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Abstract

In this paper we introduce the weighted complex Randersienétr= h +
> IBi ¥ on a complex manifoldM, hereh is a Hermitian metric orM and B;,
i =1,...,m are holomorphic symmetric forms of weight®n M, respectively. These
metrics are special case of jet metric studied in Chandlerg\[6]. Our main the-
orem is that the holomorphic sectional curvature kbst F is always less or equal
to hbsg. Using this result we obtain a rigidity result, that is, a gaot complex
manifold M of complex dimensiom with a weighted complex Randers metfic of
positive constant holomorphic sectional curvature is isghic to P".

1. Introduction

The classical Randers metric in real Finsler geometry isrugmtion of a Riemann-
ian metric by adding a small tereB whereB = g;(x)dx' is a one form. Over a compact
manifold this is a Finsler metric for sufficiently small. Alternatively one may add the
norm |B|, in which case the resulting metric is not smooth wherdet 0, but the usual
theory of Finsler geometry is applicable off this set. In &t few years physicists work-
ing in general relativity introduced a term, of the foibi dX ® dx) ® dx ® dx'|V/4
to the Lorentz metric. This additional term is the norm of angyetric form of weight 4.
Using this it is possible to construct models of expandiniyense without assuming the
existence of dark energy (see Chang [7]).

Mathematically it makes sense to introduce terms of any dogtezdding the norm
of symmetric forms of weighin. These Finsler metrics are said to be of weightOf
interest is the curvature of such metrics and equationd) ascthe Einstein equations,
associated to it. The computation turns out to be quite cimeigld and much work
still need to be done.

The purpose of this article is to deal with complex case arsliraghg that the
symmetric forms are holomorphic. In this setting, the weghholomorphic Randers
metrics are special case of jet metrics studied in Chandleng [6] and, as it turns
out the curvature is relatively easy to compute. We shalvshelow how the curvature
can be computed using a result in Cao—Wong [5]. The resuhés used to obtain a
rigidity result (see Section 4). The case where the weiglinis was already obtained
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by Chen—Shen [8] along the line of the computation in Aldeantdanu [3]. Their
technique does not seem to work for genaral

2. Cartan connection and Chern—Rund connection

Let M be a complex manifold of dimensiamand E a holomorphic vector bundle
of rankr over M. Let (U, z) be alocal holomorphic trivializationcoordinate neigh-

borhood of E wherez = (z},...,7,...,2") is a local coordinate ot C M. Let

e = (e, ..., &) be a local holomorphic frame field ot over U. Every element

in E|y is of the form ¢“e, (Einstein summation convention is adopted here). Thus
¢ =Y ..., ¢% ..., ¢") is a fiber coordinate oE|y.

e In the sequel, unless otherwise stated explicitly, locahgotations will always be
carried out with respect to coordinate systems ) defined by local holomorphic triv-
ialization as above.

DEFINITION 2.1. Let E be a holomorphic vector bundle of ramkover a com-
plex manifold M. A real-valued functionF: E — [0, co) is said to be a Finsler metric
along the fibers oft if
() F(z,¢)=0ifand only if ¢ = 0;

(i) F(z,t¢) =]t|F(z,¢) forallt e C, =C \ {0}.

A Finsler metric is said to be of clag¥ (or simply, continuous ik = 0 and smooth
if k=o00) if G =F?is of classC* on E, = E \ {zero-sectioh and that the restriction
of G to each line through the origin of each fiber is also of ci@ssven at the origin.

The projection mapr: E — M induces a surjective bundle map
.. TE—-TM

and a holomorphic bundle*E of rankr over E obtained by pulling backe over M
via the projectionr.

7" 7*E - E.

HereTM andT E are the holomorphic tangent bundles; some authors use tagams
T1OM and TY9E. The kernel ofz, shall be referred to as the vertical sub-bundle:

(2.1) VTE=kerm, C TE.

By definition a local holomorphic frame for the vertical fiekl given by
0
(2.2) {— a=12,...,r =rankE}.
e

The vertical bundle is a holomorphic vector subbundle okrarof p: TE — E. We
shall at times writeV E instead ofV T E, and its restriction t&E, (= E\ {zero-sectioh)
asV E,, in the sequel. The following lemma is well-known and is Baserified:
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Lemma 2.1. The bundlest*: z*E — E and p|yTte: VT E — E are canonically
holomorphically isomorphic.

DEFINITION 2.2. A smooth (for the purpose of defining curvature lateaissC*
is sufficient) Finsler metrid= on a holomorphic vector bundIE is said to be strictly
pseudoconvex if the Hermitian form induced By= F2:

he = dst = G,4(z ¢) de* @ d¢”, (z,¢) € E.

is positive definite along the fibers of the vertical bun¥&, over E,, where

2E2

Goj(z. ¢) = 3.0;F?(z, 0) = aia—ggﬁ(z’ ¢), 1<a, B <r =rankE.

