditiong1.2) and (1.4) with some p, g; € N (the nonnegativity of i{t, x)
is not assumedand that gt, x) = ba(t,x)™---b (t,x)™ where m € N and B(t,x) =
bj(t, x)™ > 0 near the origin. Then the assertion dheorem 1.1holds.

In Section 2 we define a weighted energy and in Sections 3 anck 4evive
a priori estimates. In Section 5 we prove Theorem 1.1. RinallSections 6, 7 and 8
we construct the weight functions.

2. Energy

Throughout this paper an index or t will denote respectively a space or time
derivative, e.g.uyx = dxu and kn; = d;k,. As usual, we seD = d/i.

We prove Theorem 1.1 by deriving a priori estimates. TaK&) € C3°(R) such
that x(x) = 1 in a neighbourhood of the origiry(x)a(t, x) is then defined and of class
C®in [-T,T] xR.

Let us consider an energy

Etu) =) AR / kn(t, X)[Une[? + x (a(t, X)|aUn|2 + (0 + 1)]un %] dx
n=0
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wherec > 0, A(t) = € with a, b > 0 and
1
Un = — log"(D)u, (§)* =&°+ 1.

Here
o0 Sn
Sy — oslog(D),, _ n
(D)’u=e u= Eo—n! log"(D)u
n=

has the role of a partition of unity. Althougk™(/n!)log"(D) does not localize the frequen-
cies& so much (but see Lemma 3.1 below), it has the advantagé)ﬁt(at‘/n!) log"(£))
conserves the same form up to factdr&)~1. In order that this energy may work well to
derive a priori estimates, the weight functidggt, x) are required to verify some suitable
properties. For similar examples of energy see [8], [9] al®].[ Our main task in this
paper is then to construct a sequence of weight functigfisx) for a(t, x) satisfying the
properties listed in the next proposition:

Proposition 2.1. Let N > 1 be a given constant and(ig x) be a nonnegative
function of class € satisfying (1.2) and (1.4). One can find T> 0 and construct
a sequence of weight functiong(k x) defined on[—T, T] x R verifying the follow-
ing properties
1) ky(t, x) is a Lipschitz continuous function and

C127C" < ki (t, x) < 1.

2) Kng(t, X) > —Cge®,
3) We have that

lknx(t, X)[v x (¥)a(t, X) = Cs(n + L)kn(t, X).
4) We have that

|x (X)a(t, X)|

kna(t, X) = =N x(X)a(t, x) + 2-2n

Kn(t, X) -+ Co(n + Lkn(t, X).

5) kn+1(t1 X) = C7kn(t’ X)-

The proof of Proposition 2.1 will be given in Sections 6, 7 d&d
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3. Energy estimate

In what follows we write simplya(t, x) instead of x(x)a(t, x) and assume that
u e C([-T, T]; S(R)) verifies

Pu=d?u—al(t, x) 97u = f.
Let us define

DA+ log" (D)
(D)S+ju and Ungsj = o

(31) Ugsj = 27nﬁ Ugs,j-

With these definitionsug 0,0 = u and u, = U000 We introduce the energy

o] p p+tq 1

W= 33000 > A [ Halt kg -+ 2t oo

n=0 =0 s=0 j=0

+ (N% + 1)|unps;|?] dx
+

©
Qo

>

B=0s

I
e

1
En(t, Uﬂ,s,j)
j=0

>
Il
o
Il
(=}

wherek,(t, X) is given by Proposition 2.1 (we will later determine the efided quan-
tities of this expression, nameb;, b in the termA(t), the coefficientc and the number
of terms of the sum, that depends pnqg € N).
Performing the derivative oE,(t, u) with respect tot we have that
d
gi En(t: u) = —(C + nb)En(t, u)
+ e AY) / Knt(t, X)[|Un.t|” 4 a(t, X)|dxunl* + (0* + 1)[un|?] dx
+ e’Ct An(t) / kn(t, X)2 Re(Un’[tUn’t) dx
+e A [ kot 0a, 0l ? dx
+ e A1) / kn(t, X)a(t, X)2 Re(dxUnUn,xt) dX
+ (n? + 1)e " A"(t) / kn(t, X)2 Re(un ¢ Uy,) dX
= —(C + nb)En(t, u) + 12(un) + 13(Un) + l4(un) + Is(un) + ls(un).

We then begin studyindg(u,): note that

ls(Un) 5e°fA“(t)[/ kn(n|un,t|2+n3|un|2)dx+/kn(|un,t|2+|un|2)dx},
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therefore it is clear thatg(u,) can be bounded bZnE;(t, u). Thus we have that

(3.2) > Je(Unpsi) <C Y nEalt, Ugs )

n,p,s,j n,pB,s,j

where the sum is taken overe N, 0< g8 <p,0<s<p+qgandj=0,1.
Next, let us considet,(u,) and I4(u,) (the termsls(u,) and Is(u,) will be esti-
mated together in the next section). Note that

|a
a+2

|a]

—2n 2
at2? 2 1ol

(3.3) knat|axun|2 < kn a|axun|2 + kn

With a slight abuse of notation we will s&t = A(0) in what follows.

