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Abstract
We give the best possible upper bound on the number of excegptvalues and
the totally ramified value number of the hyperbolic Gauss rmappseudo-algebraic
constant mean curvature one surfaces in the hyperbolie-dpace and some patrtial
results on the Osserman problem for algebraic case. Moreaeistudy the value
distribution of the hyperbolic Gauss map for complete camistnean curvature one
faces in de Sitter three-space.

Introduction

There exists a representation formula for constant mearatire one (CMC-1, for
short) surfaces in the hyperbolic 3-spdkié as an analogy of the Enneper-Weierstrass
formula in minimal surface theory ([2], [26]). As a resulhethyperbolic Gauss map
of CMC-1 surfaces ifH® have some properties similar to the Gauss rgagf minimal
surfaces in Euclidean 3-spa. In fact, by means of the representation formula, the
hyperbolic Gauss map of these surfaces can be defined as mdrplic map to the
Riemann spher@ := C U {o0}. These results enable us to use the complex function
theory for studying CMC-1 surfaces iH®. In particular, by applying the Fujimoto
theorem [8], Z. Yu [30] showed that the hyperbolic Gauss mhp aon-flat complete
CMC-1 surface can omit at most four values. Moreover, for nahdbmplete CMC-1
surfaces with finite total curvature, Collin, Hauswirth aRdsenberg [5] proved that
G can omit at most three values by using the result of [29]. Témult corresponds
to the Osserman result [19] for algebraic minimal surfad&@g &n algebraic minimal
surface, we mean a complete minimal surface with finite totawature).

On the other hand, the author, Kobayashi and Miyaoka [13] edfifie Osserman
argument and gave an effective estimate for the number apgxmal valuesDy and
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the totally ramified value numbery of the Gauss map for pseudo-algebraic and alge-
braic minimal surfaces ifR® recently. It also provided new proofs of the Fujimoto and
the Osserman theorems for these classes and revealed thetgeaneaning behind it.
We [14] also gave such an estimate for them in Euclidean 4esR4. Jin and Ru [11]
gave the estimate for the totally ramified hyperplane nunmdfehe generalized Gauss
map of algebraic minimal surfaces in EuclideasspaceR".

In this paper, we give the upper bound on the number of exaegtivaluesDg
and the totally ramified value numbeg of the hyperbolic Gauss map. In Section 1,
we recall some fundamental properties and notations ab®l€-C surfaces inH?S.

In particular, using the notion of “duality”, we define algalt and pseudo-algebraic
CMC-1 surfaces and give examples which play important rolthéfollowing sections
(see Example 1.6). In Section 2, we give the upper bound onotadly ramified value
number of the hyperbolic Gauss map for pseudo-algebraicatgebraic CMC-1 sur-
faces (Theorem 2.3). This estimate is effective in the séimsethe upper bound which
we obtain is described in terms of geometric invariants amats for some topologi-
cal cases. Note that this estimate corresponds to the defiation in the Nevanlinna
theory (see [15] and [18]). Moreover, as a corollary of Theor2.3, we give some
partial results on the Osserman problem for algebraic CMGxiases, that is, give
the best possible upper bound @y for these surfaces. Furthermore, applying the
classification of algebraic CMC-1 surfaces with dual tota$abte curvature equal to
8r [23], we show that the hyperbolic Gauss map of algebraic CM§&lsffaces has
a value distribution theoretical property which has no agaé in the theory of the
Gauss map of minimal surfaces R® (Proposition 2.5). In Section 3, we study the
value distribution of the hyperbolic Gauss map of CMC-1 fatesle Sitter 3-space
S3. Fujimori [6] defined spacelike CMC-1 surfacesS# with certain kind of singular-
ities as “CMC-1 faces” and investigated global behavior of CM@aces. Moreover,
Fujimori, Rossman, Umehara, Yamada and Yang [7] gave ther®ss-type inequal-
ity for complete (in the sense of [6]) CMC-1 faces. As an amtlan of their result,
we give the upper bound on the number of exceptional valudstlaa totally ramified
value number of the hyperbolic Gauss map for this class @xitpn 3.5 and Corol-
lary 3.6).

