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Abstract
In a previous paper [4], we introduced the notion of real quadratic fields with

period l of minimal type in terms of continued fractions. As a consequence, we
have to examine a construction of real quadratic fields with period � 5 of minimal
type in order to find many real quadratic fields of class number1. When l � 4, it
appears that there exist infinitely many real quadratic fields with periodl of minimal
type. Indeed, we provided an infinitude of real quadratic fields with period 4 of
minimal type in [4]. In this paper, we construct an infinite family of real quadratic
fields with large even period of minimal type whose class number is greater than any
given positive integer, and whose Yokoi invariant is greater than any given positive
integer.

1. Introduction

In [4] we defined real quadratic fields with periodl of minimal typein terms of
continued fractions (see Definition 2.1 for the precise definition), and studied Yokoi
invariants introduced by Yokoi [12] (see Definition 3.1 of Section 3.4 for the precise
definition) and class numbers (in the wide sense) of real quadratic fields with period�
4. Also, as explained there, we have to examine a construction of real quadratic fields
with period � 5 of minimal type in order to find many real quadratic fields of class
number 1. Whenl � 4, it appears that there exist infinitely many real quadraticfields
with period l of minimal type. Indeed, we provided an infinitude of real quadratic
fields with period 4 of minimal type in [4]. In this paper, we shall show the existence
of an infinite family of real quadratic fields with large even period of minimal type:

Theorem 1.1. Let l be an even integer greater than or equal to4 which is not
divisible by 8, and h and m any positive integers. Then, there exist infinitely many
real quadratic fields with period l of minimal type whose class number is greater than
h, and whose Yokoi invariant is greater than m.
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Many numerical examples show that the Yokoi invariants of real quadratic fields
of class number 1 are relatively large. Theorem 1.1 suggeststhat, in order to find
such fields, it is necessary to study more precisely real quadratic fields of minimal type
whose Yokoi invariant is relatively large. Mollin [6] and McLaughlin [5] independently
constructed non-square positive integersd0 such that the simple continued fraction ex-
pansion of

p
d0 has the symmetric part of some type (see (�)). In the proof of The-

orem 1.1 we utilize a generalized form of such a symmetric part. Our family of real
quadratic fields thus obtained explicitly has three or four parameters of nonnegative
integers. If the period of such fields is fixed then we see that the values of Yokoi
invariants are bounded, and then by using a theorem of Siegelconcerning the approx-
imate behavior of the product of class number and regulator,we see by the same ar-
gument in [4] that the class numbers are relatively large. Weuse a theorem of Nagell
to show that our family contains infinite ones.

This paper is organized as follows. In Section 2 we state basic properties of con-
tinued fractions. In particular, a theorem of Friesen and Halter-Koch (Theorem 2.4)
is our basic tool. Letd and ! =

p
d (or (1 +

p
d)=2) be, respectively, a non-square

positive integer and a quadratic irrational> 1 constructed in Theorem 2.4. We start
with assuming that the (minimal) periodl of the continued fraction expansion! =
[a0, a1, : : : , al�1, al ] is even: l = 2L. In [4] we give quadratic irrationals! with period
2, 4 (and real quadratic fieldsQ(

p
d) with period 4 of minimal type whose Yokoi in-

variant is relatively large) by using Theorem 2.4 (see Section 4). We begin with such
quadratic irrationals! and, following an idea of Mollin [6], consider the following
new symmetric string of positive integers. If we put

�!v := a1, : : : , aL�1,  �v := aL�1, : : : , a1,

then the symmetric parta1, : : : , al�1 of the continued fraction expansion of! can be
written as

�!v , aL ,  �v .

For any integere� 0, �!w e denotese iterations of the periodic parta1, : : : , al , and we
denote by �w e the reverse of�!w e, which is e iterations of a string ofl positive integers
al , : : : , a1. Also, we letb be any positive integer and consider a symmetric string of
(2e+ 1)l � 1 positive integers

�!w e,
�!v , b + aL ,  �v ,  �w e.(�)

In Section 3.1 we investigate basic properties of such symmetric strings, which is in-
duced by “symmetric properties of recurrence equations” (Lemma 2.1). In Section 3.2,
by using them, we choose a suitable positive integerb depending on the integere
(Lemma 3.4), and give special quadratic irrationals!0 =

p
d0 or (1 +

p
d0)=2 by us-

ing such symmetric strings of positive integers and Theorem2.4 (Theorem 3.6 of Sec-
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tion 3.3). This is a generalization of results of Mollin and ofMcLaughlin (Proposi-
tion 3.7). Furthermore, we give a necessary and sufficient condition for the positive
integer d0 with period (2e + 1)l to be of minimal type (Proposition 3.3, Remark 3.2).
In particular, we see thatd0 always becomes of minimal type whene is sufficiently
large (Remark 3.1). In Section 3.4, we extend the Yokoi invariant of real quadratic
field to that of non-square positive integerd0 6� 0 mod 4 (Definition 3.1), and give
an estimate for its value (Proposition 3.10, Remark 3.3). InSection 4, we construct
real quadratic fieldsQ(

p
d0) with even period of minimal type whose Yokoi invariant

is relatively large, and prove Theorem 1.1 by investigatingthe class numbers. In Sec-
tion 5, some numerical examples are calculated by using PARI-GP [1].

For a real numberx, [x] denotes the largest integer� x. We denote byN, Z
and Q the set of positive integers, the ring of rational integers and the field of rational
numbers, respectively.

2. Preparations on continued fractions

In this section we collect basic properties of continued fractions, and refer the reader
to excellent books of Ono [9] and Rosen [10] for them. We first state Lemma 2.1 which
is of central importance in the present paper, and may call it“symmetric properties of
recurrence equations”.

2.1. Symmetric properties of recurrence equations. If a0 is any positive inte-
ger andfangn�1 is a sequence of positive integers, then we define nonnegative integers
pn, qn, rn by using the recurrence equation:

(2.1)

8<
:

p0 = 1, p1 = a0, pn = an�1 pn�1 + pn�2,
q0 = 0, q1 = 1, qn = an�1qn�1 + qn�2,
r0 = 1, r1 = 0, rn = an�1rn�1 + rn�2,

n � 2.

Let � be a variable. Then the following are known:

[a0, : : : , an, �] =
�pn+1 + pn�qn+1 + qn

, [a0, : : : , an] =
pn+1

qn+1
, n � 0,(2.2)

qnrn�1� qn�1rn = (�1)n�1, n � 1,(2.3)

pn = a0qn + rn, n � 0.(2.4)

(Recurrence equations and partial quotients of a continuedfraction are both numbered
beginning with 0.)

We let a0, a1, : : : , al be anyl + 1 positive integers, and assume thatl � 1 positive
integersa1, : : : , al�1 satisfy the symmetric property:an = al�n, 1� n � l � 1 if l � 2.
Then we define a sequencefangn�1 of positive integers: for each integern � 1, we put
an := ar if r > 0, and otherwisean := al where r is the remainder of the division of
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n by l . Thus, we construct periodicallyfangn�1 from a1, : : : , al in what follows and
throughout this paper. We shall see that the symmetric string of l � 1 positive integers
a1, : : : , al�1 induces symmetric properties of the recurrence equation (2.1). Let M0 := E
be the unit matrix of degree 2, and put for each integern � 1,

Mn :=

�
a1 1
1 0

� � � � � an 1
1 0

�
.

We easily see that

(2.5) Mn =

�
qn+1 qn

rn+1 rn

�
, n � 0

by induction. Letk be a positive integer. Sincea1, : : : , al�1 have the symmetric prop-
erty, Ml�1 is a symmetric matrix. Furthermore,Mkl�1 is also a symmetric matrix by
the definition of the sequencefangn�1. As a1, : : : , akl�1 also have the symmetric prop-
erty, we have forn 6= 0, kl � 1,

Mkl�1 =

�
a1 1
1 0

� � � � � an 1
1 0

�� � an+1 1
1 0

� � � � � akl�1 1
1 0

�

=

�
a1 1
1 0

� � � � � an 1
1 0

�� � akl�n�1 1
1 0

� � � � � a1 1
1 0

�
= Mn � tMkl�n�1.

Here, tM denotes the transpose of a matrixM. SinceMkl�1 is a symmetric matrix and
M0 = E, this equation also holds forn = 0, kl � 1:

(2.6) Mkl�1 = Mn
tMkl�n�1, 0� n � kl � 1.

Lemma 2.1. Let k be a positive integer and0 � n � kl � 1. Under the above
setting, the following hold.

qkl�1 = rkl ,(2.7)

q2
kl�1� (�1)kl = qklrkl�1,(2.8)

qkl = qn+1qkl�n + qnqkl�n�1,(2.9)

rkl = qkl�nrn+1 + qkl�n�1rn,(2.10)

rkl�1 = rn+1rkl�n + rnrkl�n�1,(2.11)

pkl = pn+1qkl�n + pnqkl�n�1.(2.12)
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Proof. In [4, Lemma 2.1], we have shown that (2.7) and (2.8) hold. By (2.5) and
(2.6), we have�

qkl qkl�1

rkl rkl�1

�
=

�
qn+1 qn

rn+1 rn

��
qkl�n rkl�n

qkl�n�1 rkl�n�1

�

=

�
qn+1qkl�n + qnqkl�n�1 qn+1rkl�n + qnrkl�n�1

qkl�nrn+1 + qkl�n�1rn rn+1rkl�n + rnrkl�n�1

�
.

Comparing with corresponded components of both sides of it yields that (2.9), (2.10)
and (2.11) hold, and (2.12) follows from (2.4), (2.9) and (2.10).

