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Abstract

In a previous paper [4], we introduced the notion of real gatd fields with
period | of minimal typein terms of continued fractions. As a consequence, we
have to examine a construction of real quadratic fields wetigd > 5 of minimal
type in order to find many real quadratic fields of class nuntbeWhenl > 4, it
appears that there exist infinitely many real quadratic dielith periodl of minimal
type. Indeed, we provided an infinitude of real quadraticdfielvith period 4 of
minimal type in [4]. In this paper, we construct an infinitenity of real quadratic
fields with large even period of minimal type whose class neim greater than any
given positive integer, and whose Yokoi invariant is gredben any given positive
integer.

1. Introduction

In [4] we defined real quadratic fields with peridcdbf minimal typein terms of
continued fractions (see Definition 2.1 for the precise d#dim), and studied Yokoi
invariants introduced by Yokoi [12] (see Definition 3.1 ofc8en 3.4 for the precise
definition) and class numbers (in the wide sense) of real mtiadfiields with period<
4. Also, as explained there, we have to examine a construcfioeal quadratic fields
with period > 5 of minimal type in order to find many real quadratic fields tdss
number 1. Wher > 4, it appears that there exist infinitely many real quadrélds
with period | of minimal type. Indeed, we provided an infinitude of real dpaic
fields with period 4 of minimal type in [4]. In this paper, weashshow the existence
of an infinite family of real quadratic fields with large evearjpd of minimal type:

Theorem 1.1. Let | be an even integer greater than or equal4awvhich is not
divisible by 8, and h and m any positive integer§hen there exist infinitely many
real quadratic fields with period | of minimal type whose slasimber is greater than
h, and whose Yokoi invariant is greater than m
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Many numerical examples show that the Yokoi invariants of rpedratic fields
of class number 1 are relatively large. Theorem 1.1 sugghsts in order to find
such fields, it is necessary to study more precisely real mtiadields of minimal type
whose Yokoi invariant is relatively large. Mollin [6] and Mcughlin [5] independently
constructed non-square positive integdfssuch that the simple continued fraction ex-
pansion of+/d’ has the symmetric part of some type (se$).(In the proof of The-
orem 1.1 we utilize a generalized form of such a symmetri¢. p@ur family of real
quadratic fields thus obtained explicitly has three or foarameters of nonnegative
integers. If the period of such fields is fixed then we see thatualues of Yokoi
invariants are bounded, and then by using a theorem of Seelerning the approx-
imate behavior of the product of class number and regulater,see by the same ar-
gument in [4] that the class numbers are relatively large. V& a theorem of Nagell
to show that our family contains infinite ones.

This paper is organized as follows. In Section 2 we statechagiperties of con-
tinued fractions. In particular, a theorem of Friesen andté#d&och (Theorem 2.4)
is our basic tool. Led and w = +/d (or (1 ++/d)/2) be, respectively, a non-square
positive integer and a quadratic irrational 1 constructed in Theorem 2.4. We start
with assuming that the (minimal) period of the continued fraction expansion =
[ag,a1, ..., &a_1, a] is even:l =2L. In [4] we give quadratic irrationale with period
2, 4 (and real quadratic field®(v/d) with period 4 of minimal type whose Yokoi in-
variant is relatively large) by using Theorem 2.4 (see $actl). We begin with such
quadratic irrationalsy and, following an idea of Mollin [6], consider the following
new symmetric string of positive integers. If we put

7:231,...,a|__1, V::aL_l,...,al,

then the symmetric pady, ..., a_1 of the continued fraction expansion af can be
written as

7, a, V

For any integere > 0, W, denotese iterations of the periodic pady, ..., a, and we
denote byW. the reverse of ., which ise iterations of a string of positive integers
a,...,a. Also, we letb be any positive integer and consider a symmetric string of
(2e+ 1) — 1 positive integers

(%) We, V, b+a, V, We.

In Section 3.1 we investigate basic properties of such sytmenstrings, which is in-
duced by “symmetric properties of recurrence equationghfima 2.1). In Section 3.2,
by using them, we choose a suitable positive intelgeslepending on the intege
(Lemma 3.4), and give special quadratic irrationals= +/d’ or (1 ++/d’)/2 by us-
ing such symmetric strings of positive integers and Theoe4n(Theorem 3.6 of Sec-
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tion 3.3). This is a generalization of results of Mollin and MtLaughlin (Proposi-
tion 3.7). Furthermore, we give a necessary and sufficientliton for the positive
integerd’ with period (2 + 1)l to be of minimal type (Proposition 3.3, Remark 3.2).
In particular, we see thad’ always becomes of minimal type whenis sufficiently
large (Remark 3.1). In Section 3.4, we extend the Yokoi ilavdrof real quadratic
field to that of non-square positive integdf £ 0 mod 4 (Definition 3.1), and give
an estimate for its value (Proposition 3.10, Remark 3.3).Séttion 4, we construct
real quadratic field€Q(+/d’) with even period of minimal type whose Yokoi invariant
is relatively large, and prove Theorem 1.1 by investigating class numbers. In Sec-
tion 5, some numerical examples are calculated by using FARI1].

For a real numbew, [x] denotes the largest integer x. We denote byN, Z
and Q the set of positive integers, the ring of rational integard the field of rational
numbers, respectively.

2. Preparations on continued fractions

In this section we collect basic properties of continuedtfoms, and refer the reader
to excellent books of Ono [9] and Rosen [10] for them. We fitatessLemma 2.1 which
is of central importance in the present paper, and may cadlyinmetric properties of
recurrence equations”.

2.1. Symmetric properties of recurrence equations. If ay is any positive inte-
ger and{an}n>1 iS @ sequence of positive integers, then we define nonnegiatiggers
Pn, On, Fn by using the recurrence equation:

Po=1, pr =20 Pn=an-1Pn-1* Pr-2
(2.2) 00 =0,0:=1, gh = 8n_10n-1 + On—2, n>2.
ro=1,r:=0, ry=an_1r—1 + -2,

Let A be a variable. Then the following are known:

APn+1t Pn Pn+1

2.2 a, ..., an, Al = , [ao, ..., an] = , n>0,
(2:2) [ ] AQn+1 + On [ ] On+1

(2.3) Onfn-1 — Qn_1fn = (=1, n>1,

(2.4) Pn=a0nh+rn, Nn=>0.

(Recurrence equations and partial quotients of a contiritgeion are both numbered
beginning with 0.)

We letag, a1, ..., & be anyl +1 positive integers, and assume that 1 positive
integersay, . .., a_1 satisfy the symmetric propertya, =a_n, 1<n=<I1-11if | > 2.
Then we define a sequenéay},-1 of positive integers: for each integar> 1, we put
ap ;= a if r > 0, and otherwisea, := a wherer is the remainder of the division of
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n by |. Thus, we construct periodicalljan}n>1 from ay, ..., & in what follows and
throughout this paper. We shall see that the symmetricgstsil — 1 positive integers
ai,...,a_1 induces symmetric properties of the recurrence equatid).(2et Mg := E
be the unit matrix of degree 2, and put for each integer 1,

_(a 1 a, 1
Mn '"( 1 o) ( 1 o)'
We easily see that

(25) Mn = <qn+l Qn >, n 2 O

M+ In

by induction. Letk be a positive integer. Sinca, ..., -1 have the symmetric prop-
erty, M,_; is a symmetric matrix. Furthermoreyly_; is also a symmetric matrix by
the definition of the sequend@,}n>1. AS &y, ..., a-1 also have the symmetric prop-
erty, we have fom # 0, kl — 1,

Mo = [ 2 1y (a1 o [ B+ 1y (a1
k-1 1 0 1 0 1 0 1 0
_(a 1\ (a1 a-n-1 1) (a 1) _ t
"(1 o) (1 0>X< 1 o> (1 o)"M”X Mid-—n-1.

Here, 'M denotes the transpose of a mathik Since My _1 is a symmetric matrix and
Mo = E, this equation also holds far =0, kl — 1:

(2.6) Mi-1 = Mq'"Min-1, 0<n<Kkl—1.

Lemma 2.1. Let k be a positive integer anl < n < kl — 1. Under the above
setting the following hold

(2.7) Oki—1 =Tk,

(2.8) G 1~ (=D = gara-1,

(2.9) ki = On+10ki—n *+ OnCki—n—1,
(2.10) Md = Oki—nln+1 + Oki—n—1"n,
(2.11) k-1 = ealki—n + Folki-n-1,

(2.12) Pkl = Pn+10ki—n + PnOki—n—1.
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Proof. In [4, Lemma 2.1], we have shown that (2.7) and (2.8).hBy (2.5) and
(2.6), we have

(QKl le1) — (Qn+1 On )( Oki—n Mki—n )
Mk Tki-1 M+1 In Oki-n—1  Tki—n—1
- ( On+10ki—n * OnOki-n-1  On+1lki—n * Onlki-n-1 )
Okl—nln+1 T Oki—n—1n  Tn+1lki—n * nlki—n-1

Comparing with corresponded components of both sides oieltly that (2.9), (2.10)
and (2.11) hold, and (2.12) follows from (2.4), (2.9) andl(®. ]

2.2. A theorem of Friesen and Halter-Koch. To describe Theorem 2.4, we
consider three cases separately for a given symmetriagstfih — 1 positive integers,
and explain what case arises from it. From now on, wealet .., a, be any string
of L (> 1) positive integers.

(A). The even period case. First, letl :=2L. By placinga, at the center and
folding backas,...,a._; as

L+ = -1, Q42 =aAL-2,..., 201 = a,

we construct a string of — 1 positive integersa, ..., a_;. The string satisfies the
symmetric property. By using the recurrence equation (288 define nonnegative in-
tegersqo, ..., Q. fo, ..., N—1. For brevity, we putA:=q, B:=q_1, C:=r_,, and
consider three cases separately:

() A=1mod 2,

(I (A, C) = (0, 0) mod 2,

(i (A, C) = (0, 1) mod 2.

Lemma 2.2. Under the above settinghe following hold
() A=(Qa+d-1)d, B= (s +q-nr — (=1, C=(rLsa+ri_o)re.
(i) If a_ is even therCase (Il)occurs

(iii) If (aL,q.) = (1, 1) mod 2then Case (l)occurs and if (a., q.) = (1, 0) mod 2then
Case (lll) occurs

Proof. It follows from (2.9)- n= that
A=(+1+de-1)d = (g +29.-1)q. =a,q. mod 2,
and (2.11)-; - yields that

C=(ra+rigdre=@r.+2r.g)re=ar. mod 2.
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Consequently, ifa, is even then Case (Il) occurs fag, ..., a_1. On the other hand,

if a_ is odd then A, C) = (q., r.) mod 2. Hence, whemj. is odd, Case (I) occurs.

When g, is even, (2.3), implies thatr_ is odd, therefore, Case (Ill) occurs. By
(2.7)=1, (2.10)=1 n=, and (2.3)  +1, we have

B=quris1+qu-are = (@ueare — (—1)%) +quare = (Quez +qu_o)r. — (=1)".
This proves our lemma. ]

The above lemma shall be used in the proof of Lemma 3.5.

(B). The odd period case. Next, letl := 2L +1. By folding backay,...,a_ as
L+ = aL, 2 =ag-1, ..., a2 = ay,

we construct a symmetric string of— 1 positive integers, ..., a_1, and consider
the above three cases separately.

Lemma 2.3. Under the above settinghe following hold
() A=ql,+ad, B=quuria+qure, C=rf, +r2.
(iiy If (aL, gL +gL_1) = (0, 1) mod 2then Case (l)occurs and if (a,,q. +q._1) =
(0, 0) mod 2then Case (lll) occurs
(i) If (aL, gL—1) = (1, 1) mod 2then Case (l)occurs and if (a_, q._1) = (1, 0) mod 2
then Case (lIl) occurs

Proof. It follows from (2.9)-; - that
A=df,,+af = (oL +q_1)°+a’ = (a +1)g. +q.1 mod 2,
and (2.11)., .- yields that
C=r +r2=(@r +r_1)?+ré=(a +1y_+r__; mod 2.

