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Abstract
We study the behavior of generic initial ideals with respiecfibre products. In
our main result we determine the generic initial ideal of fiime product with re-
spect to the reverse lexicographic order. As an applicatiercompute explicitly the
generic initial ideal of a fibre product in a special case. \lg® @rove that the fibre
product of two graded ideals is componentwise linear if anly @ both ideals have
this property.

1. Introduction

Let K be a field of characteristic 05 = K[Xg,..., X3] and | be a graded ideal
of S. Unless otherwise said, initial terms are taken with respedhe degree reverse
lexicographic order, rlex for short. The generic initiaka gin() of | is an important
object. It reflects many homological, geometrical and coratarial properties of the
associated rings and varieties. The ideal gingé defined as the ideal of initial terms of
o(l) where g is a generic element of GIK). Here Gl,(K) acts onS as the group
of gradedK-algebra isomorphisms. See, e.g., Eisenbud [6] for the tagsi®on, in
particular for the precise definition of “generic” elemeand [7, 8] for results related
to the generic initial ideal.

In practice, to compute gih}, one takes a random element GL,(K) and com-
putes, with CoCoA [1], Macaulay 2 [12] or Singular [15], thee@ of leading terms
of ¢(I). The resulting ideal is, with very high probability, gln( From the theoreti-
cal point of view it is in general difficult to describe gi(explicitly. Just to give an
example, important conjectures, such as the Fréberg dongeon Hilbert functions,
would be solved if we could only say what is the gin of a genedenplete inter-
section.

Generic initial ideals can also be defined in the exterioelatg. In the exterior al-
gebra context Kalai made in [11] conjectures about the kiehaf generic initial ideals
of squarefree monomial ideals with respect to standardadipes on simplicial com-
plexes. Two of these operations have purely algebraic egpaits: they corresponds
to the tensor product and the fibre product o¥erof standard graded -algebras. If
A=@A andB =@ B; are standard gradeid-algebras the tensor produbtxx B =
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PD(A ®« Bj) is a (bi)gradedK -algebra and the fibre produéto B is, by definition,
A®k B/(A1 ® B;). Note that we have the short exact sequenc @y B-modules

(1) 0—-AoB—>A®B—>K 0.
If we have presentation®\ = K[Xg,..., X,]/l and B = K[Xn+1, ..., Xntml]/J
then A ®« B has presentatiolK[xy, ..., Xnum]/! + J and A o B has presentation

K[X1, ..., Xneml/F (1, J) where

FIL)=1+J+Q

and
Q=x:1<i=nXj:n+1=<j=<m+n).
Denote by gip(l) the gin of I in K[x,..., X,] with respect to rlex induced by
X1 > .-+ > Xy. Similarly denote by gig(J) the gin of J in K[Xn41, ..., Xntm] With

respect to rlex induced by,.; > -+ > Xh.m. Kalai's conjectures [11] correspond, in
the symmetric algebra, to the following statements:

2 gin(l + J) = gin(gin, (1) + giny,(J)),
(3) gin(F (1, J)) = gin(F(gin,(1), gin,(J))).

As observed by Nevo [13], the exterior algebra counterp&rEquality (2) does
not hold. Hence it is not surprising to discover that (2) doeshold in the symmetric
algebra as well. Here is a simple example:

EXAMPLE 1.1. Setn =2, m= 3 and| = (xq, X2)? and J = (x3, X3X4, XaXs).
Then gin(l) = | since | is strongly stable, gi{J) = (X3, X4)? since J defines a
Cohen—Macaulay ring of codimension 2. But dirf J) and gin(gin(l) + gin,(J))
differ already in degree 2 sincex, belongs to the second, but not to the first ideal.

On the other hand, Nevo (see [13] and [14]) proved the anafo@)ofor shifted
simplicial complexes with respect to exterior and symneettigebraic shifting. Our
main result asserts that (3) holds for arbitrary gradedlsdea

Theorem 1.2. Let | C K[Xy,...,Xn] and JC K[Xn41,.-., Xn+m] be graded ideals
Then we havein(F(l, J)) = gin(F(gin,(1), gin,(J3))).

