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Abstract

In the paper [5] we obtained explicit examples of Moishezoistiw spaces of
some compact self-dual four-manifolds admitting a nowidtiKilling field, and also
determined their moduli space. In this note we investigaieitwistor spaces asso-
ciated to these twistor spaces. We determine their strictminitwistor lines and
also their moduli space, by using a double covering strectirthe twistor spaces.
In particular, we find that these minitwistor spaces havéedifit properties in many
respects, compared to known examples of minitwistor spaEspecially, we show
that the moduli space of the minitwistor spaces is identifiéth the configuration
space of different 4 points on a circle divided by the stadd@8L(2,R)-action.

1. Introduction

In [6] P.E. Jones and K.P. Tod established a reduction tHeoiself-dual 4-manifolds
with a non-trivial Killing field. We briefly recall their rests. Suppose that a self-dual
metric g on a 4-manifoldM admits a free isometric U(1)-action. Then the quotient
3-manifold M /U(1) is naturally equipped with so called \&ey! structure which is a
pair of a conformal structure (associated to the naturahRmian metric orM /U(1))
and an affine connection compatible with the conformal stinec As a consequence
of the self-duality ofg, a curvature of the affine connection satisfies a kind of Einst
condition and the pair becomé&snstein—Weyl structuren the sense of N.J. Hitchin [3].
Moreover, the function orM/U(1) obtained by associating the length of each U(1)-
orbits (with respect tqy) satisfies certain linear equation, which is callednanopole
equation Thus, the Einstein—Weyl condition and the monopole equatan be thought
as a non-linear and linear part of the self-duality equatespectively. This construc-
tion is invertible. Namely, if a 3-manifoldN is equipped with an Einstein—Weyl struc-
ture, and ifM — N is a principal U(1)-bundle equipped with a (positive) smintof
the monopole equation, a conformal structure Mnis naturally constructed and it be-
comes self-dual. One can also refer to [8] for the details.

The last inversion of the reduction theory already produeestrivial self-dual met-
rics even if one takes the flat Euclidean 3-space (with tharabhEinstein—Weyl struc-
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ture) and if one allows a certain kind of singularities foe th(1)-bundle. Namely, the
Eguchi—Hanson metric [1] on the cotangent bundleC& and the Gibbons—Hawking
metrics [2] on the minimal resolution @?/T", wherel is a cyclic subgroup of SU(2),
are obtained in this way. Later, C. LeBrun [7] successfultyplaes the inversion con-
struction for the hyperbolic 3-space (again with the ndttiastein—-Weyl structure) to
realize explicit self-dual metrics omCP?, the connected sum of copies of the complex
projective plane.

This reduction theory for self-dual metrics can be tramslainto that of twistor
spaces [6] (see also [7, 8]). In particular, taking the cqmitiof a self-dual manifold
by a U(1)-action corresponds to taking the quotient of theoeisited twistor space by
the natural holomorphi€*-action. Becaus€*-action can become pathological in gen-
eral as seen in [4, 84], the quotient space of @ieaction does not necessarily possess
a structure of a complex surface. But if the twistor space idshtzon for example,
such a pathology does not occur and the quotient space canahastural structure of
a complex surface (with singularities in general). In thase, the quotient complex sur-
face is called aminitwistor space For the Gibbons—Hawking metrics and the LeBrun
metrics mentioned above, this is indeed the case; the imguttinitwistor spaces are
the total space of the holomorphic tangent bundleCét for the Gibbons—Hawking
metrics, and the produd@P! x CP?* for the LeBrun metrics. Here, an important feature
in these two basic examples is that, while the self-dual ggrerkahler) structure actu-
ally deforms, the corresponding Einstein—Weyl 3-manioland hence their minitwistor
spaces, do not deform.