Consequently, ifa, is even then A, C) = (gL +q._1, . +r._1) mod 2. Hence, when
gL +q._1 is odd, Case (I) occurs faay, ..., a_1. Whenq, +q._1 is even, we have
gL =q._1mod 2. Sinceq.ry 1+q._1r. =1 mod 2 by (2.3).,, we see that) (r. 1+
r.)=1mod 2. Asr__;+r_ is odd, Case (lll) occurs. On the other handaif is odd
then (A, C) = (qL_1, r._1) mod 2. Hence, whem, ; is odd, Case (l) occurs. When
gL_1 is even, (2.3) implies that,_; is odd, therefore, Case (lll) occurs. By (24)
and (2.10)-; -, we haveB =q_+1r+1+qLr, and our lemma is proved. O

REMARK 2.1. Ifl anda_ are both even, then Lemma 2.2 (ii) implies that Case (Il)
occurs foray, ..., a_1. Also, if “| is even andy_ is odd”, orl is odd, then Lemmas 2.2
and 2.3 imply that Case (l) or Case (lll) occurs.



REAL QUADRATIC FIELDS OF MINIMAL TYPE 955

We define polynomialgy(x), h(x) of degree 1 and a quadratic polynomi&{x) in
Z[X] by putting

g(x) := Ax— (—1)BC, h(x) := Bx—(—1)C?
f(x) 1= g(x)? + 4h(x) = A’x? + 2(2B — (—1) ABC)x + (B? — (—1) 4)C2.

Furthermore, we leg be the least integes for which g(s) > 0, that is,s > (—1) BC/A.
The quadratic functionf (x) becomes strictly, monotonously increasing in the interva
[s0, o©). Under the above setting, Theorem 2.4 is shown in Friesemfizorem] and
Halter-Koch [3, Theorem 1A and Corollary 1A], which is impeal in [4, Theorem 3.1]
and is our basic tool.

Theorem 2.4 (Friesen, Halter-Koch). Let | be a fixed positive integes 2 and
ai, ..., a_1 any symmetric string of + 1 positive integers
(i) WhenCase (l)or Case (ll)occurs we let s be any integer with 3 5, and put
d := f(s)/4 and & = g(s)/2. Here we choose an even integer s @ase (l), and
assume that

(2.13) a(s) > ag, - - ., a_1.

Then d and g are positive integersd is non-squarg
(2.14) a=[vd], and w:=+d=[ao,a,...,a_1 280

is the continued fraction expansion with period | ¢fl. Alsg, in Case (lll), there is
no positive integer d such thR.14) is the continued fraction expansion ofd.

(i) WhenCase (l)or Case (Ill) occurs we let s be any integer with 3 s, and
put d:= f(s) and & := (g(s) + 1)/2. Here, we choose an odd integer s @ase (l),
and assume thaf2.13) holds Then d and g are positive integersd is non-squarg
d =1 mod 4,

(2.15)  ag=[1++d)/2], and w:=(1+d)/2=[ao, a,...,a_1, 280 — 1]

is the continued fraction expansion with period | @f++/d)/2. Alsa in Case (lI),
there is no positive integer d such that=dd1 mod 4and (2.15) is the continued frac-
tion expansion of1 ++/d)/2.

Conversely we let d be any non-square positive integ8y using a quadratic poly-
nomial f(x) obtained as above from the symmetric part of the continuactiém ex-
pansion ofy/d, d becomes uniquely of the form=df (s)/4 with some integer & s,
and (2.13) holds If d = 1 mod 4in addition then the same thing is true ft++/d)/2.
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DEFINITION 2.1. As we have seen in the above, the symmetric @art ., a_1
can be obtained from a string af positive integersay, ..., a.. We call such a string
the primary symmetric part

Let d be any non-square positive integer. We see by Theorem 24l tisauniquely
of the formd = f(s)/4 with some integes > 5. Here, the quadratic polynomidl(x)
and the integes; are obtained as above from the symmetric part of the cordirfiuses-
tion expansion with periodl of /d. If s =5 then we say thad is a positive integer
with period | of minimal type fon/d. Whend = 1 mod 4 in addition, we see thdtis
uniquely of the formd = f(s) with some integes > 5. Here, the quadratic polynomial
f(x) and the integersy are obtained as above from the symmetric part of the cordinue
fraction expansion with periodof (1++/d)/2. If s =g, then we say thadl is a positive
integer with period | of minimal type fofl ++/d)/2.

Let Q(+/d) be a real quadratic field. Here, is a square-free positive integer. We
say thatQ(+/d) is a real quadratic field with period | of minimal typéf d is a positive
integer with periodl of minimal type for +/d whend = 2,3 mod 4, and ifd is a
positive integer with period of minimal type for (1 +/d)/2 whend = 1 mod 4.

We mention an important supplement to Theorem 2.4.

REMARK 2.2. Under the setting of Theorem 2.4 (i) or (ii), $f> s then the
condition (2.13) holds.

Proof. Letl<n<L. As A> 0, the linear functiorg(x) is strictly, monotonously
increasing. By the definition af;, we haveg(s)) > 0. Therefore it follows frons > s
thatg(s) > g(ss+1) =g(s0) + A > A=(q. On the other hand, ds> L + 1, we see that
d > On+1 > an0n > a,. Hence,g(s) > q > a,. Thus, our assertion is proved. ]

From now on, we letl be a non-square positive integer constructed in Theorem 2.4
(i), or (ii). If we put & := g(s) then it holds thaty = 2ag in (i), and thatay = 2ag — 1 in
(ii). For brevity, we writew = (Py + +/d)/Qo. Here, Py := 0, Qo := 1 in (i) and Py := 1,

Qo := 2 in (ii). For all integersn > 0, we put

Gn = Qopn — Polhn.

For each integen > 0, we determine a quadratic irration@}+; such that

wg = w, wph=ant+ an = [wn].

Wn+1

(Note that the sequendan}n>1 Of positive integers is defined periodically.) Then we
can write uniquelyw, = (P, + +/d)/Q, with some positive integer®, and Q,, and
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Qn/Qo becomes a positive integer. (Cf. Section 2 and the proof ofiha 2.2 in [4].)
Also, the following are known for any integer > O:

(2.16) Pat1 = a7 Qn — Py,
(2-17) Qn+1=Qno1 + an(Pn — Pn+1),
(2.18) QnQni1=d — P2,

where we putQ_; := (d — P?)/Qo. (Also, 0< Pn1 < 4/d, 0 < Qnu1 < 24/d.) We
describe properties of recurrence equations in Lemmas rid52e6 which are widely
used in Section 3.

Lemma 2.5. Let k be an integerUnder the above settinghe following hold

(2.19) Gn = PaOn + Qnln-1, N>1,

(2.20) a0n =2((Gn/Qo0) —rn), N=0,

(2.21) Our+1 =G, k>0,

(2.22) h(s)aw — 9(S)aki-1 = k-1, k=>1,

(2.23) h(S)ak-1 — 9()r-1 = ()& +gu-1ra-1)/qu, k> 1.

Proof. By puttingA = wp in (2.2),_,, We see that

@nPnt Pn-1 _ ( Pn Pn-1 >a)
—ntn ~ Fn-lo_ 0

w=[a,...,a 1, wn] = @nOn + On_1 On  On-1

Since the inverse of the matrix in the right hand side of ijaa to (—1)"( %‘a; a B:’l )
we have

(2.24) wn = (_1)“< On-1 —Pn-1 )w = M, n>1,
—0n Pn Ohw — Pn

so thatwn(gnhw — Pn) = Pno1 — Oh_1w. Therefore,
(Pn+v/d)(=Gn + gnv/d) = QnGn-1 — Qutn-1v/d,
so that
(=PnGn +dth) + (~Gn + Paan)v/d = QnGn-1 — Qntn-1v/d.

Comparing with coefficients of/d in both sides of it yields that (2.19). First, let=
Vd to show (2.20). It follows from (2.4)G,, = p, and Qo = 1 that

agn = 2890n = 2(Pn — r'n) = 2((Gn/Qo) — I'n).
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Next, letw = (1 +/d)/2. As G, = 2pn — On and Qp = 2, we have

agn = (280 — 1)anh = Gn — 2ry = 2((Gn/Qo) — In).

Thus, (2.20) holds.
The equation (2.21) holds fér= 0, 1. We show it by induction ik (and Lemma 2.1),
and assume that (2.21) holds for 1. First, we see that

Ok+1yN+1 = (A+20k + A Oki—2)+1 (BY (2.9h=1 for (cry)

= (Qal+1) 01 + Oai—1M1+100 = (20101 + Mial1+20)
(by the hypothesis of induction and (2.7))

= (M+a0i+1 + Nal+1)a .

(2.25)

Next, we calculate y+1y+1 and note thaby.1y =& by the definition of{a,}n>1. Since

{F(k+1)| = Oafi+1 + Qui—1r1,
Mk+1)—1 = Mkil+1 +k-al

by (2.10),,, and (2.11), for (k+ 1), we have

Fk+1)+1 = QT gerny +Mrny—1 = @0t + )Nz + @0ki—1 + M-

= (Na+10) +rali+1 + (@ 0k—1 + ra—1)r,
where we use the hypothesis of induction. &g = q+1 — q_1, we obtain
Fkrny+1 = k#1041 + M1 + (@0ki—1 + Ma—2)f — lki+10i—1-
Here, sinceq_; =1, by (2.7)-;, we have

(@ Oi—1 + k- — MaOi—1 = Q-1 + -1 — @r + rg—1)n
=a(Qu-1—ra)rn =0 (by (2.7)).
Hence,r+1y+1 = Ma+1Gi1 + Mali+1. SO, (2.25) implies thatjgay M+ = Ferap+20h -

Since we see in the proof of Theorem 2.4 (see [4, (3.10)]) (A&&2) holds for
k=1, we may assume th&t> 2. By (2.9),, and (2.10),, we have

{le = Ok-1)0i+1 + Q-1 10
Mkl = Q- MN+1 + G-y 1M1,
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and note thaty =qg_1, andr; =q_1. Then, (2.22), yields that
(2.26) h(s)ak — 9(S)dki-1 = A—1y (N(S)Ai+1 — I(S)1+1) + A1) -1F1-1,
and also,
(2.27) h(s)ai+1 — g(s)ri+1 = a(h(s)ag — g(s)r) + h(s)ai-1 — g(S)ri-1.

Furthermore we have by (2.22)

h(s)ai_1 — g(S)ri_1 = h(s)g % —g()r_1 = (@) + r._l)% — ()11

1
= a{g(S)(qu_ln —qin-1) +0g-1r-1}.

As q_1r —qri_1 = —(—1) "1 by (2.3} anda =g(s), we see (2.23);, and it follows
from (2.27), (2.22),, and this that

1
h(s)gi+1 — 9(S)ri+1 = a{a ari-1+(—1'a +q_r_1}.
By (2.8)=1, Q-1 =02, — (—1). Also, g_1 =r,. Therefore,

1 1 1
h(S)gi+1 — 9(S)ri+1 = —{@ G2+ _1r-1} = —(@T + 1) = =Tl
a a a
AS qk-1y-1 =rw-1y by (2.7), hence, we see by (2.26) that

1
h(s)ak — 9(s)aki-1 = aCI(k—l)lrlﬂrl Hr-nil-1

=rg—y+al Fro-nn-1  (by (2.21) )
=ra-1 (by (2.11)—k—1y)-

Thus, we obtain (2.22).
We use the same argument in the above proof of (2.23p show (2.23). By
(2.22), we have

h(S)a_1 — 9(S)ra-1 = h(S)ak % — g(9)ru1
q

ki1
Qi

=(9(S)ru +ru-1) —g(S)rui-1

1
@{Q(S)(le—lm — Quifki-1) + Oki—1Mki—1}-

AS Qu_1rk — Quifki—1 = —(—1)-1 by (2.3)- anda = g(s), we obtain (2.23). This
proves our lemma. I
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We shall use the following lemma in the proof of Lemma 3.5.

Lemma 2.6. Under the above settindet k be a positive integer
(i) Whenw = +/d, the following hold

(2.28) Ou =¢q (resp, =0) mod 2, if 21k (resp 2]Kk),
(2.29) Gk-1=0-1 (resp, =1) mod 2, if 2tk (resp 2]Kk).
(i) Whenw = (1 ++/d)/2, the following hold

(2.30) Ou =0q (resp, =0) mod 2, if 3tk (resp 3]|Kk),
Ou-1=0-1 (resp, =qqg-1+1, 1) mod 2,
if k=1 (resp, =2, 0) mod 3.

(2.31)

Proof. By (2.7) of Lemma 2.1, we hawg, 1 =ry, andq_1 =r,. First, we show
(2.30) and (2.31) simultaneously by inductionkin They trivially hold fork = 1. Since
a is odd whenw = (1 +Ja)/2, we haveq+1+q_1=aq +2q_1 =g mod 2, and then
(2.9),o and (2.10),, yield that
(2.32) Oy =Q+10 +qQ_1=¢q mod 2,

Qa1 =qr+a+g_ar =q(@rn +r_1) +q_1n

(2.33)
=qn+(@r-1—g-1n)=qqg-1+1 mod 2 (by (2.3%).