Note that our methods and strategy of proofs as presente@dtio8 2 and Sec-
tion 3 follow the ideas of Nevo and can be seen as a purely mgebersion of his
results.
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Using the results in Section 3 it is also possible to computdiatly gin(F (1, J))
in some cases. As an example we show that

gin(Q) = (Xixj:i+j=<n+m i=<jandi <min{n, m})

and further that ginD*) = gin(Q) for all k € N. The latter result is surprising, since
we do not know other families of ideals satisfying it. (Se6 &r further remarks.)
Recall the following definition of Herzog—Hibi [9]. A gradeideal L in some
polynomial ring over the fielK is called componentwise lineaif for all k € N the
ideal Ly has ak-linear resolution (i.e. To(Lxy, K)i+; = 0 for j # k) where L,
is the ideal generated by all elements of degkeef L. In Section 4 we show that
componentwise linearity behaves well with respect to fibredpcts. More precisely,
given two graded ideals C K[Xg,..., %] and J C K[Xn1,---, Xn+m] SUCh thatl € m?2
and J € m2, we prove thatl and J are componentwise linear if and only F(I, J)

is componentwise linear.

2. Linear algebra and generic initial ideals

In this section we present some tools from linear algebral usehis paper. We
follow ideas of Nevo (see [13] and [14]) who treated the agdior shifted simplicial
complexes with respect to exterior and symmetric algebshitting.

Let K be a field with chaK = 0 and S = K|[xy, ..., X;] be the standard graded
polynomial ring. Given a monomiat? € § we define aK-linear mapzya: S— S by

xP-2 if a=b,
pa(x’) = {0 else

For a polynomiay = ), 2aXx® € Swe extend this definition and consider tKelinear
maptg = ) ,.nn AaTxe. IN the following we will use the rule

7gn(l) = 7¢(zn(l)) for homogeneous g, h,1 € S

which is easily verified.

Given a graded ideal C S and the reverse lexicographic ordefey induced by
X1 > -+ > X, on S, the algebraS/| has aK-basis#(S/1) consisting of those mono-
mial x? such thatx? ¢ in(l) where in{) always denotes the initial ideal df with
respect to rlex.

Induced by the inclusion of8(S/1) into #(S), we may considefS/1 as a graded
K-vector subspace o8. (So we are not using the quotient structure $fl as an
Smodule in the following if not otherwise stated.) Given anfumgeneous element
g € & the maprty can be restricted t5/I. The main object we are studying are
the various kernels

Kers/i (rg)e = Ker(rg: (S/1)e — (S/1)ea).
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We fix now a second generik-basis f; = ZT:l aijx of § where A = (a;) €
K™ is invertible and study the map. where f2 is a monomial in the nevK-basis
f1,..., fn. Generic means here that with the automorphisng — S, x; — f; we can
compute the generic initial ideal gin( with respect to rlex induced by; > --- > X,
of a given graded ideal C S via gin(l) = in(p~(1)).

We need the following alternative way to decide whether a onaial belongs to
a generic initial ideal or not. This criterion is well-knowa specialists but we include
it for the sake of completeness. For a (homogeneous) elegyent we denote byg
the residue class i5/1 (induced by the quotient structure &f1).