The author thanks Professors Ryoichi Kobayashi, Reiko Migaand Junijiro
Noguchi for supporting research activities and many hélpgfhimments. The author
also thanks Professors Shoichi Fujimori, Shin Nayatani, ddsUmehara and Kotaro
Yamada for their useful advice.

1. Preliminaries

Let R be the Lorentz-Minkowski 4-space with the Lorentz metric

(1.1) (X0, X1, X2, X3), (Yo, Y1, Y2, ¥3)) = —XoYo + X1Y1 + X2Y2 + X3Y3.
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Then the hyperbolic 3-space is
H2 = {(Xo, X1, X2, Xg) € R | —(X0)® + (X1) + (X2)* + (X3)> = —1, Xo > O}

with the induced metric fronRf, which is a simply connected Riemannian 3-manifold
with constant sectional curvaturel. We identify R with the set of 2< 2 Hermitian
matrices Herm(2) $X* = X} (X* :=X) by

Xo+ X3 Xp+iXs
1.2 Xo, X1, X2, X . ,
1.2 o, 1, 32,30) < (010 2T

wherei = /—1. In this identification,H® is represented as
(1.3) H3 = {aa* | a € SL(2, C)}
with the metric

(X,Y) = —% traceXY), (X, X) = —det(X),

whereY is the cofactor matrix o¥. The complex Lie grouSL(2, C) := SL(2, C)/{£id}
acts isometrically ofH® by

(1.4) H3 5 X — aXad,

wherea € PSL(2, C).
Bryant [2] gave a Weierstrass-type representation formimlaCMC-1 surfaces.

Theorem 1.1 (Bryant [2], Umehara and Yamada [26])Let M be a simply con-
nected Riemann surface with a reference popeaM. Let g be a meromorphic func-
tion and w be a holomorphicl-form on M such that

(1.5) ds? = (1 +|g/°)?|w|?

is a Riemannian metric oM. Take a holomorphic immersion ¥ (F;j): M — SL(2,C)
satisfying Kzp) = id and

ae_(9 —¢
(1.6) F dF—<1 i )a)

Then f: M — H3 defined by

(1.7) f=FF*



1062 Y. KAWAKAMI

is a CMC4 surface and the induced metric of f is%d3dvioreover the second funda-
mental form h and the Hopf differential Q of f are given asdai

(1.8) h=—-Q-Q+ds), Q=wdg.

Converselyfor any CMC1 surface f M — H3, there exist a meromorphic func-
tion g and a holomorphid-form  on M such that the induced metric of f is given by
(1.5) and (1.7) holds where the map EM — SL(2, C) is a holomorphic null(“null”
meansdet(F ~1d F) = 0) immersion satisfying1.6).

REMARK 1.2. Following the terminology of [26]g is called asecondaryGauss
map of f. The pair @, ») is calledWeierstrass dataf f, andF is called aholomorphic
null lift of f.

Let f: M — H® be a CMC-1 surface of a (not necessarily simply connected)
Riemann surfaceM. Then the holomorphic null liff is defined only on the universal
cover M of M. Thus, the Weierstrass datg, {) is not single-valued oM. However,
the Hopf differentialQ of f is well-defined onM. By (1.6), the secondary Gauss map
g satisfies

__dFo _ dFRp _( Fu@ Fi(2)
(1.9 g= X where F(2) ( Fa(d) Fal2) >

The hyperbolic Gauss map @&f f is defined by,

_ dF11_ dFlz

1.10 - dhun _dRe
( ) dFyy  dFx

By identifying the ideal boundarg?, of H3 with the Riemann spher@ = CU {oo},
the geometric meaning @& is given as follows (cf. [2]): The hyperbolic Gauss m&p
sends eaclp € M to the pointG(p) at S2, reached by the oriented normal geodesics
of H® that starts atf (p). In particular, G is a meromorphic function oiv.

The inverse matrix-~! is also a holomorphic null immersion, and produce a new
CMC-1 surfacef? = F-1(F1)*: M — H3, called thedual of f [29]. By definition,
the Weierstrass datay{, »*) of f* satisfies

(1.11) FH1dF* = < glj _E%?Z )wt.

