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Abstract
Under K.-T. Sturm’s formulation, we obtain a Gaussian ugpmind for tail prob-
ability of mean value of independent, identically disttibdl random variables with
values inR-trees and Hadamard manifolds.

1. Introduction and statement of the main result

The aim of this paper is to study the weak Law of Large NumbersdAT(0)-
space-valued stochastic processes (see Subsection 2thefadefinition of CAT(0)-
spaces).

Let N be a CAT(0)-space and( X, P) a probability space. Given a random vari-
able W: @ — N such that the push-forward measuMaP of P by W has the finite
moment of order 2, we define itsxpectationEp (W) by the barycenter of the meas-
ure W, P (the definition of the barycenter is in Subsection 2.1). In T8eorem 4.7],
K.-T. Sturm introduced a natural definition of mean valuengointsys, ..., yn in N,
precise definition). For an independent, identically iisted N-valued random vari-
ables )72, on the probability spac&, he obtained the weak Law of Large Numbers
proving the following inequality

N 2
@y [ o <% 3 ), EP(Y1)> 4P() = [ du(¥alw), B (W) 4P (o).
i=1,.,n

He also proved the strong Law of Large Numbers ([8, Theorem Broposition 6.6]).

Motivated by Sturm’s work, using the results of the theory @vi—Milman con-
centration of 1-Lipschitz maps obtained in [4, 5], we obté#lire following Gaussian
estimate.

Theorem 1.1. Let (Y;)72, be a sequence of independeidentically distributed
random variables on a probability spad€, X, P) with values in anR-tree T. We
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assume that the support of the meas(ye).P has bounded diameter D. Thefor
any r > 0, we have

P({wg

See Subsection 2.1 for definition B&-trees.
In the case wherd is an Hadamard manifold, we also obtain the following. For
any m e N, we put

1 < 2 1502
= , E > < A4/75,—nr</150D .
dT<n Z Yi(w), ]P(Yl)> _r}) =4e" e

i=1,.,n

(Mm+1)/(4m—2)
2

and

Am = el/(4m){1+ ﬁe(m+l)/(4m72)}_
Note that bothA,, and A, are bounded from above by universal constant O.

Theorem 1.2. Let (Y;)°, be a sequence of independeitentically distributed
random variables on a probability spad&2, =, P) with values in an m-dimensional
Hadamard manifold N. We assume that the support of the me@gy.P has bounded
diameter D. Thenfor any r > 0, we have

P({weQ dN(% 3 Yi(a))a]EIP(Yl)>Zr})
i=1,.,n

. _nr2 2 _nr2 2
< min{Aye "*/160°m R onr?/320%my

There are many other way to define a mean value of points in J@Apace (see
Remark 2.6). For example, in [2], A. Es-Sahib and H. Heinistroduced an another
notion of mean value and expectation. They obtained thegttaw of Large Numbers
under their definition. In this paper, we treat only Sturmosnfiulation.

2. Preliminaries

2.1. Basics of CAT(0)-spaces.In this subsection we explain several terminolo-
gies in geometry of CAT(0)-spaces. We refer to [8] for theadstof the results on
CAT(0)-spaces mentioned below.

Let (X, dx) be a metric space. A rectifiable curye [0, 1] — X is called ageo-
desicif its arclength coincides with the distanck(y(0), (1)) and it has a constant
speed, i.e., parameterized proportionally to the arclen@le say that a metric space is
a geodesic spacéd any two points are joined by a geodesic between them. If tany
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points are joined by a unique geodesic, then the space ist@did uniquely geodesic
A complete geodesic space is called a CAT(®spaceif we have

1\\? 1 1 1
dx (X, V(E)) < de(x, y)? + de(x, 2)? - de(y, 2)?

for any x, y,z € X and any geodesig: [0, 1] — X from y to z. For example, Hadamard
manifolds, Hilbert spaces, ariRl-trees are all CAT(0)-spaces. AR-tree is a complete
geodesic space such that the image of every simple path isnége of a geodesic.

It follows from the next theorem that CAT(0)-spaces are ualg geodesic.