Lemma 2.1. Let | C S be a graded ideal and®x S be a monomialThen
x® e gin(l) <= T2 e span { fP: x® <;iex X2, |b| = ||} C S/I.
Proof. We have that

x* € gin(l) = in(p~(1))
=x*— Y axPegl(l) for some €K

Xb<rlexxav |b‘:|a|
— X2 e span {xXP: x® < X2, |b| = |a]} € S/g7X(1)

— fae sparp({ﬁ: x® <pex X3, |b| = |aJ} € S/I.
This concludes the proof. L]

Let B(S/1) = {x% x°¢ ¢in(l)} be theK-basis ofS/| as discussed above. Similarly
2(S/gin(l)) is the naturalK-basis of S/gin(l), i.e. those monomialx® with x¢ ¢
gin(l). We consider these monomials either as monomialS or in the corresponding
residue class ring o6. The generic initial ideal giri() can also be characterized via
the kernels Keg (tr2)e. More precisely, we have:

Proposition 2.2. Let d > 0 be a positive integerx® € § be a monomial and
| C S be a graded idealThen

dimg ﬂ Kers (t0)d = [{X® € ZA(S/gin(1)): |c| = d, x* <pex X°}|.

X< iexX?, |b|=d

In particular, x2 € #(S/gin(1)) if and only if

dimg ﬂ Kers/| (‘L’fb)d > dimg ﬂ Kers/| (‘L’fb)d.

XP<jexx?, b|=d XP<iexx?, |b|=d
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Proof. Letg € (S/1)q be a homogeneous element expressed as a linear combina-
tion of the elements ofZ(S/1), i.e.

g= Z xS for some Ac € K.
xeeA(S/1)

Write P for b € N" with |b| =d as
fb = Z Aba(Xa/
a’eNn, |a'|=d
where Ay is a polynomial in theg; of the base change matrik = (a;). We get that
Tio(Q) = Z Apchc.
xceA(S/1)
Hence

dimK m Ker5/| (‘L’fb)d

Xb<r|e><>(av [bj=d

equals the dimension of the solution spageof the linear systems of equatiohd,z =
0 with the matrixM, = (Apc) wherex? <je X2, X¢ € #(S/1) and |b| = |c| = d. It
follows from Lemma 2.1 that

rankM, = [{x® € Z(S/gin(1)): Ic| = d, X° <qex X?}.
We compute

dime (] Kerg(rp)a = dimg Ker(Ma: (S/1)a — (S/1)a)

Xb <exX2, [b|=d
= dimg (S/1)g — rank M,
= dimk (S/gin(1))g — rankM,
= (x® € Z(S/gin(1)): |c| = d, X <pex X°)

and this is what we wanted. O

For later applications we give a second characterizatiothefmembership in the
generic initial ideals which is similar to Proposition 22t first we need the following
Lemma:

Lemma 2.3. Let ae N" and d=|a| < e. Then

n
Kers/| (‘L'fa)e = m Kers/| (Tfa“’i )e.
j=1
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Proof. Letg € Kerg/(tfa)e. Then fori = 1,...,n we have thatra+; (g) =
t1,(tra(g)) = 0. Thusg € M, Kers); (tgas Je.

On the other hand leg € (S/1)e \ Kergi(tra)e. Then 0# tia(g) € (S/1)e—q is @
nonzero element of degree0. Since the setf® ce N", |c| = e—d} is a K-basis for
S_4, there must exist arf ¢ such thatrc(rta(g)) # 0. Choose an € N with ¢ > 0.
Then

0 # tte(r1a(Q)) = Trare(Q) = Trewi (Trara (@) # O
and hencer¢a+ (g) # 0. Thusg ¢ ﬂin=1 Kerg)| (tra+i )e. This concludes the proof.[]

For a monomial £ xP € Swith b € N" we set mink®) = min(b) = min{i: b; > 0}.
Furthermore we define min( 1. Given a monomiak?® € §; we denote by

b
Sh@) = {xb € Sp1: —— = xa}
Xmin(b)

the shadowof x® by multiplying with x; such thati < min(a). Let

maxSh&) = maxSh@)

<rlex

and

minSh@) = min Sh@)

<rlex

be the maximal and minimal element of Sh(with respect to<uex On S. Now we
partition the generic initial ideal using the set &h(

Proposition 2.4. Let d> 0, x® € § be a monomial and £ S be a graded ideal
Then
|Sh@) N #(S/gin(1))]