Umehara and Yamada [29, Proposition 4] proved that the \&feéess data, the Hopf
differential Q!, and the hyperbolic Gauss m&y of f* are given by

Q

1.12 t=G, o < f=_Q, G'=g.
(1.12) g w 4G Q Q g
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So this duality betweerf and f* interchanges the roles of the hyperbolic Gauss map
and secondary Gauss map. We call the p@ir ¢*) the dual Weierstrass dataf f.
Moreover, these invariants are related by

(1.13) S(9) - S(G) = 2Q,

where §( - ) denotes the Schwarzian derivative

h\’ 1/h" 2 )
0=[(x) -3() o= oo
with respect to a complex local coordinateon M. By Theorem 1.1 and (1.12), the
induced metricds® of % is given by
Q 2

(1.14) ds* = (L +1g°%)%e|” = (L +IGI°)*| 7=

We call the metricds* the dual metricof f. There exists the following linkage be-
tween the dual metrids®* and the metricds?.

Lemma 1.3 (Umehara-Yamada [29], Z. Yu [30]).The Riemannian metric dsis
complete(resp nondegeneradeif and only if d€ is completeresp nondegenerale

SinceG and Q are single-valued oM, the dual metriads* is also single-valued
on M. So we can define thdual total absolute curvature

4/dGJ?
muﬁ:Aeme:Aaﬁaﬁ,

where K? (< 0) anddA* are the Gaussian curvature and the area elemerntstf
respectively. Note that TA) is the area ofM with respect to the (singular) met-
ric induced from the Fubini-Study metric on the complex potive line P*(C) (= C)
by G. When the dual total absolute curvature of a complete CMC+asa is finite,
the surface is calledn algebraic CMCt surface

Theorem 1.4 (Bryant, Huber, Z. Yu). An algebraic CMC1 surface f M — H?3
satisfies
(i) M is biholomorphic toM, \ {py, ..., P}, whereM,, is a closed Riemann surface
of genusy and p e M, (j =1,...,K) ([10]).
(i) The dual Weierstrass datéG, »*) can be extended meromorphically ¥, ([2],
[30]).

We call the pointsp; the endsof f. An end p; of f is calledregular if the
hyperbolic Gauss ma has at most a pole gt; [26]. By Theorem 1.4, each end of
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an algebraic CMC-1 surface is regular. We define the class séugo-algebraic” in
complete CMC-1 surfaces as follows:

DEFINITION 1.5. A complete CMC-1 surface is said to pseudo-algebraicif
the following conditions are satisfied:
(i) The dual Weierstrass dat&(«*) is defined on a punctured Riemann surfade=
M, \{p1, ..., P}, whereM, is a closed Riemann surface of genusand p; € M,
(j=1,...,k). -
(i) (G, w") can be extended meromorphically ko, .
We call M the basic domairof the pseudo-algebraic CMC-1 surface.

Since we do not assume thétis well-defined onM, a pseudo-algebraic CMC-1
surface is defined on the universal cover df By Theorem 1.4, algebraic CMC-1
surfaces are certainly pseudo-algebraic. We give othepiitapt examples.

ExAMPLE 1.6. The dual Weierstrass data is definedMn= C \ {a;, a, ag} for
distinct pointsay, ap, az € C, by

dz

_ g _
(1.15) G=2z o —]_[,-(Z—aj)'
As this data does not satisfy the condition thiatis well-defined onM, we get a
CMC-1 surfacef: D — H® on the universal covering disk of M. Since the dual
metric ds* is complete, Lemma 1.3 implies that the meli§® is also complete. Thus
we can see that the surface is pseudo-algebraic and theblojipe6Gauss map omits
four values,a;, ap, ag and co. Starting fromM = C \ {a1, ap}, we get similarly a
pseudo-algebraic CMC-1 surfade: D — H3, of which hyperbolic Gauss map omits
three valuesa;, a, and co. The completeness afs® restricts the number of points
ajs to be less than four. We call these surfates Voss cousinbecause there ex-
ist surfaces which have the same Weierstrass data (theleesirare called the Voss
surfaces) in minimal surfaces iR® [20, Theorem 8.3].