Thus, they hold forkk = 2. Also, (2.32) and (2.33) imply that

O3 = O+102 + Q021 = Q+10 + q(q -1 + 1)

(2.34)
=q(Q+1+g-1)+g =29 =0 mod 2,

Oa—1 = Oaf+1+0a—1f =g+ + (01 + 1)
(2.35) =qri+ctan +n=q{(@ +1) +r_g} +rn
=qr-1+n=(Qq-1+1)+g_1=1 mod 2 (by (2.8)).

Thus, they hold forkk = 3. We letn > 1, and assume that both (2.30) and (2.31) hold
fork=3n—-2,3n -1, and 3. Similarly, (2.9), and (2.10), yield that

O@n+1) = Oi+1030 * Qi O3ni—1 = 4+10 +g1=q mod 2,

O@n+1)—1 = O3nif1+1 + Oani—1f = Orpey + 1 = g-1 mod 2.
It follows from this, (2.32) and (2.33) that

O@n+2) = +10@En+1) + A0@En+1—1 = G+10 + Q-1 =g mod 2,

O@n+2)—1 = O@En+1iM+1 + O@n+ny—1N = Qi+ + g2l =gg-1+1 mod 2.
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We see by this, (2.34) and (2.35) that

O3(n+1) = Ai+10@n+2) + A0@n+2)—1 = G+1G +q (g -1+1)=0 mod 2,

3(n+1)—1 = d@n+2iM1+1 + d@ne2) -1 = AN+ + (@G -1+ 1) =1 mod 2.

Thus, both (2.30) and (2.31) hold fé&r=3n+1, 3n+2, and 30+ 1). Next, we show
(2.28) and (2.29) simultaneously by inductionkn Note thata is even wheno = v/d.
Then we obtain them by the same argument. This proves our &mm 0

It is known that the following lemma is of central importanicethe theory of con-
tinued fractions, which is used in the proofs of Proposgi@n4 and 4.5 in Section 4.
In the case where = (1 ++/d)/2, as no reference for the proof of it is known to the
authors, we give it here.

Lemma 2.7. Under the above settingve have G — dg2 = (—1)"Q,Qo for all
n > 0. Here we put G, := Qopn — Poln.

Proof. For any positive integen, we put 6h+1 = ]_[i”:1 w(l, and 6, =1
(H.C. Williams and Wunderlich [11, p. 408, (2.7)]). By indian in n > 0, we show that

(2.36) Ot = (—=1)"(Pn — Ohw)

holds ([11, Theorem 2.1, (2.9)]). This holds far= 0, 1 from the definition 0%, +;.
We assume that (2.36) holds far> 1. By (2.24) and (2.1), we have

_ (@ Pn+Pn1) — (@G + Gn-1)@ _ Pnea — G
Onh® — Pn Oh® — Pn

wr:+11 = wn —an
Hence the hypothesis of induction implies that

Pn+1 — Qhv1w

e — p = (_1)n+l( Pr+1 — On+10).
h h

On+2 = 9n+1wr?+11 = (—=1)"(Pn — Ghw)
Thus, (2.36) holds fon + 1. Since G, — gnv/d)/Qo = pn — Ghew by the definition of
G, we see from (2.36) that

(2.37) One1 = (=1)"(Gn — Gnv/d)/Qo, N = 0.

For any elemenk in “a real quadratic fieldQ(+/d)”, x’ denotes its non-trivial conju-
gate overQ. As the definition ofw; and (2.18) yield thatdjw{)™! = Q?/(P2 — d) =
—Qi/Qj_1 for each integei > 1, we have

n Qn

n
On+16e1 = l—[(wi o) t=(=1) Q' n=>0.
i=1 0
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On the other hand, we see by (2.37) that6/.,, = (G2 —dg?)/Q3. Hence, we obtain

n+l —

G2 —d@? = (-1)"QnQo. Our lemma is proved. O
3. Certain positive integers with even period of minimal type

We letd be a non-square positive integer constructed in Theoren(i)2(eesp. (i),
and assume that the periddf the continued fraction expansion of= v/d (resp., =
(1 ++/d)/2) is even:| = 2L. For any integere > 0, W, denotese iterations of the

periodic partas, ..., a, and we putV :=as,...,a 1. Then, Wy is empty and if
L =1 thenV is also empty. The symmetric paat, . .., a_; of the continued fraction
expansion ofv can be written asv, a_, V. Here, V :=a__4, ..., a is the reverse of

V. Let b be any positive integer. We put
a=b+a_
and consider a symmetric string ofg(2 1)l — 1 positive integers
We, V,a, V, We,

where W, denotes the reverse o ., which is e iterations of a string of positive
integersay,...,a;. For brevity, we putL’ := (2e+1)L andl’ := (2e+1)l =2L’. From this
symmetric string o’ — 1 positive integers, we define nonnegative integgrs,,n >0
by using the recurrence equation (2.1). Since the former par, V of it gives the
same integersy,, r,, we have

(3.1) O, =0n, TFh=rn, 0<n<lL’

We assume this setting throughout this paper. In Sectionv@2shall choose a suitable
positive integerb depending on the integer (Lemma 3.4) to give positive integers of
minimal type.

3.1. Basic properties. The following hold for the positive integesp (in (2.14)
or (2.15)) and the symmetric string of positive integats, V, a., V, We.

Lemma 3.1.
(3.2) O = (Ou+2 + du—2)dus
(3.3) f+ (=1)Y = @usa +au-2res
(3.4) P+ (=1)Y = (L1 +au-1) P,
(3-5) G = %(qL’+1 +qu-1),

(3.6) 2(G1/Qo) + (1)) = %(QL’H‘FQL/A)Z-
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Proof. The equation (2.9, of Lemma 2.1 for the symmetric string of positive
integerswWe, V, a., V, W yields that

O = Qu+10u + 0o du—1 = (Qu+1 + du—1)dLs

which gives (3.2). By (2.3}, .1, We haveqyr .1 = qu+ir — (—1)-. Consequently,
(2.10),-., implies that

M= Quriey +Ou—afe = (@uss + -y — (1),

and we see (3.3). By adding (3.3) to (3.2) timms we obtain (3.4) by (2.4). Next,
we show (3.5). The periodic pasit; = [ag, ..., &] yields thatwy+n = w, for all k >0
and alln, 1 <n <| —1. Therefore,Pq+n = P, and Qx+n = Qn. Also, it is known that

(3.7) P1=PR_n, Qn=Qin, O0=<n<I-1

(By using w = a + (1/w1), (2.16) and (2.18), this is shown by induction imn) As
L’ =el+L, we see by (3.7) thaP_+1 = P.+1 = P_L = P_.. Hence, (2.16) gives tha® =
P+ =aQu — Py, so that P, =a Q. It follows from (2.19).,. of Lemma 2.5
and this that
ap - ’
Gu = LSL g +Quar-1
Q
2

(Qu+1 — Qu—1) + QU Q-1 = %(qL’ﬂ +0L—1).

As QL = Qe+ = QL, we have (3.5). Finally, we show (3.6). We see by (3.4) and
(3.2) that

G = Qopr — Pog = (Qu+1+ g 1)(Qopr — Poguy) — (—1)F' Qo
= (Qu+1 +du-1)Gr — (—=1)V' Qq,
so that

Gy , G
3'0 +(=1) = i(qm +qL1)-

By substituting (3.5) for this equation, we obtain (3.6).iSTproves our lemma. [
The following hold for the symmetric string of positive igErswe, vV, a, ¥V, We.

Lemma 3.2.

(3.8) o = ba? +a,
(3.9) O_y =1 =baury +rp,
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(3.10) r_y=bré +r._4,
(3.11) g —aug_y = (-1 au,

’ ’ / ’ Q
(3.12) h(s)af, — a(S)a_y =1y — (1) EZb'

Proof. By (3.1), we have
AL =aqn +qp_; = (b+a)qu +qu-1=bau +qua.
Consequently, (2.9),, of Lemma 2.1 forw., V, &, ¥V, We and (3.1) yield that
G = OLadl *+A0A0 g = (bOL + Guen)dL +Audu—1 = baf, +ar (by (3.2)),
which gives (3.8). By (2.7), we hawg,_, =r/, and by (3.1),
Fogg=ar, +ri, y=0O+a)ry +ryo_g=bry +riq.
Therefore, (2.1Q),, and (3.1) imply that

V- ’ / / ’
My =0l e YO0l

=qubry +risg) +du_are =boury +ry,

where we use (2.1Q). for We, V, a., ¥V, We. Thus, we see (3.9). The equations
(2.11)-,, and (3.1) yield that

4 —_y/ 14 ! !
SR S ST S ST

= (bro +risa)re +rorea =brd +nog (by (2.100),
which gives (3.10). It follows from (3.8) and (3.9) that
rog, — qud g =bairy +opre — (bofry +aun) = qre —qury,
and (2.9)-, and (2.10)- for We, V, a., V, We imply that

Oy — Aol = (a0 + dudu—1)re — O (oo + du—1fer)

(3.13) L
=@Qu+re —aure+n)de = (1) aur (by (2.3h=1+1)-



REAL QUADRATIC FIELDS OF MINIMAL TYPE 965

Thus, we obtain (3.11). Finally, we show (3.12). We see bg)(and (3.9) that
h(s)a, — 9(8)a_1 = h(s)(ba?, +a) — g(s)(bau L + 1)
=bau(h(s)au — g(s)ru) +ri-1 (by (2.22)),

so that

(3.14) h(S)g, — 9(9)d_1 =1y +bau (h(S)au — g(S)ru) — brf
by (3.10). We see from (2.5)._; and (2.6)-,. that

(QI’ CII'—1> _ <CI|_/+1 au )( qu re )

fr -y RS N T qu-1 ru-1 /)’
Multiplying this equation from the right by the inverse m&t(i—l)“‘l(
gives

Me-1 _rL’>
—Ou-1 Qu

(_1)|_'_1< Qfe—1—qr—1Qu-1 —Oefe +Qr—aqu ) — (qu+1 qu/ )

Mrp—1 —qu-afy-1 =My +qui-1 Mesr T

Furthermore, multiplying the above equation from the lgftabrow vector (s), —g(s))
and comparing with the second components of both sides délitl yhat

(=D H=arre +qraqu)h(s) — (=) (=rpre +auri—1)g(s)
=h(s)q — g(s)rv-

Now we use Lemma 2.5 and also note thais even. This implies that
h(s)a.: — g(s)ru:
= (=D (hS)a — g — (=) ((S)aqr -1 — g(S)ri-1)d
=D - DN A a0 by (222), (229)
1 r ’
= a{(—l)L (@ L — Gr-10u)r-1 — (1) aqu}.
Sinceq_1 =ry by (2.7), we see from (3.13) that
N — 9@ = o~ (D" 2) = G @i~ (D ag)
’ I/
= (-1 (Das) Gy )
|/
By substituting this equation for (3.14), we obtain

’ / / b 2’
I~ 051 = s + ok £
I/
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Here, we putf :=r% —1— (-1)"aq — (g2r2/q2). Then,
E=r—1—(-1)"2((Gi/Qo) — 1) — (g% 2 /a?) (by (2.20))
=12+ (=1)"'2r +1— (=1)-'2(Gy/Qo) — 2 — (¢ /92)
=+ (—=1)F)% — (=1)2((Gr/Qo) + (=1)-) — (g% 2 /9?)
2
= Qe+ QU )22 — (—1)L’(QL/Q0)§% QU+ qu DA
L/
(by (3.3), (3.6) and (3.2))

, 92
= —(-1)"(QL/Qo) = -
ac
Thus, we have (3.12) and this proves our lemma. O

3.2. Integerss’ and suitable positive integersb. To give positive integers of
minimal type, we define an integaf (Proposition 3.3) and choose a suitable positive
integer b depending on the integex (Lemma 3.4). Letk be a positive integer. By
(2.9)5 of Lemma 2.1, we see thaf) = 0+10k-1) + A Ak-1y-1. If G | qr—1y holds for
k > 2, then this equation implies that | qq. Thus, g divides gy for all k > 1.