In the paper [5] the author explicitly constructed a familfy tavistor spaces on
3CP? parametrized by a 3-dimensional connected space. Thespomding self-dual
metrics have a non-trivial U(1)-action but are not confdrrtta the LeBrun metrics.
Moreover, the constructed family is complete in the sensé thra 3CP?, every non-
LeBrun self-dual metric with U(1)-action is a member of tlignily, at least if the
self-dual metric is supposed to have a positive scalar tumya The purpose of this
note is to investigate minitwistor spaces of these exptigistor spaces of GP?. Our
first result is a determination of the structure of these twisior spaces; namely we
show that the minitwistor spaces have a natural structusee lmanched double covering
of ¥,, the Hirzebruch surface of degree 2 with the2f-section contracted, and that
the branching divisor is a smooth anticanonical curve wligchn elliptic curve disjoint
from the node ofE, (Theorem 2.3). Briefly speaking this is a reflection of theppro
erty that our twistor spaces ofCP? have a structure of generically 2 to 1 covering
of CP® branched along a singular quartic surface that is bimerphiorto an elliptic
ruled surface. We will see that the branch elliptic curvehs tinitwistor space is iso-
morphic to the base elliptic curve of the branch quartic azef We also show that the
isomorphism class of the branch elliptic curve uniquelyed®aines the complex struc-
ture of the minitwistor space, and that the moduli space ofrounitwistor spaces can
be identified with the configuration space of different 4 p®ion RP! ~ S' modulo the
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natural PSL(2R)-action (Theorem 2.7). In particular, our minitwistor spa constitute
a 1-dimensional moduli space, which contrasts with the cdghe Gibbons—Hawking
metrics and the LeBrun metrics where the moduli spaces amdespoints.

When investigating a twistor space, twistor lines are ofdamental significance.
The images of twistor lines into minitwistor space (by theotignt map) are import-
ant as well and are calledhinitwistor lines In Section 3, we investigate minitwistor
lines in our minitwistor spaces. We prove that general miistior line is a nodal anti-
canonical curve of the minitwistor space, and that the matworphism from a twistor
line to the minitwistor line gives the normalization of thedal curve. Thus the situ-
ation is quite different from the case of the Gibbons—Hawgkinetrics and the LeBrun
metrics, since in these two cases, general minitwistorsliae smooth rational curves
which are biholomorphic images of twistor lines. Geomellic the appearance of the
singularity of our minitwistor lines corresponds to thetfdleat for a general twistor
line, there exists a uniqu€*-orbit intersecting the twistor linéwice Finally we give
an account why such a situation occurs in our (mini)twistzaices (Lemma 3.3), com-
paring with that of LeBrun in [7].

The author would like to express his gratitude to ProfesShis Nayatani for ask-
ing him what is the minitwistor space (or the Einstein—Wenifiold) of the twistor
spaces in [5], and also to Professor Takashi Nitta for usefumversations. He also
thanks the referee for careful reading. Finally, he wouke lio thank Professor Akira
Fujiki for his kind advise.

NoOTATIONS. If Z is a twistor space of a self-dual 4-manifold, denotes the ca-
nonical square root of the anticanonical line bundl& ;. Tensor product of line bun-
dles is denoted additively.

2. The structure of minitwistor spaces and their moduli spae

First we recall the main results of [5] which determine gladtaucture of the moduli
space of self-dual metrics orC®? = CP? ¢ CP? ¢ CP? satisfying particular conditions.

Proposition 2.1 ([5]). Let g be a self-dual metric 08CP? satisfying the follow-
ing three properties
(i) the scalar curvature of g is positive
(i) g admits a non-zero Kkilling field
(i) g is not conformal to the self-dual metrics constructed bBrue [7].
Let Z be the twistor space dfy]. Then there is a commutative diagram of holo-
morphic maps

Z—M>Zo

) o| A

cP?
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where ® is a map associated to a linear systém| on Z, ®q: Zog — CP? is a double
covering whose branch locus is a quartic surface B with cxdinnodes  is a small
resolution of the corresponding ordinary nodes qf. Zoreover the defining equation
of B is given by

2 {y2Ys + Q(Yo, Y)}* — Yoy1(Yo + y1)(Yo — ays) = O,

where (Yo, V1, Y2, y3) are homogenous coordinates @P°, a is a positive real number
and Q(yo, Y1) is a homogeneous quadratic polynomial with real coeffigesdtisfying
the following condition

(¥) as an equation orCP! = {(yp, y1)}, the quartic equation

Q(Yo, ¥1)* — Yoya(Yo + Y1)(Yo — ays) = 0

has a unique real double root.

Converselyfor any quartic surfacg2) with Q and a> 0 satisfying the condition
(%), the double covering oEP® branched along B admits a small resolution such that
the resulting manifold is a twistor space of a self-dual ricetm 3CP? satisfying (i),

(i) and (iii) .