= dimg ﬂ Kers)i (tfv)d41 — dimg m Kers/i (tv)d+1-

Xb<rlexxa: ‘b|=d berlexxav ‘b|=d
Proof. It follows from Lemma 2.3 that
n
dimg m Kers/| (be)d+1 = dimg m ﬂ Kers/| (beJrsJ' )d+1-
XP <pexx@, |b|=d XP<pexx@, |bj=d j=1

Since {Xb/: XV <rlex minSh@), |b/| =d+ 1} = {Xbxi5 xP <plex X%, 1=<1i =<n, |b| = d},
the latter dimension equals

dimg ﬂ Kers) (T4 )d+1
X <gexminSha), |b|=d+1
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which is by Proposition 2.2 equal to
[{x¢ € #(S/gin(1)): |c| = d + 1, MinSh@) <ex X°}|.
Analogously we compute

dim ﬂ Kers (Tf0)d+1

berlexxav |b|=d
= |{x® € Z(S/gin(1)): |c|] = d + 1, maxShf) <yex X°}|.

Taking the difference in question gives rise to the desithtila. ]

Given a graded ideal c S and a monomiak?® € S we define

x2 S
@)= Slf](xmin(a)) " %(gin(l))‘

b a
{xbeS: xbe%<_i), Ib| = |a and —— = = }
gin(l) Xmin)  Xmin(a)

Using d, (a) we can decide whethetr® belongs to gin() or not. Recall that a mono-
mial ideal | € S is calledstrongly stable if xjx®/x; € | for every x® € | such that
X | x* and j <i. Since chaK = 0 it is well-known that gin() is strongly stable (see,
e.g., Eisenbud [6]).

Lemma 2.5. Let | C S be a graded ideal and®e S be a monomial with d- 1.
Then

a

X2 ¢ gin(l) < min( ) —min(x*) + 1 < d, (a).

min(a)

Proof. Letx¥ = X®/Xmin@- Then clearly ming’) > min(@) and x2 € Shx¥). If
x® ¢ gin(l), thenx® ¢ gin(l) for x° = x;x and min@) < j < min(@) because girl(
is strongly stable. Hence mxR/Xmin@) — Min(x*) + 1 < d;(a) because the consid-
ered monomialsx® are elements of Sk{). Similarly we see that M€ /Xmin@)) —
min(x?) + 1 < d, (a) implies thatx? ¢ gin(l).

Since gin(gin()) = gin(l) (see, e.g., [2] for a proof) it follows right from the
definition that:

Lemma 2.6. Let | C S be a graded ideal and®»e S be a monomial with d- 1.
Then

d (a) = dgin(l)(a)-
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3. Fibre products

We recall some notation. Let gjfi) be the generic initial ideal of a graded ideal

I C K[Xa, ..., Xn] with respect to rlex induced by; > --- > X, let gin,(J) be the
generic initial ideal of a graded ided C K[Xni1, - - -, Xnem] With respect to rlex in-
duced byXni; > -+ > Xnym, and let ginl) be the generic initial ideal of a graded
ideal L C S= K][Xy,..., Xnetm] With respect to rlex induced by, > -+ > X > Xpi1 >

- > Xpam. Furthermore we define the ideabs, = (X1,..., Xn) € K[Xg, ..., Xn],
Mm = Knety - - - Xnaem) € K[Xns1s - -+, Xnem] @nd Q = mymy, € S. We prove first
a special version of our main result:

Proposition 3.1. Let | C K[Xy, ..., X,] and JC K[Xn41, - .-, Xn+m] be graded
ideals Then we have the following formulas for ideals in S

() gin(l + mm) = gin(gin, (1) + mm).
(i) gin(J + mp) = gin(gin,(J) + my).

Proof. (i): Let fy,..., foum C S be aK-basis such that for th&automorphism
¢: S— 'S, x; — f; we can compute gih(+mp,) and gin(gin(l) 4+ mpy) by usinge .
We denote the residue class @fin K[xg, ..., X,] = S/mn by g.

