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Abstract
We study the behavior of generic initial ideals with respectto fibre products. In

our main result we determine the generic initial ideal of thefibre product with re-
spect to the reverse lexicographic order. As an applicationwe compute explicitly the
generic initial ideal of a fibre product in a special case. We also prove that the fibre
product of two graded ideals is componentwise linear if and only if both ideals have
this property.

1. Introduction

Let K be a field of characteristic 0,SD K [x1, : : : , xn] and I be a graded ideal
of S. Unless otherwise said, initial terms are taken with respect to the degree reverse
lexicographic order, rlex for short. The generic initial ideal gin(I ) of I is an important
object. It reflects many homological, geometrical and combinatorial properties of the
associated rings and varieties. The ideal gin(I ) is defined as the ideal of initial terms of'(I ) where' is a generic element of GLn(K ). Here GLn(K ) acts onS as the group
of graded K -algebra isomorphisms. See, e.g., Eisenbud [6] for the construction, in
particular for the precise definition of “generic” element,and [7, 8] for results related
to the generic initial ideal.

In practice, to compute gin(I ), one takes a random element' 2 GLn(K ) and com-
putes, with CoCoA [1], Macaulay 2 [12] or Singular [15], the ideal of leading terms
of '(I ). The resulting ideal is, with very high probability, gin(I ). From the theoreti-
cal point of view it is in general difficult to describe gin(I ) explicitly. Just to give an
example, important conjectures, such as the Fröberg conjecture on Hilbert functions,
would be solved if we could only say what is the gin of a genericcomplete inter-
section.

Generic initial ideals can also be defined in the exterior algebra. In the exterior al-
gebra context Kalai made in [11] conjectures about the behavior of generic initial ideals
of squarefree monomial ideals with respect to standard operations on simplicial com-
plexes. Two of these operations have purely algebraic counterparts: they corresponds
to the tensor product and the fibre product overK of standard gradedK -algebras. If
ADL

Ai and BDL
Bi are standard gradedK -algebras the tensor productA
K BD
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L
(Ai 
K B j ) is a (bi)gradedK -algebra and the fibre productA Æ B is, by definition,

A
K B=(A1 
 B1). Note that we have the short exact sequence ofA
K B-modules

(1) 0! A Æ B ! A� B ! K ! 0.

If we have presentationsA D K [x1, : : : , xn]=I and B D K [xnC1, : : : , xnCm]=J
then A 
K B has presentationK [x1, : : : , xnCm]=I C J and A Æ B has presentation
K [x1, : : : , xnCm]=F(I , J) where

F(I , J) D I C J C Q

and

Q D (xi W 1� i � n)(x j W nC 1� j � mC n).

Denote by ginn(I ) the gin of I in K [x1, : : : , xn] with respect to rlex induced by
x1 > � � � > xn. Similarly denote by ginm(J) the gin of J in K [xnC1, : : : , xnCm] with
respect to rlex induced byxnC1 > � � � > xnCm. Kalai’s conjectures [11] correspond, in
the symmetric algebra, to the following statements:

gin(I C J) D gin(ginn(I )C ginm(J)),(2)

gin(F(I , J)) D gin(F(ginn(I ), ginm(J))).(3)

As observed by Nevo [13], the exterior algebra counterpart of Equality (2) does
not hold. Hence it is not surprising to discover that (2) doesnot hold in the symmetric
algebra as well. Here is a simple example:

EXAMPLE 1.1. Setn D 2, m D 3 and I D (x1, x2)2 and J D (x2
3, x3x4, x4x5).

Then gin2(I ) D I since I is strongly stable, gin3(J) D (x3, x4)2 since J defines a
Cohen–Macaulay ring of codimension 2. But gin(I C J) and gin(ginn(I ) C ginm(J))
differ already in degree 2 sincex1x4 belongs to the second, but not to the first ideal.

On the other hand, Nevo (see [13] and [14]) proved the analog of (3) for shifted
simplicial complexes with respect to exterior and symmetric algebraic shifting. Our
main result asserts that (3) holds for arbitrary graded ideals:

Theorem 1.2. Let I � K [x1, : : : , xn] and J� K [xnC1, : : : , xnCm] be graded ideals.
Then we havegin(F(I , J)) D gin(F(ginn(I ), ginm(J))).