2. Ramification estimate for the hyperbolic Gauss map of psealo-algebraic
CMC-1 surfaces

We first define the totally ramified value numbet of G.

DEFINITION 2.1 (Nevanlinna [17]). We cab e C a totally ramified value oG
when at any inverse image dff G branches. We regard exceptional values also as
totally ramified values. Lefay,...,a,, b, ..., b} C C be the set of totally ramified
values ofG, wherea;’s are exceptional values. For eaaj setv; = oo, and for each
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b;, definev; to be the minimum of the multiplicity of5 at pointsG~*(b;). Then we
havev; > 2. We call

g 2)eled

aj,bj
the totally ramified value number of .G

Next, we consider the upper bound og. We denote byDg the number of ex-
ceptional values ofs. For the hyperbolic Gauss map of a complete CMC-1 surface,
Z. Yu [30] obtained the upper bound dbg. As the application of his argument, we
can also get the upper bound og for these surfaces.

Theorem 2.2 (Z. Yu). Let f: M — H® be a non-flat complete CMC-surface
and G be the hyperbolic Gauss map of Then we have

(21) Dg <vg <4.

Note that the Voss cousin (Example 1.6) shows that the etif2al) is sharp.

Proof. We assume tha¥l is simply connected, otherwise, choose the universal
cover of M. By Lemma 1.3, the dual metrids®* is also complete. Thus we get a
complete minimal surface&: M — R3 defined by

X = S)'t/(l— G2, i(1+G?), 2G) .

In particular, the induced metric of the surfaceds® and the Gauss map 8. By
applying the Fujimoto theorem [9, Theorem 1.6., must be constant iby > 4. If
G is constant, from (1.10), then we obtain

(2.2) F11=GFR1+Cy, Fo=GFxn+Cy,

where C; and C, are constant. On the other hand, the secondary Gaussgnudpf
satisfies

GFy— Fi2
2.3 =% £
23 g Fi1—GFx
because we have

dF = ( Frug+Fi2  —g(Fug+ Fro) )
Faig+ Fo2  —9g(F219 + F22)

from (1.6). Combining (2.2) and (2.3), we obtag= —C,/C,, that is, f is flat. [
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Moreover, we give more precise estimate fgr and Dg for pseudo-algebraic and
algebraic CMC-1 surfaces. The following is the main resulpodsent paper.

Theorem 2.3. Consider a pseudo-algebraic CMC-surface with the basic do-
main M=M, \ {p1, ..., px}. Let d be the degree of G considered as a maphbn
Then we have

2
(2.4) Dg <vg 52+§,

and for algebraic CMCt surfaces we have R! < 1.

REMARK 2.4. The geometric meaning of “2” in the upper bound of (2s4}he
Euler number of the Riemann sphere. The geometric meanirtbeofatio R is given
in [13, Section 6].

Proof. By definition,w* (= —Q/dG) is single-valued orM and can be extended
meromorphically toM, . Since the dual metrids* is nondegenerate, the poles Gf
of orderk coincides exactly with the zeros af of order X. By Lemma 1.3, the dual
metric ds® is complete, sav* has a pole at eacp; [20]. By (1.12), the order of the
pole of »* at p; is given by

pif —dj > 1,

where p1j* € Z is the branching order o6 at pj, andd; := ordp, Q. Applying the

Riemann-Roch formula ta* on M,, we obtain

k
2d = (uF —d)) =2 =2,
j=1

Thus we get
1 k
(2.5) d=y —1+5% (wf-d)zy -1+,
j=1
and
(2.6) R1<1.