Lemma 3.1. For every te [T, T] (for a suitably small T and every fixed g,
if p and A are large enough we have that

al
ZA“(t)Z/kn | 2' —— 2 |dUn g, 2 dX
&
<ZA”(t)Z/k | 2' 2n|un,ﬁ,.5,j|2dx+CZA“(t)/kn|un,0,s,,~|2dx.
n

Proof. Let us denote byu|| the L2(R) norm of u(t, -). Obviously

|a]

EY 2
atom 5o |Unp+1s,jl

kn a+2-

2*2”|8Xun,ﬂ,svj |2 =
if 0 <pB < p. If B=p, noting that|a;| < C andk, <1 by Proposition 2.1 (and fixing
s, J and settingw = Ugs j, wn = Un,os,j) We have that

Z An(t)272n(p+l)/ kna_||_at2| 2n Dp+lwn|2 dx

<Ci)  A)22"°|(D)P*  wn|?
n

m+n(D) 2

=L Az Tp+ g o)

3.4
G4 log™"(D) 2

<Cp )y A't)272"P(m+ 17(p+ 1" -

m,n

<Co ) A)™N2AMP AL (m + 1)

m,n

|Ogm+n(D) 2

% 22m p22m(p+1)22(m+n) w
(m+ n)!
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Setu =m+n; choosingp large enough, by Proposition 2.1 we can have khag“ (P~ >

C; > 0. Observe that whatever the choicelofay be, we can suppose thaft) > A/2

for t € [-T, T] simply decreasingl'; on the other hand, we also chooelarge with
respect to 2- 24P+2. 2, so that (taking into account that;> ,1/2™ = 2), the last line
in (3.4) can be bounded by

2C, Y A2 2y 12 < Cp Y A f K, |w, | dx.
Iz Iz
This ends the proof of Lemma 3.1. ]
Recall now that by 4) of Proposition 2.1

& 1 C
(3.5) k # < _Nk”'t + N(n + Dkn.

a2~
By Lemma 3.1 and (3.3), (3.5) we see that (for every fisednd j)

1
Z |4(un,ﬂ,s,j) =< _N Z e_CtAn(t) / kn,t(a|3xun,ﬂ,s,j |2 + |un,ﬁ,s,j |2) dx
npg npg

+C > nE(Uss,)).

npg

From 4) of Proposition 2.1 we have thkt; < C(n + 1)k,, thus, since -1/N > 0,
we obtain that

(3.6) > llUngs) + D la(Ungs) C Y NEUss,)).
n,g n,g n,g

4. Energy estimate (continued)
We turn tols(u,). Note that
Is(u) = 2 ' A"(t) / kna(t, X) Re(Un xUn,xt) dX
= —2e A1) / kn.xa(t, X) Re(Un xUn () dX
—2e‘°tA“(t)/knax(t, X) Re(Un xUnt) dX
—2e L AN(t) / kna(t, X) Re(Un xxUn.t) dX

= Jl(un) + JZ(Un) + \]3(Un).

By 3) of Proposition 2.1 we have

@1)  |3un)l < Ce A / k(U2 + alt, )lunx|?) dx < CnEs()
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and from the Glaeser inequality, applieddo> 0, it follows that
4.2) | J2(un)| < Ce AN (t) [ kn(JUn.t)? + a(t, x)|unx|?) dx < CEn(u).
We still have to estimate
Ja(Un s j) = —2 LA (t) / kn(t, X)a(t, X) Re(d2Un. g s, &Unp.s ) dX;

but note that

|3(un,ﬁ,s,j) + JB(un,ﬂ,s,j)

log" B+
(43) = 2e‘°tA”(t) / kn Re (|: Ogn'(D) <B>S+j ) a:| afu *Ch,B atUn,lgvs‘j) dx

+2e—°tA“(t)/kn(t, X)Re(fnps.j dtlhps ) dX

wherec,; =2 and=0,1,...,p,s=0,1,...,p+q, j =0,1 andfrzs; is
defined as in (3.1).
We rewrite the commutator as

log"(D) DF+i
5 o

a(t, X)i| 8fun,ﬂ’5’j - Ch,p

(4.4) ) 0 2
= Z I_' aXad)ﬁ,s,j (D) aXu ' Cn’ﬂ + R(un'ﬁ’s’j)
1<l<p+q+2-s
where
log" (&) &/
(I)ﬁ,s,j(é) = n! (§)S+j
and

-1 ! iX m
Rltnsas) = gy | [ 40601+ 6t =)
x (1 —0)™(E — n)MA(t, & — n)n?0(t, n)cn s dO dn d

with m= p+ g + 2—s. Hered(t, &) denotes the Fourier transform eft, x) with
respect tox.
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As a consequence, writing= p + g, we see that

|3(un,ﬂ,s,j) + JB(Un,ﬂ,s,j)

oA [k,

+ e %(n+ 1)A"(t) / knldtUn,p.s.; |* dX

2
i |
> ( ) a,adl); (D) 82ucys| dx

1<l<m

(4.5) 1
+e‘°‘mA"(t)/kn|R(Un,/3,5'i)|2dX

+e %+ DA [ Kol s dx
. e—CtAn(t) / kn(t, X)| fn,,B,S,j |2 dx + e—CtA”(t) / kn|atun,ﬁ,S,J |2 dx.

The second, fourth and sixth term are smaller tkamE,(ugs,j) for someC > 0. We
keep the fifth one as it is and study the other two in the follmviwo lemmas; we
start with the first term.

Lemma 4.1. We have that

,ct Z n+1An(t)/k

nAB,sj

<C Y (n+ DEn(Uss)).
n,B,s,j

2

8 1a®f (D) 92ucy 5| dx

1<l<m

Proof. We writer = p 4+ g and letn stay fixed for the moment. The left-hand
side can then be estimated by

@8 o) Y A0 [l Y o lhasl (D) ofuc [ dx

B=p,s<r,j 1<l<m
We first consider the term with= 1 of this expression:

|8,a®f), | (D) B2ucy, ]

log" (D) DF+i+t
= |0ka -

[ (n—1)! (D)sti+2

log (D) ((B+ DDF*I= . DRI
+ (e~ gy e
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DA+I+2
< Cx/a( —(D)S+i+2 OxUn_1| + (P + 1) Dys+i dxUn
ﬂ+]+2
+(s+ 1)‘m OxUn )Cn,ﬂ
DA+i DA+
< le( s+l OxUn_1 Ch-1,8 + ‘W OxUn_1 Ch-1,8
DA+I DA+I
-+ ‘<D>—S+] dyUn Cnp + ‘W dxUn Cn,ﬂ).