A strictly pseudoconvex Finsler metrie is only assumed to be smooth &) =
E \ {zero-sectioh hence the induced Hermitian metric is only smooth ¥it,, the
vertical subbundle of the tangent bundleE, of E,. By Lemma 2.1 we may replace
the bundleV E by #*E. In the literature some authors uStE, other user*E. We
shall not make any distinction between the two in this aaticl

It is also well-known and easy to verify that

Lemma 2.2. For a strictly pseudoconvex Finsler metriwe have
G,5(z t8) = G,3(z ¢)

for all t € C, = C\ {0}. Thus the hermitian form fhis well-defined on the projective
bundleP(E) = E./C,.

Denote byp: P(E) — E the canonical projection then the pull-back
(2.3) p*: p*E — P(E)

is a holomorphic vector bundle. Given a strictly pseudoean¥insler metric onE

the Hermitian metrichg on 7*E|g, descends to a smooth Hermitian inner product on
p*E over P(E). The advantage of working on the projective bunBIigg) over that of
working on E being that the inner product is everywhere smooth. Howeves cus-
tomary also to work ork, using coordinates ol which is a little less cumbersome
than using the projective coordinates. In the complex chsetérminologies (such as
the Cartan connection, Chern—Rund connection) have nobgen standardized so we
shall provide below, precisely, the definitions of theseneiand these may differ from
what appeared in the literature.
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DEFINITION 2.3. LetE be a holomorphic vector bundle over a complex manifold
M and F a strictly pseudoconvex Finsler metric. The Cartan conoeand curvature
is by definition the Hermitian connection and curvaturehef

Denote by

. 3
\% [+3
(2.4) P =t

be the vertical position vector field (also known as radiaitee field or Liouville vec-

tor field). It is clear thatP" is a holomorphic section of T E. Denote byV the Cartan
connection. Then

VPY: TE, — Vre, X Vx P
is defined. The horizontal sub-bundkT E is by definition
(2.5) HTE = ker P".

A local smoothframe for the horizontal bundle is given by:

b 0 Bl . .
(2.6) — =55-Gjiz, i=1...,n=dimcM.
Y4 a9z ace
where
3°G
Iz _ —
Cii =C"Ca Cai = S

e A note on the notation is in order: subscripts preceded bydicates that it is a
base index; those that are not preceded laye fiber indices.
The vector fields in (2.2) and (2.6) form a local frame OE. By duality,

(dz,...,dz"}
is a local frame for horizontal 1-forms and
{8¢h,...,8¢7), 80% =d¢* + Gf dZ

is a local frame for vertical 1-forms. With these, the Cartmmnection forms are de-
composed into horizontal and vertical components

_ b j
(2.7) 0f =Tl dZ +GE, 50

ali
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The Cartan curvature is decomposed into four components:
(2.8) ©F = KJ + P/ + Q) + Rf,

where

44 K:iidiAdzf, (h, h)-component,

wf = PP dZ A5c7,  (h,V)-component,

QL

R =RE 8¢ A8CY, (v, V)-component.

quj. s¢* adel, (v, h)-component,

The Cartan mixed holomorphic bisectional curvature is, bfinition

(®(X- 7)rsv IS)hF

(2.9) k(X, P) = ]
IXII3. I PIIA,

for any horizontal vector fieldX. It is well-known that
(P(X, X)P, P)n. = (R(X, X)P, P)p. =0

hence

S (KX X)P, Py, K XXTggP
(2.10) K(X, B = (K( : ) . 2)hp _ ﬂklz 4525 _
X TP 1l Xk 1P 1R

We dropped the superscript and wriiefor PY. Observe that
(2.11) IPIR, = Gupe*¢” = G.

Consider the cas& = T M is the holomorphic tangent bundle equipped with a
strictly pseudoconvex Finsler metric. In this case theiwakttangent bundle and the

horizontal tangent bundle are also canonically isomotpfiice isomorphism is deter-
mined via the identification

and extends to the entire bundle by forcing complex lingafithis identification iden-
tifies the vertical position vector fiel@" with the horizontal vector vector field

- s
2.12 ph = _—,
(212) ¢
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The metrichg on the vertical bundle is also naturally identified as a roetm the
horizontal bundle. We can of course also pull-back the @actmnection and curvature
to the horizontal bundle. The Cartan connection is decorp@as:

(2.13) 6 =1} dZ + G} 8¢
wherer}, = GJ, — GRG/, with

i . 3G - . 9°G ., 0°G
GiJ|k=G I @ai P _ gar

ai__ - Gl =cli—— _ GP= —
9c99¢i 9z« ' 9991 9CP Ik FYSErS

DEFINITION 2.4. LetM be a complex manifold anB be a strictly pseudoconvex
Finsler metric onT M. ThenF is said to be Finsler—Kéhler i"°" vanishes, that is the
horizontal Christoffel symbols are symmetric, more prelgis

i i
Ui = D

for all i, j andk.

There is another concept known as the weakly Finsler—Kéatdadition, which has
its origin in the work of Royden [11] on the complex geodesitshe Kobayashi metric:

DEFINITION 2.5. LetM be a complex manifold anB be a strictly pseudoconvex
Finsler metric onT M. ThenF is said to be weakly Finsler—Kahler if

Girij|kGJ = Gird\iGi

whereG' = GI'G; for all i, j andk.