Let ¥: K[Xg,..., Xn] = K[Xq, ..., Xa] be anK[xy, ..., Xs]-automorphism such
that the ideals gig(I1) and gin,(gin,(1)) can be computed by using .

For a monomialx? € S we have that

x% € gin(l + mpy,)

— T2 e span {fP: X <gex X3, |b| = |a]} € S/(I + mm)

— o7 e span {g°: x® <qex X2, |b| = |a]} € K[xq, ..., Xn] /1

= Y1) € spark (Y H(g°): X” <pex X7, 0] = [al} € K[xq, ..., Xa]/¥ (1)
= Y1(gP) € span (¥ 1(g%): X° <iex X3, |b| = [al} € K[xq, ..., Xa]/ging(1).

Here the first equality follows from Lemma 2.1. The second isrteivial. The third one
follows sincey ! is an K-automorphism and the last equality follows sirgas (1)

and K[xq, ..., Xn]/gin,(1) = K[Xg, ..., X,]/in_, . (¥~1(1)) share a commor -vector
space basis. Similarly we compute

x® e gin(gin, (1) + mm)

= Taespan (P: X" < X?, [b] =al} C S/(ging (1) + mm)

< P espan {gP: X° <qexX?, |b| =[al} CK[x4, .. ., X]/gin(I)

= ¥ Hg?) e spar {¥ H(g): x® <nex X%, [b] =lal} C K[xq, ..., Xal /¥ 2(gin,(1))
= Y1(g?) e spark {¥ ~1(g°): X° <pex X2, [b =al} C K[y, . .., Xn]/QiN,(@in, (1))
> ¥1(g?) e span {¥1(aP): X° <uex X2, |b| =al} C K[Xq, ..., Xn]/ging(1).
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The last equality is new and it follows from the fact that gagin,(I)) = gin,(1). Thus
we see that

gin(l + mm) = gin(gin,(1) + mpm)

and this shows (i). Analogously one proves (ii). ]

We need the following result which relates the numbér&) introduced in Sec-
tion 2 of various ideals.

Proposition 3.2. Let | € K[Xg,...,Xy] and JC K[Xnyt1, ..., Xnem] be graded
ideals and ® € § be a monomial with d~ 1. We have that

di+3+0(@) = di4m,(8) + dym,(a)-

Proof. As aK-vector space we may s&¥(l +my,) and S/(J +m,) as subspaces
of S/(I + J + Q) using the standard -basesZ(S/(I + mm)), Z(S/(J + m,)) and
AB(S/(I + J + Q)) respectively. Using the equality & mp) N (I +my)=1+J+Q
it follows from a direct computation that the homomorphisinko-vector spaces

pd: S/(I +mm)g @& S/(I+mp)g = S/(1 + I+ Q)g, (9, h)—>g+h,

is surjective with trivial kernel ford > 0. Thus it is an isomorphism fail > 0.
Let X2 = X®/Xmin@- Then|a| =d —1> 0. The following diagram

Pd

S/(I +mm)d ® S/(J +mn)d

S/ 4+ J+ Q)

@"b<rlex-‘a/ beleaxbﬂ-lexk“/ Trb @xb<,lex““/ Tf”J/
a P
@ S/U +mp)1 & @ S/(J + my), @‘h<“ex“ N @ S/ +J+ 0O)
X <prexx?’ xP <pexx? xb < ey x’

is commutative where the direct sums are take over monoroifaidegreed — 1. It
follows that

dimg m Kers/(++q)(tsb)d
XP<pexx?, |b|=d—1

= dimg m Kers/(1 +mp)(ti)a + dimg ﬂ Kers/(3+mp)(Tto)a-

XD <pexx?, |b|=d—1 XP<exx®, |b|=d—1
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Analogously we see that

dimg ﬂ Kers(+3+q)(Tfo)d
XP<pexx®, |b|=d—1
= dimg ﬂ Kers/(i +mpy)(Tso)a + dimg ﬂ Kers(3+mm)(To)d-
Xbﬁrlexxa,v ‘b|:d71 berlexxa/: ‘b|:d—1