Here we have use®? = (D)2 —1 and

Cn'ﬁ

4.7) <1, n <n, B <B.

Cn/’ﬂ/

Thus (4.6) withl = 1 can be estimated by

2

C Z n()/kn[ S+j axunflcnflﬂ
B=p,s=r, ]
DA+Ii 2 DA+I 2
+a W OxUn_1Cn_18| +@a (D)—S'H OxUnCn g
DA+I 2
t+a W dxUnCn g ] dx
1
=Ci > (Ena(Ups) + En(ugs)))
B=p,s=r,j
1
+Co 1 > (En-1(Ug,s,j) + En(Us,s,j))

B=pr+1<ssr+2,j

becausek, < Ck,_1 by 5) of Proposition 2.1 and\"(t) < C A(t)" .
We next consider the terms with> 2. Note that one can write

log'(g) &f+l ](') m%” 5 log"~"(£) gA+2+ith-2
Chiiyls

“9 [ TRNGEY (—h} (E 7%

h=0 I;>h,l;+l,=

|2<ﬂ+2+J+|1
for some constant€y, |, whose absolute values are bounded by a constant depending
on p andg, but not onn. If 2 4+ j +1; — I, is even and nonnegative, then using
£2 = (£)2 — 1 the right-hand side can be written as

min{l,n} n h(%‘) g);ﬂ +

(4.9) > > chhf”sl (n—h)l (£)5+]

h=0 s=g=<s+2r+3p'<p j=0
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(because 2- j +11 =1, < j + 24 for | > 2) where|Chp ¢ ;| is bounded by a constant
independent oh. The same argument applied to the case in whighj2-1; -1, is odd
and nonnegative shows that the right-hand side can be wiittehe same form (4.9).
Then (4.6) withl > 2 can be bounded by

min{r +1—s,n}

SCUDMEDY n—A“(t)/kn

B=p.j
S<3r+3

2

2
S+] Unfh Cn—h,ﬁ dX

because of (4.7). This is bounded by

C(p,q,A) Z Z h_l_lEh(uﬂS])

B=p,s<3r+3,] h=n-r—1
because we can suppo#ét) < 2A. We now need to deal with the terms wish> r:

2
> —An ch p dx.

ﬂﬁp,r<s§3r+31

D)st] TDvs+ Un

But sincek, < 1 by 1) of Proposition 2.1 an@ < p, s>r = p + g, we have

2

dx

s+1 Un nﬂ

n 2
<cY A / (D) 9upPdx = C / (Z A"/Z(t)<s>‘*'°gm<§)> af? d

n
=c [ vApiapds <c [ludx < C. [ la(t lul? dx
providedq > +/2A > JA(t). ]
It remains to estimate the third term of (4.5), the one comagi |R(un,,g,s,j)|2.

Lemma 4.2. We have that

1
@10) Y A [KalRUnps ) dx = O(p.a, A) [ Kt 0luol? dx

n,p,s,j

for large g.
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Proof. Recall that the left-hand side of (4.10) is by defamiti

> w0 o] [ ([ o0+ o6 - mtga-om

nB,s,j
2

x (& —n)™a(t, & — n)n2a(t, n) do dn) dg| c2 , dx

which by Parseval’'s formula is bounded by

> w0 [|[[ om0+ o6 -mtpa-om

2

dé

nﬂsl

x (€ — n)Ma(t, & — n)na(t, n) do dn

becausek, <1 andc, g < 1. From (4.9) it is enough to estimate terms of the form

N Ylog"(n + 6(& — n)) (n + 6(& — n))/r"]
C(A P.0) 2 A / V I i i+ 0 — )=

2

x (& —n)™a(t, & — n)na(t, n) do dn| d&

with
Ss—B1=s+m—p=q+2

Applying the inequality(n + &) < 2!8/()3(£)!¥ we see that this is bounded by (writing
G(n) for G(t, n) and a(n) for a(t, n))

] Ylog"(n + 0(& — 1)) 1
(A P9 ; A /‘//0 n! (n +60(& —n))a+2 @

2

dé

x |(€ = n)™a( — n)| [n*0(n)| d6 dn

n 2
sey@ar [ (fie-nmerae -2 o dn) de

2
rey@ar [ ( [ - mmereot iy (s—n)|W|u(n)|dn)

roy@ar [ (57 [ nmeae - i e ) a
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with C = 3C(A, p, q). By the Schwarz inequality the first integral is estimatgd b

Ci(A p,q) ) A3 f ( / (& — )™ I2A(t, & — n1)| diy

0 2
« [te = nmaiae -l P00 an) de

|0h ()12
(n)2a

2
= culm p. ) [ )™ lat m)ldns ) Y A

2
2o 1G]
< Cy(A, p, q)/ (; A3 W) dn
< Cy(A, p, ) / IORGaTONRT
< Co(A p.0) / a(n) 2 dn < Ca(A, p, q) / Ko(t, X)[Uo? dx.

Here we choose firsA large and therg so thatq > 3v/A.
The second term is bounded by

ng2n mar2/0d(m) “ [l
CalA, p.a) 3 A ([ ()2 |a<t’"1)'°'”l) (s ¢

n 2
< Cs(A, p, ) (Z A [ (gm0 dnl) [1aeran

n!
n

2
= cola p o) [ (™92 el ans) [0 dn
= Cr(A, p.a) [ G d.

The last term can be estimated similarly and so we end thef mfobemma 4.2. []

From (4.1), (4.2), (4.5), Lemma 4.1 and Lemma 4.2 it followatt

(4.11) Z {13(Un g,5,j) + Is(Un,g,sj)} = C Z NEn(Ugs) + [FOI

n,B.S,j NS j
where

n B+i 2
0" (D) D™ ¢ ¢ xy2| dx.