Note that our methods and strategy of proofs as presented in Section 2 and Sec-
tion 3 follow the ideas of Nevo and can be seen as a purely algebraic version of his
results.
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Using the results in Section 3 it is also possible to compute explicitly gin(F(I , J))
in some cases. As an example we show that

gin(Q) D (xi x j W i C j � nCm, i � j and i � minfn, mg)
and further that gin(Qk) D gin(Q)k for all k 2 N. The latter result is surprising, since
we do not know other families of ideals satisfying it. (See 3.6 for further remarks.)

Recall the following definition of Herzog–Hibi [9]. A gradedideal L in some
polynomial ring over the fieldK is called componentwise linearif for all k 2 N the
ideal Lhki has ak-linear resolution (i.e. Tori (Lhki, K )iC j D 0 for j ¤ k) where Lhki
is the ideal generated by all elements of degreek of L. In Section 4 we show that
componentwise linearity behaves well with respect to fibre products. More precisely,
given two graded idealsI � K [x1, : : : , xn] and J � K [xnC1, : : : , xnCm] such thatI � m

2
n

and J � m
2
m, we prove thatI and J are componentwise linear if and only ifF(I , J)

is componentwise linear.

2. Linear algebra and generic initial ideals

In this section we present some tools from linear algebra used in this paper. We
follow ideas of Nevo (see [13] and [14]) who treated the analog for shifted simplicial
complexes with respect to exterior and symmetric algebraicshifting.

Let K be a field with charK D 0 and SD K [x1, : : : , xn] be the standard graded
polynomial ring. Given a monomialxa 2 Sd we define aK -linear map�xa W S! S by

�xa(xb) D �
xb�a if a � b,
0 else.

For a polynomialgDP
a2Nn �axa 2 Swe extend this definition and consider theK -linear

map�g DP
a2Nn �a�xa . In the following we will use the rule

�gh(l ) D �g(�h(l )) for homogeneous g, h, l 2 S

which is easily verified.
Given a graded idealI � S and the reverse lexicographic order<rlex induced by

x1 > � � � > xn on S, the algebraS=I has aK -basisB(S=I ) consisting of those mono-
mial xa such thatxa � in(I ) where in(I ) always denotes the initial ideal ofI with
respect to rlex.

Induced by the inclusion ofB(S=I ) into B(S), we may considerS=I as a graded
K -vector subspace ofS. (So we are not using the quotient structure ofS=I as an
S-module in the following if not otherwise stated.) Given a homogeneous element
g 2 Sd the map�g can be restricted toS=I . The main object we are studying are
the various kernels

KerS=I (�g)e D Ker(�g W (S=I )e ! (S=I )e�d).
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We fix now a second genericK -basis f j D Pn
jD1 ai j xi of S1 where A D (ai j ) 2

K n�n is invertible and study the map� f a where f a is a monomial in the newK -basis
f1, : : : , fn. Generic means here that with the automorphism'W S! S, xi 7! fi we can
compute the generic initial ideal gin(I ) with respect to rlex induced byx1 > � � � > xn

of a given graded idealI � S via gin(I ) D in('�1(I )).
We need the following alternative way to decide whether a monomial belongs to

a generic initial ideal or not. This criterion is well-knownto specialists but we include
it for the sake of completeness. For a (homogeneous) elementg 2 S we denote byg
the residue class inS=I (induced by the quotient structure ofS=I ).

Lemma 2.1. Let I � S be a graded ideal and xa 2 S be a monomial. Then

xa 2 gin(I ) � f a 2 spanK f f b W xb <rlex xa, jbj D jajg � S=I .

Proof. We have that

xa 2 gin(I ) D in('�1(I ))

� xa � X
xb<rlexxa, jbjDjaj �bxb 2 '�1(I ) for some �b 2 K

� xa 2 spanK fxb W xb <rlex xa, jbj D jajg � S='�1(I )

� f a 2 spanK f f b W xb <rlex xa, jbj D jajg � S=I .

This concludes the proof.

