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Abstract
For a knotK in S3, J. Ma and R. Qiu defined an integral invarianta(K ) which

is the minimal number of elements that generate normally thecommutator subgroup
of the knot group, and showed that it is a lower bound of the unknotting number.
We prove that it is also a lower bound of the tunnel number. If the invariant were
additive under connected sum, then we could deduce something about additivity of
both the unknotting numbers and the tunnel numbers. However, we found a sequence
of examples that the invariant is not additive under connected sum. LetT(2, p) be
the (2, p)-torus knot, andK p,q D T(2, p) ℄ T(2, q). Then we havea(K p,q) D 1 if
and only if gcd(p, q) D 1.

1. Introduction

For a knotK in S3, many integral invariants were defined and studied. LetG(K )
be the knot group ofK , and G0(K ) its commutator subgroup. J. Ma and R. Qiu [10]
defined an invarianta(K ) as the minimal number of elements that generateG0(K ) nor-
mally in G(K ). We call it theMQ (Ma–Qiu) indexof K . In this paper, we mainly deal
with it.

H. Schubert [20] showed that both the Seifert genus and the bridge index of knots
are additive under connected sum. Y. Nakanishi [14] studiedthe unknotting number
of knots. As a lower bound for it, he defined an invariant whichis called now the
Nakanishi index(see [6, 8, 14] or Section 2). M. Scharlemann [18] showed that un-
knotting number one knots are prime. As a corollary of the theorem, “1C 1” should
be two for the unknotting numbers of knots. However the additivity problem in the
general case is still open. T. Kobayashi [9] and K. Morimoto [12] constructed examples
such that the tunnel number is not additive under conncted sum. M. Scharlemann and
J. Schultens [19] showed that the tunnel number of the sum ofn non-trivial knots is at
leastn. J. Ma and R. Qiu [10] defined an integral invariant of a knot. Roughly speak-
ing, it is an extended version of the Nakanishi index to the commutator subgroup of
the knot group. They showed that it is a lower bound of the unknotting number by
using a modified Wirtinger presentation (see Theorem 2.2).
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Let r (K ) be the rank of the knot groupG(K ) of a knot K . Then the following is
our first main theorem.

Theorem 1.1. a(K ) � r (K ) � 1.

Let K be a knot,t(K ) the tunnel number ofK , u(K ) the unknotting number of
K , and m(K ) the Nakanishi index ofK (see Section 2). IfK is a 2-bridge knot,
then t(K ) D 1. Since T. Kanenobu and H. Murakami [5] characterized 2-bridge knots
with unknotting number one, there is an example of a knotK 0 with u(K 0) � 2 and
t(K 0) D 1. On the other hand, for prime knots up to ten crossings, K. Morimoto,
M. Sakuma and Y. Yokota [13] determined the tunnel numbers, and P. Ozsváth and
Z. Szabó [16] determined the unknotting number one knots except 10153 (We also re-
mark that C. Kearton and M.J. Wilson [8] determined the Nakanishi indices for the
class). Hence we can find an example of a knotK 00 with u(K 00) D 1 and t(K 00) D 2.
The examples above would imply that there are no relations between the unknotting
number and the tunnel number. However, by combining Theorem1.1 and known re-
sults, we have the following as a corollary.

Corollary 1.2. m(K ) � a(K ) � minfr (K ) � 1, u(K )g � minft(K ), u(K )g.
If the MQ index were additive under connected sum, then we could deduce some-

thing about the additivity problem of both the unknotting number and the tunnel num-
ber. For example, we could reprove both Scharlemann’s result [18], and Scharlemann
and Schultens’ result [19] purely algebraically. However we found a sequence that the
MQ index is not additive under connected sum. LetT(2, p) be the (2,p)-torus knot
for an odd numberp (jpj � 3), and K p,q D T(2, p) ℄ T(2, q) (3� p � jqj). Then the
following is our second theorem.

Theorem 1.3. The following three statements are equivalent:
(1) gcd(p, q) D 1.
(2) m(K p,q) D 1.
(3) a(K p,q) D 1.