Proposition 3.3. Let s and g be integers as inTheorem 2.4.Under the above
setting the following hold
(i) We assume that the positive integer b is divisible py gnd put

g o= 9(s) + (QL/Qo)b + ¢ 414
: % :

(3.15)

Then s’ is an integer and s> q|,_;r{,_,/q/, holds
(i) Furthermore we assume that b is also divisible by, @and let g be the least in-
teger t for which t> q_,;r|._,/q,. Then s’ =g if and only if

s—% < q—bl(qi QU I -1

Proof. (i) Multiplying both sides of (3.11) in Lemma 3.2 byQ(/Qo)b/qvL
yields that

(3.16) {(QL/Qo)bru/au g, — {(QL/Qo)bg)_, = (—1)- (QL/Qo)b.

By (2.8), we haver|_,q/ — q/_,q,_, = —(~1)" = —1. Multiplying both sides of this
equation byr|,_, gives

(3.17) (’|,'—12)Q|/' — (@4 ) g = =g
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If we add up both sides of (3.12), (3.16) and (3.17), then tgbtrhand side of it is
equal to 0, and we obtain

{h(s) + ((QL/Qo)bri/au) + 1/ _4°)q, = {g(s) + (QL/Qo)b + 0 _4F/,_1}a _1-

By the assumptionb/q,. is an integer andy, is co-prime toq/,_, by (2.3)},5.. Hence,
s’ is an integer and we have

o h(s) + ((QL/Qo)br /o) +1{_4

(3.18) ,
qr_1

Also, asg(s) > 0, we see by (3.15) that > q],_,r{._,/q.
(i) For brevity, we put

E:=q_irn-1/a, E :=q._4r_./9.

Sinces) — 1 < E’ < s, by the definition ofs;, the integers, is characterized as an
integert satisfyingE’ <t < E’+ 1. The same thing is true fdg. Also,

g2 99+ (Qu/Qb , ¢
a
and the first term of the right hand side of it is positivegs) > 0. Hence,

=g SITQUAD
:

& qs—0g_1fi-1+(QL/Qo)b < b +q-  (by (3.8))
= qs<b@? — (QL/Qu) +ar + G 1M1

b ,
= s—g< a(qf/_(QL/QO))'i'(;_Il"'E_SO-

We see by the assumption and the remark in the beginning sfsigtion that both
b/q andq/q are integers. Also—~1 < E — 5 < 0. Therefore,

b ,
5/236<:>S—SO§a(qa_(QL/QO))"'Z_II_l-

Our proposition is proved. ]

REMARK 3.1. Aswe have seenin [4, Lemma 2.2]42]]/a. > Q. holds. Hence,
since a sequenciy}ns2 Of positive integers is strictly monotonously increasitigere
exists some numbex, for the constans — sy such that

O@et1y 1

1
e>eq = a(qémn —(Qu/Q+ =, >s - 5.
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We assume that > e, andb is divisible by bothq,: andq. Then, we see by the
above and Proposition 3.3 (i) that=s] holds for an integes’ determined by (3.15),
depending on integers > ey andb.

For any integele > 0 and any positive integdy, we define polynomialg’(x), h’(x)
of degree 1 and a quadratic polynomifl(x) in Z[x] by putting
900 = gx — g ar g, WO =gl x—r1) 1% F/() = g0 +4n'(x).

Lemma 3.4. We let t be any positive integer and put:$ (qL+1 + gL —1)qut.
Then the assumption oProposition 3.3for b holds and

(3.19) s ={g(s) + (Qu/Qo)(qL+1 + qu—1)aut + o 4| _1}/9,
(3.20) f/(s) = (QL/Qo)*(qLr+1 + AL —1)?q2 t?
+2(QL/Q0)(qu+1 + qur—1)’t + f(9).

Proof. By (3.2) of Lemma 3.1, we haue=q;t. Sinceq | q-, we obtaing | b.
Thus, the assumption of Proposition 3.3 forholds. The definition (3.15) of’
yields that

(3.21) g'(s) = 9(s) + (QL/Qo)b = g(s) + (QL/Qo)(dL+1 + Au-1)dL't,
and (3.18) implies that
h'(s’) = h(s) + ((QL/Qo)brL-/qv).
Therefore,
f'(s))
= {(QL/Q0)*b* +2(Q1/Qo)by(s) + g(s)?} + 4n(s) + 4((Qu/Qo)bru /av)
= (Qu/ QoM + 2(Q/Qu) (el +21) + 6)

On the other hand, it follows from (3.2), (3.3 = g(s), and (2.20) of Lemma 2.5 that
(Au+a +qu—1)(9(s)au + 2r1)
=g()ar +2¢r + (-1)")
= 2(Gr/Qo) — 1) + 2 + (-1)) = 2(Gr/Qo) + (-1)")
= (QL/Qo)(GL+1 +au-1)*  (by (3.6)).

Hence we obtain

F(8) = (Qu/Qo)20? + 2(Q/ Qo) (aLos + qM% +1(S),
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which gives (3.20), and our lemma is proved. ]

Lemma 3.5. Under the setting oflLemma 3.4,we consider the symmetric string
of positive integersw., V, &, V, We.
(i) We assume thaCase (I) occurs for the symmetric string of positive integers
a;,...,a-1 and s is evenThen if t is even thenCase (l)occurs for the new symmet-
ric string of positive integerswe, V, &, V, We, and $ is even Alsq, if t is odd
then Case (ll)occurs for the new symmetric string
(i) We assume tha€ase (l)occurs for g,...,a_; and s is odd If e =1 mod 3
then Case (Ill) occurs for the new symmetric stringurthermore we assume that &
0, 2mod 3.Then if t is even thenCase (l)occurs for the new symmetric string and
s’ is odd Alsg, if t is odd thenCase (Il)occurs for the new symmetric string

(i) If Case (Il)occurs for a, ..., a_1, thenCase (Il)occurs for the new symmetric
string.
(iv) If Case (lll)occurs for a,...,a-_1, thenCase (lll)occurs for the new symmetric
string.

Proof. As we use Lemma 2.2, we note tlmt = a:. = a,, and thatq;, = qr/
by (3.1). Since

QuertQu-1=acqu+2qu-1=acqr =aqe mod 2
anda’ = (QL+1 +qu-1)qut +a., we have
(3.22) a=a(qut+1) mod 2.
Also, asl’ =2L’, (2.9),-.. of Lemma 2.1 yields that

(3.23) Oeerty =0 = (Qu+1+Qu-1)dr =a,qr mod 2.

(i) Since Case (l) occurs fawy,...,a-_1, bothg anda_ are odd by Lemma 2.2.
Consequently, we have, = (pe+1y anda’ = qu/t +1 mod 2 by (3.23) and (3.22).

As s is even andl is a positive integer constructed in Theorem 2.4, now we deal
with @ = v/d. Therefore, (2.28) of Lemma 2.6 yields thgt = g = 1 mod 2, so that
a =t+1mod2. First, we assume thatis even. Then, since both, anda’ are
odd, we see by Lemma 2.2 that Case (I) occurs for the new syriens¢ting andg;,
is odd. Asqr/_, =q,_,°— (1) by (2.8), the parity ofr,_, does not coincide with
that of /,_,, so thatq/,_,r/._; = 0 mod 2. Furthermore, sinag, is odd andt is even,
(3.19) implies that

s=9(s)=qgs— (-1 g-ir-1 mod 2.

As q is odd, we similarly see thay_1rj_; = 0 mod 2. Hences = smod 2 ands’
is even. Next, we assume thiatis odd. Then, since’ is even, Case (llI) occurs by
Lemma 2.2.
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(i) Similarly, we haveq, = (pe+1y anda’ =g t+1 mod 2. Ass is odd, now we
deal withw = (1 ++/d)/2. First, we assume tha= 1 mod 3. Then, we see by (2.30)
that g = qper1y = 0 mod 2. Thereforeq], is even anda’ is odd so that Case (lll)
occurs by Lemma 2.2. Next, we assume that 0,2 mod 3. Theng,  =q =1 mod 2
by (2.30), henceg’ =t+1 mod 2. The same argument in (i) implies tisat s mod 2,

s’ is odd, and the same assertion holds.

(i) Since Case (ll) occurs fomy, ..., a1, Lemma 2.2 yields thaa_ is even.
By (3.22), @ is also even. We see by Lemma 2.2 that Case (ll) occurs again.

(iv) Since Case (lll) occurs foay,...,a_1, it follows from Lemma 2.2 that is
even anda, is odd. Now we deal withw = (1 ++/d)/2. We see by (3.23) and (3.22)
that qu = Qper1y anda’ = qut + 1 mod 2. Asq is even, gpe+1y IS always even by
(2.30). Hence,q. = qu is even so that’ is odd. Lemma 2.2 yields that Case (lll)
occurs. This proves our lemma. O

3.3. Construction of non-square positive integerd’(t). Under the setting of
Lemma 3.4, by using Theorem 2.4, we construct a new non-equagitive integed’
from a symmetric string of — 1 positive integersie, V, @, ¥, W, and the integer
s'. When Case (I) occurs for the given symmetric string of pasiintegersay,...,a_1,
Case (I) does not always occur for this new symmetric strihgasitive integers. In-
deed, we see by Lemma 3.5 that another Case occurs, depesdimgnodulo 3 and
t modulo 2. Therefore, we consider three cases [A], [B], anfd€parately to prove
Theorem 3.6, and construct the following positive intedéer

Vd — Jd' in [A],
(1+vd)/2 - Vd' in [B],
(L++/d)/2 —> (1++/d)/2 in[C].

Theorem 3.6. We consider a non-square positive integer d constructedhiao-
rem 2.4 (i) ¢esp (ii)), and assume that the period | of the continued fraction expan-
sionw = +/d (resp, = (1++/d)/2) is even | = 2L. Let e be any integer 0 and put
I”:=(2e+ 1)l and L' ;= (2e+ 1)L for brevity For any positive integer,twe put

a =a(t) =@+ +aqu-1)aut +a.,

s =s/(t) :={g(s) + (QL/Qo)(AL+1 + AL —1)dut + . _4r{_1}/q,
and define polynomials’), h'(x) of degreel and a quadratic polynomial '{x) in
Z[x] as stated beforéemma 3.4.Then the following hold

[A] We assume thatCase (I) occurs for the symmetric string of positive integers
a;,...,a_1 and s is eveh or Case (Il)occurs for it Put d := f'(s')/4 and g, :=
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g'(s')/2. Then Q(qu+1+qL—1) is even and

QZ (041 + QLr—1)? Q2(qu+1+ QL’—l)Zt +d

d =d(t)= 2 qit? + 5 ,
gy =ay(n) = LUATA g gy

Alsa d’ is a non-square positive integer and

o =d = [36, We, V, &, V, W, 2a(/3]

is the continued fraction expansion with the periddf «'.

[B] We assume thatase (l)occurs for a, ..., a_1, both s and t are oddand e=
0,2mod 3. Put d := f'(s)/4 and g, := g'(s')/2. Then Qr/2, qu+1 +gu—1 and o
are all odd and

d =d@)
= {(QL/2(qur+1 + Au-1)?07 t% + 2(QL/2)7(qur+ + GL—1)°t +d} /4,
ay = ag(t) = {(QL/2)(QL+1 + qu—1)dut + 280 — 1}/2,

(so that d and g, are integers by d= 1 mod 4). Alsg, d’ is a non-square positive
integer and

' = \/W = [36, VV)e' 71 a, v! We' Za(/)]

is the continued fraction expansion with the periddf «'.

[C] We assume thatCase (I) occurs for @,...,a_; and s is oddl, or Case (lll)
occurs for it Here if Case (l)occurs then we also assume thatsel mod 3,0r t is
even Put d := f'(s') and g := (g'(s') + 1)/2. Then qut is even and

d =d(t)
= (QL/2)%(d+1 + Au-1)2a2t? + 2(QL/2)%(ALr+1 + qu-1)t +d,
't
= 8(1) = (QL/2)(0w1 + A1) o + 2

Alsa d’ is a non-square positive integed’ = 1 mod 4, and

o = (1+Vd)/2=[ay, We, V,a, V, We, 28) — 1]
is the continued fraction expansion with the periddf «'.

Proof. We see by Proposition 3.3 (i) thsitis an integer and’ > q/,_;r/,_,/q.
It follows from (3.21) and the definition of that

g)>as)=a >ay,..., a_1.
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Also, we haveg'(s) > a’ from (3.21) and the definition o&’. Hence, the condition
(2.13) of Theorem 2.4 for the symmetric string of positivéegerswWe, VvV, a, V,
We ands’ holds.