Let B(S=I )D fxcW xc � in(I )g be theK -basis ofS=I as discussed above. Similarly
B(S=gin(I )) is the naturalK -basis of S=gin(I ), i.e. those monomialsxc with xc �
gin(I ). We consider these monomials either as monomials inS or in the corresponding
residue class ring ofS. The generic initial ideal gin(I ) can also be characterized via
the kernels KerS=I (� f a)e. More precisely, we have:

Proposition 2.2. Let d > 0 be a positive integer, xa 2 Sd be a monomial and
I � S be a graded ideal. Then

dimK

\
xb<rlexxa, jbjDd

KerS=I (� f b)d D jfxc 2 B(S=gin(I )) W jcj D d, xa �rlex xcgj.
In particular, xa 2 B(S=gin(I )) if and only if

dimK

\
xb<rlexxa, jbjDd

KerS=I (� f b)d > dimK

\
xb�rlexxa, jbjDd

KerS=I (� f b)d.
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Proof. Let g 2 (S=I )d be a homogeneous element expressed as a linear combina-
tion of the elements ofB(S=I ), i.e.

g D X
xc2B(S=I )

�cxc for some �c 2 K .

Write f b for b 2 Nn with jbj D d as

f b D X
a02Nn, ja0jDd

Aba0xa0

where Aba0 is a polynomial in theai j of the base change matrixAD (ai j ). We get that

� f b(g) D X
xc2B(S=I )

Abc�c.

Hence

dimK

\
xb<rlexxa, jbjDd

KerS=I (� f b)d

equals the dimension of the solution spaceS of the linear systems of equationsMazD
0 with the matrix Ma D (Abc) where xb <rlex xa, xc 2 B(S=I ) and jbj D jcj D d. It
follows from Lemma 2.1 that

rankMa D jfxc 2 B(S=gin(I )) W jcj D d, xc <rlex xagj.
We compute

dimK

\
xb<rlexxa, jbjDd

KerS=I (� f b)d D dimK Ker(Ma W (S=I )d ! (S=I )d)

D dimK (S=I )d � rankMa

D dimK (S=gin(I ))d � rankMa

D fxc 2 B(S=gin(I )) W jcj D d, xa �rlex xcg
and this is what we wanted.

For later applications we give a second characterization ofthe membership in the
generic initial ideals which is similar to Proposition 2.2.At first we need the following
Lemma:

Lemma 2.3. Let a2 Nn and dD jaj < e. Then

KerS=I (� f a)e D n\
jD1

KerS=I (� f aC" j )e.
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Proof. Let g 2 KerS=I (� f a)e. Then for i D 1, : : : , n we have that� f aC" j (g) D� f j (� f a(g)) D 0. Thusg 2Tn
iD1 KerS=I (� f aC" j )e.

On the other hand letg 2 (S=I )e n KerS=I (� f a)e. Then 0¤ � f a(g) 2 (S=I )e�d is a
nonzero element of degree> 0. Since the setf f cW c 2 Nn, jcj D e�dg is a K -basis for
Se�d, there must exist anf c such that� f c(� f a(g)) ¤ 0. Choose ani 2 N with ci > 0.
Then

0¤ � f c(� f a(g)) D � f aCc(g) D � f c�"i (� f aC"i (g)) ¤ 0

and hence� f aC"i (g) ¤ 0. Thusg �Tn
iD1 KerS=I (� f aC"i )e. This concludes the proof.

For a monomial 1¤ xb 2 S with b2Nn we set min(xb)Dmin(b)Dminfi W bi > 0g.
Furthermore we define min(1)D 1. Given a monomialxa 2 Sd we denote by

Sh(a) D �
xb 2 SdC1 W xb

xmin(b)
D xa

�

the shadowof xa by multiplying with xi such thati � min(a). Let

maxSh(a) D max<rlex

Sh(a)

and

minSh(a) D min<rlex

Sh(a)

be the maximal and minimal element of Sh(a) with respect to<rlex on S. Now we
partition the generic initial ideal using the set Sh(a).