Apriori the real double root in the conditior) belongs to one of the two intervals
(=1, 0) and &, oo) on which the quarticyoyi(Yo + Y1)(Yo — ay1) is positive. But as
showed in [5, 85.1] we can always suppose that the doublelreloings to the latter
interval @, oo) by applying a real projective transformation with respeet(yo, yi),
and in the following we always suppose this. We also recait the quartic surfac®
defined by (2) satisfying the conditior) has exactly three singular points

Poo = (0. 0, 0| 1)1 Poo = (01 01 1! 0)5 PO = ()“O' 1' 0' 0)’

where {0, 1) € CP! is the real double root (so thap > a by the above normalization).

The killing field appeared in Proposition 2.1 generates ametric U(1)-action of
the self-dual metric. This U(1)-action naturally lifts amives a holomorphic U(1)-
action on the twistor spac&. Taking the complexification of the last U(1)-action,
we obtain a holomorphic*-action onZ. This C*-action then descends oBP® =
PHO(F)VY, which was shown to be of the form [5, Proposition 2.1]

(3) (Yo, Y1, Y2, ¥3) = (Yo, Y1, tyz, t71ys), teC*.

Of course thisC*-action leaves the quartic surfa®& invariant. Note that any orbit of
this action is contained in a plane belonging to the petil y1), and that the closure
of general orbits is a conic in these planes. On the other hdagdanti-holomorphic
involution of CP® naturally induced from the real structure @nis explicitly given by,
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again as shown in [5, Proposition 2.1],

(4) (yO! Y1, Y2, y3) = (VOI Vl! y31 VZ)!

where we are using the homogeneous coordinate in Propog&tio Of course, as long
ast € U(1), the U(1)-action (3) and the real structure (4) commute

With these preliminary results, we begin to investigatetigun spaces of the twistor
spaces with respect to & -action. First we consider a quotient space of @feaction
(3) on CP3. The rational mapy : CP* — CP? defined by

(5) ‘(//: (y01 Y1, Y2, y3) = (ZOI 21, 22, 23) = (yg’ y]2.' YoY1, y2Y3),

which is the rational map associated to a linear system fdrineC*-invariant quad-
ratic polynomials, can be regarded as a quotient map ofCthaction, since general
fibers of the map is the closure of general orbits. The ind@teacy locus ofyr con-
sists of the two pointsP,, and P,,, which constitute a conjugate pair of points. The
image of is easily seen to be a quadratic cang:= {zoz; = z3} which has (0,0,0, 1)
as the vertex. Of cours&;, \ {(0, 0, 0, 1) is isomorphic to the total space @f(2),
where the isomorphism is explicitly given by

6 T\(0,0,0,1) 5 (20, 21, 22, 25) > (U, £) = (Z 2) c 0(2),

whereu is an affine coordinate on the base space of the buag®) and¢ is a fiber
coordinate valid there. Then by (2), (3), (5) and (6), it isriediate to see the following

Lemma 2.2. Let ¢ be as in(5) and B the quartic surface ifProposition 2.1
Then under the isomorphis(®), the image# := (B) is explicitly given by

(7) {¢ 4+ Q(u, )} —u(u+ 1)u—a) =0.

It is obvious from (7) that the projectios® — CP* (given by @, ¢) — u) is a
double covering which has = 0, —1, a as simple branch points. Further, since (7) is
an equation taking values in the line bundi4), u = co is also a simple branched
point. Also it is obvious that these are all branch points.erfore, 2 is a smooth
elliptic curve whose complex structure is determinedabyAlso we note thatZ does
not go through the node af,, and it belongs to the anticanonical class Bp

The following result describes a structure of quotient sgaef the twistor spaces
in Proposition 2.1 with respect to thHe*-action:
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Theorem 2.3. Letg, Z, ® and B as inProposition 2.Jand v/, £ as inLemma 2.2
Then there exists a commutative diagram of meromorphic maps

71—
® l |
CP—— T,

where .7 is a normal rational surfaceW is a surjective rational map¢ is a finite
double covering map whose branch locus is the cu#e Moreover all fibers of W
are C*-invariant and general fibers are the closures of orbits af €i*-actions on Z.

By the last property,7 can be regarded as a quotient space ofGhection onZ.
Hence we call the normal rational surfacé as a minitwistor space associated to the
twistor space in Proposition 2.1.