Theorem 2.1 (cf. [8, Corollary 2.5]). Let N be aCAT(0)-space and/, n: [0, 1] —
N be two geodesics. Thefior any t € [0, 1], we have

dn(y (1), n()) = (1 —1) dn(r(0), n(0)) + t dn(y (1), n(1)).

Let N be a CAT(0)-space. We denote B?(N) the set of all Borel probability
measurev on N having the finite moment of order 2, i.e.,

f du(x, )2 du(y) < +o0
N

for some (hence allx € N. A point xo € N is called thebarycenterof a measure
v € P?(N) if xg is the unique minimizing point of the function

N> X > / dn (X, y)? du(y) € R.
N

We denote the poinky by b(v). It is well-known that every € P2(N) has the bary-
center ([8, Proposition 4.3]).
A simple variational argument implies the following lemma.

Lemma 2.2 (cf. [8, Proposition 5.4]). Let H be a Hilbert space. Theffior each
v € P?(H), we have

b(v) = /H y du(y).

Let (22, X, P) be a probability space and a CAT(0)-space. For aiN-valued ran-
dom variableW: @ — N satisfyingW,P € P2(N), we define itsexpectationEp(f) €
N by the pointb(W,P). By Lemma 2.2, in the case whei¢ is a Hilbert space, this
definition coincides with the classical one:

Ep(W) = /Q W(w) dP ().

The proof of the next lemma is easy, so we omit it.
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Lemma 2.3. Let N be aCAT(0)-space andv € P?(N). Then we have

dn(b(v), Suppv) < diam(Supp).

Theorem 2.4 (Variance inequality, cf. [8, Proposition 4.4])Let N be aCAT(0)-
space andv € P?(N). Then for any ze N, we have

/ (dn(z, X)2 — dn (b(v), )2} dv(x) = dn(z, b(v))>2.
N

We now explain the inductive mean value introduced by Sturi@j Definition 4.6].

DEFINITION 2.5 (Inductive mean value). Given a sequeng@’(; of points in a
uniquely geodesic spack¥, we define a new sequence of poistse X, n € N, by
induction as follows. We defing, := y; ands, := y(1/n), wherey: [0, 1] - X is the

and call it theinductive mean valuef the pointsys, ..., Y.

REMARK 2.6. (1) If the spaceX is a non-linear metric space, then the point
ample. Fori = 1, 2,3, letTi :={(i,r) | r €[0, +00)} be a copy of [0+0c0) equipped
with the usual Euclidean distance function. Tingod T is the metric space obtained
by gluing together all these spacés i = 1, 2, 3, at their origins with the intrinsic
distance function. Lets := (1, 1), ¥2 := (2, 1), andys := (3, 1). Then, the inductive
mean value of ordeys, y», y3 is the point (3, 13), whereas the one of ordex, ys, V>
is the point (2, 13).

(2) There are many other way to define a mean value of pgints., y, in a CAT(0)-
space (see [8, Remark 6.4]). For example, define a mean valuikeabarycenter of
these points. Observe that this definition does not dependrder of the points (and
so it is different from inductive mean value in general).

2.2. Invariants of mm-spaces and measures.In this subsection we define sev-
eral invariants of mm-spaces and measures, which are ndéedéwe proof of the main
theorems.

An mm-space X= (X, dx, ux) is a complete separable metric spade dx) with
a Borel probability measurgx. Let Y be a complete metric space and finite Borel
measure orY having separable support with the total measureFor anyx > 0, we
define thepartial diameterdiam(, m— «) of v as the infimum of the diameter o&f,
where Yy runs over all Borel subsets &f such thatv(Yp) > m—«. Let X be an mm-
space withmy := ux(X) andY a complete metric space. For ary> 0, we define
the observable diameteof X by

ObsDiamy (X; —«) := supdiam(f.(ux), mx —«) | f: X — Y is a 1-Lipschitz map
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The idea of the observable diameter comes from the quantunsttistical mechan-
ics, i.e., we think ofux as a state on a configuration spaXe and f is interpreted
as an observable, i.e., an observation device giving us igwalv(tomographic) image
f*(MX) onY.

