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Abstract

For a knotK in S, J. Ma and R. Qiu defined an integral invaria{K) which
is the minimal number of elements that generate normallycttramutator subgroup
of the knot group, and showed that it is a lower bound of thenotting number.
We prove that it is also a lower bound of the tunnel numberh# invariant were
additive under connected sum, then we could deduce sorgettiiout additivity of
both the unknotting numbers and the tunnel numbers. Howexeefound a sequence
of examples that the invariant is not additive under corsiestum. LetT (2, p) be
the (2, p)-torus knot, andK,q = T(2, p)  T(2,q). Then we havea(K,q) = 1 if
and only if gedf, q) = 1.

1. Introduction

For a knotK in S*, many integral invariants were defined and studied. GEK)
be the knot group oK, and G'(K) its commutator subgroup. J. Ma and R. Qiu [10]
defined an invariana(K) as the minimal number of elements that genef@K) nor-
mally in G(K). We call it theMQ (Ma—Qiu) indexof K. In this paper, we mainly deal
with it.

H. Schubert [20] showed that both the Seifert genus and titgédoiindex of knots
are additive under connected sum. Y. Nakanishi [14] studied unknotting number
of knots. As a lower bound for it, he defined an invariant whishcalled now the
Nakanishi index(see [6, 8, 14] or Section 2). M. Scharlemann [18] showed tmat u
knotting number one knots are prime. As a corollary of theotbm, “1+ 1" should
be two for the unknotting numbers of knots. However the adtit problem in the
general case is still open. T. Kobayashi [9] and K. Morimot®][@onstructed examples
such that the tunnel number is not additive under conncted $4. Scharlemann and
J. Schultens [19] showed that the tunnel number of the sum rdn-trivial knots is at
leastn. J. Ma and R. Qiu [10] defined an integral invariant of a knotugtdy speak-
ing, it is an extended version of the Nakanishi index to thenmwtator subgroup of
the knot group. They showed that it is a lower bound of the oitkmg number by
using a modified Wirtinger presentation (see Theorem 2.2).
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Let r(K) be the rank of the knot grou@(K) of a knot K. Then the following is
our first main theorem.

Theorem 1.1. a(K) <r(K) -1

Let K be a knot,t(K) the tunnel number oK, u(K) the unknotting number of
K, and m(K) the Nakanishi index ofK (see Section 2). IfK is a 2-bridge knot,
thent(K) = 1. Since T. Kanenobu and H. Murakami [5] characterized 2¢griinots
with unknotting number one, there is an example of a kKotwith u(K’) > 2 and
t(K’) = 1. On the other hand, for prime knots up to ten crossings, K.irmo,
M. Sakuma and Y. Yokota [13] determined the tunnel numbers, RnOzsvath and
Z. Szabho6 [16] determined the unknotting number one knotepx&Qss (We also re-
mark that C. Kearton and M.J. Wilson [8] determined the Nadtainindices for the
class). Hence we can find an example of a kKdt with u(K”) = 1 andt(K”) = 2.
The examples above would imply that there are no relationwd®n the unknotting
number and the tunnel number. However, by combining Theatelmand known re-
sults, we have the following as a corollary.

Corollary 1.2. m(K) < a(K) < min{r(K) — 1, u(K)} < min{t(K), u(K)}.

If the MQ index were additive under connected sum, then wedcdeduce some-
thing about the additivity problem of both the unknottingmher and the tunnel num-
ber. For example, we could reprove both Scharlemann’s tr¢s8], and Scharlemann
and Schultens’ result [19] purely algebraically. However found a sequence that the
MQ index is not additive under connected sum. OgR, p) be the (2,p)-torus knot
for an odd numbemp (|p| = 3), andK,q=T(2, p) £ T(2,9) (3= p =1q|). Then the
following is our second theorem.

Theorem 1.3. The following three statements are equivalent
(1) gedp,q) =1
(2) m(Kp,q) =1
(3) a(Kpq) =1

In Section 3, we prove the equivalence of (1) and (2) in Theote3 by the com-
mutative ring theory. In Section 4, we prove the equivalentdl) and (3) in The-
orem 1.3 by Reidemeister—Schreier's method from the coatbiial group theory [11].
It may be a fundamental method for studying the MQ index. IntiSec5, we raise
some questions.

2. Proof of Theorem 1.1

Proof of Theorem 1.1. Let: G(K) — Z be the abelianization map. We regard
Z as an additive group (i.e. 1 is a generatorZ)f
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Let {x (i =1,...,r)} be the set of generators &(K) realizingr =r(K), andy;
an integer satisfyingr (x;) = y;. Sinceys,...,Y; generateZ, we have gcdf,...,yr) = 1.