Proposition 2.4. Let d> 0, xa 2 Sd be a monomial and I� S be a graded ideal.
Then

jSh(a) \B(S=gin(I ))j
D dimK

\
xb<rlexxa, jbjDd

KerS=I (� f b)dC1 � dimK

\
xb�rlexxa, jbjDd

KerS=I (� f b)dC1.

Proof. It follows from Lemma 2.3 that

dimK

\
xb<rlexxa, jbjDd

KerS=I (� f b)dC1 D dimK

\
xb<rlexxa, jbjDd

n\
jD1

KerS=I (� f bC" j )dC1.

Sincefxb0 W xb0 <rlex minSh(a), jb0j D dC 1g D fxbxi W xb <rlex xa, 1� i � n, jbj D dg,
the latter dimension equals

dimK

\
xb0<rlexminSh(a), jb0jDdC1

KerS=I (� f b0 )dC1
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which is by Proposition 2.2 equal to

jfxc 2 B(S=gin(I )) W jcj D dC 1, minSh(a) �rlex xcgj.
Analogously we compute

dimK

\
xb�rlexxa, jbjDd

KerS=I (� f b)dC1

D jfxc 2 B(S=gin(I )) W jcj D dC 1, maxSh(a) <rlex xcgj.
Taking the difference in question gives rise to the desired formula.

Given a graded idealI � S and a monomialxa 2 S we define

dI (a) D ����Sh

�
xa

xmin(a)

� \B

�
S

gin(I )

�����
D ����

�
xb 2 SW xb 2 B

�
S

gin(I )

�
, jbj D jaj and

xb

xmin(b)
D xa

xmin(a)

�����.
Using dI (a) we can decide whetherxa belongs to gin(I ) or not. Recall that a mono-
mial ideal I � S is called strongly stable, if x j xa=xi 2 I for every xa 2 I such that
xi j xa and j � i . Since charK D 0 it is well-known that gin(I ) is strongly stable (see,
e.g., Eisenbud [6]).

Lemma 2.5. Let I � S be a graded ideal and xa 2 Sd be a monomial with d> 1.
Then

xa � gin(I ) � min

�
xa

xmin(a)

� �min(xa)C 1� dI (a).

Proof. Let xa0 D xa=xmin(a). Then clearly min(a0) � min(a) and xa 2 Sh(xa0 ). If
xa � gin(I ), then xb � gin(I ) for xb D x j xa0 and min(a) � j � min(a0) because gin(I )
is strongly stable. Hence min(xa=xmin(a)) � min(xa) C 1 � dI (a) because the consid-
ered monomialsxb are elements of Sh(xa0 ). Similarly we see that min(xa=xmin(a)) �
min(xa)C 1� dI (a) implies thatxa � gin(I ).

Since gin(gin(I )) D gin(I ) (see, e.g., [2] for a proof) it follows right from the
definition that:

Lemma 2.6. Let I � S be a graded ideal and xa 2 Sd be a monomial with d> 1.
Then

dI (a) D dgin(I )(a).
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3. Fibre products

We recall some notation. Let ginn(I ) be the generic initial ideal of a graded ideal
I � K [x1, : : : , xn] with respect to rlex induced byx1 > � � � > xn, let ginm(J) be the
generic initial ideal of a graded idealJ � K [xnC1, : : : , xnCm] with respect to rlex in-
duced byxnC1 > � � � > xnCm, and let gin(L) be the generic initial ideal of a graded
ideal L � SD K [x1, : : : , xnCm] with respect to rlex induced byx1 > � � � > xn > xnC1 >� � � > xnCm. Furthermore we define the idealsmn D (x1, : : : , xn) � K [x1, : : : , xn],
mm D (xnC1, : : : , xnCm) � K [xnC1, : : : , xnCm] and Q D mnmm � S. We prove first
a special version of our main result:

Proposition 3.1. Let I � K [x1, : : : , xn] and J� K [xnC1, : : : , xnCm] be graded
ideals. Then we have the following formulas for ideals in S:
(i) gin(I Cmm) D gin(ginn(I )Cmm).
(ii) gin( J Cmn) D gin(ginm(J)Cmn).