Now Proposition 2.4 implies that
di+a+q(@) = [Sh@) N B(S/gin(l + J + Q)|
= |Sh@) N A(S/gin(l + mm))| + [Sh@) N A(S/gin(J + my))]
= dl+mm(a) + dJ+mn(a)-

This concludes the proof. O

We are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Lex? € § be a monomial for an integet > 0. Ifd =1
then gin{ + J + Q)1 = gin(gin,(1) + gin,(J) + Q)1 for trivial reasons. Assume that
d > 1. Applying Lemma 2.6, Proposition 3.1 and Proposition 32 see that

di+3+0(8) = di4m, (@) + dy+m, (@) = dgin(t +my) (@) + dgin@+m) (@)
= dgin(girh(l)wme)(a) + dgin(gir\ﬂ(J)wLmn)(a) = dginn(l)+mm(a) + dginm(J)+mn (a)

= Ggin, (1)+gin,(3)+Q(d)-

Thus it follows from Lemma 2.5 that
x® ¢ gin(l + J + Q) < x* ¢ gin(gin,(1) + gin,(J) + Q). O

REMARK 3.3. It is clear that rlex plays an important role in the argats we
have used to prove Theorem 1.2. For other term orders thenstat of Theorem 1.2
fails to be true. For instance, for the lex orden,= n = 3 the idealsl = (xf, X1X2)
and J = (x2, XsXg) do not fulfill Theorem 1.2.

REMARK 3.4. LetD be a simplicial complex on the vertex s, ..., X,}. We
denote thesymmetric algebraic shifted complet I' by AS(T). In general a shifting
operationA in the sense of Kalai [11] replaces a complExwith a combinatorially
simpler complexA(T") that still detects some combinatorial propertied’of Symmetric
algebraic shiftingAs is an example of such an operation and an be realized by using a
kind of polarization of the generic initial ideal with respeo the reverse lexicographic
order of the Stanley—Reisner ideal bf in the polynomial ringK[xg,..., X,]. (See
Herzog [8] or Kalai [11] for details.)
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For two simplicial complexe$’; on the vertex setxs,...,X,} andI'; on the vertex
set{Xni1,..., Xnem} We denote byl"; W I, the disjoint unionof I'y andI'; on the vertex
set{Xy, ..., Xn, Xnt1, - - . » Xnem}. Using Theorem 1.2 it is not difficult to prove that

A3 WT2) = AS(A%(1) W AS(T2)).

This result was conjectured by Kalai in [11] and it was pro¥ed exterior and sym-
metric shifting by Nevo. (See [13] and [14].)

In view of Theorem 1.2, the ideal giR(l, J)) can be computed by first comput-
ing gin,(1), gin,(J) and then gink(gin,(1), gin,(J))). One would like to describe the
generators of the ideal giR(l, J)) in terms of those of gif(l) and gin,(J). The first
step in this direction is the following:

Proposition 3.5. Let Q=(x:1=<i <n)(Xj:n+1=<j=<m+n)CS Then
@) gin(Q)=Xxj:i+j=<n+m i=<jandi=min{n, m}).
(i) gin(Q¥) = gin(Q)* for all k.

Proof. Every ideal which is a product of ideals of linear ferhms a linear resolu-
tion, see [4]. The gin-rlex of an ideal with linear resolutibas linear resolution [6].
Hence we know that giig¥) is generated in degreek Zor all k. Therefore it is enough
to prove equality (i) in degree 2 and to prove equality (ii)degree R. To check that
(i) holds in degree 2, it is enough to prove the inclusigrsince the two vector spaces
involved have vector space dimension equainn. It follows from Lemma 2.5 that for
a monomialx xj with i < j we have