In Section 3, we prove the equivalence of (1) and (2) in Theorem 1.3 by the com-
mutative ring theory. In Section 4, we prove the equivalenceof (1) and (3) in The-
orem 1.3 by Reidemeister–Schreier’s method from the combinatorial group theory [11].
It may be a fundamental method for studying the MQ index. In Section 5, we raise
some questions.

2. Proof of Theorem 1.1

Proof of Theorem 1.1. Let� W G(K )! Z be the abelianization map. We regardZ as an additive group (i.e. 1 is a generator ofZ).
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Let fxi (i D 1,: : : , r )g be the set of generators ofG(K ) realizing r D r (K ), and yi

an integer satisfying�(xi )D yi . Sincey1,:::, yr generateZ, we have gcd(y1,:::, yr )D 1.

Claim. We can take x1, : : : , xr satisfying y1 D 1 and y2 D � � � D yr D 0.

Proof. We may assumey1 � y2 � � � � � yr � 0 without loss of generality.
SupposeN D Pr

iD1 yi is minimal. We showN D 1 which is equivalent to our
claim. Note thatN � 1 becauseG(K )=G0(K ) is non-trivial.

SupposeN > 1. Theny2 > 0 by gcd(y1, : : : , yr ) D 1. Setx01 D x1x�1
2 and�(x01) D

y01. Then x01, x2, : : : , xr also generateG(K ), y01 D y1 � y2 � 0, and

0� y01C
rX

iD2

yi < N.

This contradicts thatN is minimal. Hence we haveN D 1.

Supposex1, : : : , xr satisfy the condition stated in the claim. Then we show that
x2, : : : , xr generateG0(K ) normally.

It is easy to see thatx2, : : : , xr 2 G0(K ). Take any elementz 2 G0(K ). Then z is
expressed as a word ofx1, : : : , xr . Since�(z)D 0, the sum of powers ofx1 in the word
of z is zero. This implies thatz is a product of conjugations ofx2, : : : , xr conjugated
by some power ofx1.

Therefore we havea(K ) � r (K ) � 1.

Since the knot group of a torus knot is generated by two elements, we have the
following corollary.

Corollary 2.1. Let K be a torus knot in S3. Then a(K ) D 1.

Let E(K ) be the exterior of a knotK . Then we haveH WD H1(E(K )I Z) � Z
and H is generated by an element represented by a meridian ofK . Let QE(K ) be
the universal abelian covering ofE(K ), and� D Z[t , t�1] the one-variable Laurent
polynomial ring overZ with a variablet where we taket as a generator ofH . Then
H 0 WD H1( QE(K )I Z) has a�-module structure, and it is called theAlexander module.
The Nakanishi indexof K , denoted bym(K ), is the minimal number of generators for
H 0 as a�-module.

Ma and Qiu [10] showed the following.

Lemma 2.2. Let K be a knot in S3. Then we have m(K ) � a(K ) � u(K ).

The following is well-known.
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Lemma 2.3. Let K be a knot in S3. Then we have r(K ) � 1� t(K ).

By combining Theorem 1.1, Lemma 2.2 and 2.3, we have Corollary 1.2.

3. Equivalence of (1) and (2) in Theorem 1.3

Let K be a knot, and�K (t) the Alexander polynomial ofK .

Lemma 3.1. For a knot K, the Nakanishi index m(K ) is one if and only if�K (t)
is non-trivial and the Alexander module of K is isomorphic to�=(�K (t)) where(�K (t))
is an ideal of� generated by�K (t).

Let �p(t) (p � 3 is odd) be the Alexander polynomial of the (2,p)-torus knot
T(2, p). Then we have

(3.1) �p(t)
.D (t2p � 1)(t � 1)

(t p � 1)(t2 � 1)
D t p C 1

t C 1
D t p�1 � t p�2C � � � � t C 1.

Proof of equivalence of (1) and (2) in Theorem 1.3. Since the Alexander matrix
of K p,q is � �p(t) 0

0 �q(t)

�

which is a presentation matrix of the Alexander module,

�=(�p(t))��=(�q(t))(3.2)

over �, it is easy to see thatm(K p,q) D 1 or 2. We may assumeq > 0 because
m(K p,q) D m(K p,�q).