For algebraic case, Umehara and Yamada [29, Lemma 3] shtwaethe casg j* —d; = 1
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cannot occur, spj* — dj > 2. Thus we get

k

1 k
— N .
2.7) d—;/—1+§j2:l:(uJ —dJ)Zy—1+k>y—1+§,
and
(2.8) Rt <1

Now we prove (2.4). Assumé& omits ro = Dg values. Letng be the sum of the
branching orders at the inverse image of these exceptiaiabs of G. We have

(2.9) k > drg — no.
Let by, ..., by, be the totally ramified values which are not exceptional eslu_etn,
be the sum of branching order at the inverse imagedf =1,...,1lg) of G. For each

b;, we denote

vi = min {multiplicity of G(z) = b;},
G1(bi)

then the number of points in the inverse ima@e’(l;) is less than or equal td/v;.
Thus we obtain

lo
d
2.10 dlg—n, < —.
( ) 0 r = ; v
This implies
lo
1 ne
2.11 lop— — < —.
( ) 0 Zvi =< d

Let ng be the total branching order & on M,. Then applying the Riemann-Hurwitz
theorem to the meromorphic functid® on M,,, we obtain

(2.12) ne =2d+y — 1).

Therefore, we get

lo
1 No+k n ng+k 2

< +§ 1—— )< +— < = <24+, OJ
ve =To i:1< vi>_ d d~ d — R
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The system of inequalities (2.4) is sharp in some cases:
(i) The Voss cousins (Example 1.6) satisly= 1 andy = 0. Then whenk = 3, we
have R = 1/2 and D¢ < vg < 3. Whenk =4, we haveR™! =1 andDg < vg < 4.
These show that (2.4) is sharp in pseudo-algebraic case.
(i) When (v, k, d) =(0, 1,n) (n € N), we have

ve <2— —.
n

In this case, we can séfl = C. We consider the hyperbolic Gauss m@pand the
Hopf differential Q on M, by

(2.13) G=7", Q=02"1Z (#eC\{0).

Since M is simply connected, we have no period problem. Thus we kdasolu-
tion g of (1.13) defined ornC, and then, one can construct an algebraic CMC-1 sur-
face f: M — H® with hyperbolic Gauss map and Hopf differential as in (2.1@he
casen = 1, the surface is congruent to an Enneper cousin dual give(gbQ, G) =
(tany/6z, 6 dZ, 2).) In particular, the hyperbolic Gauss map of the surface ha=

2 —(1/n). Indeed, it has one exceptional value, and another totalyified value of
multiplicity n at z=0. Thus (2.4) is sharp for algebraic case, too.

(iii) When (y, k, d) = (0, 2,n) (n € N), we have

Dg <vg <2.

In this case, we can séfl = C\ {0}. On the other hand, a catenoid cousin=(1) or
its n-fold cover > 2) f: M =C\ {0} — H? is given by

n2—12

4

_n2_|2 Z2 — N
z, Q—?d , G=7",

(2.14) g=

wherel (#n) is a positive number. In particular, the hyperbolic Gausgprof these
surfaces ha®Pg = vg = 2. Thus (2.4) is sharp.

Now, we consider the caser(k, d) = (0, 3, 2). By (2.4), we haveg < 2.5. For
minimal surfaces iR, we can find algebraic minimal surfaces with= 2.5 ([12, 16])
and the estimate (2.4) is sharp. However, we cannot find sudhaces for algebraic
CMC-1 surfaces. This property has no analogue in the theorth@fGauss map of
algebraic minimal surfaces iR3. (Note that Rossman and Sato [21] constructed al-
gebraic CMC-1 surfaces (genus one catenoid cousins) whied ha analogue in the
theory of minimal surfaces ifR3 [25].)

Proposition 2.5. For the casg(y, k, d) = (0, 3, 2), there exist no algebraic CMQC-
surfaces withvg = 2.5.
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Proof. The proof is by contradiction. If there exists, théwe thyperbolic Gauss
map G has two exceptional values and another totally ramifiedevalumultiplicity 2.
Without loss of generality, we can s = ® \{0,1,p} (peC\{O,1}) and G has
branch points of branching order 1 at= 0, oo and G omits two values, 0 and 1.
Then we haveG = 72 and p = —1. By nondegenerateness @$* and (2.7), the Hopf
differential Q has a pole of order 2 (resp. order 1)zt +1 (resp.z=0) and has no
zeros onC. So Q have the form

(2.15) Q= 0dz

22— 1P+ 17 (0 € C\ {0}).