[A] Lemma 3.5 (i) and (iii) imply that “Case (I) occurs for thinew symmetric
string ands’ is even”, or Case (Il) occurs for it. A® =+/d, we haveQ, = 1. By
(3.6) of Lemma 3.1, 2§ + (—1)") = QL(qL+1 + dL—1)?, SO thatQp(qu+1 +qu—_1) is
even. Sincal = f(s)/4 andag = g(s)/2 by the definitions, (3.20) of Lemma 3.4 yields
that

Q? (g1 +dL-1)?
4

2 2
Qi (Au+1+0du—-1) t4d

d = f(s)/4= 5

geti+

and by (3.21),

Qu(QL+1+qL-1)
fql‘/

Therefore, Theorem 2.4 (i) implies our assertion.
[B] Lemma 3.5 (ii) implies that Case (Il) occurs for the newrsyetric string,
and g, is odd from its proof. AsQg =2, we see by (3.5) of Lemma 3.1 that

a=g(s)/2=ap+ t.

(QL/Qo)(AL+1+dr-1) =G =2pr —gu =g =1 mod 2.

Consequently,Q./Qo andq,+1 +q.-_1 are both odd. Sincd = f(s) andag = (g(s) +
1)/2 by the definitions, (3.20) yields that

d = f'(s)/4
= {(QL/Q0)*(dL+1 + A—1)°a7 t* + 2(QL/Qo)*(ALr+1 + Our—1)’t +d}/4
and by (3.21),
ay=0/(s)/2={2a0 — 1+ (QL/Qo)(aL+1 + qL—1)qu t}/2.

Hence, Theorem 2.4 (i) implies our assertion.

[C] Lemma 3.5 (ii) and (iv) imply that “Case (I) occurs for theew symmetric
string ands’ is odd”, or Case (lll) occurs for it. By its proofj.- ort is even. Since
d = f(s) andag = (g(s) + 1)/2 by the definitions, (3.20) yields that

d = () = (QL/Q0)*(Au+1 + du—1)?92t? + 2(QL /Qo)?(qu+1 + A—1)*t +d
and by (3.21),
it
% = (¢(8) + 1)/2 = 20 + (QL/Qo)(Ara + Ou-1) 5

As Qo =2, Theorem 2.4 (ii) implies our assertion. This proves dw@otem. 0
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REMARK 3.2. We letd’ be a non-square positive integer constructed in [A] and
[B] (resp. [C]) of Theorem 3.6. We see by Proposition 3.3 {iigt d’ is a positive
integer with period’ of minimal type for+/d’ (resp. (1 +/d’)/2) if and only if

s—% < (0% — (QL/Qo))(Au+1 +qu—1)dut/a + (ar/a) — 1.

Here, Qo =1, 2 (resp., =2). Whee is sufficiently large, Remark 3.1 shows trait=
d'(t) becomes of minimal type fox/d’ (resp. (1 +/d’)/2) for all positive integers.

Theorem 3.6 [A] implies Theorems 4.1 (c-i) and 4.2 (c-ii) in o[6], and The-
orems 2 (ii) and 3€=0) in McLaughlin [5].

Proposition 3.7 (Mollin, McLaughlin). We let d be a non-square positive inte-
ger and assume that

Vd=Tag a,-..,a 1, 2]

is the continued fraction expansion with even peried2L of +/d. Let e be any integer
>0 and put [ := (2e+ 1)l. For any positive integer uwe put

A= (pr + (D)0 + 2(p + (DD +d,
ag = (pr + (=1)")gru + ao.

Then d’ is a non-square positive integer and

ﬁ: [a61 VV)e, 71 a/y v! (Vve, 26(/)]
becomes the continued fraction expansion with even petiod {/d’. Here

- 2(pr + (=1)Y)
a = N

qruta.

Proof. We see by Theorem 2.4 theats uniquely of the formd = f(s)/4 with some
integers > 5. Here, the quadratic polynomidi(x) and the integers, are obtained as
in it from the symmetric part of the above continued fractmrtiension. Furthermore,
“Case (I) occurs forag, ..., a1 ands is even”, or Case (ll) occurs for it. We put
t:=(Qu+1+qu_1)?u. AsL’ =L mod 2, (1) = (—1)-. The equations (3.6) and (3.2)
of Lemma 3.1 yield that

a = QU+ qu-1)?gu+a = (qu+1+au-1)iquu+a

=(Ou+1+Ou-1)aut+a.
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Also, (3.4) and (3.2) imply that

8y = (Qu+1 +qu—1) PL(du+1 + du—1)duu + 8 = pLdut +ap,
d’ = (Qu+1+ du—1)?PE (AL + du—1)?A2 U% + 2(ques + u—1)? PP u +d
= pLagt?+2pit+d.
By (3.5), we havep.' = (QL/2)(dL+1 +dL-1), SO that
a = QL(gu+1+qr_1)

> qu't + ao,
2 2 2 2
g = QL@ t+au-1) P2+ QL+ +a-1)7 , o
4 2
Hence, Theorem 3.6 [A] implies our proposition. O

We shall use the following lemma in Section 4.3.

Lemma 3.8. Let d(t) be a non-square positive integer constructed ireorem 3.6.
Then the discriminant of a quadratic polynomial(d) in Z[t] is not equal toO.

Proof. We see from the proof of Theorem 3.6 thgt) = f'(s'(t))/4, or f'(s'(t)).
By (3.20) of Lemma 3.4, the discriminant of a quadratic polymal f'(s'(t)) is equal to

4(QL/Qo)*(AL+1 +du—1)* — AQL/Qo)*(AL+1 + du—1)°a f(5)
= 4(QL/Q0)*(AL+1 + AL -1)A{(QL/Q0)*(AL+1 + d—1)? — g& T (9)}-

Therefore, if we assume that the discriminantdt) is equal to O thenf (s) is square.
As d = f(s)/4 or f(s), d is also square, and this is a contradiction. Our lemma is
proved. ]

3.4. Yokoi invariant. In this section we led be a non-square positive integer
constructed in Theorem 2.4 (i), or (ii)). We assume for a wiiiat d is square-free,
and consider a real quadratic fiel(/d). Therefore, ifd is a positive integer given in
the assertion (i), then we assume tlat 2, 3 mod 4. We know by the last assertion
of Theorem 2.4 that all real quadratic fields are obtainechis way. Lete > 1 be the
fundamental unit of it, and we write uniquely= (t + u+/d)/2 with positive integers
t,u. Then, we define the Yokoi invarianty of a real quadratic field)(+/d) by putting
my := [u?/t]. The following hold.

Lemma 3.9 ([4] Lemma 4.1). Under the above settingve puti := A2/(g(s)A+
2B). Then if d = 2, 3 mod 4then my = [41], and if d= 1 mod 4then my = [A].
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The equations (2.20) of Lemma 2.5 and (2.7) of Lemma 2.1 intipdyt

ge)A+2B=a0q +29-1=2((G1/Qo) — )+ 20 -1 = 2(G;/ Qo).

Whend = 2, 3 mod 4, af)o = 1, we have 4 = (2g%)/G = (297)/(G| Qo), and wherd =

1 mod 4, asQo = 2, we obtaimk = g?/G = (207)/(Gi Qo). Thus,my = [(207)/(Gi Qo)].
Since the right hand side of this equation can be defined aemd has a square factor,
we extend the Yokoi invariant in the following way.

DEFINITION 3.1. We letd be any non-square positive integer such ftthat 1, 2,
3 mod 4. First, we assume thdt= 2, 3 mod 4, and consider the continued fraction
expansion with period of +/d: +/d = [ay, @, ..., &]. We calculate positive integers
pi, g from partial quotientsy, a1, ..., &_1 by using the recurrence equation (2.1), and
put G, = pp and Qo = 1. Then, we define the Yokoi invariant of a non-square pgsiti

integerd by putting
297 :|
Mg := .
‘ |:GI Qo

Next, we assume that =1 mod 4, and consider the continued fraction expansion with
period| of (1++/d)/2. Similarly, we calculate positive integers, g from the partial
quotients and puG; = 2p — q and Qg = 2. Then, we define the Yokoi invariamby

in the same manner. (In fact we can give the similar definitbrmy also whend =

0 mod 4, and furthermore, we can show thaf coincides with “the Yokoi invariant”
for the fundamental unit of a certain (not necessary maximiaer in “a real quadratic

field Q(v/d)”.)

We show the following proposition which is needed in SectlorAs we have seen
in the beginning of Section 3.2y divides gy for all positive integersk.

Proposition 3.10. Let e and t be any fixed positive integeend d d' = d'(t)
and w, o' = &'(t), respectively positive integers and quadratic irrationals constructed
in Theorem 3.6 [A]or [C]. We assume that & 2, 3, d'(t) = 2,3 mod 4in the assertion
[A], and also assume thatya> 2 in the case where» = v/d ([A]), and & > 3 in
the case where» = (1 ++/d)/2 ([C]). We let ny and My be the Yokoi invariants
of d and d(t) defined inDefinition 3.1, respectively and put @ := gpe+1y /0. Then
MgCe — 1 < My < (Mg + 2)Ce holds

Here, the estimate fomg ) is rough and ifmyg = O then the estimate for it from
below becomes trivial. For the proof, we first show Lemmasl3ahd 3.12. Leta
and a) be positive integers as in Theorem 3.6. Frafand the symmetric string of
positive integerswe, V, &, V, We, we define positive integerg),, n > 0 by using



976 F. KAWAMOTO AND K. TOMITA

the recurrence equation (2.1). We write uniquely= (P; + ﬁ)/Qb with positive

integersPy, Qp, and putG|, := Qyp, — Piqy.. Also, we put
5 = 2q7 - 297 s 2q;°
GiIQo’ GiQo’ G Q'

and m* := [A*] for brevity. Since we deal with the assertions [A] and [C] Dieo-
rem 3.6, note thao/Qy = 1 holds. First, we draw a comparison between the value
of m* = [A*] and that ofmyg =[A’] in the following lemma. (There we may take=0.)

Lemma 3.11. The following hold
() Gi./Qo=((Gi/Qo)+ (1))@t + 1 — (-1)".
(i) If we put
(GRt+1P -1
(Gr/Qo) + (D)) (g2t + 12 — (1)

for all positive integers t then

p(t) =

(3.24) 2= (L — (=) e(t).

Also, the functiong(t) is strictly, monotonously increasing in the intervdl, co), and
o(t) = 1/((G//Qq) + (—1)") as t — oo. Furthermore we have0 < A*¢(t) < 1 under
the assumption oProposition 3.10for ap.

Proof. For brevity, we put

9:=Gi/Qo, ¢ =G /Qp u=u(t)=qgit+1,
-1
(g+(-1)u? — (1)

We showg > 1 to see that the denominator of it is positive. (In fagt> 1 and 2y
is an integer.) Whem = +/d, asl’ > | > 2, we haveg = p > p2 > 2. Whenw =
(1++/d)/2, (2.19)- of Lemma 2.5 implies thaG = P + Qq-_1. Sinceq 1 > 0
from I’ > 2 and B, Q- are positive integers, we obtaf@,, > 2, so thatg > 1. This
immediately yields that the denominator @ft) is positive. Leta’ be a positive integer
defined in Theorem 3.6 and pbt:= (qL+1 +qu—1)qut. Then,a =b+a,.

(i) By (3.2) of Lemma 3.1, we havég? = g-g2t. Consequently, we see by
(3.8) that

so that ¢(t) =

(3.25) 9. = ar(gat +1) =qu.
Since

baure = (r + (1))t = (v + (1)) - 1)
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by (3.3), the equation (3.9) yields that
(3.26) =+ (DU -1 +n =nu+ (-1)-(u-1).
First, letd’ and w’ be a positive integer and a quadratic irrational constcuateThe-
orem 3.6 [A], respectively. As 2{ + (=1)") = Q_(gL+1 + qu—1)? by (3.6), we obtain
2y = (pr + (—1)")(Au+a + A1) ot + .

Therefore, (3.2) and (2.4) imply that

agqr = (pr + (—1))g2t +aoqr = (pr + (=1 )(u — 1)+ pr — 1y

(3.27)
=gu—rp +(-1)-(u—1).

Hence,
g =p =ay +r, =aqu+r/ (by (3.25)

=gu? —rnu+(-D"uu—1)+ru+(-1)-u—1) (by (3.27), (3.26))

=gu + (-1)"(u* - 1) = @+ (-1)")u® — (-1)".
Thus, the assertion (i) holds. Next, lét and ' be a positive integer and a quadratic
irrational constructed in Theorem 3.6 [C], respectivelg 2g+(—1)") = (QL/2)([@L+1+
g—1)? by (3.6), we obtain

ay = (9 + (—1)")(@L+1+au—1)taut +ag,
so that
3 = (g+(—1)")alt +ag = (g+ (1)) (u—1) +pr —rv

(3.28) :gu+% —n+ (=1 (u-1).