N (D)st]

[HOF = 3 A [t

n,B,sj
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5. Proof of Theorem 1.1

Summing up the estimates (3.2), (3.6) and (4.11) we have that
Letw <11
dt L [
and hence

(5.1) E(t, u) < E(to, U) + /t[f(s)]zds

to

for =T <ty <t < T. Let us denote byju||; the standard norm in the Sobolev space
H"(R). Then we have

Proposition 5.1. There is § € N such that for any r € R we can find C such that
t
lueII7, + lu)1?, < C(||ut(t0)||r21+r2 + Ut 17, 44 + /to (s 7, dS)
for any —T <ty <t < T and for ue C*([-T, T]; S(R)) verifying Pu= f.
Proof. It is clear that
[u®)]* = e “co /IU(t. X)[? dx = coe™® |lu?

becauseky(t, X) > co > 0 by 1) of Proposition 2.1 (the notation J is defined at the
end of last section). This together with (5.1) shows that

t
(52) lue @)1 + lu®)]? < C(f(to, u) +/t [f(s)° dS)-

On the other hand we see that

[u@®)? <2 )" A"O)unll}_s < Cre* Y A'(®)llunll

n.p.s n
2
| n
<Cie® / <s>2p|0|2<2 A(t)nxz_"gm@)) dé

sqq“/m@H“Mm%ss@%wi
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with r; = p + +/2A(0) because we can supposét) < 2A(0) for —T <t <T. Simi-
larly, we have that

—Ct n Dﬁ+j —n 2

et Y A(t)/kn(t,x)a(t,x) (D)—Sﬂ.axun(t,x)Z Bl dx
n,B.s,j

<267 Y " A'M)|unll_sps < Coe Y AW l|UnllZy s

n,p,s n

- 2
< Coe™|ull} 41

Taking (5.1) and (5.2) into account we get that

t
(5:3)  u@®I + u@®)]* < Ca(llut(to)llrz1 + u(to)lIf, 41 + /t I S)II7, dS)-

Repeating the same arguments as in Sections 3 and 4 for

ng |ogn(D) DAty u
n  (D)st]

Unpysi =2
with y =0, 1,...,r,, we obtain the desired result. O
Proposition 5.2. There is i € N such that for any s € R one can find C such that
t
lue®IIZ, + lu)l?, < C(||ut(t0)”r21+r2 + luCto)I? rppa Jr/t (s 7, dS)
0
for any —T <ty <t < T and for any ue C?([-T, T]; S(R)) satisfying
P*u = 82U — a(t, X) 82U — 2a(t, X) dxU — axx(t, x)u = f.

Proof. To check the proposition it suffices to estimate

(5.4)  F(un) = 26 A1) / Ka(t, X) Re[log:ﬂ(D) (28y OxU + ayyl) -Un,t} dx.
Since

IOg:]fD) (2ay dxu + axxU)

= 23,d,Un + Bcxln + Z[IOQ:],(M, ax] Byl + [Iog:ﬂ(D)’ axx]u

repeating the same arguments as in Section 4 we get that

Z F(Un,ﬂ,s,j)fc Z En(uﬂ,s,j):

n,B.S,j np.s,j
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this proves the desired assertion. L]

By Propositions 5.1 and 5.2, we can apply standard argunwnfisnctional ana-
lysis to conclude Theorem 1.1 (see, for example, Sectio@ EB[6]).

To check Theorem 1'Iwe first note that ifkj,(t, X), n € N are weight functions
for Bj(t, x) > O verifying Proposition 2.1 then

r
kn(t, X) = [ Kin(t, x), neN
j=1

are weight functions foﬂ’[rj=1 Bj(t, x) verifying Proposition 2.1. Thus to show The-
orem 1.1 we can assume that= 1. Write m = m; and By(t, X) = b(t, x)™. Note that

if mis odd and hencé(t, x) > 0 near the origin then the proof is obvious because
the weight functions fomb(t, x) given in Proposition 2.1 are also weight functions for
b(t, x)™. Let m be even and henda(t, x)™ = [b(t, x)?]™/2. Repeating the same argu-
ments as in Sections 6 and 7 with minor changes such as

[bx(s, X)| }
k -0\A0 t! X) = €ex N/ ds
miatea) (5 X) p|: In()Nto()t] (S, X))

for t > to(Xo) and Km o) (t, X) = 1 if t < to(Xo) With Im(X) = {s |27 < |b(t, X)| <
2-™+2} we obtain the required weight functions fbft, x)?> which is also the required
weight functions for B(t, x)2]™2.

6. Construction of the weight functions

To prove Proposition 2.1 it turns out that the notation ispen if we construct
the reciprocal functions /k,(t, x); we will denote them again bk, and list in the
proposition below the analogous properties that they sheajoy.

Proposition 6.1. Let N> 0 be a given constant. Then there is=T0, a sequence
of weight functions Kt,x) € W->((-~T,T)xR) and some positive constantg,C .,Cg
(all depending on N exceptgl such that
1) 1=kt x) < Ce™",

2) 0 < 3kq(t, x) < Cze™n,
3) in a neighbourhood of the origin we have

|oxka(t, X)[va(t, x) = Csnka(t, x),
4) in a neighbourhood of the origin we have

kot X) _ N Ja(t, X))

e _con,
ka(t,X) — Coat,x)+220 ="
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5) I(n—l = C8kn-

Proof. The proof is fairly long: we need several steps and wkefiwish it in the
last section. Recall that one can write

a(t, x) = e(t, X)(t? + a1 )tP™ + - - - + ap(x))

in a neighbourhoodJ of the origin and that, changing the scale of theoordinate if
necessary and using Glaeser's inequality, we may assurhertia, 0 < a(t,x) <1 and

|[oxva(t, x)| <L

1
"~ 3200+ 1)

Let € be a positive number. Since the functions
a(t,x) —e, af(t,x)—16¢

are regular irt, we can write also them as a non-zero function multiplied byegerstrass
polynomial in a neighbourhood of (0, 0). Let;(x, €) be the discriminant o&(t, X) — ¢
and A,(x, €) the discriminant of(t, X) — 16e. We observe that up to maybe changihg
the equationg(t, x) —e = 0, a(t,x) —16¢ = 0,t + T = 0 andt — T = 0 have mutually
distinct solutions irt for smallx ande > 0.