Proof of Theorem 2.3. Since¢s has indeterminacy aP,, and P,,, the compos-
ition ¥ o ® also has indeterminacy alon§~(P,) and ®~*(P,,). As seen in [5],
both of the last two sets are chains of 3 smooth rational suinveZ. Let Z' —

Z be a sequence of blow-ups which resolves the indetermin&dpeorational map
¥ o ®. We may suppose that the image of the exceptional divisascantained in
& 1(Py) U ® L(Py). Let ®y: Zg — CP® be the double covering whose branchBs
as before. Ifx € T, \ 4, theny~1(x) is the closure of a&C*-invariant conics which
are not contained iB. Hence®y(y~1(x)) splits into the closure of two orbits of the
C*-action onZ,. On the other hand, ik € %, then¥~1(x) is a C*-invariant conic
contained inB. Hence ®5(y~1(x)) is biholomorphic to the conigs~1(x). Therefore
if 2/ - .7 — %, is a Stein factorization of the morphis#l — X,, the latter7 — %,

is a double covering whose branch is exacy Hence we obtained the commutative
diagram (8). The statement about fibers bfis obvious from the above argument.
Further, the singular locus of is exactly the pre-image of the node &% since the
branch curveZ does not go through the node. Henée is normal. Finally, the ra-
tionality of .7 is an immediate consequence of the fact that the pre-imaigée dines
on the coneXx, gives a pencil of rational curves off. ]

Since theC*-action on the twistor space is compatible with the realcstne, the
minitwistor spaces also have real structures. It is explicdescribed as follows:

Proposition 2.4. Let .7 be the minitwistor space iTheorem 2.3and %4 C %,
the branch elliptic curve of the double coverigg 7 — X,. Consider a real structure
on X, given by

9) U, &)= (U, ¢),



NEwW EXAMPLES OF COMPACT MINITWISTOR SPACES 723

on the complement'(2) of the node of£,. Then% is invariant under this real struc-
ture, and the real structure on7 covers the real structurg9) through the double
covering 7 — X.

Proposition 2.4 can be readily deduced by using (4)—(6) aadomit the proof.
Another realization of the minitwistor spacg is given by the following

Proposition 2.5. Let .7 be the minitwistor space iTheorem 2.3 Then as a
complex surfage.Z is obtained fromCP! x CP! in the following way Let p: CP! x
CP! — CP! be (any) one of the projectionsand A and A any two different sections
of p whose self-intersection numbers are zero. Lodamoints on A U A, in such a
way that2 points are on A and the remainin@ points are on A, and that the image
of the 4 points under p is equivalent tb-1, 0,00, a} under a projective transformation
of CPL. Next blowupCP! x CP! at these4 points. Then the strict transforms of; A
and A become(—2)-curves. Finally blow down these two curyés obtain a surface
having two ordinary nodes. This surface is biholomorphidhte minitwistor space7 .

Proof. Letv: £, — %, be the minimal resolution and writ&’ = v—(%) which
is isomorphic to%. Let ' — X, be the double covering branched aloggj. Then
7" is the minimal resolution of7. Consider the compositio#’ — ¥, — CP', where
¥, — CP! is a projection of a ruling. Sincg?’ is 2 to 1 overCP?, general fiber of the
above composition map i€P. Further, sinceZ’ has 4 branched points, the compos-
ition map has precisely 4 singular fibers, all of which are fad) curves intersecting
transversally. If we choose four-()-curves among eight ones in such a way that just
two of them intersect one of the exceptional curves of theiimahresolution.7’ — 7,
and that the other two of them intersect another exceptionale of 7' — 7, and
if we blow them down, then we obtain a (relatively) minimalrfage which must be
CP! x CPL. This implies the claim of the proposition. O

We note that although Proposition 2.5 gives an explicit tmietion of the minitwistor
space as a complex surface, its real structure can nevertdaed through this construc-
tion. More precisely, the blowing-dowf” — CP* x CP* in the above proof does not pre-
serve the real structure. This can be seen, by going baclettwistor space, as follows.
Consider singular fibers o’ — CP! in the above proof, which are pairs 6£])-curves
intersecting transversally at a point. Then each of thesgutar fibers is the image of a
reducible member of the linear systé@* ¢ (1)| = |F|, whered: Z — CP? is the gener-
ically 2 to 1 covering as in Proposition 2.1. Namely, thel}-curves are the images of the
irreducible components, by the quotient map. Since thegteatture ofZ exchanges the
irreducible components, the twe-{)-curves in.7’' must be a conjugate pair. Since the
blowing-down.Z’ — CP! x CP! contracts just one of the(L)-curves for each reducible
fiber, it cannot preserve the real structure.
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The complex structure of our twistor spaces in Propositidh &pends not only
on a > 0 but also on the coefficients d(yo, y1) in the defining equation (2) of the
branch quartic surfac8. We next show that the complex structure of the minitwistor
spaces does not depend Qiyo, y1). Namely we show the following

Proposition 2.6. Let .7 be the minitwistor space iftheorem 2.3 Then the com-
plex structure of7 is uniquely determined by a 0 in the equation(2). In other words
the complex structure a¥” does not depend on the quadratic polynomidly§y:) in (2).