Suppose gcd(p, q) D d � 2. Then�d(t) is a common divisor of�p(t) and�q(t).
By the elementary divisor theory, the Alexander matrix doesnot reduce to a matrix
(�p(t)�q(t)) by elementary moves over�, and we havem(K p,q) D 2.

Suppose gcd(p, q) D 1. Let a continued fraction expansion ofq=p be

q

p
D r1C 1

r2C 1

... C 1

rk

where r i (i D 1, : : : , k) is a positive integer. Then we have a set of integersfq0, q1, : : : , qk, qkC1g such thatqi�1 D qi r i CqiC1 for i D 1, : : : , k where 0� qiC1 < qi ,
q0 D q, q1 D p, qk D 1 andqkC1 D 0. We set

fs(t) D ts�1 � ts�2C � � � C (�1)st C (�1)sC1
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for an integers � 0 where f1(t) � 1 and f0(t) � 0. There are elements of�,fg1(t), g2(t), : : : , gk(t)g, such that

fqi�1(t) D fqi (t)gi (t)C (�1)r i fqiC1(t) (i D 1, : : : , k).

We note that fq0(t) D �q(t) and fq1(t) D �p(t). Then we can find two elements
u(t), v(t) 2 � such thatu(t)�p(t)C v(t)�q(t) D 1. Thus (�p(t), �q(t)) D �. By the
Chinese Remainder Theorem, the Alexander module in (3.2) isisomorphic to�=(�p(t)�q(t)). Hencem(K p,q) D 1 by Lemma 3.1.

4. Equivalence of (1) and (3) in Theorem 1.3

Let K i (i D 1, 2) be a knot, andGi WD G(K i ) the knot group ofK i . We take an
element ofG1 (resp.G2) represented by a meridian ofK1 (resp.K2), and we denote
it by �1 (resp.�2). We setK D K1 ℄ K2 and G D G(K ). Then we have the following.

Lemma 4.1. (1) G � G1�G2=hh�1��1
2 ii, wherehh�1��1

2 ii is a normal subgroup
of G1 � G2 generated by�1��1

2 .
(2) G0 � G0

1 � G0
2.

Lemma 4.1 can be proved by using van Kampen’s theorem (see Z. Yang [21] for
the proof of (2)).

Since there are natural isomorphisms for both cases in Lemma4.1, we denote
them by

G D G1 � G2=hh�1��1
2 ii

and

G0 D G0
1 � G0

2.

By Lemma 4.1, we have the following.

Lemma 4.2 ([10]). Let K1 and K2 be knots in S3. Then we have

maxfa(K1), a(K2)g � a(K1 ℄ K2) � a(K1)C a(K2).

Let T(�, �) be the (�, �)-torus knot where we assume 2��< j�j and gcd(�, �)D1.
Then its knot group is

G(T(�, �)) D hx, y j x�y�i,
and t D x
 yÆ is represented by a meridian where�Æ � �
 D 1. We can find corres-
ponding loops in the exterior ofT(�, �) to x and y respectively.
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Suppose� D 2 and� D 2kC 1 (k � 1). Then
 D 1 andÆ D kC 1. We present
G0(T(2, 2kC 1)) (k � 1) by Reidemeister–Schreier’s method. We sett D xykC1, ai D
t�i (xt2kC1)t i and bi D t�i (yt�2)t i (i 2 Z). Then we rewritex2y2kC1 and xykC1t�1 by
ai and bi .

x2y2kC1 D (xt2kC1)ft�(2kC1)(xt2kC1)t2kC1gft�(4kC2)(yt�2)t4kC2g
� ft�4k(yt�2)t4kg � � � ft�4(yt�2)t4gft�2(yt�2)t2g

D a0a2kC1b4kC2b4k � � � b4b2,

(4.1)

xykC1t�1 D (xt2kC1)ft�(2kC1)(yt�2)t2kC1g
� ft�(2k�1)(yt�2)t2k�1g � � � ft�1(yt�2)tg

D a0b2kC1b2k�1 � � � b1.