2.2. A theorem of Friesen and Halter-Koch. To describe Theorem 2.4, we
consider three cases separately for a given symmetric string of l � 1 positive integers,
and explain what case arises from it. From now on, we leta1, : : : , aL be any string
of L (� 1) positive integers.

(A). The even period case. First, let l := 2L. By placing aL at the center and
folding backa1, : : : , aL�1 as

aL+1 := aL�1, aL+2 := aL�2, : : : , a2L�1 := a1,

we construct a string ofl � 1 positive integersa1, : : : , al�1. The string satisfies the
symmetric property. By using the recurrence equation (2.1), we define nonnegative in-
tegersq0, : : : , ql , r0, : : : , r l�1. For brevity, we putA := ql , B := ql�1, C := r l�1, and
consider three cases separately:
(I) A � 1 mod 2,
(II) ( A, C) � (0, 0) mod 2,
(III) ( A, C) � (0, 1) mod 2.

Lemma 2.2. Under the above setting, the following hold.
(i) A = (qL+1 + qL�1)qL , B = (qL+1 + qL�1)r L � (�1)L , C = (r L+1 + r L�1)r L .
(ii) If aL is even thenCase (II)occurs.
(iii) If (aL , qL ) � (1, 1) mod 2then Case (I)occurs, and if (aL , qL ) � (1, 0) mod 2then
Case (III) occurs.

Proof. It follows from (2.9)k=1,n=L that

A = (qL+1 + qL�1)qL = (aLqL + 2qL�1)qL � aLqL mod 2,

and (2.11)k=1,n=L yields that

C = (r L+1 + r L�1)r L = (aLr L + 2r L�1)r L � aLr L mod 2.
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Consequently, ifaL is even then Case (II) occurs fora1, : : : , al�1. On the other hand,
if aL is odd then (A, C) � (qL , r L ) mod 2. Hence, whenqL is odd, Case (I) occurs.
When qL is even, (2.3)n=L implies that r L is odd, therefore, Case (III) occurs. By
(2.7)k=1, (2.10)k=1,n=L , and (2.3)n=L+1, we have

B = qLr L+1 + qL�1r L = (qL+1r L � (�1)L ) + qL�1r L = (qL+1 + qL�1)r L � (�1)L .

This proves our lemma.

The above lemma shall be used in the proof of Lemma 3.5.

(B). The odd period case. Next, let l := 2L + 1. By folding backa1, : : : , aL as

aL+1 := aL , aL+2 := aL�1, : : : , a2L := a1,

we construct a symmetric string ofl � 1 positive integersa1, : : : , al�1, and consider
the above three cases separately.

Lemma 2.3. Under the above setting, the following hold.
(i) A = q2

L+1 + q2
L , B = qL+1r L+1 + qLr L , C = r 2

L+1 + r 2
L .

(ii) If (aL , qL + qL�1) � (0, 1) mod 2 then Case (I)occurs, and if (aL , qL + qL�1) �
(0, 0) mod 2then Case (III) occurs.
(iii) If (aL , qL�1) � (1, 1) mod 2then Case (I)occurs, and if (aL , qL�1) � (1, 0) mod 2
then Case (III) occurs.

Proof. It follows from (2.9)k=1,n=L that

A = q2
L+1 + q2

L = (aLqL + qL�1)2 + q2
L � (aL + 1)qL + qL�1 mod 2,

and (2.11)k=1,n=L yields that

C = r 2
L+1 + r 2

L = (aLr L + r L�1)2 + r 2
L � (aL + 1)r L + r L�1 mod 2.

Consequently, ifaL is even then (A, C) � (qL + qL�1, r L + r L�1) mod 2. Hence, when
qL + qL�1 is odd, Case (I) occurs fora1, : : : , al�1. When qL + qL�1 is even, we have
qL � qL�1 mod 2. SinceqLr L�1 +qL�1r L � 1 mod 2 by (2.3)n=L , we see thatqL (r L�1 +
r L ) � 1 mod 2. Asr L�1 + r L is odd, Case (III) occurs. On the other hand, ifaL is odd
then (A, C) � (qL�1, r L�1) mod 2. Hence, whenqL�1 is odd, Case (I) occurs. When
qL�1 is even, (2.3) implies thatr L�1 is odd, therefore, Case (III) occurs. By (2.7)k=1,
and (2.10)k=1,n=L , we haveB = qL+1r L+1 + qLr L , and our lemma is proved.

REMARK 2.1. If l andaL are both even, then Lemma 2.2 (ii) implies that Case (II)
occurs fora1, : : : , al�1. Also, if “ l is even andaL is odd”, or l is odd, then Lemmas 2.2
and 2.3 imply that Case (I) or Case (III) occurs.
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We define polynomialsg(x), h(x) of degree 1 and a quadratic polynomialf (x) in
Z[x] by putting

g(x) := Ax� (�1)l BC, h(x) := Bx� (�1)l C2,

f (x) := g(x)2 + 4h(x) = A2x2 + 2(2B � (�1)l ABC)x + (B2� (�1)l 4)C2.

Furthermore, we lets0 be the least integers for which g(s)> 0, that is,s> (�1)l BC=A.
The quadratic functionf (x) becomes strictly, monotonously increasing in the interval
[s0,1). Under the above setting, Theorem 2.4 is shown in Friesen [2, Theorem] and
Halter-Koch [3, Theorem 1A and Corollary 1A], which is improved in [4, Theorem 3.1]
and is our basic tool.

Theorem 2.4 (Friesen, Halter-Koch). Let l be a fixed positive integer� 2 and
a1, : : : , al�1 any symmetric string of l� 1 positive integers.
(i) WhenCase (I)or Case (II) occurs, we let s be any integer with s� s0, and put
d := f (s)=4 and a0 := g(s)=2. Here, we choose an even integer s inCase (I), and
assume that

(2.13) g(s) > a1, : : : , al�1.

Then, d and a0 are positive integers, d is non-square,

(2.14) a0 = [
p

d], and ! :=
p

d = [a0, a1, : : : , al�1, 2a0]

is the continued fraction expansion with period l of
p

d. Also, in Case (III), there is
no positive integer d such that(2.14) is the continued fraction expansion of

p
d.

(ii) When Case (I) or Case (III) occurs, we let s be any integer with s� s0, and
put d := f (s) and a0 := (g(s) + 1)=2. Here, we choose an odd integer s inCase (I),
and assume that(2.13) holds. Then, d and a0 are positive integers, d is non-square,
d � 1 mod 4,

(2.15) a0 = [(1 +
p

d)=2], and ! := (1 +
p

d)=2 = [a0, a1, : : : , al�1, 2a0 � 1]

is the continued fraction expansion with period l of(1 +
p

d)=2. Also, in Case (II),
there is no positive integer d such that d� 1 mod 4and (2.15) is the continued frac-
tion expansion of(1 +

p
d)=2.

Conversely, we let d be any non-square positive integer. By using a quadratic poly-
nomial f(x) obtained as above from the symmetric part of the continued fraction ex-
pansion of

p
d, d becomes uniquely of the form d= f (s)=4 with some integer s� s0,

and (2.13) holds. If d � 1 mod 4in addition then the same thing is true for(1+
p

d)=2.
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DEFINITION 2.1. As we have seen in the above, the symmetric parta1, : : :, al�1

can be obtained from a string ofL positive integersa1, : : : , aL . We call such a string
the primary symmetric part.

Let d be any non-square positive integer. We see by Theorem 2.4 that d is uniquely
of the form d = f (s)=4 with some integers � s0. Here, the quadratic polynomialf (x)
and the integers0 are obtained as above from the symmetric part of the continued frac-
tion expansion with periodl of

p
d. If s = s0 then we say thatd is a positive integer

with period l of minimal type for
p

d. Whend � 1 mod 4 in addition, we see thatd is
uniquely of the formd = f (s) with some integers� s0. Here, the quadratic polynomial
f (x) and the integers0 are obtained as above from the symmetric part of the continued
fraction expansion with periodl of (1 +

p
d)=2. If s = s0 then we say thatd is a positive

integer with period l of minimal type for(1 +
p

d)=2.
Let Q(

p
d) be a real quadratic field. Here,d is a square-free positive integer. We

say thatQ(
p

d) is a real quadratic field with period l of minimal type, if d is a positive
integer with periodl of minimal type for

p
d when d � 2, 3 mod 4, and ifd is a

positive integer with periodl of minimal type for (1 +
p

d)=2 whend � 1 mod 4.

We mention an important supplement to Theorem 2.4.

REMARK 2.2. Under the setting of Theorem 2.4 (i) or (ii), ifs > s0 then the
condition (2.13) holds.

Proof. Let 1� n � L. As A> 0, the linear functiong(x) is strictly, monotonously
increasing. By the definition ofs0, we haveg(s0) > 0. Therefore it follows froms> s0

that g(s) � g(s0 + 1) = g(s0) + A > A = ql . On the other hand, asl � L + 1, we see that
ql � qn+1 � anqn � an. Hence,g(s) > ql � an. Thus, our assertion is proved.

From now on, we letd be a non-square positive integer constructed in Theorem 2.4
(i), or (ii). If we put al := g(s) then it holds thatal = 2a0 in (i), and thatal = 2a0 � 1 in
(ii). For brevity, we write! = (P0 +

p
d)=Q0. Here, P0 := 0, Q0 := 1 in (i) and P0 := 1,

Q0 := 2 in (ii). For all integersn � 0, we put

Gn := Q0 pn � P0qn.

For each integern � 0, we determine a quadratic irrational!n+1 such that

!0 := !, !n = an +
1!n+1

, an = [!n].