Claim. We can take % ..., X satisfyingy=1and py=---=y =0.

Proof. We may assumg, > y, > ... >y, > 0 without loss of generality.

SupposeN = >'_, yi is minimal. We showN = 1 which is equivalent to our
claim. Note thatN > 1 because5(K)/G'(K) is non-trivial.

SupposeN > 1. Theny, > 0 by gcdfy, ..., i) = 1. Setx; = xix;* and (X)) =
y;. Thenx(, Xo, ..., X also generat&s(K), y; = y1 —y» > 0, and

r
0<y;+> v <N.

i=2

This contradicts thalN is minimal. Hence we hav®\ = 1. O
Supposexy, . . ., X satisfy the condition stated in the claim. Then we show that
X2, - .., X generateG’'(K) normally.

It is easy to see that,, ..., X € G'(K). Take any element € G'(K). Thenz is
expressed as a word af,...,X . Sincex(z) =0, the sum of powers aof; in the word

of z is zero. This implies thar is a product of conjugations o, ..., X, conjugated
by some power ok;.
Therefore we havey(K) < r(K) — 1. []

Since the knot group of a torus knot is generated by two eléneve have the
following corollary.

Corollary 2.1. Let K be a torus knot in § Then 4K) = 1.

Let E(K) be the exterior of a knoK. Then we haveH := Hi(E(K); Z) =~ Z
and H is generated by an element represented by a meridiak .ofLet E(K) be
the universal abelian covering d(K), and A = Z[t, t™1] the one-variable Laurent
polynomial ring overZ with a variablet where we take as a generator oH. Then
H’ := Hy(E(K); Z) has aA-module structure, and it is called thdexander module
The Nakanishi indexof K, denoted bym(K), is the minimal number of generators for
H’ as aA-module.

Ma and Qiu [10] showed the following.

Lemma 2.2. Let K be a knot in & Then we have (K) < a(K) < u(K).

The following is well-known.
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Lemma 2.3. Let K be a knot in & Then we have (K) — 1 < t(K).
By combining Theorem 1.1, Lemma 2.2 and 2.3, we have Coxolla2.

3. Equivalence of (1) and (2) in Theorem 1.3

Let K be a knot, andAk (t) the Alexander polynomial oK.

Lemma 3.1. For a knot K, the Nakanishi index () is one if and only ifAk (t)
is non-trivial and the Alexander module of K is isomorphicA®(Ak (t)) where(Ak (1))
is an ideal of A generated byAg (t).

Let Ap(t) (p > 3 is odd) be the Alexander polynomial of the (@-torus knot
T(2, p). Then we have

t*—-1)t—-1) tP+1 o
_ Pl P2 g1,
-DE-1  t+1 + +

(31 A=

Proof of equivalence of (1) and (2) in Theorem 1.3. Since thex&nder matrix

of Kpq is
Ap(t) O
(8" aw)

which is a presentation matrix of the Alexander module,
(3.2) A/(Ap(1)) & A/(Aq(1))

over A, it is easy to see than(Kpq) = 1 or 2. We may assumg > 0 because
M(Kp.q) = M(Kp,—q)-

Suppose gcdf, q) =d > 2. ThenAq(t) is a common divisor ofA,(t) and Aq(t).
By the elementary divisor theory, the Alexander matrix does reduce to a matrix
(Ap(t)Aq(t)) by elementary moves ovet, and we haven(Kp q) = 2.

Suppose gcdy, q) = 1. Let a continued fraction expansion qf p be

1
ﬂ =r1+
p 1
r, +
2 . 1
I
wherer; (i = 1,...,k) is a positive integer. Then we have a set of integers

{Qo, A1, ..., Ok, Ok+1} such thatg; 1 = qgiri +qi41 fori =1,...,k where 0< g1 < ¢,
Q=0,00=p, gk =1 andgk,1 = 0. We set

fs(t) — tsfl _ t572 S (—1)St + (_1)S+1
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for an integers > 0 where fi(t) = 1 and fy(t) = 0. There are elements af,
{ou(1), G=2(1), - .., Ok(t)}, such that

fCIi—l(t) = fqi (t)gl (t) + (_1)ri fQi+1(t) (I = 11 ce k)

We note that f,(t) = Aq(t) and fg,(t) = Ap(t). Then we can find two elements
u(t), v(t) € A such thatu(t)Ap(t) + v(t)Aq(t) = 1. Thus @Ap(t), Aq(t)) = A. By the
Chinese Remainder Theorem, the Alexander module in (3.2)is@snorphic to
A/(Ap(t)Aq(t)). Hencem(Kpq) =1 by Lemma 3.1. ]

4. Equivalence of (1) and (3) in Theorem 1.3

Let Ki (i =1, 2) be a knot, and5; := G(K;) the knot group ofK;. We take an
element ofG; (resp.G,) represented by a meridian &f; (resp.K;), and we denote
it by wy (resp.uz). We setK = K34 Ky and G = G(K). Then we have the following.