(4.2)

Since y D y�(2kC1)C2(kC1) D x2(x�1t)2, we have

b0 D xtx�1t�1 D (xt2kC1)(t�2kx�1t�1) D a0a�1�1.(4.3)

By (4.3), we havebi D ai a�1
i�1, and substitute it to (4.1) and (4.2). Then we have

x2y2kC1 D a0a2kC1a4kC2a�1
4kC1a4ka�1

4k�1 � � � a2a�1
1 ,(4.4)

xykC1t�1 D a0a2kC1a�1
2k a2k�1a�1

2k�2 � � � a1a�1
0 .(4.5)

HenceG0(T(2, 2kC 1)) is generated byfai (i 2 Z)g. We fix it as a set of gener-
ators. Then its relations are generated by conjugations of the righthand sides of both
(4.4) and (4.5). We set

c0 D a2ka�1
2k�1a2k�2a�1

2k�3 � � � a�1
1 a0

and c j D t� j c0t j ( j 2 Z). Then the righthand side of (4.4) is

a0f(a2kC1c2kC2a�1
2kC1)c0ga�1

0 ,

and the righthand side of (4.5) isa0c1a�1
0 . Since (4.5) is conjugate toc1 as a word offai (i 2 Z)g, everyc j ( j 2 Z) is trivial in G0(T(2, 2kC1)). Since (4.4) can be generated

by conjugations ofc j ( j 2 Z), G0(T(2, 2kC 1)) is presented as

G0(T(2, 2kC 1))D hai (i 2 Z) j c j ( j 2 Z)i.(4.6)

We also denote (4.6) by

G0(T(2, 2kC 1))D hha0 j (c0 D) a2ka�1
2k�1 � � � a�1

1 a0ii.(4.7)

By the similar way, we have

G0(T(2, �(2kC 1)))D hha0 j a2ka�1
2k�1 � � � a�1

1 a0ii(4.8)
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where t D x�1ykC1 and ai D t�i (x�1t2kC1)t i .

Proof of equivalence of (1) and (3) in Theorem 1.3. If gcd(p, q) � 2, then we
havea(K p,q) D 2 by Corollary 1.2 and Section 3. Hence we suppose gcd(p, q) D 1.

By Lemma 4.1 (2), (4.7) and (4.8), we have

G0(K p,q) D hha0, z0 j ap�1a�1
p�2 � � � a�1

1 a0, zq�1z�1
q�2 � � � z�1

1 z0ii(4.9)

and we may assumeq > 0.
We setwi D ai z�1

i (i 2 Z), and denote a subgroup ofG generated byfwi (i 2 Z)g
normally by hhwii wherew D w0. Sinceai � zi (mod hhwii), we have

ap�1a�1
p�2 � � � a�1

1 a0 � zp�1z�1
p�2 � � � z�1

1 z0 � 1 (modhhwii).(4.10)

Let a continued fraction expansion ofq=p be

q

p
D r1C 1

r2C 1

... C 1

rk

where r i (i D 1, : : : , k � 1) is an even integer. Then we have a set of integersfq0, q1, : : : , qk, qkC1g such thatqi�1D qi r i CqiC1 for i D 1,: : : , k where 0� jqiC1j < jqi j,
q0 D q, q1 D p, qk D �1 andqkC1 D 0. Note thatqi (i D 0, : : : , k) is an odd number.
We set

�i D zjqi j�1z�1jqi j�2 � � � z�1
1 z0, � i D z�1jqi j�1zjqi j�2 � � � z1z�1

0 ,

�i D (z2jqi j�1z�1
2jqi j�2 � � � z�1jqi jC1zjqi j)(z�1jqi j�1zjqi j�2 � � � z1z�1

0 ),

� i D (z�1
2jqi j�1z2jqi j�2 � � � zjqi jC1z�1jqi j)(zjqi j�1z�1jqi j�2 � � � z�1

1 z0)

and

"i D sign(qi ) � sign(r i ) � sign(qiC1) D sign(qi�1) � sign(qiC1)

for i D 0, : : : , k, and��1 D ��1 D ��1 D ��1 D 1.
By the definition, we have the following:

�i�1 D (t�s1�i t
s1)(t�s2�i t

s2) � � � (t�sr 0i �i t
sr 0i )(� 0iC1)"i ,(4.11)

� i�1 D (t�s1� i t
s1)(t�s2� i t

s2) � � � (t�sr 0i � i t
sr 0i )(� 0iC1)"i ,(4.12)

�i D (t�jqi j�i t
jqi j)� i(4.13)

and

� i D (t�jqi j� i t
jqi j)�i(4.14)
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wheresj D jqi�1j � 2 j jqi j ( j D 1, : : : , jr i j=2), r 0i D jr i j=2,

� 0iC1 D
��iC1 ("i D 1),

t jqiC1j�1�iC1t�jqiC1jC1 ("i D �1)

and

� 0iC1 D
�� iC1 ("i D 1),

t jqiC1j�1� iC1t�jqiC1jC1 ("i D �1).