Proof. Fixa > 0 and letQ; = Qi(Yo, y1) and Q2 = Qz(Yo, Y1) be two real homo-
geneous quadratic polynomials satisfying the conditighif Proposition 2.1. LetB;
and B, be the quartic surfaces determined l§y,(a) and @3, a) by the equation (2)
respectively. Then we can writ®;(u, 1)— Qx(u, 1) = dy+ dyu +dyu? for do, di,d» € R.
Using thesedo, di, d, we consider a map

(10) U, 2) — (U, ¢ + do + dhu + dou?).

Viewing (u, ¢) as a holomorphic coordinate on the total space&/(?) as in the proof
of Theorem 2.3, this map is easily seen to be a holomorphionaarphism of the
Hirzebruch surfacex,. Moreover, by (7), the automorphism (10) map% to %,
where %, and %, are the images oB; and B, under the quotient map frorgP?
to ¥,. Thus we have concretely obtained an isomorphism of the @&ir %4;) and
(X2, #5). Thus the double cove; and .7, whose branches argg, and %, re-
spectively are mutually biholomorphic, as desired. ]

Note that the isomorphism (10) between the paks, (%) and (&, %>) given in
the above proof commutes with the real structwies) — (T, ¢), sincedg, d; and d,
in (10) are real. Thus the minitwistor spacg is uniquely determined by not only
as a complex surface but also as a complex surface with nesituste.

By Proposition 2.6 we can determine the moduli space of ounitwistor spaces.
Let .# be the moduli space of isomorphism classes of twistor spacesoposition 2.1.
As showed in [5],.# is naturally identified withR3/G, whereG is a reflection ofR®
having 2-dimensional fixed locus. Let” be the moduli space of isomorphism classes
of the associated minitwistor spaces, where the isomarpligsrequired to commute
with the real structures. We have a natural surjective mép—~ .4~ sending each iso-
morphism class of a twistor spa@eto the isomorphism class of minitwistor spage
Then it is immediate from Proposition 2.6 to obtain the faifiog

Theorem 2.7. Let.#" be the moduli space of isomorphism classes of our minitwisto
spaces as explained above. Then is naturally identified with the configuration space
of different4 points on a circle divided by the usuaPSL(2,R)-action on the circle.
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In particular our minitwistor space has a non-trivial madwhich contrasts with
the known examples such as Gibbons—Hawking'’s [2] and LeBruh 8]; in these two
cases the minitwistor spaces are the total spac€(@) and a quadratic surfad@P! x
CP! respectively and therefore do not deform, although theespnding self-dual (or
hyperkéhler) metrics on 4-manifolds constitute non-#fivinoduli spaces.

3. Description of minitwistor lines

As showed in the previous section, our minitwistor spateis a rational surface
with two ordinary double points. In this section we inveatiy minitwistor lines in7;
namely the images of twistor lines by the (rational) qudtiemp ¥: Z — 7. We
investigate these minitwistor lines by using the diagram (8

A basic fact about twistor lines in our twistor spaZewas that, the image of
general twistor line by the ma@: Z — CP® is a very special kind of conic, called
touching coni¢ meaning that the conic is tangent to the branch quartiasei at any
intersection points which consist of 4 points in general Q&finition 3.1 and Propos-
ition 3.2]. Hence we first study the images of these touchiogias by the (rational)
quotient mapy : CP® — =,:

Lemma 3.1. Lety: CP® — %, be as inLemma 2.2 Then the image of general
conics inCP® under ¢ are anticanonical curves o, with a unique node. Further
this is true even for general touching conics of &d their images are nodal anti-
canonical curves which touch the smooth anticanonical eus at 4 points.