Proof. (i): Let f1, : : : , fnCm � S1 be aK -basis such that for theS-automorphism' W S! S, xi 7! fi we can compute gin(I Cmm) and gin(ginn(I )Cmm) by using'�1.
We denote the residue class offi in K [x1, : : : , xn] D S=mm by gi .

Let  W K [x1, : : : , xn] ! K [x1, : : : , xn] be an K [x1, : : : , xn]-automorphism such
that the ideals ginn(I ) and ginn(ginn(I )) can be computed by using �1.

For a monomialxa 2 S we have that

xa 2 gin(I Cmm)

� f a 2 spanK f f b W xb <rlex xa, jbj D jajg � S=(I Cmm)

� ga 2 spanK fgb W xb <rlex xa, jbj D jajg � K [x1, : : : , xn]=I

�  �1(ga) 2 spanK f �1(gb) W xb <rlex xa, jbj D jajg � K [x1, : : : , xn]= �1(I )

�  �1(ga) 2 spanK f �1(gb) W xb <rlex xa, jbj D jajg � K [x1, : : : , xn]=ginn(I ).

Here the first equality follows from Lemma 2.1. The second oneis trivial. The third one
follows since �1 is an K -automorphism and the last equality follows sinceS= �1(I )
and K [x1, : : : , xn]=ginn(I ) D K [x1, : : : , xn]=in<rlex( �1(I )) share a commonK -vector
space basis. Similarly we compute

xa 2gin(ginn(I )Cmm)

� f a 2 spanK f f b W xb<rlex xa, jbjD jajg� S=(ginn(I )Cmm)

� ga 2 spanK fgb W xb<rlex xa, jbjD jajg� K [x1, : : : , xn]=ginn(I )

� �1(ga)2 spanK f �1(gb) W xb<rlex xa, jbjD jajg� K [x1, : : : , xn]= �1(ginn(I ))

� �1(ga)2 spanK f �1(gb) W xb<rlex xa, jbjD jajg� K [x1, : : : , xn]=ginn(ginn(I ))

� �1(ga)2 spanK f �1(gb) W xb<rlex xa, jbjD jajg� K [x1, : : : , xn]=ginn(I ).
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The last equality is new and it follows from the fact that ginn(ginn(I ))D ginn(I ). Thus
we see that

gin(I Cmm) D gin(ginn(I )Cmm)

and this shows (i). Analogously one proves (ii).

We need the following result which relates the numbersdI (a) introduced in Sec-
tion 2 of various ideals.

Proposition 3.2. Let I � K [x1, : : : , xn] and J� K [xnC1, : : : , xnCm] be graded
ideals and xa 2 Sd be a monomial with d> 1. We have that

dICJCQ(a) D dICmm(a)C dJCmn(a).

Proof. As aK -vector space we may seeS=(I Cmm) and S=(JCmn) as subspaces
of S=(I C J C Q) using the standardK -basesB(S=(I C mm)), B(S=(J C mn)) and
B(S=(I C J C Q)) respectively. Using the equality (I Cmm)\ (J Cmn) D I C J C Q
it follows from a direct computation that the homomorphism of K -vector spaces

�d W S=(I Cmm)d � S=(J Cmn)d ! S=(I C J C Q)d, (g, h) 7! gC h,

is surjective with trivial kernel ford > 0. Thus it is an isomorphism ford > 0.
Let xa0 D xa=xmin(a). Then ja0j D d � 1> 0. The following diagram

is commutative where the direct sums are take over monomialsof degreed � 1. It
follows that

dimK

\
xb<rlexxa0 , jbjDd�1

KerS=(ICJCQ)(� f b)d

D dimK

\
xb<rlexxa0 , jbjDd�1

KerS=(ICmm)(� f b)d C dimK

\
xb<rlexxa0 , jbjDd�1

KerS=(JCmm)(� f b)d.
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Analogously we see that

dimK

\
xb�rlexxa0 , jbjDd�1

KerS=(ICJCQ)(� f b)d

D dimK

\
xb�rlexxa0 , jbjDd�1

KerS=(ICmm)(� f b)d C dimK

\
xb�rlexxa0 , jbjDd�1

KerS=(JCmm)(� f b)d.