The horizontal component of the Cartan connection:

(2.14) g =r)dZ

is known as theChern—Rund connectiofi2] of the horizontal subbundle. The Chern—
Rund connection is torsion free if and only if the Finsler rieeF is Finsler—Kahler.
Indeed, following Chern [9] we define the (horizontal) torsiof w by:

. 5
op = (DdZ)® 7
It is clear from the definition of the Chern—Rund connectDrthat

. 8
wp = (_Flj\k dz /\de)® E
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We remark in passing that the Cartan connection being torBie is not equivalent
to the metricF being Finsler—Ké&hler. The curvatute of the Chern—Rund connection
is given by

Q=dow—-—owAo.
In contrast to the Cartan curvature, the Chern—Rund cuatu
(2.15) Q=0dv+dv—wAw

is not of bidegree (1, 1). The reason being that the Cartanesion is a metric con-
nection but the Chern—Rund connection is not. Note that ih4{2the operaton and

d are operators off T M, the tangent bundle of the tangent bundleNdf Analogous
to the case of the Cartan curvature (see (2.8)may be decomposed into four differ-
ent components:

(2.16) QIJ = (Qij)hvﬁ + (QIJ )h,\7 + (Qii)ﬁ,u + (Qij )V,\7

and that (zij)” = 0. It is known that the componenfzﬂ)h'F1 is of bidegree (1, 1). In
fact, from the definitions (2.13), (2.14) and (2.15) of thee@h-Rund curvature, one
gets by a direct computation th& consists of a component of bidegree (2, 0) and a
component of bidegree (1, 1). The (2, 0)-component is given b

3F||k

Q%0 = dZ A 8¢,

and the (1, 1)-component is
(Ql,l)ii — (Q_i)h,ﬁ + (Q_J)h,v

S or
(2.17) (@Hrh = — = '“‘ dZ AdZ =K/ + GJ 'k dZ A dZ,
_ oI’
@ = - "kdzk/\ag =P/ +G' 'kdzk INd
a¢! a¢!

whereKij is the (hh)-component an(ﬂ’ij is the (hy)-component of the Cartan curvature.
The Cartan holomorphic bisectional curvature is defined by

2(0(X, X)Ph, Py, _ 2K(X, X)Ph, Py,

(2.18) ke (X, P") = .
11211 P2, IXIE, PRIl
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and the Chern—Rund, holomorphic bisectional curvatureefindd by

2(Q(X, X)P", P")y,. 2(szhvﬁ(x, X)Ph, Py,

(2.19) ka(X, P") = -
X211 P2, X3, I1PMIE,

Note that (see (2.11)) |5h||ﬁF = G = F2. The holomorphic sectional curvature is
defined by

(k (P, Bn)pr, BY)

(2.20) ko(P") = ﬁ e
PRIl
i <Qh,ﬁ<|3h’ ISh)ISh, |3h>
(2.21) ko(P") = — he
Pl

Even though the Cartan curvature and the Chern—Rund cuevarne different, it
turns out that

Theorem 2.1. Let F be a strictly pseudoconvex Finsler metric on TM where M
is a complex manifold. Then the Cartan holomorphic biseetiocurvature and the
Chern—Rund holomorphic bisectional curvature are egqual,

ko (X, P") = ko(X, P".

Proof. From here on we shall simply write for P". By (2.17)
(@M = K| +G' 'kdzk dz.

Since;‘Gijp =0, we haver (@)™ = /K] and the theorem follows from the defin-
itions of the bisectional curvature. ]

In fact

_ 8F|\k

(K(X, Y)P, P)p. = (@™(X, V)P, P)p. = —Gjq Xkyleia

for any horizontal tangentX and Y. The last equality follows from the definition of
QM (see (2.10) and (2.11)):

j
ohh — _ (SF"kdzk dZ

follow by lowering the index by the metric.
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Corollary 2.1. If the Finsler metric F is Finsler—Ké&hler then

(@B, V)X, P)p, = (Q"N(X, V)P, P)p, .

Proof. From the last identity before the corollary, we ged the Finsler—Kahler
condition T}, = 'y,

—G-f—ar'j XKyl g8 = —G-——ar'i“ xkyTeiea
1q 82_ 1q SZl_ '

The LHS is
and the RHS is

In terms of local coordinates the corollary asserts that
QifkTCifj_ = Qij‘krkaI = Qkfir§i§j_-
REMARK 2.1. In general we do not have
(K(P, V)X, P)n. = (K(X, Y)P, P)p..

Even if the metric is Finsler—Kahler. The LHZ (Q"(P, Y)X, P),.. Thus, in view
of the preceding corollary, the Chern—Rund curvature isebdiehave than the Cartan
curvature. In classical (Hermitian—)Kahler geometry, @a&rtan curvature is the same
as the Chern—Rund curvature hence we do have the symmethofor

The bisectional curvature is a form of bidegree (1, 1)
- . 1] T

Theorem 2.2. The condition that the holomorphic sectional curvatugg(ﬁi) =C
is a constant is equivalent to the condition that the holgoh@r bisectional curvature
form By = 2¢(GG,p + GaGg) d2 A d 2.