Therefore,
(3.29)

P =ag +r) =aquu+r) (by (3.25)

=gu?+ %u —rnu+ (=D uu —1) +rpu+ (=)t u—1) (by (3.28), (3.26))

=gu?+ %u +(—1)-(u? - 1).

Hence,

/= /_q_ll/:
g=n 2

= gu + (-1~ 1) = (g + (- - (1)

g + Tu+ (1MW - 1) - Tu by (3:29), (3.25)
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Thus, the assertion (i) holds.
(i) As Qo/Qp=1, it follows from (3.25) and the assertion (i) that

gu2 _ gu2
g (@+(E=DHwr— (=1t

which gives (3.24). Since the derivative @ft) satisfies

Aarl= =1— (=1 p(),

de

_ 2uq?.g
a(t)

S {@+ (-DHuE - (-1
the functiong(t) is strictly, monotonously increasing in the interval fb). Also, we

see from the definition op(t) that p(t) — 1/(g+ (—1)") ast — oco. This implies that
o(t) < 1/(g + (=1)V). Therefore,

> 0,

Mo(t) <

Loa 12 (8,00
Q? 9 g+(-1 “g/a \a o

First, we assume thab = v/d to show the last assertion. As= p;, (2.4) yields that
g/qr = ao + (f//qr) > ap. Hence we see bgy > 2 that

e 2 (L EDNT 2
Mp(t)<ao (a°+ qr ) _ao(ao—l)_l'

Next, we assume thab = (1 ++/d)/2. Asg=pr — (q/2), (2.4) yields that

_ + Iy 1 - 1
9/ar = ag a 528~ 3
Hence we see bygy > 3 that
2 1 (—1)L)‘1 2
Vo) < ——— |ag—=+—2 ) <— — <1,
0= (e G- Diao—2)

Thus, the assertion (ii) holds and our lemma is proved. ]

Next, we draw a comparison between the valuemgf=[A] and that ofm* = [1*]
in the following lemma. There it is not necessary for the geiti to be even.

Lemma 3.12. We let k be a positive integer 2, and puti = 2g?/(G| Qq), A* :=
20 /(Gki Qo) and

= oy (A0 T
[/ 3 ( > rk|) > 0.

Then the following hold



REAL QUADRATIC FIELDS OF MINIMAL TYPE 979

() 2*=@a/a)rl+(=1)'y).
(i) 0 <2y < (1/Qfa) - (2/a).

Proof. Ask > 2, note thatl <kl — 1. It follows from (2.9)- and (2.10), of
Lemma 2.1 that

(3.30) Okl = Oi+10k—1) * O Qk—1)I -1,
(3.31) ki = Ok—1)M1+1 + Q—1) -1 -

(i) By adding (3.31) times—q to (3.30) timesr;, we obtain
Ol — Gifk = A1y Q1 — Qi) = (1) ggeny (by (2.3)),

so that

L, _ r e ] 1o ra\/a | ru -
(-1)y = <lea - fk|>(7 +fk|> = <a - a) (E + @>

Hence,

(3.32) 1+(1)y = (E + %) (% + %)f

If »=+/d (resp., = (1 +/d)/2) then, sinceG,/q = a + (1/q) (resp., =29 — 1 +
(2r,/q)) by (2.4), we have

M

Gi/q = %a + Qo— = Qo(E + a)

Similarly, we see thaGy/qx = Qo(a& /2 +rk/d«)- Therefore, (3.32) yields that
,\*Alz%.mz%.(iﬂ_')(iﬂﬂ) qk'(l+(_1)|¢)
g Gw/da G 2 q/\2 qu

which gives the assertion (i).
(ii) Dividing both sides of (3.30) byo g g+1 implies that

1 _dxn , G-
qd+1  dua OiOi+1

Consequently, we have

Q- _ 1 _ 1 -1
Qg ~ g0+ g@q +tg-1) ~ ag?
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As kl > 2, r > 0. Hence,

_ Q=) (84 L )_1 1 2 2
= \5*y ) <5 7 a2
aua \ 2 au ag® a  afq

On the other hand, a&,/q = Qo(a /2 +r/q) > Qoa /2, we have

2 a

- <. 9 29
Qo Gi/g = (2/Qo) a

Therefore we obtain

W< @I 2=

2/a)°.
al a12q|2 ngl( /al)

This proves our lemma. O

Proof of Proposition 3.10. Lek :=2e+1> 3. As| is even, we see by Lem-
ma 3.12 (i) thatA* = ceh + cedtr. If w = 4/d (resp., = (1 +/d)/2) then, asag > 2
(resp., > 3) by our assumption, we hawg > 4. Lemma 3.12 (ii) yields that

0 < CeAYr < Co/(8Q301) < Ce.

Hence we obtailmeA < A* < Ce(A+1). Consequentlytemy < m* < Ce(A+1) < Co(mMy+2),
so that

(3.33) CeMyg < M* < cg(my +2) — 1.

First, we assume thdt is even. The equation (3.24) of Lemma 3.11 implies thiat
A —A*p(t). Since O< A*p(t) < 1 by the assertion (ii) of it, we have*—1 < A’ < A*.
Therefore,m* —1 <myg < A* <m*+1, so thatm*—1 < myg < m*. Hence, by (3.33),
we obtaincemg — 1 < myg < (Mg +2)— 1. Next, we assume thdt is odd. We see by
(3.24) thatA’ = A* + A*¢(t). By Lemma 3.11 (ii), we have* < A’ < A*+ 1. Therefore,
m* <myg < A*+1<m*+2, so thatm* < myg <m*+1. Hence, by (3.33), we obtain
CeMy < My < Ce(My +2). This proves our proposition. O

REMARK 3.3. We see by the above proof that — 1 < my < m* +1 for all
positive integerg. Since the integem* depends on an integer> 0, if e is fixed then
the values ofmg ) do not change very much whenis various. Indeed, they are con-
stant in the tables of Section 5. Also, we can similarly shbet ¥mgce —4 < My ) <
4(mg + 2)ce + 3 holds under the assumption thdift) = 2, 3 mod 4 in the assertion [B]
of Theorem 3.6.
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4. Main results

We begin with quadratic irrationale with period 2, 4 given in [4], and by using
results of Sections 3.3 and 3.4, construct real quadralisfi@(+/d’) with even period
of minimal type whose Yokoi invariant is relatively large.orFbrevity we putce :=

Oeze+1y /01 -

4.1. The case wherd = 2.

Proposition 4.1. Let e and m be any positive integeend a any positive integer
such that a> 2 and 4a* + 8a%2 + 2 > m. We define positive integers,,qn > 1 by
using partial quotients a2a, appeared in the continued fraction expansiof@2 + 2 =
[a, &, 2a], and the recurrence equatiof2.1). For any positive integer,twe put

d'(t) == (Goer2 + QZe)quzeﬂtz + 2(Oer2 + qu)zt + (a2 +2).

Then the following hold

(i) Each d(t) is a positive integer with perio@(2e + 1) of minimal type for,/d’(t).
(i) When a is evenwe have (t) =2 mod 4. When a is oddif t is even then {t) =
3 mod 4,and if t is odd then Ht) =2 mod 4.

(iiiy For all positive integers twe have g— 1 < My () < 3Ce. Also, Mg ) > m.

Proof. We putd :=a?+2, |’ :=2(2e+1) andL’ := 2e+ 1 for brevity. We know
from [4, Example 4.2] that whea is odd (resp. even), Case (I) (resp. Case (ll)) occurs
for “the symmetric string of a positive integef, and +/d = [a, a, 2a] is the continued
fraction expansion of/d. Also, d=2,3mod 4,55=1, s=2 andmy = 1. In [4] we
calculated the Yokoi invariamny under the assumption thdtis square-free. However,
as we have explained in the beginning of Section 3.4, thigevéd obtained from the
continued fraction expansion of/d. Hence, myg = 1 holds without this assumption.
Since P, =aQy — Py = a from (2.16), we see by (2.17) th®@®, =d — a? = 2.

(i) The definition ofd’(t) and Theorem 3.6 [A] imply that the period qfd(t)
is equal tol’. Asl’>2, L’ >3 andqgs = 2a?+1 > 3, we obtain

@ — (Q1/Qu))(AL+1+ Au—1)dut/de + (@ /) — 1
> (05 — 2)(a + G2)0s/G2 > 1 =S — .

Therefore, we see by Remark 3.2 thit) is of minimal type for./d’(t).

(i) For brevity, we putAg := (Qu+1 +du-1)°g2 and Aq := 2(qL+1 + qu-1)% and
write d'(t) = Agt? + At +d. First, we assume that is even. Then, we easily see by
the definition ofq, that the parity ofn coincides with that ofg,. Consequently, as
Ou+1 +qu_1 is even, we haver;g = A; =0, so thatd’(t) = d = 2 mod 4. Next, we
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assume thaa is odd. Then, we easily see that

O =0, OQa+1=0ak+2=0Cax3=1 mod 2
for any integerk > 0. As L’ is odd, this yields that botly,, and q.+1 + g1 are
odd. ConsequentlyAy =1, A; = 2, so thatd'(t) = t?>+ 2t + 3 mod 4, which gives the
assertion (ii).

(i) As d'(t) =2,3mod4,a > 2 andmy = 1, Proposition 3.10 implies that

Ce — 1 < my( < 3Ce. By the definition ofce, we obtain

My >Ce—1>c—1=4a*+8a%+2>m.
This proves our proposition. ]

4.2. The case wherd =4. For brevity we put’ :=4(2e+1) andL’ :=2(2e+1).

Proposition 4.2. Let e and m be any positive integers any integer> 0, and a
any positive integer such thdtta — 1 > m. We put

d:={(8a’+6a+1u+8a’+4da+1)’+(da+2u+da+l,

and define positive integers,,gn > 1 by using partial quotients appeared in the peri-
odic part of the continued fraction expansion

Vd =[(8a%+6a+1)u+8a%+4a+1,
dJa+1, (da+1u+4da, da+1, (162+12a+2)u+16a2+8a+ 2]

and the recurrence equatiof®.1). For any positive integer,twe put

d'(t) := (28 + 1)*(Guers + Gaer1)*Uanrot? + 2(22 + 1)%(Claers + Gaer1)t +d.

Then the following hold

() Each d(t) is a positive integer with period(2e + 1) of minimal type for/d’(t).
(i) When u is evenwe have {t) =2 mod 4. When u is oddif t is even then dt) =
3 mod 4,and if t is odd then dt) = 2 mod 4.

(iii) For all positive integers twe havel6ac —1 < my () < (16a+2)ce. Also, Mg > m.

Proof. We know from [4, Proposition 5.2 (i)] that whanis odd (resp. even),
Case () (resp. Case (Il)) occurs for the symmetric stringpos$itive integers &+ 1,
(4a+1)u+4a, 4a+1, and the continued fraction expansiongfl has the above form.
Also, whenu is even (resp. odd), we hawke= 2 (resp.,=3) mod 4,55=u+1, and
my = 16a (without the assumption that is square-free). Furthermord, is of minimal
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type for+/d. For brevity, we puty := (8a%+6a+1)u+8a’+4a+1. By (2.16) and (2.17),
we haveP; =a, and Q; =d — a3 = (4a+2)u+4a+1, so thatP, = (4a+1)Q; — P; and
Q2=1+(a+1)(PL—P)=1+2(4+1)P, — (4a+17Q;

=1+2(d+1){(8a%+ 6a+ 1)u + 8a? + 4a + 1}
— (da+17{(da+2)u+4da+1)
=1+(da+1)=4a+2.
Thus, Q2/2=2a+1.
(i) The definition ofd’(t) and Theorem 3.6 [A] imply that the period qfd’(t)
is equal tol’. Asl”">4, L’>2 andgy =4a+ 1, we obtain
@2 — (Q2/Qo))(dL+1+ AL —1)dLt/aa + (0 /q) — 1
> (0% — 42— 2)(03 + 01)2/0 > 0 =5 — %o
Therefore, we see by Remark 3.2 tht) is of minimal type for./d'(t).
(i) For brevity, we putAg := (2a+1)(qL+1+0L—1)?q7 and Ay := 2(2a+1)2(qLr+1+
gu—1)?, and writed'(t) = Agt? + Ast +d. By the definition ofg,, we easily see that
Osk =0, Ogkr1 = Oak+2 = 1, Qguz = U+ 1,
Osk+a = U, Ogkes = U+ 1, Ogkss = Ogke7 = 1 Mod 2
for any integerk > 0. Consequently, at’ =2 mod 4, ¢,/ is odd andqL+1+ Q-1 =
umod 2. First, we assume thatis even. Then, ag) .1 +q. 1 IS even, we have
Ap = A; =0, so thatd'(t) = d = 2mod 4. Next, we assume thatis odd. Then,
since bothq., and q .+ + qL—1 are odd, we haved, = 1, A; = 2, so thatd'(t) =
t2+ 2t + 3 mod 4, which gives the assertion (ii).
(i) As d'(t) =2, 3 mod 4 andng = 16a, Proposition 3.10 implies that 46, —

1 < mgq) < (16a+ 2)ce. Hence we obtainmg ) > 16ace — 1> 16a— 1> m, and our
proposition is proved. O

Proposition 4.3. Let e and m be any positive integers any integer> 0, and a
any odd integer such that & m+ 1. We put

d:={(@+3a+2u+a’+2a+22+4{(a+2u+a+1l)

and define positive integers,,gn > 1 by using partial quotients appeared in the peri-
odic part of the continued fraction expansion

_[(@+3a+2u+a?+2a+3
(1+JH)/2_[ 5 ,

a+1l, @+lu+a a+l, (a2+3a+2)u+a2+2a+2}
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and the recurrence equatiof®.1). For any positive integer,twe put

d'(t) := (& + 2 (Claera + Gaer1) Uourt? + 2(2 + 2)(Guter3 + Claes1)’t +d.
Then the following hold
(i) Each d(t) is a positive integer with periodi(2e + 1) of minimal type for(1 +
J/d'[)/2, and d(t) = 1 mod 4holds
(i) For all positive integers twe have ag— 1 < my() < (a+2)ce. Also, Mg > m.