(Note that the sequencefangn�1 of positive integers is defined periodically.) Then we
can write uniquely!n = (Pn +

p
d)=Qn with some positive integersPn and Qn, and
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Qn=Q0 becomes a positive integer. (Cf. Section 2 and the proof of Lemma 2.2 in [4].)
Also, the following are known for any integern � 0:

Pn+1 = anQn � Pn,(2.16)

Qn+1 = Qn�1 + an(Pn � Pn+1),(2.17)

QnQn+1 = d � P2
n+1,(2.18)

where we putQ�1 := (d � P2
0 )=Q0. (Also, 0< Pn+1 < pd, 0 < Qn+1 < 2

p
d.) We

describe properties of recurrence equations in Lemmas 2.5 and 2.6 which are widely
used in Section 3.

Lemma 2.5. Let k be an integer. Under the above setting, the following hold.

Gn = Pnqn + Qnqn�1, n � 1,(2.19)

al qn = 2((Gn=Q0)� rn), n � 0,(2.20)

qklr l+1 = rkl+1ql , k � 0,(2.21)

h(s)qkl � g(s)qkl�1 = rkl�1, k � 1,(2.22)

h(s)qkl�1� g(s)rkl�1 = ((�1)klal + qkl�1rkl�1)=qkl , k � 1.(2.23)

Proof. By putting� = !n in (2.2)n�1, we see that

! = [a0, : : : , an�1, !n] =
!n pn + pn�1!nqn + qn�1

=

�
pn pn�1

qn qn�1

�!n.

Since the inverse of the matrix in the right hand side of it is equal to (�1)n
�

qn�1 �pn�1�qn pn

�
,

we have

(2.24) !n = (�1)n
�

qn�1 �pn�1�qn pn

�! =
pn�1 � qn�1!

qn! � pn
, n � 1,

so that!n(qn! � pn) = pn�1� qn�1!. Therefore,

(Pn +
p

d)(�Gn + qn

p
d) = QnGn�1� Qnqn�1

p
d,

so that

(�PnGn + dqn) + (�Gn + Pnqn)
p

d = QnGn�1� Qnqn�1

p
d.

Comparing with coefficients of
p

d in both sides of it yields that (2.19). First, let! =p
d to show (2.20). It follows from (2.4),Gn = pn and Q0 = 1 that

al qn = 2a0qn = 2(pn � rn) = 2((Gn=Q0)� rn).
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Next, let ! = (1 +
p

d)=2. As Gn = 2pn � qn and Q0 = 2, we have

al qn = (2a0 � 1)qn = Gn � 2rn = 2((Gn=Q0)� rn).

Thus, (2.20) holds.
The equation (2.21) holds fork = 0, 1. We show it by induction ink (and Lemma 2.1),

and assume that (2.21) holds fork � 1. First, we see that

q(k+1)l r l+1 = (ql+1qkl + ql qkl�1)r l+1 (by (2.9)n=l for (k+1)l )

= (qklr l+1)ql+1 + qkl�1r l+1ql = (rkl+1ql )ql+1 + rklr l+1ql

(by the hypothesis of induction and (2.7))

= (rkl+1ql+1 + rklr l+1)ql .

(2.25)

Next, we calculater (k+1)l+1 and note thata(k+1)l = al by the definition offangn�1. Since

�
r (k+1)l = qklr l+1 + qkl�1r l ,
r (k+1)l�1 = rklr l+1 + rkl�1r l

by (2.10)n=l and (2.11)n=l for (k + 1)l , we have

r (k+1)l+1 = al r (k+1)l + r (k+1)l�1 = (al qkl + rkl )r l+1 + (al qkl�1 + rkl�1)r l

= al (rkl+1ql ) + rklr l+1 + (al qkl�1 + rkl�1)r l ,

where we use the hypothesis of induction. Asal ql = ql+1� ql�1, we obtain

r (k+1)l+1 = rkl+1ql+1 + rklr l+1 + (al qkl�1 + rkl�1)r l � rkl+1ql�1.

Here, sinceql�1 = r l by (2.7)k=1, we have

(al qkl�1 + rkl�1)r l � rkl+1ql�1 = al qkl�1r l + rkl�1r l � (al rkl + rkl�1)r l

= al (qkl�1 � rkl )r l = 0 (by (2.7)).

Hence,r (k+1)l+1 = rkl+1ql+1 + rklr l+1. So, (2.25) implies thatq(k+1)l r l+1 = r (k+1)l+1ql .
Since we see in the proof of Theorem 2.4 (see [4, (3.10)]) that(2.22) holds for

k = 1, we may assume thatk � 2. By (2.9)n=l and (2.10)n=l , we have

�
qkl = q(k�1)l ql+1 + q(k�1)l�1ql ,
rkl = q(k�1)l r l+1 + q(k�1)l�1r l ,
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and note thatrkl = qkl�1, and r l = ql�1. Then, (2.22)k=1 yields that

(2.26) h(s)qkl � g(s)qkl�1 = q(k�1)l (h(s)ql+1� g(s)r l+1) + q(k�1)l�1r l�1,

and also,

(2.27) h(s)ql+1� g(s)r l+1 = al (h(s)ql � g(s)r l ) + h(s)ql�1� g(s)r l�1.

Furthermore we have by (2.22)k=1

h(s)ql�1� g(s)r l�1 = h(s)ql
ql�1

ql
� g(s)r l�1 = (g(s)r l + r l�1)

ql�1

ql
� g(s)r l�1

=
1

ql
fg(s)(ql�1r l � ql r l�1) + ql�1r l�1g.

As ql�1r l �ql r l�1 =�(�1)l�1 by (2.3)n=l andal = g(s), we see (2.23)k=1, and it follows
from (2.27), (2.22)k=1, and this that

h(s)ql+1� g(s)r l+1 =
1

ql
fal ql r l�1 + (�1)l al + ql�1r l�1g.

By (2.8)k=1, ql r l�1 = q2
l�1� (�1)l . Also, ql�1 = r l . Therefore,

h(s)ql+1� g(s)r l+1 =
1

ql
fal q

2
l�1 + ql�1r l�1g =

1

ql
(al r l + r l�1)r l =

1

ql
r l+1r l .

As q(k�1)l�1 = r (k�1)l by (2.7), hence, we see by (2.26) that

h(s)qkl � g(s)qkl�1 =
1

ql
q(k�1)l r l+1r l + r (k�1)l r l�1

= r (k�1)l+1r l + r (k�1)l r l�1 (by (2.21)k�1)

= rkl�1 (by (2.11)n=(k�1)l ).

Thus, we obtain (2.22).
We use the same argument in the above proof of (2.23)k=1 to show (2.23). By

(2.22), we have

h(s)qkl�1� g(s)rkl�1 = h(s)qkl
qkl�1

qkl
� g(s)rkl�1

= (g(s)rkl + rkl�1)
qkl�1

qkl
� g(s)rkl�1

=
1

qkl
fg(s)(qkl�1rkl � qklrkl�1) + qkl�1rkl�1g.

As qkl�1rkl � qklrkl�1 = �(�1)kl�1 by (2.3)n=kl and al = g(s), we obtain (2.23). This
proves our lemma.
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We shall use the following lemma in the proof of Lemma 3.5.

Lemma 2.6. Under the above setting, let k be a positive integer.
(i) When! =

p
d, the following hold.

qkl � ql (resp., � 0) mod 2, if 2 ∤ k (resp. 2 j k),(2.28)

qkl�1 � ql�1 (resp., � 1) mod 2, if 2 ∤ k (resp. 2 j k).(2.29)

(ii) When! = (1 +
p

d)=2, the following hold.

qkl � ql (resp., � 0) mod 2, if 3 ∤ k (resp. 3 j k),(2.30)

qkl�1 � ql�1 (resp., � ql ql�1 + 1, 1) mod 2,

if k � 1 (resp., � 2, 0) mod 3.
(2.31)

Proof. By (2.7) of Lemma 2.1, we haveqkl�1 = rkl , andql�1 = r l . First, we show
(2.30) and (2.31) simultaneously by induction ink. They trivially hold for k = 1. Since
al is odd when! = (1 +

p
d)=2, we haveql+1 +ql�1 = al ql + 2ql�1 � ql mod 2, and then

(2.9)n=l and (2.10)n=l yield that

q2l = ql+1ql + ql ql�1 � ql mod 2,(2.32)

q2l�1 = ql r l+1 + ql�1r l = ql (al r l + r l�1) + ql�1r l

� ql r l + (ql r l�1� ql�1r l ) � ql ql�1 + 1 mod 2 (by (2.3)n=l ).
(2.33)

Thus, they hold fork = 2. Also, (2.32) and (2.33) imply that

q3l = ql+1q2l + ql q2l�1 � ql+1ql + ql (ql ql�1 + 1)

� ql (ql+1 + ql�1) + ql � 2ql � 0 mod 2,
(2.34)

q3l�1 = q2l r l+1 + q2l�1r l � ql r l+1 + (ql ql�1 + 1)r l

� ql r l+1 + ql r l + r l = ql f(al + 1)r l + r l�1g + r l

� ql r l�1 + r l � (ql�1 + 1) +ql�1 � 1 mod 2 (by (2.8)k=1).

(2.35)

Thus, they hold fork = 3. We letn � 1, and assume that both (2.30) and (2.31) hold
for k = 3n� 2, 3n� 1, and 3n. Similarly, (2.9)n=l and (2.10)n=l yield that

q(3n+1)l = ql+1q3nl + ql q3nl�1 � ql+10 + ql 1 = ql mod 2,

q(3n+1)l�1 = q3nlr l+1 + q3nl�1r l � 0r l+1 + 1r l = ql�1 mod 2.