Lemma 4.1. (1) G = Gy Gy/((n1p,t)), where (nip,t) is a normal subgroup
of Gy x G, generated byuiu;™.
(2) G' = G| *G).

Lemma 4.1 can be proved by using van Kampen’s theorem (sear 21] for
the proof of (2)).

Since there are natural isomorphisms for both cases in Ledrbawe denote
them by

G = G1 % Go/((pnap; ")
and
G' = G} * Gj.
By Lemma 4.1, we have the following.
Lemma 4.2 ([10]). Let K; and K, be knots in & Then we have
maxa(Ky), a(K2)} = a(K1 £ Kz) = a(Kq) + a(Ky).

Let T(«, B) be the &, g)-torus knot where we assume<z <|g| and gcdg, g)=1.
Then its knot group is

G(T(x, ) = (x, y | x*y”),

andt = x”y° is represented by a meridian wheré — By = 1. We can find corres-
ponding loops in the exterior of («, B) to x andy respectively.
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Supposer =2 andg =2k + 1 (k> 1). Theny =1 ands = k+ 1. We present
G'(T(2, & + 1)) (k > 1) by Reidemeister—Schreier's method. We et xy<*1, g =
t (xtZ Ot and by =t (yt A" (i € Z). Then we rewritex?y?+1 and xy*t1t—1 by
a andb;.

W2y AHL (2L (= (@K 20 Ty 2t 1y = (2) - 2)p k2
(4.1) x (T H 2% - YAt Ay A
= Apak+ 14k 204k - - - Dgly,
XYLl — (2 L) @D yy2)p 2y
(4.2) 8 Ul (| e RN (S (I o
= aobpkt1Pok—1 - - - by.
Sincey = y~@+D+2k+1) — x2(x~1t)2 we have

(4.3) bo = xtx 1t = (xt** Yt H*x ) = apa ]
By (4.3), we haveb = ga~}, and substitute it to (4.1) and (4.2). Then we have

2. ,2k+1 -1 -1 -1
(4.4) X7y* Tt = oAk +184k+28 1 1 BukByi_q * - Ay T,

1,1 -1 -1 -1
(4.5) XYt = agax1aytank 18yt 5 - &dg .

HenceG'(T(2, Z + 1)) is generated bya (i € Z)}. We fix it as a set of gener-
ators. Then its relations are generated by conjugationdiefrighthand sides of both
(4.4) and (4.5). We set

Co = Bk 180k 285 3+ 80
andc; =t Jcot! (j € Z). Then the righthand side of (4.4) is
ao{(ok+1Cok+2820+1)Co}ag
and the righthand side of (4.5) &cia;*. Since (4.5) is conjugate to; as a word of
{a (i € Z)}, everyc; (j € Z) is trivial in G'(T(2, 2k+1)). Since (4.4) can be generated
by conjugations of; (j € Z), G'(T(2, &k + 1)) is presented as
(4.6) G(T2 x+1)=(a (icZ)|cj (] €z)).
We also denote (4.6) by
(4.7) G'(T(2, A+ 1)) = (@0 | (o =) @@y, - - ‘@)
By the similar way, we have

(4.8) G'(T(2, —(2k + 1)) = (@0 | axaycy - -~ 8 ao))
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wheret = x~1y**1 and g, =t~ (x"1t&+)ti,

Proof of equivalence of (1) and (3) in Theorem 1.3. If godf) > 2, then we
havea(K, ) = 2 by Corollary 1.2 and Section 3. Hence we suppose gog) = 1.
By Lemma 4.1 (2), (4.7) and (4.8), we have

(4.9) G'(Kpq) = (@0, 20 | @p-185"5 -+~ a7 'a0, 241255 -+ 21 20))

and we may assumg > 0.
We setw; =&z (i € Z), and denote a subgroup &f generated byw; (i € Z)}
normally by (w)) wherew = wq. Sincea = z (mod (w)}), we have