Let A(x, €) = A1(X, €)Ax(X, €); since A(x, 0) vanishes of orderiat x = 0 by
hypothesis (1.4) we can write, fat sufficiently small,

A(X, €) = (X, €)(x* + cy(€)x® L + -+ - + cq(€))

for |x| < d and |e| < €p. Fore > 0 fixed € < €p), A(-, €) has at most @ real zeros
for |x| < d:

X1(€) = Xo(€) < -+ - = Xg—1(€)

whereq; — 1 is the number of real zeros, i, of A(X, €) and depends om. Taking
€o > 0 ands > 0 (8 <« d) small we may assume thatd + § < Xx1(¢) and Xg,—1(€) <
d — 4 for |e] < €.
Let us call J; the interval ¢d + 8, d —§); we can assume th&t = [T, T] x J;.
We now divide the intervall; into g; subintervalsAj(e) = (Xj-1(€), Xj(€)), | =
1,..., 01, wherexg(e) = —d + 8, Xg,(¢) = d — 4. For x € Aj(e) we can definep;
real functions

=T =tiuX, ) <--- <tjp,(X,€) =T
which are the roots in of

(a(t, x) —e)(@(t, x) —16e)(t + T)(t —T)
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contained in the interval{T, T] and are continuous ix € Aj(¢). In generalp; de-
pends onj and ¢; nevertheless, we always have<2p; < 2p + 2. We will at times
make the dependence enimplicit to simplify the notation.

Let us fix an integerm and pute = 272", We suppose that2™ < «, that is
m > mp; later we will deal with the casen < mg. We choose onéj; (272™ and one
of the functionst;(x, 2-2M) defined on it and denote it bis(x, 272™) (or to(x)) for
the time being, to avoid clumsiness (we will need to reverth® usual notation from
Lemma 6.2 on). Note that eithag(x, 272™) = +T, or a(to(x, 272™), x) = 272" or
a(to(x, 272™M), x) = 272" in A;(22™). Defineby(t, X) by

by, (t, X) = va(to(x), X)

if t<to(x) and
t

by, (t, X) = va(to(x), X) + /

to (X

|dsv/a(s, x)| ds
)

if t > to(x). Note thatb(t, x) is nondecreasing in and by (t, x) > +/a(t, x) for t >
to(x). Define

Qh — (hz—m _ 2—m—1, h2—m + 2—m—1)

for h € Z. We choosexp, € Q, N Aj(272M) (if this set is not empty) and set, =
Xy +2°M. Form large, 2™ < § and x, € Aj(272™) implies x|, € (—d, d) (herex, and
Xy, depend onj).

Let us put
IX — Xp| )
t,X)=((4— 0 1
Pl X) (( bt xn) ) %) "
and define

(s, )| }
6.1 Kin.to(xo) (T, X) = €x N/ ds

D ot X) p[ n(ON[to()t] - A(S X)

if t > to(Xo) @and Kmeo)(t, X) = 1 if t < to(Xo). Here N is a positive numberxy €
A;j(272M) and

Im(X) = {s | 272" < a(s, x) < 272M+).
We now set

Rm,tg(tv X) = qukm,to(xh)(t Xh)km,to(xh)(t: XIZ])¢h,[o(tl X)] \% 1

where the supremum is taken over &llsuch thatQn N A;(272™) # @ (therefore it
is indeed a maximum over a finite set). Products of functiE),ra,%(t, X) astp varies
among all the possible choices will be factors in the desweight functionk,(t, x).
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Lemma 6.1. We have
1) 1< kmg(t, x) < exp[2N(p + 1) log 21,
2)  dkmy(t, x) > 0,
3) dkmy(t, X) < Co2Mkmy,(t, X),
4)  |dxkmy,(t, X)| VAT, X) < 2 exp[N(p + 1) log 2k, (t, X).

Proof. Sincea(t, x) is a polynomial int of degreep, 1) is easily checked. From
(62) at km,to(xh)(tv Xh) = 0! a’[km,to(Xh)(t! XI{]) = 0, atd)h,to(t! X) = 0

it follows that 8k, (t, X) > 0.
To prove 3) note that
|2 m
atkm,to(xh)(ty Xh) < N?km,to(xh)(ta Xh) < NC2 km,to(xh)(ty Xh).
I at I
atkm,to(xh)(ty Xh) = N%km,to(xh)(ta Xﬂ) =< chmkm,to(xh)(ty Xh),

[X = Xn| [9bys (t, Xn)l C .
4— =4C2".
th(t’ Xh) b[g(ty Xh) S me

OtPnt, =

Thus we see that

e [Kmtox) (T Xn) Km,to0) (E5 Xp) @yt (t5 X)]
< 2N C2™ [k, to(xe) (T, X) Kim,tor) (T, X) P 15 (L, X)]
+ 4C2™M exp[2N(p + 1) log 2]
< {2NC2"™ + 4C2™ exp[2N(p + 1) log 2} km 1, (t, X)

which shows that
3kt (t, X) < Co2Mkin 1, (8, X).