It follows from this, (2.32) and (2.33) that

q(3n+2)l = ql+1q(3n+1)l + ql q(3n+1)l�1 � ql+1ql + ql ql�1 � ql mod 2,

q(3n+2)l�1 = q(3n+1)l r l+1 + q(3n+1)l�1r l � ql r l+1 + ql�1r l � ql ql�1 + 1 mod 2.
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We see by this, (2.34) and (2.35) that

q3(n+1)l = ql+1q(3n+2)l + ql q(3n+2)l�1 � ql+1ql + ql (ql ql�1 + 1)� 0 mod 2,

q3(n+1)l�1 = q(3n+2)l r l+1 + q(3n+2)l�1r l � ql r l+1 + (ql ql�1 + 1)r l � 1 mod 2.

Thus, both (2.30) and (2.31) hold fork = 3n + 1, 3n + 2, and 3(n + 1). Next, we show
(2.28) and (2.29) simultaneously by induction ink. Note thatal is even when! =

p
d.

Then we obtain them by the same argument. This proves our lemma.

It is known that the following lemma is of central importancein the theory of con-
tinued fractions, which is used in the proofs of Propositions 4.4 and 4.5 in Section 4.
In the case where! = (1 +

p
d)=2, as no reference for the proof of it is known to the

authors, we give it here.

Lemma 2.7. Under the above setting, we have G2
n � dq2

n = (�1)nQnQ0 for all
n � 0. Here, we put Gn := Q0 pn � P0qn.

Proof. For any positive integern, we put �n+1 :=
Qn

i =1 !�1
i , and �1 := 1

(H.C. Williams and Wunderlich [11, p. 408, (2.7)]). By induction in n� 0, we show that

(2.36) �n+1 = (�1)n(pn � qn!)

holds ([11, Theorem 2.1, (2.9)]). This holds forn = 0, 1 from the definition of�n+1.
We assume that (2.36) holds forn � 1. By (2.24) and (2.1), we have

!�1
n+1 = !n � an =

(an pn + pn�1)� (anqn + qn�1)!
qn! � pn

=
pn+1� qn+1!

qn! � pn
.

Hence the hypothesis of induction implies that

�n+2 = �n+1!�1
n+1 = (�1)n(pn � qn!)

pn+1� qn+1!
qn! � pn

= (�1)n+1(pn+1� qn+1!).

Thus, (2.36) holds forn + 1. Since (Gn � qn

p
d)=Q0 = pn � qn! by the definition of

Gn, we see from (2.36) that

(2.37) �n+1 = (�1)n(Gn � qn

p
d)=Q0, n � 0.

For any elementx in “a real quadratic fieldQ(
p

d)”, x0 denotes its non-trivial conju-
gate overQ. As the definition of!i and (2.18) yield that (!i!0i )�1 = Q2

i =(P2
i � d) =�Qi =Qi�1 for each integeri � 1, we have

�n+1� 0n+1 =
nY

i =1

(!i!0i )�1 = (�1)n
Qn

Q0
, n � 0.
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On the other hand, we see by (2.37) that�n+1� 0n+1 = (G2
n� dq2

n)=Q2
0. Hence, we obtain

G2
n � dq2

n = (�1)nQnQ0. Our lemma is proved.

3. Certain positive integers with even period of minimal type

We let d be a non-square positive integer constructed in Theorem 2.4(i) (resp. (ii)),
and assume that the periodl of the continued fraction expansion of! =

p
d (resp., =

(1 +
p

d)=2) is even: l = 2L. For any integere � 0, �!w e denotese iterations of the
periodic parta1, : : : , al , and we put�!v := a1, : : : , aL�1. Then, �!w 0 is empty and if
L = 1 then�!v is also empty. The symmetric parta1, : : : , al�1 of the continued fraction
expansion of! can be written as�!v , aL , �v . Here, �v := aL�1, : : : , a1 is the reverse of�!v . Let b be any positive integer. We put

a0 := b + aL

and consider a symmetric string of (2e+ 1)l � 1 positive integers

�!w e,
�!v , a0, �v , �w e,

where �w e denotes the reverse of�!w e, which is e iterations of a string ofl positive
integersal , : : : , a1. For brevity, we putL 0 := (2e+1)L and l 0 := (2e+1)l = 2L 0. From this
symmetric string ofl 0�1 positive integers, we define nonnegative integersq0n, r 0n, n � 0
by using the recurrence equation (2.1). Since the former part �!w e,

�!v of it gives the
same integersqn, rn, we have

(3.1) q0n = qn, r 0n = rn, 0� n � L 0.
We assume this setting throughout this paper. In Section 3.2, we shall choose a suitable
positive integerb depending on the integere (Lemma 3.4) to give positive integers of
minimal type.

3.1. Basic properties. The following hold for the positive integera0 (in (2.14)
or (2.15)) and the symmetric string of positive integers�!w e,

�!v , aL ,  �v ,  �w e.

Lemma 3.1.

ql 0 = (qL 0+1 + qL 0�1)qL 0 ,(3.2)

r l 0 + (�1)L 0
= (qL 0+1 + qL 0�1)r L 0 ,(3.3)

pl 0 + (�1)L 0
= (qL 0+1 + qL 0�1)pL 0 ,(3.4)

GL 0 =
QL

2
(qL 0+1 + qL 0�1),(3.5)

2((Gl 0=Q0) + (�1)L 0
) =

QL

Q0
(qL 0+1 + qL 0�1)2.(3.6)
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Proof. The equation (2.9)n=L 0 of Lemma 2.1 for the symmetric string of positive
integers�!w e,

�!v , aL ,  �v ,  �w e yields that

ql 0 = qL 0+1qL 0 + qL 0qL 0�1 = (qL 0+1 + qL 0�1)qL 0 ,
which gives (3.2). By (2.3)n=L 0+1, we haveqL 0r L 0+1 = qL 0+1r L 0 � (�1)L 0

. Consequently,
(2.10)n=L 0 implies that

r l 0 = qL 0r L 0+1 + qL 0�1r L 0 = (qL 0+1 + qL 0�1)r L 0 � (�1)L 0
,

and we see (3.3). By adding (3.3) to (3.2) timesa0, we obtain (3.4) by (2.4). Next,
we show (3.5). The periodic part!1 = [a1, : : : , al ] yields that!kl+n = !n for all k � 0
and all n, 1� n � l �1. Therefore,Pkl+n = Pn and Qkl+n = Qn. Also, it is known that

(3.7) Pn+1 = Pl�n, Qn = Ql�n, 0� n � l � 1.

(By using !l = al + (1=!1), (2.16) and (2.18), this is shown by induction inn.) As
L 0 = el+L, we see by (3.7) thatPL 0+1 = PL+1 = PL = PL 0 . Hence, (2.16) gives thatPL 0 =
PL 0+1 = aL 0 QL 0 � PL 0 , so that 2PL 0 = aL 0 QL 0 . It follows from (2.19)n=L 0 of Lemma 2.5
and this that

GL 0 =
aL 0 QL 0

2
qL 0 + QL 0qL 0�1

=
QL 0
2

(qL 0+1� qL 0�1) + QL 0qL 0�1 =
QL 0
2

(qL 0+1 + qL 0�1).

As QL 0 = Qel+L = QL , we have (3.5). Finally, we show (3.6). We see by (3.4) and
(3.2) that

Gl 0 = Q0 pl 0 � P0ql 0 = (qL 0+1 + qL 0�1)(Q0 pL 0 � P0qL 0)� (�1)L 0
Q0

= (qL 0+1 + qL 0�1)GL 0 � (�1)L 0
Q0,

so that

Gl 0
Q0

+ (�1)L 0
=

GL 0
Q0

(qL 0+1 + qL 0�1).

By substituting (3.5) for this equation, we obtain (3.6). This proves our lemma.

The following hold for the symmetric string of positive integers�!w e,
�!v , a0, �v , �w e.

Lemma 3.2.

q0l 0 = bq2
L 0 + ql 0 ,(3.8)

q0l 0�1 = r 0l 0 = bqL 0r L 0 + r l 0 ,(3.9)
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r 0l 0�1 = br2
L 0 + r l 0�1,(3.10)

r L 0q0l 0 � qL 0q0l 0�1 = (�1)L 0
qL 0 ,(3.11)

h(s)q0l 0 � g(s)q0l 0�1 = r 0l 0�1� (�1)L 0 QL

Q0
b.(3.12)

Proof. By (3.1), we have

q0L 0+1 = a0q0L 0 + q0L 0�1 = (b + aL )qL 0 + qL 0�1 = bqL 0 + qL 0+1.

Consequently, (2.9)n=L 0 of Lemma 2.1 for�!w e,
�!v , a0,  �v ,  �w e and (3.1) yield that

q0l 0 = q0L 0+1q
0
L 0 + q0L 0q0L 0�1 = (bqL 0 + qL 0+1)qL 0 + qL 0qL 0�1 = bq2

L 0 + ql 0 (by (3.2)),

which gives (3.8). By (2.7), we haveq0l 0�1 = r 0l 0 , and by (3.1),

r 0L 0+1 = a0r 0L 0 + r 0L 0�1 = (b + aL )r L 0 + r L 0�1 = brL 0 + r L 0+1.