Proof. Since any conic ii€P? is contained in some plane, we first study the re-
striction of ¥ onto a general plane. Since general orbits of Gtiraction (3) are con-
ics, the restrictiony |y is 2 to 1 for general planél. Further, by elementary calcula-
tions, we can readily see that|y can be identified with a quotient map éf = CP?
by a reflection with respect to some line K, where the line is exactly the set of
tangents points oC*-orbits. Further, the unique isolated fixed point of the w&fts
is mapped to the node af,.

In the following we say that a conic in a plarté¢ is symmetricif it is invariant
under the reflection. Then in the complete linear systért2)| on H, symmetric con-
ics in H form a codimension 2 linear subsystem. It is easily seen ithatconic C
is not symmetric, its image is an anticanonical curveds which has a unique node
corresponding to the pair of intersection pointsfand its image inH by the reflec-
tion which are not on the line. (In contrast, the image of sytrio conic becomes
linearly equivalent to the branch curve of the mdp— X,.) Thus we have seen that
the image of a conicC by v is a nodal anticanonical curve iB,, as long asC is
not symmetric. This shows the first claim of the proposition.

In order to show that the claim is still true for general tomchconics of B, it
suffices to show that in general for a smooth quaBj¢ on a planeH and for any one
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of the 63 one-dimensional families of touching conicsByf (cf. [5, Proposition 3.10]),
there exists no real line il for which all of the touching conics in the family become
symmetric. In the sequel we prove this by contradiction.

Let ¥ be any one of the families of touching conics Bf, and suppose that there
is a linel in H for which all members of¢ are symmetric. Letb: Sy — H be the
double covering whose branch By, and putA := &,!(1). Since®},0(1) ~ —Ksg,,
the curve A is an anticanonical curve dy. By [5, Lemma 3.9 (ii)] we know that
there are precisely 6 reducible memberséf all of which are of course pairs of bi-
tangents. Since these reducible members also must be syimmvih respect ta by
the assumption, the intersection points of each pair ohbgiats must belong th

For any irreducible membeC € ¢, the inverse imag@!(C) splits into a sum of
two smooth rational curveB; and F, satisfyingFZ = F2 =0 on S ([5, Lemma 3.8)).
On the curvesH; and F,, @y is isomorphic to their images. Ldt be any one offF;
and F, and consider the penc|F|. Let h: S4 — CP! be the morphism associated
to |F|. In the next paragraph we show that the restrictivp: A — CP! is a double
covering ramified at least 6 points, and that all these raatifios are simple (namely
the map can locally be written as— z? in a neighborhood of the ramification point.)

For this, letl; + 1, be any reducible member &, so thatl; andl, are bitangents
of By. Then the inverse imag®yl(l;) is a sum of two {1)-curves f; and f; inter-
secting transversally at two points (over the two tangeftph Similarly we can write
o7l(2) = fo + f;. We may suppose that; and f, intersect transversally. Thefy
and f; intersect transversally, anty N f;, = f; N f, = @. Sincel is supposed to pass
the intersection point; N I,, the curve A passes the two point§ N f, and f{ N f,.
Moreover, sincedy is locally biholomorphic in a neighborhood of these two pein
(sincely Ny ¢ By), all the intersection ofA and the four £1)-curves f;, f], fp, f;
are transversal. Furthermore, eithar+ f, € |F| or f{ + f; € |F| holds by the choice
of F. We may suppose the former holds. Then by what we argued snpéuiagraph,
on the surfacesy, we have

F-A=(fi+f)-A=fi- A+ fL,-A=1+1=2,

This means that the restrictidn » is a double covering and the intersection paff
(f1 U fp) is a simple ramification point oh|s. Therefore, since the family’ has
exactly 6 reducible members, and since the above argumerkswor arbitrary such
member, we conclude that the double covering rhgp has at least 6 simple ramifi-
cation points.

Now since the curveA is known to be irreducible (and reduced), its geometric
genus makes sense. Then as the double covéiindnas at least 6 ramification points,
the geometric genus oA is at least two. This is a contradiction since the geometric
genus ofA is at most one as it is an anticanonical curve of a smooth aaxmplirface.
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Thus we have shown that there exists no lineHbrwith respect to which all members
of € are symmetric.

Combined with what we have proved in the first paragraph &f pinoof, it follows
that ¥ (C) is an anticanonical curve having a unique node, for a géneuahing conic
C. Sincey |y is locally isomorphic outside the symmetric line &, it follows that
¥ (C) still touches the image” = (B) at four points. Thus we have proved all the
claims of the proposition. ]

Using Lemma 3.1 we show the following

Proposition 3.2. Let ¥: Z — .7 be the(rational) quotient map by th&€*-action
on Z as inTheorem 2.3 Then the image of a general twistor line in Z underis a
real anticanonical curve of7 which has a unique node.