Proof. The equation for constant (c) holomorphic sectional curvature is given by

o 8Gf . -
Bij-§'§1 =Gpg§|§1 =CGZ.
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Since ;4 is homogeneous of bidegree (0, 0) we have

0By £ 0Byr
é.a_I;I — é.b |§| — O
a¢ ach
and this implies that
82(Byc*¢')

3. Ampleness and bisectional curvature

Let E be a holomorphic vector bundle of ramk> 2 over a complex manifoldv
and let£™1 = ['15(15) over P(E) be the “tautological” line bundle. This bundle is de-
termined by the condition that its restriction to every fi&r|p), is the tautological
line bundle over the projective spaf&E),. The dual is denoted bf = LpE) and is
known as theSerre line bundle By definition the bundle space @ is the blowing
up of the bundle space dt along the zero section. Thus there is a canonical iso-
morphism £\ {zero-sectioh = E \ {zero-sectioh compatible with the respective*
structure associated to the respective bundle structlresH be a Hermitian metric
along the fibers of£~! which, via the preceding isomorphism, determines uniquely
Finsler metric onE:

3.1 F:E—Rx, F(z0) =187 Oln

whereg: £~1 — E is the blowing up map along the zero section. It was showriegarl
that a Finsler metrid= on E is identified with a Hermitian metribi along the fibers
of the “tautological” line bundleC~! over P(E). The (1, 1)-form

/—1 -
(3.2) 0 logG, G=F2% E —Rsg
T

descends to the Chern form(Z, hg) of £ with the dual metrichg, that is

(3.3) %135 log G = [ 1*(ca(L, hi)) = —[ 1"(ea(£™ he)) = —%153 log G

where [ ]: E, — P(E) is the Hopf fibration.
Moreover, the condition thaf is strictly pseudoconvex is equivalent to the condi-
tions that
(1) ci(LlpEy,, hileE),) is positive definite oP(E), ~P"! (and thatl|p(g), = Opr1(1)
is the hyperplane bundle d' 1) and
(2) z~ cu(LlpE),, hElpE),) is smooth.
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The following theorem is due to Cao—Wong ([5]):

Theorem 3.1. Let (E, F) be a strictly pseudoconvex Finsler holomorphic vector
bundle rankE > 2, over a complex Finsler manifold M. Lefhbe the Hermitian met-
ric along the fibers of the hyperplane line bundleover P(E) associated to the Finsler
metric F via(3.1) and K be the(h, h)-component of the curvature of the Cartan con-
nection associated to the Finsler metric F. Then the Chermfo(£, ht) is positive
definite onP(E) if and only if the mixed holomorphic bisectional curvatusestrictly
negative in the direction of X and the radial vector fighj on E,:

(KX, X)P, P, = Kyt s’ XX <0.
for all nonzero horizontal tangent vector X.
In fact the following formula is obtained in [5]:

[ 17cu(Z, he)

(3.4) = gaé log G
= [ ]*(Cl(£|]P’(E)Z, hT:|1P’(E)Z)) _ \2?- (K( , éP, P)h,: .

Since [ J(ci(Lle(e),, hElr(E),)) is positive definite (see the remark before the theorem)
in the fiber directions and is trivial in the horizontal diteos while the second term
is trivial in the fiber directions and is positive definite ihet horizontal directions if
and only if the mixed bisectional curvature:

(K(X, X)P, P)p,
IX[5.G

k(X, P) =

is strictly negative for non-zero horizontal tangent veckg we conclude that;(£,hg)
is positive-definite (resp. positive semi-definite) if analyoif k(X, P) < 0 (resp.< 0).

REMARK 3.1. The preceding theorem is applicable to the ckse- TM. In
this case, by Theorem 2.1 the Chern—Rund holomorphic ldsedtcurvature and the
Cartan holomorphic bisectional curvature coincide, heamogleness of the tangent bun-
dle is equivalent to the positivity of the Chern—Rund holepinic bisectional curvature.

DEerINITION 3.1. (1) A holomorphic line bundle over a compact complex mani-
fold is said to be very ample if the map = [, ...,sn]: M — PN wheresy, ..., sy is
a basis ofH%(M, L™) is a holomorphic embedding. It is said to be ample if theristex
a positive integem such thatL™ (= £®™) is very ample.
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(2) A holomorphic vector bundl& of rank > 2 is said to be ample if the Serre line
bundle £ over P(E*) is an ample line bundle oveP(E*) where E* is the dual ofE.

REMARK 3.2. Note that the ampleness of a vector bunBles formulated in
terms of the Serre line bundle over the dual projective bei{E*) and notP(E).
On the other hand a vector bundie* is ample if and only if the Serre line bundle
over P(E) is ample.

The following result is a consequence of the preceding tmaor

Corollary 3.1. Let E be a rank r> 2 holomorphic vector bundle over a compact
complex manifold M and for any positive integer k l@lg(Ok E) be the“hyperplane

bundle over]P’(@k E). Then the following statements are equivalent
(1) E* is ample.