XiXj € gin(Q) <= j —i + 1> do(& + ¢j)

where fork € {1,..., n+ m} we denote by the k-th standard basis vector @™*™.
By Lemma 2.6 and Proposition 3.2 we know

do(ei + €j) = dm,(&i +&j) + dm, (i +&)) = dginmp) (&1 + €)) + dginma) (€1 + €])

4)
Xm)(gi +8J)+d(X1 ..... Xn)(gi +8J)

where we used the obvious facts gig{) = (X, - - ., Xm) and ginfnn) = (Xg, - - -, Xn)-
Thus we have to computey,  x.(& + €j) anddy,, . x,) (& + €j) respectively. We
treat the case < m; if n > m one argues analogously. At first we consider

1<i,j<n4m with i+j=<n4+m i<j and i=<n.
It follows from the definition that

(e +ej) ={xxj:m+1=<Il=<j<m+nj
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This number is only nonzero if > m4-1 and in this case we haw®y, _.)(s +¢j) =
j —m. Similarly, we have thatly, . x,)(si + €j) is only nonzero ifj > n+1 and in
this case we havey, . x,)(& +¢;) =) —n. In any case, ifi + ] <m+n, then it
follow from Equation (4) that

dolei +e) =(—mM+(-m=mM-)+(-m<j—-i+1

Hence we get thak x; € gin(Q) as desired. As explained above, this proves (i).
As observed above, to prove (ii) it is enough to prove the resdeequality in de-
gree k. Consider theK-algebraK[¢(Q2)] generated byp(Q,) for a generic change
of coordinatesp. The assertion we have to prove is equivalent to the assetiat the
initial algebra ofK[¢(Q-)] is generated as & -algebra by the elementgx; described
in (i) which generate girQ) as an ideal.
We claim that:

(5) The algebra relations among thosg x; are of degree 2.

It follows from results in [3] or [16] that the second Veroeesng of S can be pre-
sented aP/L whereP = K[y x: 1 <| <k <n+m] is a polynomial ring and. < P

is an ideal which is generated in degree 2. Indeed theresegistn a Grobner basis
of L of degree 2. We obtain a presentation of tealgebra generated by thex;
of (5) by eliminating all thosey; x wherel, k do not satisfy the conditions in (i). In
particular, this shows claim (5).

Hence, by the Buchberger-like criterion for being a Saglsi$g5], it suffices to
prove that ginQ?) = gin(Q)? in degree 4. This can be done by checking that the two
vector spaces involved have the same dimension. The diorendigin(Q?), is equal
to that of Q2 which is ("3%)(™;%). It remains to compute the dimension of g@)¢.
Observe that a basis of g'@Qﬁ is given by the monomials; x; X, such that the fol-
lowing conditions hold:

1<i<j<h<ks<m+n,
j < min(n, m),
i+k=<n+m,
j+h=<n+m

(6)

It would be nice to have a bijection showing that the numbed] it W(n, m), of
(i, j,h,k) satisfying (6) is equal t¢";")(™;"). We content ourself with a non-bijective
proof. Assuming thah < m and using the identitie{:fzsl =({t—-s+1){t+s)/2 and
ZLS 1=(t—s+1), a straight forward (but tedious) evaluation of the folanu

n m+n—j m+n—i

DI 21

i=1 j=i h=j
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allows us to writeW(n, m) as

@) l(n+m;z+3)

plus
®) _(m:2>_<n12>+<m—2+2>.

The expression (7) can be evaluated, depending on whethern is odd or even,
using the formulas:

p(p + 1)(2p? + 2p — 1)

p . f =1
2i +u 6 '
© Z< 3 )= (% — 1)p?
i=0 if u=0
3
It follows that the expression of (7) is indeed equal to
1 1 1 1 1 1