(4.10) ap1a,ty -8y ta = 2p1z,t, -z ' 2o =1 (mod (w)).
Let a continued fraction expansion qf p be

1
g:rl—|—
p

r, +

Mk

wherer; (i = 1,...,k — 1) is an even integer. Then we have a set of integers
{do, O1,.-., 0k, Ok+1} Such thatgi_; = qiri + g1 fori =1,...,k where 0< |¢i+1] < |G|,
JQo=0, 0L =P, gk = £1 andgk+1 = 0. Note thatg; (i =0,...,K) is an odd number.
We set

L — -1 —1 - _ 1 -1
0i = Zig|-1Zq|2" "4 200 Oi = Zg1fgl-2" Ay

o 1 1 1 1
i = (Z2q 11722 -2+ Zg 412012 -1Zal-2 "+ Z4%),

pi = (Zﬂcl;i |-1Z2g1-2 """ Zlq \+1Z|Ilil|)(z\q. |—1Z|Eil\—2 -+ Z,20)
and
& = sign@) - sign¢i) - sign@ +1) = sign(@i-1) - sign@+1)
fori =0,...,k,ando_1=0_1=p_1=p_1 =1
By the definition, we have the following:

(4.11) oii1 = (3 ptH)(t 2 oit?) - (TN pit¥)(of, ),
(4.12) Gioe = (At 25t - (T (@ 40",
(4.13) pi = (t71%oit )z

and

(4.14) 7 = (t 195t
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wheres; = [gi-a1| = 2jlqi| (] =1,...,ril/2), r{ =1ril/2,

; _ JOi+1 (ei = 1),
Ojy1 = thi+1l—lai+lt—\Qi+1\+1 (& =-1)
and
— _ Ei+l (Ei = 1)’
oi+l - t|q\+1|*1ai+lt*|qi+l‘+1 (gi = —1)

We need a key lemma for the proof.

Lemma 4.3. The following equations hold for+0,..., k—1.
(1) tToit! =0, tloit! =573, tTIpit) = gy, t71pit) =5 (mod (w)) (j € Z).
) o= 0", 70 = p""?5, (mod ((w)) where b = O.
(3) pi =0i0i, pi =0i0; (Mod ((w »)

Proof. We prove them by induction an We note that it is sufficient to show
only the casej = 1 for (1).

(i) The casei =0 and 1.

By (4.9) and (4.10), we havey = 1 ando; = 1 (mod ((w))). Then the first equa-
tion of (1) holds for the cases= 0 and 1. Sincev_; = 1 ando; =1 (mod (w))),
the first equation of (2) holds for the case= 0. Sinceog = 1, we have

1

g0 Zq 21Zy
L0243+ 7' 20) (2 ZZq a1z

—~

and

oot = (gl Zg—2 - ') (2Zg-124 - - 222, )
= {(z7h2-3" 2" 20)2q 2+ 25 ' 71}
X {(Zg2oZq-3- - 2y 20) ‘71, - 27y
= (25522(173 . Zflzo)(2q722¢3 e leal) s

Then the second equation of (1) holds for the case 0, and (3) holds for the case
i =0 by (4.13) and (4.14). Hence the third and the fourth equoatiof (1) hold for
the casd = 0.

By the similar way as the case= 0, we have the second equation of (1) for the
casei = 1. Then (3) holds for the case= 1 by (4.13) and (4.14). Hence (2) and the
third and the fourth equations of (1) hold for the case 1.

(i) The case <i <k-—1.

Suppose (1), (2) and (3) hold ifis replaced withi’ < i.
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Since (1) holds for the case-2, and (2) and (3) holds for the case 1, the first
and the second equations of (1) hold for the ciasklence (3) holds for the caseby
(4.13) and (4.14), and the third and the fourth equationslphpld for the caseé. By
(4.11), (4.12) and (1) for the cases-1 andi, (2) holds for the case. Therefore the
proof is completed. []

By Lemma 4.3 (1) and (2) for the cases= k—1 andk — 2, we havet oyt = oy
(mod (w))). Sinceoyx = zy, we havezy = z; (mod (w))) for every integerj andzy =1
(mod ((w)) by (4.9). Therefore we have'(Kyq) = (w)) anda(Kpq) = 1. []

REMARK 4.4. By (4.8), we hava(Kpq) = a(Kp_q). SinceT (2, p) is ambient
isotopic to—T(2, p), we havea(Kpq) = a(T(2, p) & (=T (2, q))).