(2) LpE) is ample.

3) @k E* is ample for some positive integer k.

(4) EP(Ok E) is ample for some positive integer k.

5) @k E* is ample for all positive integer k.

(6) EP(Ok E) is ample for all positive integer k.

(7) There exists a strictly pseudoconvex Finsler metric aldrgfibers of E with nega-
tive mixed holomorphic bisectional curvature.

(8) There exists a positive integer k and a strictly pseudocomiesler metric along
the fibers of@k E with negative mixed holomorphic bisectional curvature.

(9) For any positive integer k there exists a strictly pseudeeanFinsler metric along
the fibers of®* E with negative mixed holomorphic bisectional curvature.

(10) There exists a positive integer m and a Hermitian metric glte fibers ofO)™ E
with negative mixed holomorphic bisectional curvature.

The result of the preceding corollary applies also to thd,doavhich case we have:

Corollary 3.2. Let E be a rank r> 2 holomorphic vector bundle over a compact
complex manifold M and for any positive integer k l@g@k E) be the“hyperplane

bundle over]P’(@k E). Then the following statements are equivalent
(1) E is ample.

(2) LpE+ is ample.

3) Qk E is ample for some positive integer k.

4 EP(Ok E%) is ample for some positive integer k.

(5) Qk E is ample for all positive integer k.
(6) EP(Ok E%) is ample for all positive integer k.
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(7) There exists a strictly pseudoconvex Finsler metric aldrg fibers of E with pos-
itive mixed holomorphic bisectional curvature.

(8) For some positive integer k there exists a strictly pseudeew Finsler metric along
the fibers of© E with positive mixed holomorphic bisectional curvature.

(9) For all positive integer k there exists a strictly pseudoon Finsler metric along
the fibers of@k E with positive mixed holomorphic bisectional curvature.

(10) There exists a positive integer m and a Hermitian metric glte fibers ofO)™E
with positive mixed holomorphic bisectional curvature.

REMARK 3.3. In the precedings, the mixed holomorphic bisectional/ature is
the the mixed holomorphic bisectional curvature of the &artonnection. IfE = TM
then the Chern—Rund connection is also defined and by Therérthe Cartan bisec-
tional curvature and the Chern—Rund bisectional curvaaweeidentical.

A famous theorem of Mori ([10] valid over any algebraicallyséd field of char-
acteristic zero) asserts that

Theorem (Mori). A compact complex manifold with ample tangent bundle is
biholomorphic toP".

It is well-known that the converse is true, namely, the tahdmindle of a project-
ive space is ample. This together with Theorem 3.1 yields

Theorem 3.2. Let M be a compact complex manifold. Then the following state
ments are equivalent.
1) M =P
(2) TM is ample.
(8) There exists a strictly pseudoconvex Finsler metric on T Nh vpositive bisec-
tional curvature.

Corollary 3.3. Let M be compact complex manifold. Assume that there is elgtri
pseudoconvex Finsler metric such that the holomorphida®ait curvature of the Chern—
Rund is a constant. Then & P".

Proof. By Theorem 2.2, the Chern—Rund holomorphic secticnavature is a
constantc if and only if

By dZ A dZ = 29,45 dZX A dZ = c(GGy + GG dZ A dZ.

Thus the bisectional curvature is given by

2B XX 22qit't" _ (GGyX*X' + GGiX*X!) _ (1 erl-xkx')
(e IXI7.G IXII7. G IXI5. G
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as we have, by definition| X[ = G,;X*X'. Since GyG;X*X' is non-negative, we
conclude that the bisectional curvature is bounded belowe by0. By Theorem 3.2
this is equivalent to the condition that the tangent bundl@ample. ThusM =~ P" by
Mori’s theorem. [l

REMARK 3.4. (1) The holomorphic bisectional form was first introdddén Cao—
Wong [5]. Later this is also studied by Aldea [1] and [2]. Thegnsidered (in our
notations)Bg satisfying the condition

Bo = ($GGy + VG Gy) dZ& A dZ

where¢ and ¢ are positive functions. We would like to point out that by theorem
of Cao—Wong, the space R".

(2) The proof in the preceding theorem shows that, if the imolghic sectional curva-
ture is a constant then the holomorphic bisectional curvature is pinched betwl/2
and 1.

4. Complex Randers metrics

A continuous complex Finsler metric is said to be a genezdlizomplex Finsler
metric if it is strictly pseudoconvex outside the set wherésinot smooth.

DEFINITION 4.1. A generalized complex Finsler metficon T M, whereM is a
complex manifold, is said to be a (classical) complex Rasdwetric if it is of the form:

F=h+|gl, h=(h;@:c)2 B=b@¢

where hi;(z)gigf is a Hermitian metric,8 = bi(2)¢' is a global form of bidegree
(1, 0) and

1817 = (012" ) (b (2)57).

It is said to be a holomorphic complex Randers metric if théortba B is globally
holomorphic.

REMARK 4.1. (1) On a general complex manifold there may not exist ramy-
trivial global holomorphic forms. Thus a non-trivial holanphic complex Randers metric
might not even exists.