Therefore, (2.10)n=L 0 and (3.1) imply that

r 0l 0 = q0L 0r 0L 0+1 + q0L 0�1r
0
L 0

= qL 0(brL 0 + r L 0+1) + qL 0�1r L 0 = bqL 0r L 0 + r l 0 ,
where we use (2.10)n=L 0 for �!w e,

�!v , aL ,  �v ,  �w e. Thus, we see (3.9). The equations
(2.11)n=L 0 and (3.1) yield that

r 0l 0�1 = r 0L 0+1r
0
L 0 + r 0L 0r 0L 0�1

= (brL 0 + r L 0+1)r L 0 + r L 0r L 0�1 = br2
L 0 + r l 0�1 (by (2.11)n=L 0),

which gives (3.10). It follows from (3.8) and (3.9) that

r L 0q0l 0 � qL 0q0l 0�1 = bq2
L 0r L 0 + ql 0r L 0 � (bq2

L 0r L 0 + qL 0r l 0) = ql 0r L 0 � qL 0r l 0 ,
and (2.9)n=L 0 and (2.10)n=L 0 for �!w e,

�!v , aL ,  �v ,  �w e imply that

(3.13)
ql 0r L 0 � qL 0r l 0 = (qL 0+1qL 0 + qL 0qL 0�1)r L 0 � qL 0(qL 0r L 0+1 + qL 0�1r L 0)

= (qL 0+1r L 0 � qL 0r L 0+1)qL 0 = (�1)L 0
qL 0 (by (2.3)n=L 0+1).
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Thus, we obtain (3.11). Finally, we show (3.12). We see by (3.8) and (3.9) that

h(s)q0l 0 � g(s)q0l 0�1 = h(s)(bq2
L 0 + ql 0)� g(s)(bqL 0r L 0 + r l 0)

= bqL 0(h(s)qL 0 � g(s)r L 0) + r l 0�1 (by (2.22)),

so that

(3.14) h(s)q0l 0 � g(s)q0l 0�1 = r 0l 0�1 + bqL 0(h(s)qL 0 � g(s)r L 0)� br2
L 0

by (3.10). We see from (2.5)n=l 0�1 and (2.6)n=L 0 that

�
ql 0 ql 0�1

r l 0 r l 0�1

�
=

�
qL 0+1 qL 0
r L 0+1 r L 0

��
qL 0 r L 0

qL 0�1 r L 0�1

�
.

Multiplying this equation from the right by the inverse matrix (�1)L 0�1
�

rL 0�1 �rL 0�qL 0�1 qL 0 �
gives

(�1)L 0�1

�
ql 0r L 0�1� ql 0�1qL 0�1 �ql 0r L 0 + ql 0�1qL 0
r l 0r L 0�1� qL 0�1r l 0�1 �r l 0r L 0 + qL 0r l 0�1

�
=

�
qL 0+1 qL 0
r L 0+1 r L 0

�
.

Furthermore, multiplying the above equation from the left by a row vector (h(s),�g(s))
and comparing with the second components of both sides of it yield that

(�1)L 0�1(�ql 0r L 0 + ql 0�1qL 0)h(s)� (�1)L 0�1(�r l 0r L 0 + qL 0r l 0�1)g(s)

= h(s)qL 0 � g(s)r L 0 .
Now we use Lemma 2.5 and also note thatl 0 is even. This implies that

h(s)qL 0 � g(s)r L 0
= (�1)L 0

(h(s)ql 0 � g(s)r l 0)r L 0 � (�1)L 0
(h(s)ql 0�1� g(s)r l 0�1)qL 0

= (�1)L 0
r l 0�1r L 0 � (�1)L 0

((�1)l
0
al + ql 0�1r l 0�1)

qL 0
ql 0 (by (2.22), (2.23))

=
1

ql 0 f(�1)L 0
(ql 0r L 0 � ql 0�1qL 0)r l 0�1� (�1)L 0

al qL 0g.
Sinceql 0�1 = r l 0 by (2.7), we see from (3.13) that

h(s)qL 0 � g(s)r L 0 =
qL 0
ql 0 (r l 0�1� (�1)L 0

al ) =
qL 0
q2

l 0 (ql 0r l 0�1� (�1)L 0
al ql 0)

=
qL 0
q2

l 0 (r 2
l 0 � 1� (�1)L 0

al ql 0) (by (2.8)).

By substituting this equation for (3.14), we obtain

h(s)q0l 0 � g(s)q0l 0�1 = r 0l 0�1 +
bq2

L 0
q2

l 0 E .
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Here, we putE := r 2
l 0 � 1� (�1)L 0

al ql 0 � (q2
l 0r 2

L 0=q2
L 0). Then,

E = r 2
l 0 � 1� (�1)L 0

2((Gl 0=Q0)� r l 0)� (q2
l 0r 2

L 0=q2
L 0) (by (2.20))

= r 2
l 0 + (�1)L 0

2r l 0 + 1� (�1)L 0
2(Gl 0=Q0)� 2� (q2

l 0r 2
L 0=q2

L 0)
= (r l 0 + (�1)L 0

)2� (�1)L 0
2((Gl 0=Q0) + (�1)L 0

)� (q2
l 0r 2

L 0=q2
L 0 )

= (qL 0+1 + qL 0�1)2r 2
L 0 � (�1)L 0

(QL=Q0)
q2

l 0
q2

L 0 � (qL 0+1 + qL 0�1)2r 2
L 0

(by (3.3), (3.6) and (3.2))

= �(�1)L 0
(QL=Q0)

q2
l 0

q2
L 0 .

Thus, we have (3.12) and this proves our lemma.

3.2. Integers s0 and suitable positive integersb. To give positive integers of
minimal type, we define an integers0 (Proposition 3.3) and choose a suitable positive
integer b depending on the integere (Lemma 3.4). Letk be a positive integer. By
(2.9)n=l of Lemma 2.1, we see thatqkl = ql+1q(k�1)l +ql q(k�1)l�1. If ql j q(k�1)l holds for
k � 2, then this equation implies thatql j qkl . Thus, ql divides qkl for all k � 1.

Proposition 3.3. Let s and s0 be integers as inTheorem 2.4.Under the above
setting, the following hold.
(i) We assume that the positive integer b is divisible by qL 0 , and put

(3.15) s0 :=
g(s) + (QL=Q0)b + q0l 0�1r

0
l 0�1

q0l 0 .

Then, s0 is an integer and s0 > q0l 0�1r
0
l 0�1=q0l 0 holds.

(ii) Furthermore, we assume that b is also divisible by ql , and let s00 be the least in-
teger t for which t> q0l 0�1r

0
l 0�1=q0l 0 . Then, s0 = s00 if and only if

s� s0 � b

ql
(q2

L 0 � (QL=Q0)) +
ql 0
ql
� 1.

Proof. (i) Multiplying both sides of (3.11) in Lemma 3.2 by (QL=Q0)b=qL 0
yields that

(3.16) f(QL=Q0)brL 0=qL 0gq0l 0 � f(QL=Q0)bgq0l 0�1 = (�1)L 0
(QL=Q0)b.

By (2.8), we haver 0l 0�1q
0
l 0 � q0l 0�1q

0
l 0�1 = �(�1)l

0
= �1. Multiplying both sides of this

equation byr 0l 0�1 gives

(3.17) (r 0l 0�1
2)q0l 0 � (q0l 0�1r

0
l 0�1)q0l 0�1 = �r 0l 0�1.



REAL QUADRATIC FIELDS OF M INIMAL TYPE 967

If we add up both sides of (3.12), (3.16) and (3.17), then the right hand side of it is
equal to 0, and we obtain

fh(s) + ((QL=Q0)brL 0=qL 0) + r 0l 0�1
2gq0l 0 = fg(s) + (QL=Q0)b + q0l 0�1r

0
l 0�1gq0l 0�1.

By the assumption,b=qL 0 is an integer andq0l 0 is co-prime toq0l 0�1 by (2.3)n=l 0 . Hence,
s0 is an integer and we have

(3.18) s0 =
h(s) + ((QL=Q0)brL 0=qL 0) + r 0l 0�1

2

q0l 0�1

.

Also, asg(s) > 0, we see by (3.15) thats0 > q0l 0�1r
0
l 0�1=q0l 0 .

(ii) For brevity, we put

E := ql�1r l�1=ql , E0 := q0l 0�1r
0
l 0�1=q0l 0 .

Since s00 � 1 � E0 < s00 by the definition ofs00, the integers00 is characterized as an
integer t satisfying E0 < t � E0 + 1. The same thing is true forE. Also,

s0 =
g(s) + (QL=Q0)b

q0l 0 + E0
and the first term of the right hand side of it is positive asg(s) > 0. Hence,

s0 = s00() g(s) + (QL=Q0)b

q0l 0 � 1

() ql s� ql�1r l�1 + (QL=Q0)b � bq2
L 0 + ql 0 (by (3.8))

() ql s� b(q2
L 0 � (QL=Q0)) + ql 0 + ql�1r l�1

() s� s0 � b

ql
(q2

L 0 � (QL=Q0)) +
ql 0
ql

+ E � s0.

We see by the assumption and the remark in the beginning of this section that both
b=ql and ql 0=ql are integers. Also,�1� E � s0 < 0. Therefore,

s0 = s00() s� s0 � b

ql
(q2

L 0 � (QL=Q0)) +
ql 0
ql
� 1.

Our proposition is proved.

REMARK 3.1. As we have seen in [4, Lemma 2.2], 2[
p

d]=aL � QL holds. Hence,
since a sequencefqngn�2 of positive integers is strictly monotonously increasing,there
exists some numbere0 for the constants� s0 such that

e� e0 ) 1

ql
(q2

(2e+1)L � (QL=Q0)) +
q(2e+1)l

ql
� 1� s� s0.
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We assume thate � e0, and b is divisible by bothqL 0 and ql . Then, we see by the
above and Proposition 3.3 (ii) thats0 = s00 holds for an integers0 determined by (3.15),
depending on integerse� e0 and b.