Proof. We know from [4, Proposition 5.2 (ii)] that Case (lt¢curs for the sym-
metric string of positive integera + 1, @+ 1)u+a, a+ 1, and the continued frac-
tion expansion of (1 +/d)/2 has the above form. Also, we hagg = u + 1, and
my = a (without the assumption thad is square-free). Furthermorel is of mini-
mal type for (1 +4/d)/2. If we put ay := {(@® + 3a + 2)u + a + 2a + 3}/2, then
d— (2ag — 1) = 4{(a+2u+a+1}. SinceP, =2ay— 1 and

Qi=(d—1)/2+ay(l — P)={d — (28 — 1)*}/2 =2{(a+2u+a+1}
from (2.16) and (2.17), we see th&® = (a+ 1)Q; — P; and

Q2=2+@+1)(PL— P) =2+2@+1)P1 - (a+1F Qs
=2+2@+1){(@%+3a+2u+a’+2a+2)
—2@+1p{(a+2u+a+1}
=2+2@+1)=2@+2).
Thus, Qz/2 =a+ 2.

(i) The definition of d’'(t) and Theorem 3.6 [C] imply that the period of (1 +
Jd'(t))/2 is equal tol’ andd’'(t) =1 mod 4. Asl’ >4, L'’ >2 andg, =a+1, we
obtain

(@’ — (Q2/Qo))(dL+1 +d—1)aut/da + (01 /ds) — 1
> (05 —a—2)(Osz + G1)d/0s > 0 =5 — .
Therefore, we see by Remark 3.2 thft) is of minimal type for (1 +/d'(t))/2.

(i) As mg =a, Proposition 3.10 implies thaic, — 1 < my() < (a+ 2)ce. Hence
we obtainmg ) > ace —1>a—1>m, and our proposition is proved. O

4.3. Proof of Theorem 1.1. We denote bymy and hy the Yokoi invariant and
the class number (in the wide sense) of a real quadratic €¢kdd), respectively. We
shall show the following by using Propositions 4.1 and 4.2.
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Proposition 4.4. Let |’ be an even integer 4 which is not divisible by8, and h
and m any positive integerd\lso, let § = 2 or 3. Then there exist infinitely many real
quadratic fieldsQ(+/d), d = 8 mod 4 with period I' of minimal type such thatg> h
and my > m.

Also, we shall see by Proposition 4.3:

Proposition 4.5. Lete h and m be any positive integerBhen there exist infinitely
many real quadratic field§(+/d), d = 1 mod 4with period4(2e+1) of minimal type such
that hy > h and ny > m.

Hence, by Proposition 4.4, we find the existence of an infiféitaily of real qua-
dratic fieldsQ(+/d) satisfyingd = § mod 4 which is asserted in Theorem 1.1. Further-
more, if we assume that the period is congruent to 4 modul@8,thy Proposition 4.5,
we also find the existence of an infinite family of real quaidréields Q(+/d) satisfying
d = 1 mod 4. To prove Propositions 4.4 and 4.5, we use the samenargun [4]. A
theorem of Nagell [7, Section 2] yields:

Lemma 4.6 ([4] Proposition 6.1). Let f(x) = ax?+bx+c be a quadratic poly-
nomial in Z[x] with a > 0. As a> 0, there is some integen, tfor all integers t> t;
such that ft) > 0. We suppose that the discriminan¢fg = b?> — 4ac of f(x) is not
equal to0, the greatest common divisda, b, c) is square-freg and there is some in-
teger t for which {t) % 0 mod 4. Then the set{f(t) |t € Z, t > t;} contains infinite
square-free elements

Yokoi [12, Theorem 1.1] and a theorem of Siegel (Narkiewi8z Theorem 8.14])
imply:

Lemma 4.7 ([4] Lemma 4.3). We suppose that a sequer{ck} -1 of square-free
positive integers is strictly monotonously increasinget my, and hy, denote the Yokoi
invariant and the class number of a real quadratic fi€l¢\/d,), respectivelyWe assume
that my, > 1 for all n > 1 and the sequencfmy,}n>1 Of positive integers is bounded
Then the sequencéhy, }n>1 Of positive integers is not boundeNamely for any positive
integer h there exist infinitely many numbers>n1 such that i, > h.

We remark in Propositions 4.1, 4.2 and 4.3 that a sequémge)}i>1 Of positive
integers is bounded if an integeris fixed and the continued fraction expansionyaf
or (1++/d)/2 is given.

Proof of Proposition 4.4. When [pl’, asl’ > 2, there is some positive integer
such thatl’ = 2(2e + 1), and when 2| 1’, as 2 {I’, there is some integez > 0 such
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thatl” = 4(2e+ 1). Then, since our proposition follows from [4, Propasiti5.2 (i)] if
e=0 (' =4), we may assume that> 0.

(i) The case wher& =2(2e+1). We suppose that is a positive integer such that
a>2 and 4*+8a%+2 > m. For any positive integet, we letd'(t) be a non-square
positive integer as in Proposition 4.1. For brevity, we pA#:= (Coer2 + O2e)’02es1
A1 1= 2(0per2+02e)? andd :=a?+2, and writed'(t) = Apt?+ Ast+d. As a? = —2 modd,
we easily see by induction ia that

Ge = (—1)*""ea Gpen = (—1)°%(2e+1) modd.

Consequently, sinCeper» + 0e = (—1)°a modd, we obtainAy = a?(2e+1)? and A; =
2a?> modd, so that

g:= (Ao, A1, d) = (@%(2e + 1)%, 2a2, d).

If we assume tha has an odd prime divisop, thenp |a from p|2a®. As p|d, we
have 0= d =2 modp, and this is a contradiction. Hencg,is a power of 2. On the
other hand, asl = 2, 3 mod 4, org(g) < ordx(d) < 1. Here, org(x) denotes the ad-
ditive valuation on the rational® with ord,(p) = 1 for a prime numbemp. Therefore,
g =1 or 2. In particular,g is square-free. Also, Lemma 3.8 yields that the discrimi-
nant of a quadratic polynomial’(t) is not equal to 0, and we see by Proposition 4.1
(i) that d'(t) is a positive integer with periotl of minimal type for./d'(t).

First, we take an even integar By Proposition 4.1 (ii) and (iii), we havd'(t) =
2 mod 4 andmg ) > m. In particular, there is some integerfor which d’(t) # 0 mod
4. Hence, Lemma 4.6 implies that the ddt(t) | t € N} contains infinite square-free
elements. Consequently, @ > 0, we can choose a sequengh},-1 of square-free
positive integers which is strictly monotonously incregssuch thad, = 2 mod 4 and
mg, > M. Since the sequencfng }n>1 Of positive integers is bounded by Proposi-
tion 4.1 (iii), we see by Lemma 4.7 thlhg },>1 is not bounded. Therefore we obtain
the assertion fop = 2.

Next, we take an odd integex. Furthermore, we take an even integeand write
t = 2u with someu € N. Since the discriminant of a quadratic polynom@{2u) in
Z[u] is equal to the product of?2and that ofd'(t), it is not equal to 0. By Proposi-
tion 4.1 (ii) and (iii), we haved’(2u) = 3 mod 4 andmg ) > m. (In particular, there
is some integeu for which d’(2u) #£ 0 mod 4.) Asd =a?+2 is odd, the greatest com-
mon divisor of coefficients of a quadratic polynom@i{2u) = 4Aqu?+2Au+d is equal
to (4Ag, 2A1,d) =g = 1. Hence, Lemma 4.6 implies that the $dt(2u) | u € N} con-
tains infinite square-free elements. Consequently, we baose a sequenden},>1 of
square-free positive integers which is strictly monotasiguncreasing such thal, =
3 mod 4 andmg, > m. Similarly, Proposition 4.1 (iii) and Lemma 4.7 yield thesas
tion for § = 3.

(i) The case wherd’ = 4(2e+1). We suppose that is an integer> 0 anda is a
positive integer such that 46-1 > m and 2+1 is square-free. For any positive integer
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t, we letd’(t) be a non-square positive integer as in Proposition 4.2. brevity, we
put L’ :=2(2e+1), Ag:= (2a+12(qu+1+qu—-1)°0% and A = 2(2a+ 12(qL+1+qu-1)>,
and writed'(t) = Agt?+ At +d. Also, we puta := (4a+1)u+4a. We see by the proof

of Proposition 4.2 thatQ,/2 =2a+ 1, and the proof of (3.5) in Lemma 3.1 yields that
P; = P, = a,Q/2. Therefore, by (2.18),

2d = 2P? +2Q,Q3 = Qz(as% + 2Q3>,

so that we obtain a factorization of d = (Q,/2)A. Here, we put
(4.1) A = a2(Q2/2) + 2Qa.
If we put g :=(Ag, A1, d) and

g’ = ((Q2/2)(@L+1 + A -1)’aP, 2(Q2/2) AL+ +au-1)%, A)
then, asd = (Q2/2)A, we have
(4.2) 9=(Q2/2)9"

We look for g. The proof of Lemma 3.1 implies tha,, = Q,. As L’ is even, it
follows from Lemma 2.7 that

G?, —dg? = Q2Qo.

SinceGL = (Q2/2)(qL+1+qL/—1) from (3.5) andd = (Q2/2)A, we obtain Q2/2)(QL+1+
qu-1)2 — Ag2 = 2Qqo, so that

(Q2/2)(@L+1 + Q|_/71)2 =2Qy mod A.

If we assume thay has an odd prime divisop, then the definition ofy’ yields that
pl A, so that

(Q2/2)@u+1+0u-1)2=2Qo mod p.

Also, sincep | 2(Q2/2)@u+1 + qu—1)° and p is odd, we have G= 2Q, mod p. As

Qo =1, we obtainp = 2 and this is a contradiction. Thug, is a power of 2. Also,
the proof of Proposition 4.2 implies thd, =ag=(2a+1u+1, Qi =2u+1, P, =
Q:— Py =(2a+1)u and Q, =2 mod 4. Consequently, we see by (2.16) and (2.17) that
Ps=aQy— P = (2&+1)U and Q3= Q1+U(P2— P3) = 2u+1 mod 4. AsQ,/2 =2a+1,

(4.1) yields that

A=u’(a+1)+2 mod 4.
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When u is even, A = 2 mod 4. As we have seen in the proof of Proposition 4.2,
du+1 *+ qu_1 is even. Therefore, sincg is a power of 2, we havegy = 2 by the
definition of g’. We see by (4.2) thag = 2(2a+1). Whenu is odd, A = 2a+3 mod 4,
so thatA is odd. Therefore,g’ is also odd from the definition off. Sinceg is a
power of 2, we havey’ = 1. We see by (4.2) tha = 2a + 1. Thus, g is square-
free by our assumption. Also, Lemma 3.8 yields that the disoant of a quadratic
polynomial d’(t) is not equal to 0, and we see by Proposition 4.2 (i) ttidt) is a
positive integer with period’ of minimal type for /d'(t).