(2) A holomorphic line bundle might not have any non-trivigbbal holomorphic sec-
tion but there may exists non-trivial global holomorphictsens of L™ for integerm.

For instance an ample line bundle might not have any noratriglobal holomorphic
section but form > 0, L™ is very ample and there exist enough global holomorphic
sections to embed/ as a holomorphic submanifold of a projective space.
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(3) By the theorem of Grothendieck—Serre, there is an isphiesm between
HO(P(E), £M) and H°(M, ©®™ E). Thus

HOP(E), £™) # {0} if and only if H°<M, O E) # {0}.

Taking E = T*M we see immediately that it is possible thdf(M, © E) = {0} but
HO(M,(O™E) # {0}. Namely, there may exist non-trivial global holomorphiarsyet-
ric forms of weightm even though there is no non-trivial global holomorphic inis.
(4) A Randers metric is not smooth at those poimts ) such thatb;(z);' = 0. These
occur, besides the zero section which is of complex dimensie: dim¢c M, also along
the subvarietyZ = {(z, ¢) | bi(2)¢' = 0} which is of real dimension @— 2 (complex
dimension 2—1 if g is holomorphic) inT M. Thus, strictly speaking the metric is not
smooth in the sense of Definition 2.1. We shall however allbis mild singularity in
this section. We shall, of course, assume thais strictly pseudoconvex wherever it is
smooth. Observe also that, in the case of compact manifeldsimay controlg by a
parameter, namely

Fe = A+¢€|B]

For € > 0 small, this is a small deformation of a Hermitian metric a@adcertainly
strictly pseudoconvex wherever it is smooth.

Theorem 4.1 (Chen—Shen). Let F = h + |8| be a complex Randers metric with

h=(h;@c¢HY? B=b@)

with 8 holomorphic. Then the horizontal holomorphic sectionalvature of the Cartan—
Chern—Rund connection is given by

h

3
ke (2, £) = 5kal6) -

h

%(bi:jfigj)(bi:jfifj)

where k(¢) is the holomorphic sectional curvature of the Hermitian riceth and b.; is
the covariant derivative of;hin the variablez! with respect to the Hermitian metric h.

Corollary 4.1 (Chen-Shen). Let F = h+ || be a complex Randers metric with
h=(h;@¢'ch" B =b@7

with h Kéhler andg holomorphic. If F is of positive constant holomorphic sewtl
curvature outside of the singular set then ¥P".
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The preceding results can be found in [8].

Denote by(®)™ T*M the m-fold symmetric product of the cotangent bundl&M.
A general smooth section @)™ T*M, henceforth referred to as a smooth (resp. holo-
morphic) symmetric form of weightn, is of the form

B=p,. i (2d2 0 ---0dZ"

where g;, . i, are smooth (resp. holomorphic) functions. Each of these beajdenti-
fied with a smooth (resp. holomorphic) function dnM, homogeneous of degree (or
weigh) m in the fiber variables:

Bz ¢) = By in@E - ¢ (z¢) e TM.

B(z:A) = B, in(@(O) O - © (A2)m = AMB(Z: ¢),
hence we have
1B(z: 20)[7™ = |A1B(z ),

For example, ifB1, ..., Bm are holomorphic 1-forms then their symmetric product
B1O--- O Bm is a symmetric form of weight. In fact each

Qﬂl@ﬁZ"‘éﬂm: i1 4 +im=m, i} >0

is a symmetric form of weighin. This also shows that{°(M, (O T*M) = the space
of global holomorphic symmetric forms of weigit)

p q
dim H°<M, QT*M) < dim HO(M, @T*M)

for g > p.
DEFINITION 4.2. A generalized complex Finsler metie on T M, where M is

a complex manifold, is said to be a complex Randers metric @kt m if it is of
the form:

F=h+|By + B2+ -+ |Bu/Y™, h = (h(2)5'¢c])2

with h; Jr(z);“i;j_ is a Hermitian metric and

ni
BV =181
=1



COMPLEX RANDERS METRICS 605

where eachp;; is a global smooth symmetric form of weightnd for eachi, the sym-
metric formsp;y, ..., Bin, are linearly independent. It is said to be a holomorphic com-
plex Randers metric of weight if the symmetric formss;; are globally holomorphic.

We shall only deal with the holomorphic case. Holomorphim&as metrics are
special cases of jet metrics (see Chandler—Wong [5]).

The reason for taking sum in the definition above is to redimee dimension of
the singular set. For example M is spanned (this means that global holomorphic
forms span the fibers of *M, i.e., at each poinz € M there exists a global holo-
morphic 1-form g such thatg(x) # 0). Thus, in this case if we takgB:| = >|8j|
where B11, ..., Bin, iS a basis of the space of all global holomorphic 1-formss(thi
is finite dimensional ifM is compact). The ‘spanned’ condition means that the zeros
of |B1| is precisely the zero section af M. In other words, the generalized metric
F = h + |B,] is positive definite and smooth outside the zero sectio bf, that is,
it is a bona fide smooth Finsler metric. As remarked earliee, humber of linearly
independent symmetric forms of weight is non-decreasing. thus the singular set is
also non-increasing as we increase the weight.