We turn to assertion 4). If?m,to(t, X) = 1 then 8XRm,to = 0 and hence the assertion
clearly holds. Ifkn,(t, X) > 1, let the supremum in the definition &, be attained
for a certain indeXh. Then it is clear that we have> to(x;) and Ph,(t, X) > 0. Thus
|X — X5| < 4by(t, X5), so that

1
|Va(t, x) — Va(t, x;)| < Z|X_XH| = by (t, Xr)

and hence

va(t, x) < Va(t, Xz) + by(t, Xz) < 2Dy (t, X5)
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becausdy,(t, x) > Ja(t, x) for t > to(x). Now we have that

|9x 1, (L, x)|va(t, x) < @ <2

h b[o(t! Xﬁ) B
so that
|axkm (8, X)|[va(t, x) < 2 exp[2N(p + 1) log 2]
< 2 exp[N(p + 1) log Zkm, (t, X)
and hence 4). []

Lemma 6.2. Let(t,x) € U be a point such that x A;j(272M), t;;(x,272M) <t <
tji+1(X, 272M) and 272"+ < a(t, x) < 272M*3, |f

Rmytjl (t,x) = [km,tu(xﬁ)(t! Xq) - kmytjl(xﬁ)(t‘ Xr%) : ¢H,t” (t, X)]

(that is, the supremum in the definition Em"n,t” is attained at indexh), then |x — x| <
160(p + 1)/9-2~™.

Proof. We consider the intervaD; that containsx. Let x; € Q; N A, (272™:
IXx — x| <2™™ and X/ = x + 2™ (it may happen thak/ ¢ A;(27>™)). For y between
x andx, we have|/a(t, y) — va(t, x)| < 2-™2 so that

272 < a(t, y) < 272m+4
andtj (y, 22™ <t < tj11(y, 272M). So we see that
(6.3) 272 < a(t, x;) < 2°2m*4,

Supposekm t; x)(t, X)) = 1: it follows thata(s,x ) = O for all s such thatt (x; ,272M) <
s < t, so that

a(t, x;) = a(tj(x), x) =22" or 22
which contradicts (6.3). Thus we hakg s, (x)(t, Xi) > 1 and hence also
K.t ) (£ X ) Km,t; ) (t, %7) > 1.

Since

e ((4— bf(t, Xi)) vo) Al=1
becausey, (t, xi) > /a(tji(x), X)) = 2™, we see that

Rm,t“ (tv X) = S:;In:km,t”(xh)(t' Xh)km,t“(xh)(ta X;])th,tj\ (tl X)] > 1.
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Assume now that when the index listhe supremum is attained. Then
IX — Xﬁ| = 4btj\ (t! Xﬁ)

andt > tj (X;) (sinceKm, x)(t, Xq)Kmt; ;) (., x;]) > 1). Consider the smallest vallie
such that

vai, x;) = sup Jalr, Xq);

tji (Xg)=r =t

noting thatby, (t, x5) is nondecreasing in, it is easy to see that

val, xz) = by (t, xp) = (p+ 1)y/a(, xq).

We first consider the case in whigh(x) <t (<t < tj41(x)). We observe that

vat, x) =a2™

with o between 1 and 4; then

‘,/a(f, xﬁ)—azfm\ < LIX— xa| <4Lby, (t, X7)
<4L(p+ 1)\/8.({, Xp) = 1—10\18.(1?, Xp)-

We obtain that (1011)x2™™ < /a(f, X;) < (10/9)x2™™ and hence that

10
IX —xz| < 4(p + 1)3a2’m.

We consider now the other case, i.e. whg(x) > t. Sincet; (x;) <t andt;(x) > t,
there exists somé betweenx and x; such thatt; (§) =t and hence

JVa(, &) =2"" or +af, &) =2""72

Noting that

|Valt. ) = Va(t. )] < Lis — x| < 4Lby, (t. x5)

- 1 /-
<4L(p+ 1)\/a(t, Xp) = 1_o\/a(t’ X5)

we conclude as before that

10 C 10 10
ﬁa2 m < Ja(, x;) < 30(2 M Ix—=xgl <4(p+ 1)30‘2 m

whereax = 1 or 4. Thus we havix —x;| < (160/9)-(p+ 1)2"™ which ends the proof. [
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Lemma 6.3. Let (t, x) € U be a point such that
2—2m+1 < a(t, X) < 2—2m+3 :

there exist j and | such that

- N |a(t, )| -
oKkmt, > — .
T T Cy alt,x)

- Clzlzm,t” .

Proof. We choosg, | such that
x e Aj(272M), ti(x, 277 <t < tja(x, 272M).

Applying Lemma 6.2 and keeping the same notations, we hae th

1
|Va(t, x5) — va(t, )| < LIx; — x| < E'Z_m

so that 2°™ < a(t,xz) < 2%, The same inequality holds fa(t,x; ). This shows that
t € Im(Xz) N Im(X7)-
Then we have that

2t Q) Jac(t, x;) |
a(t, x) a(t, x/)

O [kmxtjl(xﬁ)(t’ Xﬁ)kmltjl(xﬁ)(t' Xé)](pﬁ,t“ (tv X) = N|: i||2m,tj| (t- X)-

Note that by Taylor's formula
a(t, X) = a(t, X5) + ax(t, X)X — X5) + Ra(X — X5),
a(t, x;) = a(t, X5) + a(t, X;)2 ™ + Ro(27M)

where R; is the remainder of second order, which proves that
160
lac(t, X)| = |ac(t, X5)| + o (p+ )(laclt, xp)| + |ac(t, ;) |) + Cyo2 2"
160 160 , _
< (? “(p+1)+ 1)|a{(t, Xp)| + 5 (p+ D)|a(t, )| + C102 m,

Thus one has that

la(t, x)| _ (160 lat, xq)l e (t x|
a(t, x) = (?-(p—i—l)—i-l)( a(t, x) * a(t, x) *Cuo

t, X a(t, x;

< C11<|at( aill + | ( ,h)|) + Cio
a(t, x;) a(t, xﬁ)

where Cqq = 16((160/9) - (p + 1) + 1). These prove that

N |a(t, x)| - Cio, ¢
> - . _— .
(t! X) — C]_]_ a(t, X) kmytjl (t’ X) Cj_]_ NkmytJI (t’ X)

at Rm,t“

which is the desired assertion. L]
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7. Construction of the weight functions (continued)

We now construct the second kind of facﬁj{to(t, X) which appears in the weight
functions k,(t, X). The construction is largely analogous to what was donevealfor
factors of the first kind.