In particular, general minitwistor lines in our minitwistespace.7 are not smooth.
This contrasts with the case for LeBrun’s metrics, since @Bitun twistor spaces, since
in LeBrun’s case, minitwistor space BP! x CP! and a general minitwistor line is a
real (irreducible) curve of bidegree (1, 1), so that alwags-singular.

Proof of Proposition 3.2. As is already mention€= &(L) is a touching conic
of B for a general twistor lineL. By Lemma 3.1 the imagé := y(C) is a nodal
anticanonical curve of,. Then by the diagram (8) the minitwistor lin& := (L)
is an irreducible component @f 1(I"). As before letu: 7' — .7 andv: X, — X, be
the minimal resolutions of7 and X, respectively. Lep’: 7' — X, be the natural lift
of ¢. Define a line inCP® by |, := {yo = y; = 0} in the coordinate of Proposition 2.1.
Thenl,, is exactly the fiber ofy: CP* — %, over the node. The branch locus ¢f is
a smooth anticanonical curv® = v=1(%). If L is chosen so as to satisfy(L)Nl,, =
@, thenT = W(d(L)) does not go through the node. HenEe:= v=(T") is a nodal
anticanonical curve o, which is tangent to the branch curng@’ at 4 points.

To prove the proposition, we have to look at irreducible comgnts of the curve
(#)7HT). It is immediate to see thap()*(—Ks,) ~ —2K ». Moreover, sincel” is
tangent to the branch curv&’ at every intersection pointsg/()~1(I') splits into two
irreducible curves?; and.#,. There are two possible situations:

(@) both.#; and.¥, are smooth and the morphismg,; — I’ and ¥, — I’ (which
are the restrictions op’) are the normalizations of the nodal curl’& or

(b) both.#; and.¥> remain nodal curves and the morphisi#§ — I’ and ¥, — I’
are isomorphic.

We now show that (a) cannot occur for general twistor linescbgtradiction. To
this end, recall first that?’ is realized as 4 points blown-up @fP! x CP* as in Prop-
osition 2.5. In particular we have-K »)?> = 4 on .7’. On the other hand, as is seen
in the proof of Proposition 2.5, the restriction of the paien =, — CP! onto %’
has 4 branch points and consequently the composifidh> =, — CP* has precisely
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4 singular fibers, all of which are the sum of two smooth ratlocurves intersecting
transversally. Letg; + E/, 1 <i < 4, be these 4 reducible fibers. Then the blowing-
down «: 7’ — CP! x CP! is obtained by appropriately choosing one Bf and E/

for each 1<i < 4 and then blowing them down. After possible renaming, wepeap
that Ej, 1 <i <4, are blown-down by. Then we can write

4
(12) Li=a" 0@, b)Y nE, i=1,2
j=1

Since £1 + £, = —2K 5, we havea; + a = by + b, = 4 andnyj + ny; = 2 for
1< j < 4. Moreover obviously we havey( b)) = (1, 3), (2, 2) or (3, 1) fori =1, 2.
Now in order to exclude the situation (a), we show thaingllin (11) must be 1. To
see this, recall that the linear systéf| on the twistor space has precisely 4 reducible
members{D; + D;}_; and that all of them ar€*-invariant. Since inverse images of
fibers of 7 — CP! by the quotient mapl are C*-invariant members ofF|, it follows
that the 4 reducible fiberg + E/, 1 <i < 4, are the images db; + D;. On the other
hand, becaus®; - L = D; - L = 1, general twistor lines intersect transversally with both
of D; and D;. Hence.Z = W(L) intersects bothE; and E; (1 <i < 4) for general
L. Thus combining witny; + ny; = 2, we haven;; = 1 for all i and j. Once this is
proved, it readily follows &;,b;1) = (a2, by) = (2, 2), since the blown-up 4 points afare
located in the way described in Proposition 2.5, and in galdr there are two sections
of the projection with self-intersection zero on which 2 b&t4 blown-up points lie.
Thus we have

(12) A =Ol*ﬁ(2, 2)— Ei—E>;—Ez3—E4; for i=1,2.