For any integere� 0 and any positive integerb, we define polynomialsg0(x),h0(x)
of degree 1 and a quadratic polynomialf 0(x) in Z[x] by putting

g0(x) := q0l 0x � q0l 0�1r
0
l 0�1, h0(x) := q0l 0�1x � r 0l 0�1

2, f 0(x) := g0(x)2 + 4h0(x).

Lemma 3.4. We let t be any positive integer and put b:= (qL 0+1 + qL 0�1)qL 0 t .
Then, the assumption ofProposition 3.3for b holds and

s0 = fg(s) + (QL=Q0)(qL 0+1 + qL 0�1)qL 0 t + q0l 0�1r
0
l 0�1g=q0l 0 ,(3.19)

f 0(s0) = (QL=Q0)2(qL 0+1 + qL 0�1)2q2
L 0 t2

+ 2(QL=Q0)2(qL 0+1 + qL 0�1)2t + f (s).
(3.20)

Proof. By (3.2) of Lemma 3.1, we haveb = ql 0 t . Sinceql j ql 0 , we obtainql j b.
Thus, the assumption of Proposition 3.3 forb holds. The definition (3.15) ofs0
yields that

(3.21) g0(s0) = g(s) + (QL=Q0)b = g(s) + (QL=Q0)(qL 0+1 + qL 0�1)qL 0 t ,
and (3.18) implies that

h0(s0) = h(s) + ((QL=Q0)brL 0=qL 0 ).
Therefore,

f 0(s0)
= f(QL=Q0)2b2 + 2(QL=Q0)bg(s) + g(s)2g + 4h(s) + 4((QL=Q0)brL 0=qL 0 )
= (QL=Q0)2b2 + 2(QL=Q0)

b

qL 0 (g(s)qL 0 + 2r L 0) + f (s).

On the other hand, it follows from (3.2), (3.3),al = g(s), and (2.20) of Lemma 2.5 that

(qL 0+1 + qL 0�1)(g(s)qL 0 + 2r L 0)
= g(s)ql 0 + 2(r l 0 + (�1)L 0

)

= 2((Gl 0=Q0)� r l 0) + 2(r l 0 + (�1)L 0
) = 2((Gl 0=Q0) + (�1)L 0

)

= (QL=Q0)(qL 0+1 + qL 0�1)2 (by (3.6)).

Hence we obtain

f 0(s0) = (QL=Q0)2b2 + 2(QL=Q0)2(qL 0+1 + qL 0�1)
b

qL 0 + f (s),
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which gives (3.20), and our lemma is proved.

Lemma 3.5. Under the setting ofLemma 3.4,we consider the symmetric string
of positive integers�!w e,

�!v , a0,  �v ,  �w e.
(i) We assume thatCase (I) occurs for the symmetric string of positive integers
a1, : : : , al�1 and s is even. Then, if t is even thenCase (I)occurs for the new symmet-
ric string of positive integers�!w e,

�!v , a0,  �v ,  �w e, and s0 is even. Also, if t is odd
then Case (II)occurs for the new symmetric string.
(ii) We assume thatCase (I) occurs for a1, : : : , al�1 and s is odd. If e � 1 mod 3
then Case (III) occurs for the new symmetric string. Furthermore, we assume that e�
0, 2 mod 3. Then, if t is even thenCase (I)occurs for the new symmetric string and
s0 is odd. Also, if t is odd thenCase (II)occurs for the new symmetric string.
(iii) If Case (II)occurs for a1, : : : , al�1, then Case (II)occurs for the new symmetric
string.
(iv) If Case (III) occurs for a1, : : : , al�1, then Case (III) occurs for the new symmetric
string.

Proof. As we use Lemma 2.2, we note thataL 0 = ael+L = aL , and thatq0L 0 = qL 0
by (3.1). Since

qL 0+1 + qL 0�1 = aL 0qL 0 + 2qL 0�1 � aL 0qL 0 = aLqL 0 mod 2

and a0 = (qL 0+1 + qL 0�1)qL 0 t + aL , we have

(3.22) a0 � aL (qL 0 t + 1) mod 2.

Also, as l 0 = 2L 0, (2.9)n=L 0 of Lemma 2.1 yields that

(3.23) q(2e+1)l = ql 0 = (qL 0+1 + qL 0�1)qL 0 � aLqL 0 mod 2.

(i) Since Case (I) occurs fora1, : : : , al�1, both ql andaL are odd by Lemma 2.2.
Consequently, we haveqL 0 � q(2e+1)l and a0 � qL 0 t + 1 mod 2 by (3.23) and (3.22).

As s is even andd is a positive integer constructed in Theorem 2.4, now we deal
with ! =

p
d. Therefore, (2.28) of Lemma 2.6 yields thatqL 0 � ql � 1 mod 2, so that

a0 � t + 1 mod 2. First, we assume thatt is even. Then, since bothq0L 0 and a0 are
odd, we see by Lemma 2.2 that Case (I) occurs for the new symmetric string andq0l 0
is odd. Asq0l 0r 0l 0�1 = q0l 0�1

2� (�1)l
0

by (2.8), the parity ofr 0l 0�1 does not coincide with
that of q0l 0�1, so thatq0l 0�1r

0
l 0�1 � 0 mod 2. Furthermore, sinceq0l 0 is odd andt is even,

(3.19) implies that

s0 � g(s) = ql s� (�1)l ql�1r l�1 mod 2.

As ql is odd, we similarly see thatql�1r l�1 � 0 mod 2. Hence,s0 � s mod 2 ands0
is even. Next, we assume thatt is odd. Then, sincea0 is even, Case (II) occurs by
Lemma 2.2.
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(ii) Similarly, we haveqL 0 � q(2e+1)l anda0 � qL 0 t +1 mod 2. Ass is odd, now we

deal with! = (1 +
p

d)=2. First, we assume thate� 1 mod 3. Then, we see by (2.30)
that qL 0 � q(2e+1)l � 0 mod 2. Therefore,q0L 0 is even anda0 is odd so that Case (III)
occurs by Lemma 2.2. Next, we assume thate� 0, 2 mod 3. Then,qL 0 � ql � 1 mod 2
by (2.30), hence,a0 � t +1 mod 2. The same argument in (i) implies thats0 � s mod 2,
s0 is odd, and the same assertion holds.

(iii) Since Case (II) occurs fora1, : : : , al�1, Lemma 2.2 yields thataL is even.
By (3.22), a0 is also even. We see by Lemma 2.2 that Case (II) occurs again.

(iv) Since Case (III) occurs fora1, : : : , al�1, it follows from Lemma 2.2 thatql is
even andaL is odd. Now we deal with! = (1 +

p
d)=2. We see by (3.23) and (3.22)

that qL 0 � q(2e+1)l and a0 � qL 0 t + 1 mod 2. Asql is even, q(2e+1)l is always even by
(2.30). Hence,q0L 0 = qL 0 is even so thata0 is odd. Lemma 2.2 yields that Case (III)
occurs. This proves our lemma.

3.3. Construction of non-square positive integersd 0(t). Under the setting of
Lemma 3.4, by using Theorem 2.4, we construct a new non-square positive integerd0
from a symmetric string ofl 0�1 positive integers�!w e,

�!v , a0,  �v ,  �w e and the integer
s0. When Case (I) occurs for the given symmetric string of positive integersa1,:::,al�1,
Case (I) does not always occur for this new symmetric string of positive integers. In-
deed, we see by Lemma 3.5 that another Case occurs, dependingon e modulo 3 and
t modulo 2. Therefore, we consider three cases [A], [B], and [C] separately to prove
Theorem 3.6, and construct the following positive integerd0:

p
d!pd0 in [A],

(1 +
p

d)=2!pd0 in [B],
(1 +
p

d)=2! (1 +
p

d0)=2 in [C].

Theorem 3.6. We consider a non-square positive integer d constructed inTheo-
rem 2.4 (i) (resp. (ii)), and assume that the period l of the continued fraction expan-
sion ! =

p
d (resp., = (1 +

p
d)=2) is even: l = 2L. Let e be any integer� 0 and put

l 0 := (2e+ 1)l and L0 := (2e+ 1)L for brevity. For any positive integer t, we put

a0 = a0(t) := (qL 0+1 + qL 0�1)qL 0 t + aL ,

s0 = s0(t) := fg(s) + (QL=Q0)(qL 0+1 + qL 0�1)qL 0 t + q0l 0�1r
0
l 0�1g=q0l 0 ,

and define polynomials g0(x), h0(x) of degree1 and a quadratic polynomial f0(x) in
Z[x] as stated beforeLemma 3.4.Then the following hold.
[A] We assume that“Case (I) occurs for the symmetric string of positive integers
a1, : : : , al�1 and s is even” , or Case (II) occurs for it. Put d0 := f 0(s0)=4 and a00 :=
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g0(s0)=2. Then, QL (qL 0+1 + qL 0�1) is even and

d0 = d0(t) =
Q2

L (qL 0+1 + qL 0�1)2

4
q2

L 0 t2 +
Q2

L (qL 0+1 + qL 0�1)2

2
t + d,

a00 = a00(t) =
QL (qL 0+1 + qL 0�1)

2
qL 0 t + a0.