Let € be a positive number. Since the function

a(t, x) — 16e

is regular int, then we can write it as a non-zero function multiplied by aiéfgrass
polynomial in a neighbourhood of (0,0). Lei(x,¢) be the discriminant. Sinca(x,0)
vanishes of ordeq at x = 0, from the assumption (1.4) we can write

A(X, €) = ¢(X, €)X + cr(e)XI™L + -+ - + cq(€))

for [x| < d and |¢|] < €. Fore > 0 fixed € < €), A(-, €) has at mosq real zeros
for |x]| < d;
X1(€) < Xo(€) < - -+ = Xg—1(€).

As in Section 6, we may assume thatl 4§ < Xi(€), Xg,—1(€) < d—3 for |e| < eg. We
divide the intervalJ{ = (—d + 8, d — §) into g1 subintervaIsA’j (€) = (Xj—1(€), xj(€)),
where xo(e) = —d + 8, Xg,(€) =d —48. Forx € A’j (e) we can definep; real functions
O=pj=p+2

=T =t e) < <tjp,(X, ) =T

which are the roots of
(at,x)—16e)t+T)t—-T) =0

contained in the intervalH{T, T] and are continuous ix € Aj(e).
Let us fix an integen and pute = 2-2". Take A(2°*") and callto(x, 2*") one

of the functions defined on it. Note that eithigr= £T or a(to(x, 272", x) = 272"+
in Ai(272"). Defineby (t, x) by

by, (t, X) = va(to(x), x) + 2"
if t> to(x) and

t
by, (t, X) = va(to(x), ) + /to( )|85\/a(s, x)| ds+ 27"

if t > to(x). Note thatby (t, x) is nondecreasing it and by (t, x) > v/a(t, x) + 2" for
t > to(x). We then define

Qh — (hz—n _ 2—n—1, h2—n + 2—n—1)
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for h € Z; we choosexn € Qn N A (272" (if this set is not empty) and set, =
Xp +27". Forn large, X, € A (272" implies x;, € (—d, d). Put

B (t, X) = ((4— t')z(; j;')) vO) At

and define (sincep € A (272M) K. (t,x) =1if t <to(xo) and

N, to(Xo)

|ac(s, x)|
K (t, x) = exp[N [ ds
N,to(Xo) 1,(x)N[to(X0),t] 2=

if t > to(xo). HereN is the positive constant given in the definition (6.1k@f, ) (t,x) and
I/(x) = {s] a(s, x) <2724y,
We now definek,, (t, x) by

K.t X) = s#p{kl’w(xh)(t, Xn)Kh 1o (6 X0 Bh 1 ()] v 1

where the supremum is taken over hlisuch thatQn N A] (272" £ 0.
This R;’to(t, X) enjoys analogous properties E,a,to(t, X) listed in Lemma 6.1.

Lemma 7.1. We have
1) 1<k, x) < exp[2N(p+ 1)24],
2) ki (t, x) = 0,
3) ki (t, x) < C127K, . (t, X),

n,to

4)  loxkh 4, (t, X)vVa(E X) < 2 exp[2N(p + 1)2']K, , (t, ).
Proof. To check 2) it is enough to observe that

(7.1) K (s XR) = 0, Koy (B X0) = 0, 3y, (t, X) = 0.

N, to(Xn)
To see 3) note that

|| :
atk;'l,to(xh)(t’ Xh) S Nﬁk&to(xh)(t’ Xh) S NC22nkn,Io(Xh)(t’ Xh),

|a|

3tkﬁ,t0(xh)(ty Xp) < Nﬁk{]’to(xh)(t, x;,) < NC2"K/ (t, Xp)-

N, to(Xn)
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On the other hand we have that

X — Xp| |0 t, X
X =l [0t 0], Cs

"o = ) Do) 2

and hence that

A [Kn o) (s XKD 1500 (6 X0) P 15 (L X)]

= 2N Co2"[Kp o) (b5 XR) KD 150 (6 X0) D 1o (L X))
+ 4C32" exp[2N(p + 1)24

< {2NCp2" 4 4C52" exp[2N(p + 1) 2T}k, (t, X)

which implies that
Bk, o (t, X) < Ca2K, (¢, X).

We turn to the proof of 4). Ier’mo(t,x) =1 thenaxlz;]vto = 0 and nothing is to be proved.
Assume that this is not the case. lkebe an index such that the supremum in the defin-
ition of ky,, is attained for that index. We havg . ,(t, Xq)K), 1) (¢, XE)#h (6 X) > 1,

t > to(xz) and ¢hyt0(t X) > 0. We have thusx — x| = 4b; (t, Xz), so that

1
|Va(t, x) — Va(t, x;)| < Z|X_XH| = by (t, Xq)

and hence

va(t, x) < val(t, xz) + by (t, Xz) < 2D (t, X5).