Now Proposition 2.4 implies that

dICJCQ(a) D jSh(a0) \B(S=gin(I C J C Q))j
D jSh(a0) \B(S=gin(I Cmm))j C jSh(a0) \B(S=gin(J Cmn))j
D dICmm(a)C dJCmn(a).

This concludes the proof.

We are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Letxa 2 Sd be a monomial for an integerd > 0. If d D 1
then gin(I C J C Q)1 D gin(ginn(I )C ginm(J)C Q)1 for trivial reasons. Assume that
d > 1. Applying Lemma 2.6, Proposition 3.1 and Proposition 3.2 we see that

dICJCQ(a) D dICmm(a)C dJCmn(a) D dgin(ICmm)(a)C dgin(JCmn)(a)

D dgin(ginn(I )Cmm)(a)C dgin(ginm(J)Cmn)(a) D dginn(I )Cmm(a)C dginm(J)Cmn(a)

D dginn(I )Cginm(J)CQ(a).

Thus it follows from Lemma 2.5 that

xa � gin(I C J C Q) � xa � gin(ginn(I )C ginm(J)C Q).

REMARK 3.3. It is clear that rlex plays an important role in the arguments we
have used to prove Theorem 1.2. For other term orders the statement of Theorem 1.2
fails to be true. For instance, for the lex order,m D n D 3 the idealsI D (x2

1, x1x2)
and J D (x2

4, x5x6) do not fulfill Theorem 1.2.

REMARK 3.4. Let0 be a simplicial complex on the vertex setfx1, : : : , xng. We
denote thesymmetric algebraic shifted complexof 0 by 1s(0). In general a shifting
operation1 in the sense of Kalai [11] replaces a complex0 with a combinatorially
simpler complex1(0) that still detects some combinatorial properties of0. Symmetric
algebraic shifting1s is an example of such an operation and an be realized by using a
kind of polarization of the generic initial ideal with respect to the reverse lexicographic
order of the Stanley–Reisner ideal of0 in the polynomial ringK [x1, : : : , xn]. (See
Herzog [8] or Kalai [11] for details.)
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For two simplicial complexes01 on the vertex setfx1, : : : , xng and02 on the vertex
set fxnC1, : : : , xnCmg we denote by01℄02 the disjoint unionof 01 and02 on the vertex
set fx1, : : : , xn, xnC1, : : : , xnCmg. Using Theorem 1.2 it is not difficult to prove that

1s(01 ℄ 02) D 1s(1s(01) ℄1s(02)).

This result was conjectured by Kalai in [11] and it was provedfor exterior and sym-
metric shifting by Nevo. (See [13] and [14].)

In view of Theorem 1.2, the ideal gin(F(I , J)) can be computed by first comput-
ing ginn(I ), ginm(J) and then gin(F(ginn(I ), ginm(J))). One would like to describe the
generators of the ideal gin(F(I , J)) in terms of those of ginn(I ) and ginm(J). The first
step in this direction is the following:

Proposition 3.5. Let QD (xi W 1� i � n)(x j W nC 1� j � mC n) � S. Then:
(i) gin(Q) D (xi x j W i C j � nCm, i � j and i � minfn, mg).
(ii) gin(Qk) D gin(Q)k for all k.

Proof. Every ideal which is a product of ideals of linear forms has a linear resolu-
tion, see [4]. The gin-rlex of an ideal with linear resolution has linear resolution [6].
Hence we know that gin(Qk) is generated in degree 2k for all k. Therefore it is enough
to prove equality (i) in degree 2 and to prove equality (ii) indegree 2k. To check that
(i) holds in degree 2, it is enough to prove the inclusion� since the two vector spaces
involved have vector space dimension equal tomn. It follows from Lemma 2.5 that for
a monomialxi x j with i � j we have

xi x j 2 gin(Q) � j � i C 1> dQ("i C " j )

where fork 2 f1, : : : , nCmg we denote by"k the k-th standard basis vector ofZnCm.
By Lemma 2.6 and Proposition 3.2 we know

dQ("i C " j ) D dmm("i C " j )C dmn("i C " j ) D dgin(mm)("i C " j )C dgin(mn)("i C " j )

D d(x1,:::,xm)("i C " j )C d(x1,:::,xn)("i C " j )
(4)

where we used the obvious facts gin(mm) D (x1, : : : , xm) and gin(mn) D (x1, : : : , xn).
Thus we have to computed(x1,:::,xm)("i C " j ) and d(x1,:::,xn)("i C " j ) respectively. We

treat the casen � m; if n > m one argues analogously. At first we consider

1� i , j � nCm with i C j � nCm, i � j and i � n.