First, we take an even integer By Proposition 4.2 (ii) and (iii), we havd'(t) =
2 mod 4 andmg ) > m. In particular, there is some integerfor which d’(t) # 0 mod
4. Hence, Lemma 4.6 implies that the 4dt(t) | t € N} contains infinite square-free
elements. Consequently, we can choose a sequigh¢e 1 of square-free positive in-
tegers which is strictly monotonously increasing such that 2 mod 4 andmg, > m.
Since the sequencgny, }n>1 Of positive integers is bounded by Proposition 4.2 (iii),
we see by Lemma 4.7 thghg, },>1 is not bounded. Therefore we obtain the assertion
for § = 2.

Next, we take an odd integer. Furthermore, we take an even intedgemand write
t = 2v with somev € N. Since the discriminant of a quadratic polynoméi(2v) in
Z[v] is equal to the product of?2and that ofd’(t), it is not equal to 0. By Proposi-
tion 4.2 (ii) and (iii), we haved’(2v) = 3 mod 4 andmg 2,y > m. (In particular, there
is some integew for which d’(2v) 2 0 mod 4.) Asg =2a+ 1 is odd, the greatest
common divisor of coefficients of a quadratic polynomi&2v) = 4Aqv? +2Av +d is
equal to (4, 2A;,d) =g=2a+ 1. Hence, Lemma 4.6 implies that the gdt(2u) |
u € N} contains infinite square-free elements. Consequently, amechoose a sequence
{dn}n>1 Of square-free positive integers which is strictly monatasly increasing such
that d, = 3 mod 4 andmg, > m. Similarly, Proposition 4.2 (iii) and Lemma 4.7 yield
the assertion fos = 3. Our proposition is proved. ]

Proof of Proposition 4.5. We suppose thats an integer> 0 anda is a positive
odd integer such thaa > m+ 1 anda + 2 is square-free. For any positive integer
we letd’(t) be a non-square positive integer as in Proposition 4.3.bFevity, we put
L' :=2(2+1), Ao := (a+20(qu+1+0du-1)?92 and A := 2(a+2)%(du+1 +qu-1)?, and
write d'(t) = Agt?+ At +d. Also, we putg = (Ag, A1, d) anda, := (a+1)u+a. We see
by the proof of Proposition 4.3 thad,/2 =a+ 2. If we putA := a22(Q2/2) +2Q3 and

0 = ((Q2/2)(@L+1 + du—1)°a7, 2(Q2/2)(@ L+ + AL—1)%, A)

then the argument in the proof of Proposition 4.4 (i) implihatd = (Q2/2)A, g =
(Q2/2)d’, and (asQop = 2) g’ is a power of 2. Sinca&l =1 mod 4, A is odd. By the
definition of ¢’, g’ is also odd so thatf = 1. Consequently, we hawg=a+ 2 so that

g is square-free by our assumption. Also, Lemma 3.8 yields tia discriminant of

a quadratic polynomiatl’(t) is not equal to 0, and we see by Proposition 4.3 (i) and
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(i) that d’(t) is a positive integer with periotf of minimal type for (1 +,/d’(t))/2,
d’(t) = 1 mod 4, andmgg > m. (In particular, there is some integérfor which
d’(t) #£ 0 mod 4.) Hence, Lemma 4.6 implies that the &#{t) | t € N} contains infi-
nite square-free elements. Consequently, we can choosguarsm{d,},>1 Of square-
free positive integers which is strictly monotonously ie&sing such thad, = 1 mod 4
andmg, > m. Since the sequencéng, }n>1 Of positive integers is bounded by Propo-
sition 4.3 (ii), we see by Lemma 4.7 th@lty }n>1 iS not bounded. This proves our
proposition. ]

REMARK 4.1. We begin with quadratic irrationats with period 8, and then by
using the above argument, it may be possible to find the existef an infinite family
of real quadratic fields with even perigd4 which is not divisible by 16 satisfying the
same property as in Theorem 1.1. However, that is a open bl

5. Numerical examples

In this section, we give numerical examples of Propositidrls 4.2 and 4.3 in
Tables 1, 2 and 3, respectively. In the beginning of eachetdglow, the symbof
in the values oft means that’(t) has a square factor. Then the class number is not
given. (In fact, as we have mentioned in Definition 3.1, foy amon-square positive
integerd, we can give the definition as the class number of a certaih feoessary
maximal) order in “a real quadratic fiel@(v/d)”.) Also, a factorization ofd’(t) into
prime numbers is symbolically written in the last term of ledable. There the nota-
tions p, g and py, p2, - - - denote distinct prime numbers, and they satipf q and
p1 < p2 < ---. Since these values and the valuesagfand a' in the footnote are
relatively large, we do not give them explicitly. In partiay we note that the values
of my( are constant as we have stated in Remark 3.3.



Table 1.e=4, m=397,a=3d=11,1=2, V11 =[3,3,6], =1,
s=2, Case (I),hg =1, my =1.

t d’(t) \ hy Mg s (=) factorization ofd'(t)
1 5694692744076689288198 586731780| 45506014561 54501530706758363042 p1 P2 Psp4
2 22778770975305624832403 1500801728 45506014561 109003061411121371042 p;p2ps
3 51252234693686806632626 3796614660 45506014561 163504592115484379042 p1p2PzPs
4 91115083899220234688867 2241483780, 45506014561 218006122819847387042 p;p2pP3
5 142367318591905909001126 5939930848 45506014561 272507653524210395042 p;1 p2PsPa
6 205008938771743829569403 4039479852 45506014561 327009184228573403042 pq

7 279039944438733996393698 4437850032 45506014561 381510714932936411042 p1p2p3
8 364460335592876409474011 6691740720 45506014561 436012245637299419042 p1 P2 PzP4
9 461270112234171068810342 8133745152 45506014561 490513776341662427042 p1p,p3
10 | 56946927436261797440269111140664040 45506014561 545015307046025435042 p1p2p3ps
11 | 689057821978217126251038 9049583040 45506014561 599516837750388443042 p1 P2 Pz P4PsPeP7
12 | 820035755080968524355443 8329322828 45506014561 654018368454751451042 pq

13 | 96240307367087216871584613437783832 45506014561 708519899159114459042 p;p,p3
14 | 1116159777747928059332267 8932263352 45506014561 763021429863477467042 p1p2p3
15 | 128130586731213619620470614029074272 45506014561 817522960567840475042 p1p2p3 P4
16 | 145784134236349657933316312262575704) 45506014561 872024491272203483042 p1 P2 Pz P4
17 | 1645766202902009208717638 8326036656 45506014561 926526021976566491042 p; p2ps3p4
18 | 184508044892767408435813124836590641 45506014561 981027552680929499042 p

19 | 205578408044049120625464212565341686| 45506014561 1035529083385292507042 p1 p2 p3
20 | 227787709744046057440717130966590388 45506014561 1090030614089655515042 p; p, p3

| =18, Case (I)/d'(t)=[a,3, 6, 3,6, 3,6,3,6a,6,3,6, 3,6, 3,6, 3,&].
Distinct prime numbers, q and p; satisfyp<q andp; < pz <---.
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Table 2. e=1, m=14, u=1, a=1d=1795,1 =4, J795 =

[28,5, 9, 5, 56],5 =2, s=2, Case (I),hg =4, my = 16.

t d'(t) | hg My s (=) | factorization ofd'(t)
1 15328651059393793906782 1941840102 2927366816] 1359148436947933920 p; P2 ps

2 61314604223611635909219 5178887184 2927366816 2718296873586340896 p1 P2 PsPaPs
3 137957859492653526008106 6180051072 2927366816 407744531022474786B pyp2PsPaPs
4 245258416866519464203443 5438690864 2927366816 5436593746863154830 pq

5 383216276345209450495230 7979517984| 2927366816/ 679574218350156179F p1p2PsPaPs
6 551831437928723484883447 8923863728| 2927366816/ 815489062013996876% p1 P2 PspPa

7 75110390161706156736815421121124856 2927366816/ 951403905677837573[L p1 P2 PsPaPs
8 98103366741022369794929113950612192 2927366816 10873187493416782698 p1 P2 Ps PaPs
9 | 124162073530820987662687816576692168 2927366816 12232335930055189666 p1 P2 Ps P4 Ps
10 | 153286510531102010340091524818176448 2927366816 13591484366693596632 Py P2 PsPaPs
11 | 185476677741865437827140216450950752 2927366816 14950632803332003599 p1 P2 Ps P4 Ps Pe
12 | 220732575163111270123833R5745388768 2927366816 16309781239970410566 Py P2 PsPaPs
13 | 259054202794839507230172625143543850 2927366816 17668929676608817533 p; P2 Ps

14 | 300441560637050149146156322814342688 2927366816 19028078113247224500 pq

15* | 3448946486897431958717850 2927366816 2038722654988563146(7 p1 P> Ps2PaPs Ps
16 | 392413466952918647407058721586636896 2927366816 2174637498652403843% py P2 Ps

17 | 442998015426576503751977432048761984 2927366816 2310552342316244540 Py P2 Ps P4 Ps Pe
18 | 496648294110716764906541144724503880 2927366816 24464671859800852368 p1 P2 PsPa

19 | 553364303005339430870749831120884336 2927366816 25823820296439259335 p1 P2 Ps P4 Ps Pe
20 | 61314604211044450164460352617867776 2927366816 2718296873307766630R p1 P2 Pz P4 Ps

| =12, Case (I),/d'(t) =[a, 5,9, 5, 56, 54/, 5,

56, 5, 9, 5, &/]. The sym-
bol * in the values ot means that’(t) has a square factor, and distinct prime
numbersp, q and p; satisfyp<qandp; < pp<---.
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Table 3.e=2, m=1,u=1,a=3,d=1405,1 =4, (1 ++/1405)2 =
[19,4,7,4,37],3% =2, s=2, Case (lll),hg =2, my = 3.

t d'(t) \ ha \ My \ s (=¢ factorization ofd’(t)
1 6031953442328278518318470963512640906920891909546.31045111271360345424492260154185085446879506(8

2 24127813769313110390906257128825140%4012831086745831045111271360390848984520308363238244105858@:0, P3 P4 Ps Pe P7
3 542875809809544956177633584959376§4@687239709328032310451112713603362734767804625413910413322007:202 P3 P4 Ps Ps
4 965112550772524341988897750648501468951114902258(083104511127136038169796904061671954383855856L12:, p3 P4 Ps

5 1507988360582069261342855068355626486465421353037843104511127136(02271224613007708976966357849127:20, P3 P4

6 21715032392381797142395055380807514686213205935747123104511127136Q0272546953560925075849433011 2642120, P3 P4 Ps Ps
7 2955657186740855700678849159823876489328973823338143104511127136031797144582107925400223023761574

8 3860450203090097220660885933585001405200953245292943104511127136036339593808123343215502746396(712Q

9 488588228828590427418561585936412640666555286013088310451112713603088204303413876103078246903183:13, P3 P4

10*| 6031953442328276861253038937161251405 13104511127136035424492260154178846062191667 022022 P3 Pa Ps Pe
11 | 7298663665217214981863155166976376488425688157070163104511127136(03996694148616959666134191430213:2; 3

12 | 86860129569527186360159645488095014097542979455892431045111271360345093907121850144766216369373212; p3

13 |1019400131753478782371146708266062¢6408346449546533923104511127136(03905183993820043229190135957243:20, P3 P4

14 11182262874696342254494966276852975148684679689795424310451112713608359428916421585010718108220762:120, P3 P4

15 [13571895245238622799730551606416876405107918814871283104511127136088136738390231267922460804842|/{7:20, p3

16 [1544180081236038858805413359632200148%84541144140632310451112713603267918761624668573774052747 792, P3 P4

17 |1743234544832871990992040873824512¢6466967201915170563104511127136(03722163684226210355302025011303:, Ps3 P4

18 [19543529153143616765329377032186251468625864094448323104511127136081764086068277521368299972748R21%, P3 P4 Ps
19 [21775351926805079154281038478145376408816081371825224310451112713608630653529429293918357969538337140, p3

20 |24127813769313107076775393076122501266365832470866563104511127136(03084898452030835699885941801852:%0; P3 P4

| =20, Case (lll), (1+/d'()/2=[a0’,4,7,4,37,4,7,4,37, 4,4,37,4,7,4,37, 4,7, 488 - 1].
The symbol * in the values of means thatl’(t) has a square factor, and distinct prime numbgrg
and p satisfyp<qgandpr <py<---.
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