We need a key lemma for the proof.

Lemma 4.3. The following equations hold for iD 0, : : : , k � 1.
(1) t� j�i t j � �i , t� j� i t j � � i , t� j�i t j � �i , t� j� i t

j � � i (mod hhwii) ( j 2 Z).

(2) �i�1 � � jr i j=2
i � "i

iC1, � i�1 � � jr i j=2
i � "i

iC1 (mod hhwii) where r0 D 0.
(3) �i � �i� i , � i � � i�i (mod hhwii).

Proof. We prove them by induction oni . We note that it is sufficient to show
only the casej D 1 for (1).

(i) The casei D 0 and 1.
By (4.9) and (4.10), we have�0 D 1 and�1 � 1 (mod hhwii). Then the first equa-

tion of (1) holds for the casesi D 0 and 1. Since��1 D 1 and�1 � 1 (mod hhwii),
the first equation of (2) holds for the casei D 0. Since�0 D 1, we have

� 0 D z�1
q�1zq�2 � � � z1z�1

0

D (z�1
q�2zq�3 � � � z�1

1 z0)(zq�2z�1
q�3 � � � z1z�1

0 )

and

t�1� 0t D (z�1
q�1zq�2 � � � z�1

2 z1)(zq�1z�1
q�2 � � � z2z�1

1 )

D f(z�1
q�2zq�3 � � � z�1

1 z0)zq�2 � � � z�1
2 z1g

� f(z�1
q�2zq�3 � � � z�1

1 z0)�1z�1
q�2 � � � z2z�1

1 g
D (z�1

q�2zq�3 � � � z�1
1 z0)(zq�2z�1

q�3 � � � z1z�1
0 ) D � 0.

Then the second equation of (1) holds for the casei D 0, and (3) holds for the case
i D 0 by (4.13) and (4.14). Hence the third and the fourth equations of (1) hold for
the casei D 0.

By the similar way as the casei D 0, we have the second equation of (1) for the
casei D 1. Then (3) holds for the casei D 1 by (4.13) and (4.14). Hence (2) and the
third and the fourth equations of (1) hold for the casei D 1.

(ii) The case 2� i � k � 1.
Suppose (1), (2) and (3) hold ifi is replaced withi 0 < i .
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Since (1) holds for the casei �2, and (2) and (3) holds for the casei �1, the first
and the second equations of (1) hold for the casei . Hence (3) holds for the casei by
(4.13) and (4.14), and the third and the fourth equations of (1) hold for the casei . By
(4.11), (4.12) and (1) for the casesi � 1 and i , (2) holds for the casei . Therefore the
proof is completed.

By Lemma 4.3 (1) and (2) for the casesi D k�1 andk�2, we havet�1�kt � �k

(mod hhwii). Since�k D z0, we havez0� zj (mod hhwii) for every integerj andz0� 1
(mod hhwii) by (4.9). Therefore we haveG0(K p,q) D hhwii and a(K p,q) D 1.

REMARK 4.4. By (4.8), we havea(K p,q) D a(K p,�q). SinceT(2, p) is ambient
isotopic to�T(2, p), we havea(K p,q) D a(T(2, p) ℄ (�T(2, q))).

Let K � be the mirror image of a knotK . For general cases, we raise the following
question.

QUESTION 4.5. Let K1 and K2 be knots inS3. Thena(K1 ℄K2)D a(K1 ℄K �
2 )D

a(K1 ℄ (�K �
2 ))?