From this it follows that

s (1 01 Va0 < Y <2

bt xg) T
so that

|axkr o (t, )] Valt, X) < 2 exp[2N(p + 1)2] =< 2 exp[2N(p + )2k, (t, )
which shows 4). ]

Lemma 7.2. Let (t, x) be in[-T, T] x J; be a point such that @, x) < 2-2"*3,
x € Ai(272) and ti(x, 272") <t < tja(x, 272"). If the supremum of

k;1,11|(xh)(t1 Xh) . kf/1,tj|()(h)(t’ Xf/‘|) . ¢h,tj\ (ty X)

on the set of indices h such that,@ A; (272" £ ¢ is attained for indexh, then
[X — X5 < (200(p + 1)/9)- 27",



WELL-POSED CAUCHY PROBLEM 669

Proof. We follow the proof of Lemma 6.2. We consider the imrQ; that con-
tainsx. Let x € Qi N A (272 x—x| <2"andx =x + 2" (x may not belong
to A;(27%"). Fory betweenx and x; we have|/a(t, y) — va(t, x)| < 2" so that

a(t, y) < 272n+4
andtj(y, 272" <t < tj11(y, 22"). So we see that
a(t, x;) < 224,
If kg,t”(xi)(t, xi) = 1 it follows thata(s, X)) = 0 for tj (x;, 272") <s <t so that
a(t, x;) = a(tj (x), ) = 272+
which is a contradiction. Thus we have thgt, ,(t, %) > 1 and hence
r/1,ti|(xi)(tv Xi) - krlw,ti.(xi)(tv x) > 1.
Note that

By, (6 %) = ((4— btlz(t—nx.)) vo) Al=1

sinceby (t, x) = 2™". So we see that
Sgﬁkﬁ,t“(xh)(t, xh)kgyt“(xh)(t, Xr@”’r@,tj. (t, x)] > 1.
Suppose that the supremum is attained for a certain imdekhen
X = X5| =< 4by, (t, X3)

andt > tj; (xg) (sinceky ¢ ot XR)K, oy (1. X5) > 1). Consider the first valuat which

vat, xz) = sup  Jalr, xq)

tji (xp)=r <t

then we see as before that

va@ xq) +27" < by (t, xz) < (p+ 1)(,/a(f, X)) + 2‘”).

We first treat the case in which (x) <t (<t < tj41(x)). Note that

vat, x) +2™" =g2™"
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with « between 1 and 5. Thus one has

‘,/a(f, X:) 4+ 27" — 27"

:,
<4L(p+ 1)(,/a(f, X:) + 2—”) < 1—10(,/a(f, X) +27").

Then (10112 " < \/a(f, X;) + 27" < (10/9)x2™" and hence

1
IX —Xz| < 4(p + 1)30012’“.

We turn to the other case, i.e.,tif (x) > f. Sincet; (x;) <t andt;(x) >t there exists
£ betweenx and x; such thatt; (§) =t. That is

Va8 = 2
and then

‘,/a(f, X)) +27"— Va(t, g)—2"

< LI§ —xz] = 4Lby (t, Xp)

<aL(p+1)(yal x) +27)
< 1—10(\/a(f, X) +27").

We conclude as before that

10 - .10 10
72 "< al ) +27" < 52 N x=xl = Ap+1)ga2 "

wherea = 5. This gives|x — X;| < (200/9)- (p + 1)2 " and hence the assertion.L]
Lemma 7.3. Let(t, x) € [-T, T] x J with
a(t, x) < 272n*3;
there exists j| such that

N Ja(t, x)|

o ntl(t X) > Cem ntl(t X) — nt‘(t X).

Proof. We choosg andl so thatx € A\ (272") andtj (x,272") <t < tji41(x,272").
By Lemma 7.2 (using agaih for a maximal index) we have that

5
|Va(t, x;) — va(t, X)| < L|xg — x| < 7—2-2_n
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so thata(t, x;) < 272"**. We have the same inequality fa(t, x) and hence
t e In(xq) N ().

Therefore we have
at[kn tu(Xh)(t Xh)kn i (%R) )]¢ht| (t X)

(t.
)l fat X
. N[m;t;hn N gz h)l} G 4.

Note that again by Taylor's formula
a(t, x) = a(t, X5) + ax(t, X5)(X — X5) + Ra(X — Xp),

a(t, x;) = a(t, X;) + an(t, x3)27" + Ro(27).

From this we get

01 = [t X)) + g (P + Dt ) + [t

200 200
= (? (pP+1)+ 1)|&(t, Xp)| + 5 (p+ Dla(t, x})| + Cs27"

X)) + Cs27"

so that

la(t, x)[ _ (200 |2 (t, X5)l la (t, ;)]

at, x) +2-2n — (? (P 1)+ 1) (a(t, X) + 2-2n + a(t, x) +2-2n >
5%<@mnn+MGMM)+%

2-2n 2-2n

where Cg = ((200/9)- (p + 1) + 1). Thus we conclude

lag(t, X)| - ,
nt|(t X) = Coalt, X) £ 2 Kn, (T, X) — _Nknn(t’x)

and so Lemma 7.3 is proved.

8. Proof of Proposition 6.1
Let n € N be such than > mg + 1. We set

Rm:l_llzm,tju m:mO!mO—l_ly"'
jil

and
Hmm
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where the product is taken ovgr=1,...,qs, 1 =0,1,..., p;. ForO<m=mp—1
we chooseky, = 1 and for 0< n < mg we also choosé/, = 1. We finally define

Kn(t, X) = Ky -Kp« - - - Kn_1- K.
Then properties 1)—4) follow from Lemmas 6.1, 6.3, 7.1, ®& now check 5). Since

Kn_1 = Kiko - - - kn 2K, ;,
kn = kako - - - kn_1K|

hence
kot _ Ko
kn k’n71|2|,q .

Here note thak,_; > 1 sincek,_1 = I1;, kmt, and km, (t, X) = 1 for any possible
value of j andl. Similarly we havel?;1 > 1. On the other hand we have that

Kh_1 = [ ] King, < expl2N@p +2)2(p + 2)(@ + 1)]:
jul

in fact there are at mostp(+ 2)(q + 1) functions in the product. This indeed proves

=C. 0
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