Another motivation of studying Randers metric of higher gigs comes from the
physicists in their attempt in understanding dark mattei$ dark energy (see [7]). For
this they add a correction term of the type, in their notation

(dx ® dx ® dx ® dx)¥/4;

i.e., a symmetric form of weight 4 to the usual Lorentz mettit their case the com-
putation of the curvature is very complicated. The situatio the complex case is
much easier.

Suppose that we are given a holomorphic complex Randerdcnuétiveight m:

F=h+[Bi|+ B2+ + [Bp|"™

constructed from holomorphic symmetric forms. The comjiortaof the holomorphic
section curvature is based on the lemma below. Recall tbataflocally integrable
function, the derivatives exist in the sense of currentstithutions) and that a sub-
harmonic function is locally integrable.

Lemma 4.1. Let A and B be non-negative smooth functjioA8 # 0. Then
dd®log(A + B)

1 AB A A
= AJFB(Add"logA—%declogB)+(A_FB)Z(dlogB/\d log B)

on the set where AB: 0.
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Proof. We get, by direct computation,

dd® log(A + B)
_ (A+ B)(dd°A + dd°B) — (dA+ dB) A (d°A + d°B)

(A + B)?
_AddCA—dA/\dCA—l—deCB—dB/\dCB+T
N (A + B)?
AZ 2
=——  _dd°logA+ ————dd°logB+ T
Ay et AT et 9rt
where
_l__de°A+Add°B—(dA/\d°B+dB/\dCA)
N (A + B)?
and that
AddCA—dAAd°A BddB—dBAd°B
ddlog A = - AR ddtlog B = = naE

The termT can be rewritten in a more manageable form by expressing
B dd°A = %(AZ dd®log A+ dAAd°A),
A
Add°B = E(Bzoldc log B + dB A d°B),

anddA = Adlog A, d°A= Ad°log A, dB= B dlogB, d°B = B d°logB. Then
Bdd°A+ Add°B — (dAAd°B +dB A d°A)
= AB(dd®log A+ dd°logB +dlog AAd®log A+ dlogB A d®logB
—dlog AAdlogB —dlogB A dlog A)
= AB[dd®log A + dd°log B + (dlog A—dlog B) A (d®log A — d° log B)]

= AB(ddC log A+ dd°log B +dlog g A dClog g)

Thus we get

AB

A A
T=-——-(dd°log A+ dd°logB + dlog = A d®log —
At B)2( og A+ 0gB +dlog 5 A d°log B)

and

Add®log A+ B dd°log B AB

dd log(A + B) =
0g(A + B) A+B T AT By

A A
dlog = Ad°log =
0g g Adlog 5

as claimed.
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Corollary 4.2. With the same assumptions asliemma 4.1,we have

1

log(A + B) >
dd®log(A + )_A+B

(Add°log A + B dd° log B)

and equality holds if and only if /B is a constant on the set AB 0.
Proof. SinceA and B are positive and
A A
dlog = Ad®log— >0
g B A g B =

we deduce readily that

Add®log A+ B dd®log B
A+ B

dd®log(A + B) >
and equality holds if and only if
A A
dIogE/\d IogE =0.
This occurs if and only if
A - A
— —=0.
d log 5 A dlog 5
The formd log(A/B) is of bidgree (1,0) and log(A/B) is of bidgree (0, 1). Thus the
preceding identity holds if and only iA/B is holomorphic and also conjugate holo-
morphic, i.e.,A/B is a constant. O

The preceding lemma and corollary can be extended:

Lemma 4.2. Let A,i=1,..., g be non-negative continuous functions. Assume
that [T A # 0. Then on the sef[_; Al # 0,

q q
1
ddclogE A q—AkE A dd°log A + T
i=1 k=1 i=1

where T is a non-negative term
> %(d Iog% A dClog %)
1=icj=q (ko1 Ax) i i
Consequentlywe have
q

q
dd®log A > — A dd®log A
; ZE:l A ; I
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and equality holds if and only if i/AA; = ¢jj = constant for alll <i, j <q.

Proof. The casa = 2 was established above. The proof can be completed via
induction. By the casg = 2, Then

q
dd®log ) " A = gq Ldde IogZA. + = A“ ddc log Aq
i=1 k l

ZJ'=1 i Zi:l A e Ziq:_]]: A
+ o Ak)z(d log Aq A d®log —Aq )

By induction,
q-1
dd®log Y " A
i=1
1 i A
ZA dd®log A + > A“—(dlogﬁ/\dwogﬁ)
Z Ak i=1 l<i<j=g-1 (Z ) A
Substitute this into the preceding identity and using theniidies
q-1 q- q-1 q-
dlog) " A Z dlog A, d°log ) A Z d®log A
i=1 i=1 -1 A i=1 i=1 —1 A
we get the desired identity. ]

Corollary 4.3. If, in the preceding lemmadogA is plurisubharmonic for all i then

a !
ddC|OgZAi Z L)(d Iogﬁ/\dclogﬁ)

i=1 1<i<j=q (Zk 1 l

if and only iflog A is pluriharmonic for all i.