It follows from the definition that

d(x1,:::,xm)("i C " j ) D jfxl x j W mC 1� l � j � mC ngj.
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This number is only nonzero ifj �mC1 and in this case we haved(x1,:::,xm)("i C" j )D
j �m. Similarly, we have thatd(x1,:::,xn)("i C " j ) is only nonzero if j � nC 1 and in
this case we haved(x1,:::,xn)("i C " j ) D j � n. In any case, ifi C j � mC n, then it
follow from Equation (4) that

dQ("i C " j ) � ( j � n)C ( j �m) � (m� i )C ( j �m) < j � i C 1.

Hence we get thatxi x j 2 gin(Q) as desired. As explained above, this proves (i).
As observed above, to prove (ii) it is enough to prove the asserted equality in de-

gree 2k. Consider theK -algebraK ['(Q2)] generated by'(Q2) for a generic change
of coordinates'. The assertion we have to prove is equivalent to the assertion that the
initial algebra ofK ['(Q2)] is generated as aK -algebra by the elementsxi x j described
in (i) which generate gin(Q) as an ideal.

We claim that:

The algebra relations among thosexi x j are of degree 2.(5)

It follows from results in [3] or [16] that the second Veronese ring of S can be pre-
sented asP=L where P D K [yl ,k W 1� l � k � nCm] is a polynomial ring andL � P
is an ideal which is generated in degree 2. Indeed there exists even a Gröbner basis
of L of degree 2. We obtain a presentation of theK -algebra generated by thexi x j

of (5) by eliminating all thoseyl ,k where l , k do not satisfy the conditions in (i). In
particular, this shows claim (5).

Hence, by the Buchberger-like criterion for being a Sagbi basis [5], it suffices to
prove that gin(Q2) D gin(Q)2 in degree 4. This can be done by checking that the two
vector spaces involved have the same dimension. The dimension of gin(Q2)4 is equal
to that of Q2

4 which is
�nC1

2

��mC1
2

�
. It remains to compute the dimension of gin(Q)2

4.

Observe that a basis of gin(Q)2
4 is given by the monomialsxi x j xhxk such that the fol-

lowing conditions hold:

(6)

8>><
>>:

1� i � j � h � k � mC n,
j � min(n, m),
i C k � nCm,
j C h � nCm.

It would be nice to have a bijection showing that the number, call it W(n, m), of
(i , j , h, k) satisfying (6) is equal to

�nC1
2

��mC1
2

�
. We content ourself with a non-bijective

proof. Assuming thatn � m and using the identities
Pt

lDs l D (t � sC 1)(t C s)=2 andPt
lDs 1D (t � sC 1), a straight forward (but tedious) evaluation of the formula

nX
iD1

nX
jDi

mCn� jX
hD j

mCn�iX
kDh

1
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allows us to writeW(n, m) as

(7)
nX

iD1

�
nCm� 2i C 3

3

�

plus

(8) ��mC 2

4

� � �nC 2

4

�C �
m� nC 2

4

�
.

The expression (7) can be evaluated, depending on whetherm C n is odd or even,
using the formulas:

(9)
pX

iD0

�
2i C u

3

� D
8>><
>>:

p(pC 1)(2p2 C 2p� 1)

6
if u D 1,

(p2 � 1)p2

3
if u D 0.

It follows that the expression of (7) is indeed equal to

(10)
1

6n3m
C 1

6nm3
C 1

6n3
C 1

2nm2
C 1

6nm
� 1

6n
.

That summing (10) with (8) one gets
�mC1

2

��nC1
2

�
is a straightforward computation.