Also, d0 is a non-square positive integer and

!0 :=
p

d0 =
�
a00, �!w e,

�!v , a0, �v , �w e, 2a00�
is the continued fraction expansion with the period l0 of !0.
[B] We assume thatCase (I)occurs for a1, : : : , al�1, both s and t are odd, and e�
0, 2 mod 3. Put d0 := f 0(s0)=4 and a00 := g0(s0)=2. Then, QL=2, qL 0+1 + qL 0�1 and qL 0
are all odd and

d0 = d0(t)
= f(QL=2)2(qL 0+1 + qL 0�1)2q2

L 0 t2 + 2(QL=2)2(qL 0+1 + qL 0�1)2t + dg=4,

a00 = a00(t) = f(QL=2)(qL 0+1 + qL 0�1)qL 0 t + 2a0 � 1g=2,

(so that d0 and a00 are integers by d� 1 mod 4). Also, d0 is a non-square positive
integer and

!0 :=
p

d0 =
�
a00, �!w e,

�!v , a0, �v , �w e, 2a00�
is the continued fraction expansion with the period l0 of !0.
[C] We assume that“Case (I) occurs for a1, : : : , al�1 and s is odd” , or Case (III)
occurs for it. Here, if Case (I)occurs then we also assume that e� 1 mod 3, or t is
even. Put d0 := f 0(s0) and a00 := (g0(s0) + 1)=2. Then, qL 0 t is even and

d0 = d0(t)
= (QL=2)2(qL 0+1 + qL 0�1)2q2

L 0 t2 + 2(QL=2)2(qL 0+1 + qL 0�1)2t + d,

a00 = a00(t) = (QL=2)(qL 0+1 + qL 0�1)
qL 0 t
2

+ a0.

Also, d0 is a non-square positive integer, d0 � 1 mod 4, and

!0 := (1 +
p

d0)=2 =
�
a00, �!w e,

�!v , a0, �v , �w e, 2a00 � 1
�

is the continued fraction expansion with the period l0 of !0.
Proof. We see by Proposition 3.3 (i) thats0 is an integer ands0 > q0l 0�1r

0
l 0�1=q0l 0 .

It follows from (3.21) and the definition ofs that

g0(s0) > g(s) = al > a1, : : : , al�1.
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Also, we haveg0(s0) > a0 from (3.21) and the definition ofa0. Hence, the condition
(2.13) of Theorem 2.4 for the symmetric string of positive integers�!w e,

�!v , a0,  �v , �w e and s0 holds.
[A] Lemma 3.5 (i) and (iii) imply that “Case (I) occurs for this new symmetric

string ands0 is even”, or Case (II) occurs for it. As! =
p

d, we haveQ0 = 1. By
(3.6) of Lemma 3.1, 2(pl 0 + (�1)L 0

) = QL (qL 0+1 + qL 0�1)2, so thatQL (qL 0+1 + qL 0�1) is
even. Sinced = f (s)=4 anda0 = g(s)=2 by the definitions, (3.20) of Lemma 3.4 yields
that

d0 = f 0(s0)=4 =
Q2

L (qL 0+1 + qL 0�1)2

4
q2

L 0 t2 +
Q2

L (qL 0+1 + qL 0�1)2

2
t + d

and by (3.21),

a00 = g0(s0)=2 = a0 +
QL (qL 0+1 + qL 0�1)

2
qL 0 t .

Therefore, Theorem 2.4 (i) implies our assertion.
[B] Lemma 3.5 (ii) implies that Case (II) occurs for the new symmetric string,

and qL 0 is odd from its proof. AsQ0 = 2, we see by (3.5) of Lemma 3.1 that

(QL=Q0)(qL 0+1 + qL 0�1) = GL 0 = 2pL 0 � qL 0 � qL 0 � 1 mod 2.

Consequently,QL=Q0 and qL 0+1 + qL 0�1 are both odd. Sinced = f (s) and a0 = (g(s) +
1)=2 by the definitions, (3.20) yields that

d0 = f 0(s0)=4
= f(QL=Q0)2(qL 0+1 + qL 0�1)2q2

L 0 t2 + 2(QL=Q0)2(qL 0+1 + qL 0�1)2t + dg=4
and by (3.21),

a00 = g0(s0)=2 = f2a0 � 1 + (QL=Q0)(qL 0+1 + qL 0�1)qL 0 tg=2.

Hence, Theorem 2.4 (i) implies our assertion.
[C] Lemma 3.5 (ii) and (iv) imply that “Case (I) occurs for thenew symmetric

string ands0 is odd”, or Case (III) occurs for it. By its proof,qL 0 or t is even. Since
d = f (s) and a0 = (g(s) + 1)=2 by the definitions, (3.20) yields that

d0 = f 0(s0) = (QL=Q0)2(qL 0+1 + qL 0�1)2q2
L 0 t2 + 2(QL=Q0)2(qL 0+1 + qL 0�1)2t + d

and by (3.21),

a00 = (g0(s0) + 1)=2 = a0 + (QL=Q0)(qL 0+1 + qL 0�1)
qL 0 t
2

.

As Q0 = 2, Theorem 2.4 (ii) implies our assertion. This proves our theorem.
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REMARK 3.2. We letd0 be a non-square positive integer constructed in [A] and
[B] (resp. [C]) of Theorem 3.6. We see by Proposition 3.3 (ii)that d0 is a positive
integer with periodl 0 of minimal type for

p
d0 (resp. (1 +

p
d0)=2) if and only if

s� s0 � (q2
L 0 � (QL=Q0))(qL 0+1 + qL 0�1)qL 0 t=ql + (ql 0=ql )� 1.

Here, Q0 = 1, 2 (resp., = 2). Whene is sufficiently large, Remark 3.1 shows thatd0 =
d0(t) becomes of minimal type for

p
d0 (resp. (1 +

p
d0)=2) for all positive integerst .

Theorem 3.6 [A] implies Theorems 4.1 (c-i) and 4.2 (c-ii) in Mollin [6], and The-
orems 2 (ii) and 3 (e = 0) in McLaughlin [5].

Proposition 3.7 (Mollin, McLaughlin). We let d be a non-square positive inte-
ger and assume that p

d = [a0, a1, : : : , al�1, 2a0 ]

is the continued fraction expansion with even period l= 2L of
p

d. Let e be any integer� 0 and put l0 := (2e+ 1)l . For any positive integer u, we put

d0 := (pl 0 + (�1)L )2q2
l 0u2 + 2(pl 0 + (�1)L )2u + d,

a00 := (pl 0 + (�1)L )ql 0u + a0.

Then, d0 is a non-square positive integer and

p
d0 =

�
a00, �!w e,

�!v , a0, �v , �w e, 2a00�
becomes the continued fraction expansion with even period l0 of

p
d0. Here,

a0 :=
2(pl 0 + (�1)L )

QL
ql 0u + aL .

Proof. We see by Theorem 2.4 thatd is uniquely of the formd = f (s)=4 with some
integers � s0. Here, the quadratic polynomialf (x) and the integers0 are obtained as
in it from the symmetric part of the above continued fractionextension. Furthermore,
“Case (I) occurs fora1, : : : , al�1 and s is even”, or Case (II) occurs for it. We put
t := (qL 0+1 + qL 0�1)2u. As L 0 � L mod 2, (�1)L 0

= (�1)L . The equations (3.6) and (3.2)
of Lemma 3.1 yield that

a0 = (qL 0+1 + qL 0�1)2ql 0u + aL = (qL 0+1 + qL 0�1)3qL 0u + aL

= (qL 0+1 + qL 0�1)qL 0 t + aL .
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Also, (3.4) and (3.2) imply that

a00 = (qL 0+1 + qL 0�1)pL 0 (qL 0+1 + qL 0�1)qL 0u + a0 = pL 0qL 0 t + a0,

d0 = (qL 0+1 + qL 0�1)2 p2
L 0(qL 0+1 + qL 0�1)2q2

L 0u2 + 2(qL 0+1 + qL 0�1)2 p2
L 0u + d

= p2
L 0q2

L 0 t2 + 2p2
L 0 t + d.

By (3.5), we havepL 0 = (QL=2)(qL 0+1 + qL 0�1), so that

a00 =
QL (qL 0+1 + qL 0�1)

2
qL 0 t + a0,

d0 =
Q2

L (qL 0+1 + qL 0�1)2

4
q2

L 0 t2 +
Q2

L (qL 0+1 + qL 0�1)2

2
t + d.

Hence, Theorem 3.6 [A] implies our proposition.

We shall use the following lemma in Section 4.3.

Lemma 3.8. Let d0(t) be a non-square positive integer constructed inTheorem 3.6.
Then, the discriminant of a quadratic polynomial d0(t) in Z[t ] is not equal to0.

Proof. We see from the proof of Theorem 3.6 thatd0(t) = f 0(s0(t))=4, or f 0(s0(t)).
By (3.20) of Lemma 3.4, the discriminant of a quadratic polynomial f 0(s0(t)) is equal to

4(QL=Q0)4(qL 0+1 + qL 0�1)4� 4(QL=Q0)2(qL 0+1 + qL 0�1)2q2
L 0 f (s)

= 4(QL=Q0)2(qL 0+1 + qL 0�1)2f(QL=Q0)2(qL 0+1 + qL 0�1)2� q2
L 0 f (s)g.

Therefore, if we assume that the discriminant ofd0(t) is equal to 0 thenf (s) is square.
As d = f (s)=4 or f (s), d is also square, and this is a contradiction. Our lemma is
proved.