On the other hand, Rossman, Umehara and Yamada [23, TheoBeand 4.6] proved
that if there exists an algebraic CMC-1 surfate M — H?3 whose hyperbolic Gauss
map and Hopf differential are given by

6 dz?

— 52 —
(216) G=7, Q—m

(0 € C\{0}),
then p satisfies p € R such thatp Z1 and 4(p—1) € Z" or “p=(r +2)/(r — 2)
wherer (> 3) € 2", and 6 = —2p(p + 1). In particular,p # —1. O

Finally, we discuss the problem of finding the maximal humbkthe exceptional
values of the hyperbolic Gauss map of non-flat algebraic CM&rfaces. We call it
“the Osserman problem” for algebraic CMC-1 surfaces. As altaoy of Theorem 2.4,
we can give some partial results on this problem.

Corollary 2.6. For non-flat algebraic CMCt surfaces we have
() Dg =3.
(i) Wheny =0, Dg < 2.
(iii) Wheny =1 and the surface has non-embedded regular,ebd < 2 holds

Proof. For algebraic CMC-1 surfaces, we haRe! < 1. Thus we getDg < 4,
that is, Dg < 3. Next we prove (ii) and (iii). It is obvious to see thBl; > 3 implies
R™! > 1/2. Thus we get

k
1 g
V—1+§]Z:l:(u,- —dj) <2(y - 1) +k.
As we haveuf —dj > 2, it follows

k
(2.17) kf%Z(u?—dj)gy—1+k.
j=1
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Thus we obtain (ii). Whery =1, (2.17) implies;ﬁ —d; =2 for all j, which means
all ends are regular and properly embedded ([4, 29]). Tbezefif the surface has
non-embedded end, thebg < 2. O

A catenoid cousin, examples in [23, Theorem 4.7] and theoiellg proposition
show that (ii) of Corollary 2.6 is sharp.

Proposition 2.7. There exists an algebraic CMCsurface f: M =C\ {0, I} —
H? with TA(f%) = —127 whose hyperbolic Gauss map G and Hopf differential Q are
given by

(z-1\° _ 0dZ _
(2.18) G—<—>, Q=g ©=-2-9)

z

In particular, G omits two valuegsl1 and oo.

In general, to find algebraic CMC-1 surfaces on a non-simphnected Riemann
surface is not so easy. Because the period problem, thab igett a proper solution
of (1.13) (see [28] or [23, Lemma 2.1]) oM causes trouble. However, Rossman,
Umehara and Yamada obtained the following constructiontlier casey = 0 with n
ends. For the terminology of ordinary differential equatiteory, we refer the reader
to [3] and [23, Appendix A].

Lemma 2.8 ([23, Proposition 2.2]). Let M= @\{pl,..., p«} with p,..., px_1 €
C. Let G and Q be a meromorphic function and a meromorhitifferential on C
satisfying the following two conditions
(@) For all g € M, ord;Q is equal to the branching order of ,Gand
(b) for each g, vi —d;j > 2.
Consider the linear ordinary differential equation

2
(E.O) % +r(2u=0,
where 1(2) dZ := (S(G)/2) + Q. Suppose k- 2, and also ¢ = ordp, Q > —2 and the
indicial equation of (E.O) at z= p; has two distinct rootsk&”, A(Zj) and log-term co-
efficient g, for j =1,2,..., k-1
(i) Suppose thatx(lj) — A(zj) € Z" and g =0 for j <k — 1. Then there is exactly a
3-parameter family of algebraic CM@-surfaces of M intaH® with hyperbolic Gauss
map G and Hopf differential QMoreover such surfaces are#’>-reducible
(i) Suppose that{’ — 1) e Z* and g =0 for j <k —2, and thata™ — 3§D ¢
R\ Z. Then there exists exactly kparameter family of algebraic CMQ-surfaces
of M into H® with hyperbolic Gauss map G and Hopf differential ®oreover such
surfaces are#*-reducible
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Here we denoted bf* the set of positive integers

See [22] for the definition of##-reducible and#>-reducible. Now, we prove
Proposition 2.7 below.