Therefore the above situation (a) cannot occur and (b) mokt for a generall.
Moreover, it is now obvious from (12) tha¥’; and ., are anticanonical curves of
', The reality of minitwistor lines is clear since the quotienap ¥ preserve the
real structure. Thus we obtain all claims of the proposition O

Finally we give another proof of the property that generahitiistor line in .
has a node (Proposition 3.2), and compare the case of LeBrisiot spaces:

Lemma 3.3. Consider the natural real structure o which is induced from
that on Z (cf. Proposition2.4). Then the real locus o consists of two disjoint
2-dimensional spheres. Moreoy@xactly one of the sphere parametrizZés-orbits (in
Z) whose closures ar€*-invariant twistor lines.

Proof. As in Proposition 2.4, the real structure on the tetmce ofo'(2) (which
is the smooth locus oE») is given by (1, ¢) — (T, ¢). Therefore the real locus dt,
consists of the closure of the sgt, ¢) | u € R, ¢ € R}, which form a pinched torus,
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where the pinched point is the node Bb. As is already seen, the branch loc# of
the double coveringd: .7 — X, is defined by

(13) ¢+ Qu, 1Y’ —u(u+1)u—a)=0.

Hence the real locus 08 is a union of the two sets given by

(14) {(Uue)ed@|-1=u=0,¢==*yuu+1)u-a)
and
(15) {(ug)ed2|a<u=<oo ¢==xyulu+ 1) (u-—a)

where in the last condition we regatd= 0 if u = cc.

The sets (14) and (15) are smooth circles#n The sign of the left-hand side of
(13) changes across these circles. Since the double cgverap .7 — X, preserves
the real structure, the real locus of lies over the real locus oE,. These mean
that the real locus of7 is either the inverse image of the two closed disks bounded
by the circles (14) and (15), or the inverse image of the cempht of the last two
disks. But since the two points over the nodeXf (which is clearly outside the two
circles) are a conjugate pair of points, the former must hdldese two double covers
of the closed disks are smooth spheres.

Next we see that exactly one of the two spheres paramet@iZesbits in Z whose
closures areC*-invariant twistor lines. From the above description, the spheres are
over two intervals 1, 0] and B, oo] respectively, and every correspondi@j-orbits
lie over a C*-invariant planes (determined hy). Then as is shown in [5, Propos-
ition 5.22], if —1 < u < 0, then every reaC*-orbits lying on the plangj = uy; must
be an image ofC*-invariant twistor lines. Thus the sphere # lying over [-1, 0]
parametrizesC*-invariant twistor lines. On the other hand, real orbitsiyion a plane
Yo = uy; with u > a are not the image of twistor lines [5, Proposition 5.22]. sThi
proves all the claims of the lemma. ]

By using Lemma 3.3 we now give another explanation as to wimgigeg minitwistor
lines in the minitwistor spaceZ become singular. Let/5 and .73 be the connected
components of the real locug’ of .7, where the former and latter lie over the interval
[-1, 0] and B, o] in RP* C CP* respectively. (The subscripts 2 and 4 come from the
notations in [5], where we wroté, = [-1, 0] and |, = [a, o0].) As above, both73
and .7 are 2-spheres smoothly embeddeddh As explained in the final part of the
proof of Lemma 3.3,7%5 parametrizesC*-orbits in Z whose closures ar€*-invariant
twistor lines, whileC*-orbits parametrized by’ are not (contained in) twistor lines.
Let O € 73 be any point and thinlO as a realC*-orbit in Z. Consider a twistor line
L C Z which intersectsD. Then by what we have explained abo¥,is not contained
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in L and it follows by reality that. N O consists of even number of points. The last num-
ber is 2 sinceO is contained in som& < |F| andS-L = 2. Then because the orbit map
V: Z — 7 identifies these conjugate pair of points, the imagg.) in .7 must have a
singular point atO € .7. This is precisely the node of minitwistor line as stated o
osition 3.2. For eacl® € .73, there are obviously 2-dimensional family of twistor lines
intersectingL. Moreover, 73 to which O belongs, is also real 2-dimensional. Thus
there are real 4-dimensional family of twistor lines ineatng real orbit in.7;. This
means that the image of general twistor line must have a node.

In contrast with the situation described in Lemma 3.3, tla¢Iozus of the minitwistor
space of LeBrun twistor spaces nftP? consists of a unique sphere, and it parametrizes
C*-orbits whose closures afg*-invariant twistor lines. This is a reason why the image
of general twistor lines by the orbit map is non-singularlfeBrun’s twistor spaces.
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