(10

6rem T 6nne 60 T 2nn? T 6nm 6n°

That summing (10) with (8) one ge(§‘;l) (”;1) is a straightforward computation]
REMARK 3.6. (a) Refining the arguments in Proposition 3.5 one camw ghat
statement (i) and (ii) hold for every term order satisfyixg> - -+ > Xqin-
(b) The equality ginQ¥) = gin(Q)¥ is quite remarkable. We do not know other fam-
ilies of ideals satisfying it. It is difficult to guess a geakzation of it. For instance
that equality does not hold for a product of 3 or more idealslioéar forms,
e.g. K1, X2)(X3, X4)(Xs, Xg). And it does not hold for the ideal defining the fibre product
of 3 of more polynomial rings, €.9xX{, X2)(X3, X4) + (X1, X2)(Xs, X6) + (X3, X4)(Xs, Xg).
(c) The statements (i) and (ii) of Proposition 3.5, can behraged as follows: The
(n, m)-th Segre product in generic coordinates has a toric degtoe to a ladder of
the second Veronese ring of the polynomial ringnirt- n — 1 variables and this holds
independently of the term order.

4. Algebraic properties of fibre products

It is easy to see how homological properties transfer fiarand B to Ao B. The
main point is that the short exact sequence (1) allows torobihbcal cohomology.
In this section we show that the componentwise linearityalbel well with respect to
fibre products. Recall that a graded idéalin some polynomial ring over the fiell
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is calledcomponentwise lineaif for all k € N the idealL  has ak-linear resolution
(i.e. Tor(Ly, K)i+j =0 for j # k) where Ly is the ideal generated by all elements
of degreek of L. (See Herzog and Hibi [9] for more details.)

In the proof we will use the following criterion of Herzog—iRer—Welker [10,
Theorem 17] to check whether an ideal is componentwise ineet L be a graded
ideal in a polynomial ringT. Then L is componentwise linear if and only if for all
k € Z we have red /L < k—1 whereL is the ideal generated by all elements
of L of degree smaller or equal tb and regM denotes the Castelnuovo—Mumford
regularity of a f.g. graded -module M. Note that in [10] this result is only stated for
monomial ideals, but the proof works also, more generally, graded ideals. Recall
that the Castelnuovo—Mumford regularity can be computedlatal cohomology as
regM = maxj € Z: H! (M)j_; # O for somei} where m denotes also the graded
maximal ideal ofT.

Theorem 4.1. Let | C K[Xy,...,X,] and JC K[Xn+1,..., Xntm] b€ graded ideals
such that IC m2 and JC m?2. Then | and J are componentwise linear if and only if
F(I, J) is componentwise linear

Proof. At first we note that(l, J)< =0 for k < 1, and fork > 2 we have
F(I, Dk =00 +I+ Q= lak + Ik + Q = F(l =k, I=k).
The short exact sequence (1) with the current notation is:
0— S/F(, <k = S/(l<k + mp) & S/(I<k + mp) > S/m — 0.
It induces the long exact sequence of local cohomology nesdinl degreej — i

o= HTHS/m)) 1oy — HL(S/F(L 3)<)) i
— HL(S/(I<k + mm))j—i & HL(S/(J=k + mn))j—i — HL(S/m)j_j — ---.
Observe that forj > 2 we have thatH!~1(S/m);_1__1) = H! (S/m);—i = 0 because

S/m has regularity 0. The ring change isomorphism for local coblogy modules
yields

Hon(S/(1 <k + mm)) = Hy, (K[xe, ., Xa]/1<i0)
and
Hin(S/ (=i + mn) == Hy, (KD, - - Xngm] / I=k)
as gradedK -vector spaces. Thus we get fpr> 2 the isomorphisms

H(S/F(1, 3)<k)j-i
~ Hrinn(K[Xl, e Xn]/lfk)j—i (&) Hrinm(K[Xn+lu . Xn+m]/J5k)j_i
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as K-vector spaces. Since the regularities of all modules instjpes are greater or
equal to 2, we obtain that r&@fF(l, J)<x < k if and only if regK[Xy,..., Xn]/l<k <k
and regK[Xns1, - - - » Xnem]/J<k < k. As noted above, this concludes the proof. []
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