Proof. The function lod\ is plurisubharmonic if and only ifld°logA; > 0, hence

q _
dd°logd A= Y L(o||ogﬁAo|C|ogA)
i=1 1<i<j=<q (i ) Aj

if and only if

q
> Add°log A =0

i=1

if and only if dd®log A; = 0 (log A is pluriharmonic) for alli. ]
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REMARK 4.2. Suppose thaty = |5;|Y™ whereb; is a holomorphicsymmetric
form of weightm. Then logA; is plurisubharmonic and pluriharmonic outside of the
setg = 0. In particular, we haveld®log ;|5 |¥™ > 0.

For a Finsler metrid=, the holomorphic bisectional curvature Bf will be denoted
by hbsg. The next theorem is the main result of this article:

Theorem 4.2. Let F=h+3",|B/|" be a holomorphic weighted complex Ran-
ders metric on a complex manifold M. Then

h
hbsg < E hbsg, < hbsg,
outside the singular set of F.

Proof. LetF =h + Y |Bi|*" be a holomorphic weighted complex Randers
metric andG = F2 = h? + 2h|B| + |B|2 where|B| = > ,|Bi|YI. Then

C h2 C 2 |B| C |B2 C 2
dd IogG—¢=Edd logh® + —— dd Iogh|B|+?dd log|B|
with
C 2 |Bl|l C 12/
ddClog|B|? — Z B ddlog|Bi|
where
2h3|B| h h2|B|? h2 h?
= dlog — A d°log =— dlog — Ad°lo
Y=o ( g2|B| 09’2|B|)+ G2 ("9’|B|2A |B|2)
2h|B|3 2h 2h
dlog — A d®lo >0
T ( " g|B|)
and
1 I B o B
Vo2 2 e e e ) -
1<i<j=m
Thus
h? 2h|B B
dd®logG — ¢ = addclogh2 (|3 |ddcl ghjL%ddclog|B|2

which we rewrite as (usingc = h + |B|)

B h
dd° IogG—¢—%w = Eololc log h? + Z|B|1/' dd®log|B; .

i=1
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Now dd€ log|Bi|#' = 2dd®log Y_}_, || and we get

1B 1!
|B; |/

N
dd°log|B [ —y = dd’ log|ij |*"
j=1

where

1 1B 17| B! ( 1Bl |Bij |2/i)
" Z |Bi|?/1 g | Bik |?/! 9 | Bik|?/!

1<j<k=n;

Since 8;; is holomorphic, lods;;| is pluriharmonic henceld® log|gi;| = 0. Thus the
preceding identity reduces to

dd®log|Bi|?' —y =0
and we arrive at the identity

h |B| 1 &
2 R Lt DY A 11/
Eddclogh =dd°logG — ¢ = i§=1|B.| 'Y

This implies that
h
dd®log G > E dd® log h?.
Denote byhg the Hermitian metric on the tautological line bundie® over P(T M)
associate to the Hermitian metrle on E. There is also the Hermitian metrity on

the £~! notation associate to the Hermitian metticon T M. The preceding simply
means that (by (3.4) in Section 3)

h
C]_(Eil, hF) Z Ecl(ﬁil! hO)
By the result of Cao—Wong (see (3.4)) this is equivalent ® ¢bndition that
h
hbsg =< E hbsg, .

Sinceh < F, we certainly have hbgc< hbsg,. OJ

REMARK 4.3. We get as an immediate consequence that the holomosglic
tional curvature ot is also greater than or equal to that Bf This extends the result
of Chen and Shen which was established under the conditianfRh= h + |b;(2)¢'|
and thath is Kahler.
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Corollary 4.4. Let F = h + |B| be a holomorphic complex Randers metric of
weight m on a compact complex manifold M. If the holomorpleictienal curvature
of F is a positive constant then & P".

Proof. By Remark 3.4, the holomorphic sectional curvaturd-ois a constant
implies that the holomorphic bisectional curvatureFofs > ¢/2 > 0 outside the singular
set of F. By the preceding theorem the holomorphic bisectional @ume ofh is also>
c/2 > 0 outside the singular set &f. Since the singular set is of codimensional at least
one andh is non-singular tf is Hermitian) the holomorphic bisectional curvature rof
is > c/2 > 0 everywhere. This implies thd#l ~ P" (by Cao—-Wong’s theorem). []

REMARK 4.4. (1) This extends the result of Chen and Shen which wesbest
lished under the condition tha = h + |bi(2)¢'| and thath is Kahler. Note that
Chen and Shen’s proof does not work for the more generaltgituaf the preced-
ing theorem.

(2) The assumption thad#l is compact (by compactness we always mean without bound-
ary) is important in the last corollary. Even though it isetrinat the formula for bisec-
tional curvature is local, to get to ampleness in Cao—Worgn® need compactness;
otherwise there is no Kodaira vanishing theorem nor emipedtlieorem, even though
the Chern form is positive definite. In the case of compachwitundary there will be
boundary term when you integrate.
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