Let X be an mm-space. Given any two positive numbersand «,, we define
the separation distanc&epX; 1, k2) = Seplux; k1, k2) of X as the supremum of the
numberdy (A1, A2), where A; and A, are Borel subsets oK such thatux (A1) > k1
and ux(Az) > k2, and we put

dx(A]_, A2) = inf{dx(Xl, X2) | X1 € A]_, Xo € Ag}
The next two lemmas are easy to prove.

Lemma 2.7 (cf. [6, Section %.30]). Let X and Y be two mm-spaces and X —
Y be anco-Lipschitz map such that,fux) = wy. Then for any«y, k» > 0, we have

SeplY: k1, k2) < a Sepl; k1, k2).

Lemma 2.8. Given two positive numbers and x, such thatx; > 1/2 and «, >
1/2, we have

Sepf; «1, k2) = 0.

Lemma 2.9 (cf. [6, Section %.33]). Let X be an mm-space. Theffor any
i, k' > 0 with k > «k’, we have

ObsDiam(X; —«’) > Sep; «, k).

See also [5, Lemma 2.5] for the proof of the above lemma.

Let N be a CAT(0)-space and € P?(N). Given anyx > 0, we define thecentral
radius CRadf, 1—«) as the infimum ofp > 0 such that(By(b(v), p)) > 1—«. Let X
be an mm-space and a CAT(0)-space such thaft,(.x) € P?(N) for any 1-Lipschitz
map f: X — N. For anyx > 0, we define

ObsCRag (X; —«) := supCRad(f.(ux), 1—«) | f: X = N is a 1-Lipschitz map

and call it theobservable central radiusf X.
From the definition, we immediately obtain the following lema.

Lemma 2.10 (cf. [6, Section %.31]). For any x > 0, we have

ObsDiang(X; —«) < 2 ObsCRagd(X; —«).
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Observable diameters, separation distances, observabteakradii are introduced
by Gromov in [6, Chapter 5 to capture the theory of the Lévy—Milman concentration
of 1-Lipschitz maps visually.

Given an mm-spac&, we define the concentration functioerk: (0, +00) — R of
X as the supremum afix(X \ A.r), where A runs over all Borel subsets of such
that ux(A) > 1/2 and A, is an openr-neighborhood ofA. Concentration functions
were introduced by D. Amir and V. Milman in [1].

3. Proof of the main theorem

Lemma 3.1. Let N be aCAT(0)-space. Thenfor any ne N, the map

1
31:N®”9(x1,x2,...,xn)r—>ﬁl2 X, € N

is (1/n)-Lipschitz with respect to the'4distance function on the product space®N

Proof. Assuming that the mag_; is 1/(n—1)-Lipschitz, by Theorem 2.1, we have
dn (S ()21, Sh((W)IZ0)
1 1
< (13 u(sralO=D), Sa =) + 3 it )

n-1
< (1— E)L > i, 9) + =G, v
i=1

n/n-1%
1 n
== dn(xi, %)
n -
i=1
This completes the proof. O
To prove Theorem 1.1, we need the following two theorems.
Theorem 3.2 (cf. [3, Lemma 5.5]). Let v be a Borel probability measure on an

R-tree such thatv € P?(T). Then there exists al-Lipschitz functiong,: T — R
such that

CRadg, 1—«) < CRad(f,):(v), 1— k) + Sep(v; % g)
+ Sef{ (0):00: 3. 5 ) + Sep(). (01—, 1)

for any x > 0.
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Theorem 3.3 (cf. [7, Corollary 1.17]). Let X= X;®---® X, be a product mm-
space of mm-spaces; Mith finite diameter p, i = 1,...,n, equipped with the product
probability measurgsy := ux, ®- - -®uux, and the F-distance function@:= Y1, dx.
Then for any 1-Lipschitz function f X — R and any r> 0, we have

31 px((x € X | [f(x) —E, ()] = r}) < 26772,
where ¥ := Y | D2. Moreovey we have
3.2) ax(r) < e—r2/8D2_