Let K* be the mirror image of a kndf. For general cases, we raise the following
question.

QUESTION 4.5. LetK; and K, be knots inS®. Thena(K;1Ky) = a(K1# K3) =
a(Ky 8 (=K3))?

REMARK 4.6. F.H. Norwood [15] showed that if(K) = 2 for a knotK, then K
is a prime knot. Hence we havgK o) = 3, anda(Kpq) < r(Kpq)—1 if gcd(p, q) =
1. Norwood’s theorem deduces the statement thatKf) = 1, thenK is a prime knot.
Let K = jjn Kp,q be a knot which is a connected sum mfcopies of K, 4. Then it
has 2 prime factors and satisfies(K’) = a(K’) = n. By Scharlemann and Schultens’
result, we have(K’) = 2n. Thereforet(K’) —a(K’) can be arbitrary large.

For the corresponding question of Remark 4.6, see Quest®n5% and 5.7.

5. Final remarks

e We notice that tables in A. Kawauchi's book [6] includes manistakes. For
example, on the tables of the tunnel numbers, the book niidveaimoto, Sakuma and
Yokota’'s result [13] in which the tunnel numbers of prime tsap to ten crossings are
determined completely. For example, the set of prime knadtl the crossing number
eight and the tunnel number two in Theorem 2.6 of [13] is exped as

8, with ne[16, 18]

which should be read a8, 817, 818} (i.e., In this case, [16, 18] implies the set of
integers included by the closed interval from 16 to 18). Hesvehe book [6] read the
set as{8s, 815} (i.e., Only the end points are read). Corrections of theewldan be
found in [7], or a web page “KnotInfo” [1] maintained by J.Ch&and C. Livingston.
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e Let K be a knot inS?, and A(t) the Alexander matrix ofK. For a prime
number p, we denote theZ/pZ-dimension of the null space of\(—1) (mod p) by
dp(K). A.Ishii [3] definedd,(K) as (the dimension of the set g-colorings)-1, and
pointed out that,(K) < t(K) holds. Sincem(K) is the minimal size of the Alexander
matrix of K, it is easy to see that,(K) < m(K) holds and thatl,(K) < t(K) can be
deduced from Corollary 1.2. It may be interesting to stw)<) from a viewpoint
of quandle.

e T. Kanenobu [4] discusses additivity problem of th@knotting numberof
2-knots (cf. [2]). He defines thaveak unknotting numbewhich is determined from
the 2-knot group, and is a lower bound of the unknotting numbkence the unknot-
ting number can be studied by combinatorial group theakticethods. Our methods
are parallel to his methods.

e To determine the MQ index is difficult in general. K is a prime knot with
the crossing number up to nine other thag, 89 and %, thenm(K) = a(K) can be
determined by Corollary 1.2 and [1, 6, 8]. Since it is pointed in [10] thata(K) =0
implies K is trivial, and m(K) = 0 if and only if the Alexander polynomial oK is
trivial (cf. Lemma 3.1), there are infinitely many exampldsko satisfyingm(K) = 0
anda(K) > 1. For example, Kinoshita—Terasaka’s knot satisfies thelition. We raise
some questions about the MQ index.

QUESTION 5.1. Find examples oK satisfying 1< m(K) < a(K).

QUESTION 5.2. Characterize the knots wit(K) = 1.

This is a combinatorial group theoretical problem like “Giwerize normal sub-
groups of a given (knot) group generated normally by one efgn

For the additivity problem on the MQ index, we raise the foliogv questions.

QUESTION 5.3. Find a class of knots in which the MQ index is additive unde
connected sum.

We restrict Question 5.3.

QUESTION 5.4. For two prime non-fibered knoks; andK,, a(K£Kz) =a(Ky)+
a(Ky) holds?

For relatively coprimen odd numbersps, ..., pn, let K be a connected sum of
T(2, p1),..., T(2, pn).- By the argument in Section 3, we haw&K) = 1. In contrast
with this and related with Remark 4.6, we raise the followingestions.

QUESTION 5.5. LetK be a knot which is a connected sumrohon-trivial knots.
Thena(K) > n/2 holds?
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QUESTION 5.6. Let K be a knot which is a connected sum wfnon-fibered
knots. Thena(K) > n holds?

Related with fiberedness, we raise the following question.
QUESTION 5.7. LetK be a fibered knot. Thea(K) = m(K) holds?

Theorem 1.3 is a partial affirmative answer for the questigve note that both
Question 5.5 and 5.7 cannot be affirmative.
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