REMARK 4.6. F.H. Norwood [15] showed that ifr (K )D 2 for a knot K , then K
is a prime knot. Hence we haver (K p,q)D 3, anda(K p,q) < r (K p,q)�1 if gcd(p, q) D
1. Norwood’s theorem deduces the statement that ift(K ) D 1, thenK is a prime knot.
Let K 0 D ℄n

K p,q be a knot which is a connected sum ofn copies of K p,q. Then it
has 2n prime factors and satisfiesm(K 0) D a(K 0) D n. By Scharlemann and Schultens’
result, we havet(K 0) D 2n. Thereforet(K 0) � a(K 0) can be arbitrary large.

For the corresponding question of Remark 4.6, see Question 5.5, 5.6 and 5.7.

5. Final remarks

• We notice that tables in A. Kawauchi’s book [6] includes manymistakes. For
example, on the tables of the tunnel numbers, the book misread Morimoto, Sakuma and
Yokota’s result [13] in which the tunnel numbers of prime knots up to ten crossings are
determined completely. For example, the set of prime knots with the crossing number
eight and the tunnel number two in Theorem 2.6 of [13] is expressed as

8n with n 2 [16, 18]

which should be read asf816, 817, 818g (i.e., In this case, [16, 18] implies the set of
integers included by the closed interval from 16 to 18). However the book [6] read the
set asf816, 818g (i.e., Only the end points are read). Corrections of the tables can be
found in [7], or a web page “KnotInfo” [1] maintained by J.C. Cha and C. Livingston.
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• Let K be a knot in S3, and A(t) the Alexander matrix ofK . For a prime
number p, we denote theZ=pZ-dimension of the null space ofA(�1) (mod p) by
dp(K ). A. Ishii [3] defineddp(K ) as (the dimension of the set ofp-colorings)�1, and
pointed out thatdp(K ) � t(K ) holds. Sincem(K ) is the minimal size of the Alexander
matrix of K , it is easy to see thatdp(K ) � m(K ) holds and thatdp(K ) � t(K ) can be
deduced from Corollary 1.2. It may be interesting to studya(K ) from a viewpoint
of quandle.

• T. Kanenobu [4] discusses additivity problem of theunknotting numberof
2-knots (cf. [2]). He defines theweak unknotting numberwhich is determined from
the 2-knot group, and is a lower bound of the unknotting number. Hence the unknot-
ting number can be studied by combinatorial group theoretical methods. Our methods
are parallel to his methods.

• To determine the MQ index is difficult in general. IfK is a prime knot with
the crossing number up to nine other than 816, 929 and 932, then m(K ) D a(K ) can be
determined by Corollary 1.2 and [1, 6, 8]. Since it is pointedout in [10] thata(K ) D 0
implies K is trivial, and m(K ) D 0 if and only if the Alexander polynomial ofK is
trivial (cf. Lemma 3.1), there are infinitely many examples of K satisfyingm(K ) D 0
anda(K ) � 1. For example, Kinoshita–Terasaka’s knot satisfies the condition. We raise
some questions about the MQ index.

QUESTION 5.1. Find examples ofK satisfying 1� m(K ) < a(K ).

QUESTION 5.2. Characterize the knots witha(K ) D 1.

This is a combinatorial group theoretical problem like “Characterize normal sub-
groups of a given (knot) group generated normally by one element”.

For the additivity problem on the MQ index, we raise the following questions.

QUESTION 5.3. Find a class of knots in which the MQ index is additive under
connected sum.

We restrict Question 5.3.

QUESTION 5.4. For two prime non-fibered knotsK1 andK2, a(K1℄K2)Da(K1)C
a(K2) holds?

For relatively coprimen odd numbersp1, : : : , pn, let K be a connected sum of
T(2, p1), : : : , T(2, pn). By the argument in Section 3, we havem(K ) D 1. In contrast
with this and related with Remark 4.6, we raise the followingquestions.

QUESTION 5.5. Let K be a knot which is a connected sum ofn non-trivial knots.
Then a(K ) � n=2 holds?
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QUESTION 5.6. Let K be a knot which is a connected sum ofn non-fibered
knots. Thena(K ) � n holds?

Related with fiberedness, we raise the following question.

QUESTION 5.7. Let K be a fibered knot. Thena(K ) D m(K ) holds?

Theorem 1.3 is a partial affirmative answer for the question.We note that both
Question 5.5 and 5.7 cannot be affirmative.
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