Proof of Theorem 1.1. Les,: T®" — T be a map which sends every point in
T®" to its inductive mean value. Putting:= (Y.).P, we first prove the following.
Claim 3.4. We have
VE({x € T | dr (sn(X), Eyen(Sn)) = 1) < de /7507,

Proof. Since the metric spacé& ,(ndr) is an R-tree, by virtue of Theorem 3.2,
there exists a 1-Lipschitz functiop,: (T, ndr) — R such that

n CRad(6.).(v®"), 1 — «)

< CRad(gn 0 ). (v®"), 1— k) + 1 Sep((sn)*(vm): s 5)

4 Sep((son o). 3, 5) - Sep(en 0 5, (V") 1=k, 1= )

for any x > 0. By Lemma 3.1, the functio, o s,: (T®", d1) — R is 1-Lipschitz.
Combining Lemma 2.7 with Lemmas 2.8, 2.9, and 2.10, for any’ > 0 such that
k" <Kk < 1/2, we hence have

n CRad(6.).(v®"), 1—«)

< CRad((n 0§, (v*"), 1— k) +n Sep((sn)*(vm); 1 E)

3’ 2
’ 3, 2

=< ObSCRaﬁ((T®”, d|1, l)®n); —K) +2 Se[(])®n; g, %)
< ObsCRag((T®", di1, v®"); —«)

+ 2 ObsDiam ((T®“, dpz, V®M); —%)

< 50bsCRag ((T®", ds, V&) —%)
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According to the inequality (3.1), we thus get

n CRad(6,).(v®"), 1—«) < 5D,/2nlog i,
K

Letting k" — « yields that

(3.3) CRad(6.).(v®"), 1— k) < 5D,/§ log g

for any k € (0, 1/2). Givenk > 1/2, taking an arbitrarx’ € (0, 1/2), we also estimate
CRad(6,).(v®"), 1—«) < CRad(£,).(v®"), 1—«’)
/2 4
< — —
<5D - log p
_ 5p Y109/K) 2,

4
Jlog@g Vn 9k
4
K

SSDM g|0 —

log 4 n

Letting k" — 1/2, we hence get

(3.4) CRad(,).(v®"), 1—«) < 5D,/§ log g.

The above two inequalities (3.3) and (3.4) imply the claim. ]
Put a, := dr(E,= (), b(v)). By Sturm’s inequality (1.1), we have
1
/ dr (sn(X), b(1))? dv®"(x) < - / dr(x, b(v))? dv(x).
Ten T

Lemma 2.3 together with Theorem 2.4 thus implies that
4D?

= [ et bW 00 < o [ drix bO)0 < 1

For anyr > a,, by using Claim 3.4, we therefore obtain

]P’({weQ dT(% i Yi(w)-]EP(Yl))ZF})

i=1,..,n
=v8"({x € T®" | dr(sn(x), b(v)) = r})
< v¥({x € T®" [ dr(sa(X), Even(sn)) = T — an}))
< 4e—n(r—an)2/75D2

< Agha/T5D2 g—nr?/150D2

2 2
< 4e/75gNr?/15007
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If r <a,, then we have

]P’({a)eQ dT(%. i Yi(w)vEP(Yl)) Zr}>

< @a&/1500% o Ng/150D0° _ o2/75g-Nr*/1500% _ ped/75g-nr?/150D7

Combining these two inequalities completes the proof ofttrerem. []

Theorem 1.2 follows from the same proof of Theorem 1.1 togrethith the in-
equality (3.2) and the following theorem. We shall considarmm-space satisfying

(3.5) ax(r) < Cxe &'

for some positive constants, Cx > 0 and anyr > 0. For such an mm-spaceé and
m e N, we put

ﬁe(m+ 1)/(4m-2)

5 max(e /2, 2Cy e’}

Am,X =1+

and

Am x =1+ ﬁCxe(m+l)/(4m_2).

Theorem 3.5 (cf. [4, Theorem 1.1]). Let an mm-space X satisfi€3.5), N be an
m-dimensional Hadamard manifgldnd f: X — N a 1-Lipschitz map. Therfor any
r > 0, we have

px({x € X | dy(f(X), B, () = 1}) < min{Ay, xe ©/@Mr* A e=(ex/@6my
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