REMARK 3.6. (a) Refining the arguments in Proposition 3.5 one can show that
statement (i) and (ii) hold for every term order satisfyingx1 > � � � > xmCn.
(b) The equality gin(Qk) D gin(Q)k is quite remarkable. We do not know other fam-
ilies of ideals satisfying it. It is difficult to guess a generalization of it. For instance
that equality does not hold for a product of 3 or more ideals oflinear forms,
e.g. (x1, x2)(x3, x4)(x5, x6). And it does not hold for the ideal defining the fibre product
of 3 of more polynomial rings, e.g. (x1, x2)(x3, x4)C (x1, x2)(x5, x6)C (x3, x4)(x5, x6).
(c) The statements (i) and (ii) of Proposition 3.5, can be rephrased as follows: The
(n, m)-th Segre product in generic coordinates has a toric degeneration to a ladder of
the second Veronese ring of the polynomial ring inmC n� 1 variables and this holds
independently of the term order.

4. Algebraic properties of fibre products

It is easy to see how homological properties transfer fromA and B to AÆ B. The
main point is that the short exact sequence (1) allows to control local cohomology.
In this section we show that the componentwise linearity behaves well with respect to
fibre products. Recall that a graded idealL in some polynomial ring over the fieldK
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is calledcomponentwise linearif for all k 2 N the idealLhki has ak-linear resolution
(i.e. Tori (Lhki, K )iC j D 0 for j ¤ k) where Lhki is the ideal generated by all elements
of degreek of L. (See Herzog and Hibi [9] for more details.)

In the proof we will use the following criterion of Herzog–Reiner–Welker [10,
Theorem 17] to check whether an ideal is componentwise linear: Let L be a graded
ideal in a polynomial ringT . Then L is componentwise linear if and only if for all
k 2 Z we have regT=L�k � k � 1 where L�k is the ideal generated by all elements
of L of degree smaller or equal tok and regM denotes the Castelnuovo–Mumford
regularity of a f.g. gradedT-module M. Note that in [10] this result is only stated for
monomial ideals, but the proof works also, more generally, for graded ideals. Recall
that the Castelnuovo–Mumford regularity can be computed vialocal cohomology as
regM D maxf j 2 Z W H i

m
(M) j�i ¤ 0 for some i g where m denotes also the graded

maximal ideal ofT .

Theorem 4.1. Let I � K [x1, : : : , xn] and J� K [xnC1, : : : , xnCm] be graded ideals
such that I� m

2
n and J� m

2
m. Then I and J are componentwise linear if and only if

F(I , J) is componentwise linear.

Proof. At first we note thatF(I , J)�k D 0 for k � 1, and fork � 2 we have

F(I , J)�k D (I C J C Q)�k D I�k C J�k C Q D F(I�k, J�k).

The short exact sequence (1) with the current notation is:

0! S=F(I , J)�k ! S=(I�k Cmm)� S=(J�k Cmn) ! S=m ! 0.

It induces the long exact sequence of local cohomology modules in degreej � i

� � � ! H i�1
m

(S=m) j�1�(i�1) ! H i
m

(S=F(I , J)�k) j�i

! H i
m

(S=(I�k Cmm)) j�i � H i
m

(S=(J�k Cmn)) j�i ! H i
m

(S=m) j�i ! � � � .
Observe that forj � 2 we have thatH i�1

m
(S=m) j�1�(i�1) D H i

m
(S=m) j�i D 0 because

S=m has regularity 0. The ring change isomorphism for local cohomology modules
yields

H i
m

(S=(I�k Cmm)) � H i
mn

(K [x1, : : : , xn]=I�k)

and

H i
m

(S=(J�k Cmn)) � H i
mm

(K [xnC1, : : : , xnCm]=J�k)

as gradedK -vector spaces. Thus we get forj � 2 the isomorphisms

H i
m

(S=F(I , J)�k) j�i

� H i
mn

(K [x1, : : : , xn]=I�k) j�i � H i
mm

(K [xnC1, : : : , xnCm]=J�k) j�i
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as K -vector spaces. Since the regularities of all modules in questions are greater or
equal to 2, we obtain that regS=F(I , J)�k � k if and only if regK [x1, : : : , xn]=I�k � k
and regK [xnC1, : : : , xnCm]=J�k � k. As noted above, this concludes the proof.
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