Proof of Proposition 2.7. It is easy to see ti@atand Q in (2.18) satisfy the as-
sumptions (a) and (b) in Lemma 2.8. Consider equation (EI®en the roots of the
indicial equations of (E.0) are-1 and 2 at bottz = 0 and atz=1. By [23, Appen-
dix A, (A.16)] the log-term coefficients a = 0 and atz = 1 both vanish if and only
if & =—-2,—6. By Lemma 2.8 (i), the corresponding algebraic CMC-1 sadaare
well-defined onM. O

REMARK 2.9. Proposition 2.7 also provides the following resitry.#3-reducible
algebraic CMC1 surface that is of typ®(—1,—1,—2) with TA( f*) = —12r is congruent
to an algebraic CMCt surface f: M = C \ {0, 1} — H® whose hyperbolic Gauss map
G and Hopf differential Q are as if2.18). Here, we say that f is a surface of type
O(dy,...,d) if M= C \ {pw, ..., px} and Q has order dat each end p

However, we do not know whether (i) and (iii) in Corollary 2aée sharp or not.
Because we know few algebraic CMC-1 surfaces of 1 and have no definite solution
to the global period problem for this class.

3. Value distribution of the hyperbolic Gauss map of complet CMC-1 faces
in de Sitter 3-space

We first briefly recall definitions and basic facts on complé&®IC-1 faces in
de Sitter 3-space. For more details, we refer the reader]tari@ [7]. For all of this
section, we use the same notation as in Sections 1 and 2. |hatemtz-Minkowski
4-spaceR?] with the Lorentz metric given by (1.1), de Sitter 3-space barrealized by

S? = {(Xo, X1, X2, X3) € RT | —(X0)? + (x1)? + (X2)? + (X3)? = 1}

with metric induced fromR¢, which is a simply-connected Lorentzian 3-manifold with
constant sectional curvature 1. By the identification (1S3)is represented as

(3.1) S} = {FesF* | F e SU2, C)},
with the metric
(X, Y) = —traceXY — traceX &Y &),

whereY is the cofactor matrix ofY and

@2 a=(5 3)a=(7 o) ==(5 o) 2o 2)
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An immersion intoS$ is said to bespacelikeif the induced metric on the im-
mersed surface is positive definite. Aiyama-Akutagawa fijega Weierstrass-type rep-
resentation formula for spacelike CMC-1 immersionsSth Moreover, Fujimori [6]
defined spacelike CMC-1 surfaces with certain kind of singiigs as “CMC-1 faces”
and extended the notion of spacelike CMC-1 surfaces.

DEFINITION 3.1. LetM be an oriented 2-manifold. £>®-map f: M — S3 is
called aCMC-1 face if
(1) there exists an open dense subgétc M such thatf|y is a spacelike CMC-1
immersion,
(2) for any singular point (that is, a point where the indueedtric degeneratesp,
there exists aCl-differentiable functioni: U N W — (0, o0), defined on the inter-
section of neighborhoot) of p with W, such thatids® extends to &C!-differentiable
Riemannian metric otJ, whereds? is the first fundamental form, i.e., the pull-back
of the metric ofS? by f, and
(3) df(p) #0 for any p € M.

A 2-manifold M on which a CMC-1 facef: M — S} is defined always has com-
plex structure (see [6]). So we will regatd as a Riemann surface. The Weierstrass-
type representation formula in [1] can be extended for CMGde$ as follows ([6,
Theorem 1.9]):

Theorem 3.2 (Aiyama-Akutagawa, Fujimori). Let M be a simply connected
Riemann surface with a reference poigtezM. Let g be a meromorphic function and
w be a holomorphicl-form on M such that

(3.3) d&? = (1 +/g/%)?|w|?

is a Riemannian~ metric o and |g| is not identicallyl. Take a holomorphic immer-
sion F=(Fj): M — SL(2, C) satisfying Hz) = & and

e (9 -0
(3.4) F dF—(l _g)a).

Then f: M — S? defined by

(3.5) f = FesF*

is a CMC- face which is conformal away from its singularitieshe induced metric
ds? on M, the second fundamental form h and the Hopf differential Q aref given

as follows

(3.6) d? =1 - |gP)?w?>, h=Q+Q+ds®, Q=wdg.
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The singularities of the CMQ-face occur at points whergg| = 1.

Conversely for any CMC4 face f: M — S3, there exist a meromorphic func-
tion g (with |g| not identically 1) and a holomorphicl-form w on M so that & is
a Riemannian metric oM and (3.5) holds where the map EM — SL(2,C) is a
holomorphic null immersion satisfying.4).

The holomorphic 2-differential) as in (3.6) is called thédlopf differential of f.
In analogy with the theory of CMC-1 surfaces ¥, the meromorphic function

3.7) Gz =21

are called thehyperbolic Gauss mapf f. If f: M — S? be a CMC-1 face of a (not
necessarily simply connected) Riemann surfatethen the holomorphic null liftF is
defined only on the universal covéd of M, but Q and G are well-defined orM. A
geometric meaning o6 is given in [7, Section 4].

Fujimori [6, Definition 2.1] defined the notion of completasefor CMC-1 faces
as follows: We say a CMC-1 facé: M — Si is completeif there exists a symmetric
2-tensor fieldT which vanishes outside a compact sub8etC M such that the sum
T +ds? is a complete Riemannian metric dvi.

The completeness characterizes the conformal structuké pf, Proposition 1.11].

Theorem 3.3 (Fujimori-Rossman-Umehara-Yamada-Yang)et f: M — S2 be a
complete CMCt face Then there exist a compact Riemann surfa_m,a of genusy
and a finite number of pointsip..., p« € M, such that M is biholomorphic td/, \
{P1, -+, Px}-

Any puncturep; is called anendof f. An endp; of f is said to beregular if G
has at most a pole gi;. Fujimori, Rossman, Umehara, Yamada and Yang investigated
the behavior of ends and obtained the Osserman-type irigq{ial Theorem II].

Theorem 3.4 (Fujimori-Rossman-Umehara-Yamada-Yanguppose a CMQ-face
f:M— Si is complete By Theorem 3.3there exist a compact Riemann surfaﬁg of
genusy and a finite number of points;p. .., px € M, such that M is biholomorphic to
M, \ {p1,--., pJ. Then we have

(3.8) 2 >2y — 2+,

where d is the degree of G considered as a mapvon (if G has essential singular-
ities, then we define & oo0). Furthermore equality holds if and only if each end is
regular and properly embedded
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As an application of Theorem 3.4, we give the upper boundve@rand Dg for
complete CMC-1 faces. Whed is finite, that is, each end of is regular, Theo-
rem 3.4 implies that

1 _ y-—-1+k/2
(3.9) R= g < 1
Since G can be meromorphically oM, for this case, we can apply the latter half of

proof of Theorem 2.3. Therefore, we have proved the resutivbe

Proposition 3.5. Let f: M — Si be a non-flat complete CMC+face By Theo-
rem 3.3,we can assume that M is biholomorphic kb, \ {ps, ..., px}. Let G be the
hyperbolic Gauss map of f and d be the degree of G consideresl msp onM, .
Moreover we assume that each end is regul@hen we have

2 1 y—1+k/2
1 Dg<vg<2+—, —=+—"—2"".1
(3.10) G =VG = R R d <
In particular, we have @ < 3.
When ¢, k, d) = (0, 2, 1), we have
DG:UGZZ.

In this case, there exist examples which show that (3.10hasps In fact, the elliptic
catenoid ([6, Example 5.4]) given by

1—p?
9=2" Q=— dZ, G=z

whereu € R\ {0} and the parabolic catenoid ([7, Example 5.6]) given by

_logz+1 _dZ

- A — o G:Z,
logz—1 472

are complete CMC-1 faces defined @n\ {0} with two regular ends an®Dg = vg = 2.
We now obtain the following corollary of Proposition 3.5.

Corollary 3.6. The hyperbolic Gauss map of a non-flat complete CMface
can omit at most three values

Proof. If each end is regular, then the hyperbolic Gauss @ag@an omit at most
three values from Proposition 3.5. If not, th@nhas an essential singularity at a punc-
ture. By the Big Picard theorenG attains all but at most two points @ infinitely
often. In particular,G can omit at most two values. ]
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