3.4. Yokoi invariant. In this section we letd be a non-square positive integer
constructed in Theorem 2.4 (i), or (ii). We assume for a whilethat d is square-free,
and consider a real quadratic fieldQ(

p
d). Therefore, ifd is a positive integer given in

the assertion (i), then we assume thatd � 2, 3 mod 4. We know by the last assertion
of Theorem 2.4 that all real quadratic fields are obtained in this way. Let" > 1 be the
fundamental unit of it, and we write uniquely" = (t + u

p
d)=2 with positive integers

t , u. Then, we define the Yokoi invariantmd of a real quadratic fieldQ(
p

d) by putting
md := [u2=t ]. The following hold.

Lemma 3.9 ([4] Lemma 4.1). Under the above setting, we put� := A2=(g(s)A+
2B). Then, if d � 2, 3 mod 4then md = [4�], and if d� 1 mod 4 then md = [�].
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The equations (2.20) of Lemma 2.5 and (2.7) of Lemma 2.1 implythat

g(s)A + 2B = al ql + 2ql�1 = 2((Gl =Q0)� r l ) + 2ql�1 = 2(Gl=Q0).

Whend � 2, 3 mod 4, asQ0 = 1, we have 4� = (2q2
l )=Gl = (2q2

l )=(Gl Q0), and whend �
1 mod 4, asQ0 = 2, we obtain� = q2

l =Gl = (2q2
l )=(Gl Q0). Thus,md = [(2q2

l )=(Gl Q0)].
Since the right hand side of this equation can be defined also whend has a square factor,
we extend the Yokoi invariant in the following way.

DEFINITION 3.1. We letd be any non-square positive integer such thatd � 1, 2,
3 mod 4. First, we assume thatd � 2, 3 mod 4, and consider the continued fraction
expansion with periodl of

p
d:
p

d = [a0, a1, : : : , al ]. We calculate positive integers
pl , ql from partial quotientsa0, a1, : : : , al�1 by using the recurrence equation (2.1), and
put Gl = pl and Q0 = 1. Then, we define the Yokoi invariant of a non-square positive
integerd by putting

md :=

�
2q2

l

Gl Q0

�
.

Next, we assume thatd � 1 mod 4, and consider the continued fraction expansion with
period l of (1 +

p
d)=2. Similarly, we calculate positive integerspl , ql from the partial

quotients and putGl = 2pl � ql and Q0 = 2. Then, we define the Yokoi invariantmd

in the same manner. (In fact we can give the similar definitionof md also whend �
0 mod 4, and furthermore, we can show thatmd coincides with “the Yokoi invariant”
for the fundamental unit of a certain (not necessary maximal) order in “a real quadratic
field Q(

p
d)”.)

We show the following proposition which is needed in Section4. As we have seen
in the beginning of Section 3.2,ql divides qkl for all positive integersk.

Proposition 3.10. Let e and t be any fixed positive integers, and d, d0 = d0(t)
and !, !0 = !0(t), respectively, positive integers and quadratic irrationals constructed
in Theorem 3.6 [A]or [C]. We assume that d� 2, 3, d0(t)� 2, 3 mod 4in the assertion
[A], and also assume that a0 � 2 in the case where! =

p
d ([A]), and a0 � 3 in

the case where! = (1 +
p

d)=2 ([C]). We let md and md0(t) be the Yokoi invariants
of d and d0(t) defined inDefinition 3.1, respectively, and put ce := q(2e+1)l=ql . Then,
mdce� 1� md0(t) � (md + 2)ce holds.

Here, the estimate formd0(t) is rough and ifmd = 0 then the estimate for it from
below becomes trivial. For the proof, we first show Lemmas 3.11 and 3.12. Leta0
and a00 be positive integers as in Theorem 3.6. Froma00 and the symmetric string of
positive integers�!w e,

�!v , a0,  �v ,  �w e, we define positive integersp0n, n � 0 by using
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the recurrence equation (2.1). We write uniquely!0 = (P0
0 +
p

d0)=Q0
0 with positive

integersP0
0, Q0

0, and putG0
l 0 := Q0

0 p0l 0 � P0
0q

0
l 0 . Also, we put

� :=
2q2

l

Gl Q0
, �� :=

2q2
l 0

Gl 0 Q0
, �0 :=

2q0l 02
G0

l 0 Q0
0

,

and m� := [��] for brevity. Since we deal with the assertions [A] and [C] ofTheo-
rem 3.6, note thatQ0=Q0

0 = 1 holds. First, we draw a comparison between the value
of m� = [��] and that ofmd0 = [�0] in the following lemma. (There we may takee = 0.)

Lemma 3.11. The following hold.
(i) G0

l 0=Q0
0 = ((Gl 0=Q0) + (�1)L )(q2

L 0 t + 1)2� (�1)L .
(ii) If we put

'(t) :=
(q2

L 0 t + 1)2 � 1

((Gl 0=Q0) + (�1)L )(q2
L 0 t + 1)2 � (�1)L

for all positive integers t, then

(3.24) �0 = ��(1� (�1)L'(t)).

Also, the function'(t) is strictly, monotonously increasing in the interval[1,1), and'(t)! 1=((Gl 0=Q0) + (�1)L ) as t!1. Furthermore, we have0< ��'(t) < 1 under
the assumption ofProposition 3.10for a0.

Proof. For brevity, we put

g := Gl 0=Q0, g0 := G0
l 0=Q0

0, u = u(t) := q2
L 0 t + 1,

so that '(t) =
u2� 1

(g + (�1)L )u2� (�1)L
.

We showg � 1 to see that the denominator of it is positive. (In fact,g > 1 and 2g
is an integer.) When! =

p
d, as l 0 � l � 2, we haveg = pl 0 � p2 � 2. When! =

(1 +
p

d)=2, (2.19)n=l 0 of Lemma 2.5 implies thatGl 0 = Pl 0ql 0 + Ql 0ql 0�1. Sinceql 0�1 > 0
from l 0 � 2 and Pl 0 , Ql 0 are positive integers, we obtainGl 0 � 2, so thatg � 1. This
immediately yields that the denominator of'(t) is positive. Leta0 be a positive integer
defined in Theorem 3.6 and putb := (qL 0+1 + qL 0�1)qL 0 t . Then, a0 = b + aL .

(i) By (3.2) of Lemma 3.1, we havebq2
L 0 = ql 0q2

L 0 t . Consequently, we see by
(3.8) that

(3.25) q0l 0 = ql 0(q2
L 0 t + 1) = ql 0u.

Since

bqL 0r L 0 = (r l 0 + (�1)L )q2
L 0 t = (r l 0 + (�1)L )(u� 1)
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by (3.3), the equation (3.9) yields that

(3.26) r 0l 0 = (r l 0 + (�1)L )(u� 1) + r l 0 = r l 0u + (�1)L (u� 1).

First, let d0 and!0 be a positive integer and a quadratic irrational constructed in The-
orem 3.6 [A], respectively. As 2(pl 0 + (�1)L ) = QL (qL 0+1 + qL 0�1)2 by (3.6), we obtain

a00 = (pl 0 + (�1)L )(qL 0+1 + qL 0�1)�1qL 0 t + a0.

Therefore, (3.2) and (2.4) imply that

(3.27)
a00ql 0 = (pl 0 + (�1)L )q2

L 0 t + a0ql 0 = (pl 0 + (�1)L )(u� 1) + pl 0 � r l 0
= gu� r l 0 + (�1)L (u� 1).

Hence,

g0 = p0l 0 = a00q0l 0 + r 0l 0 = a00ql 0u + r 0l 0 (by (3.25))

= gu2� r l 0u + (�1)Lu(u� 1) + r l 0u + (�1)L (u� 1) (by (3.27), (3.26))

= gu2 + (�1)L (u2� 1) = (g + (�1)L )u2� (�1)L .

Thus, the assertion (i) holds. Next, letd0 and!0 be a positive integer and a quadratic
irrational constructed in Theorem 3.6 [C], respectively. As 2(g+(�1)L ) = (QL=2)(qL 0+1+
qL 0�1)2 by (3.6), we obtain

a00 = (g + (�1)L )(qL 0+1 + qL 0�1)�1qL 0 t + a0,

so that

(3.28)
a00ql 0 = (g + (�1)L )q2

L 0 t + a0ql 0 = (g + (�1)L )(u� 1) + pl 0 � r l 0
= gu +

ql 0
2
� r l 0 + (�1)L (u� 1).

Therefore,
(3.29)

p0l 0 = a00q0l 0 + r 0l 0 = a00ql 0u + r 0l 0 (by (3.25))

= gu2 +
ql 0
2

u� r l 0u + (�1)Lu(u� 1) + r l 0u + (�1)L (u� 1) (by (3.28), (3.26))

= gu2 +
ql 0
2

u + (�1)L (u2� 1).

Hence,

g0 = p0l 0 � q0l 0
2

= gu2 +
ql 0
2

u + (�1)L (u2� 1)� ql 0
2

u (by (3.29), (3.25))

= gu2 + (�1)L (u2� 1) = (g + (�1)L )u2� (�1)L .
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Thus, the assertion (i) holds.
(ii) As Q0=Q0

0 = 1, it follows from (3.25) and the assertion (i) that

�0���1 =
gu2

g0 =
gu2

(g + (�1)L )u2� (�1)L
= 1� (�1)L'(t),

which gives (3.24). Since the derivative of'(t) satisfies

d'
dt

(t) =
2uq2

L 0gf(g + (�1)L )u2� (�1)Lg2 > 0,

the function'(t) is strictly, monotonously increasing in the interval [1,1). Also, we
see from the definition of'(t) that '(t)! 1=(g + (�1)L ) as t !1. This implies that'(t) < 1=(g + (�1)L ). Therefore,

��'(t) < 1

Q0
2 � 2q2

l 0
g
� 1

g + (�1)L
� 2

g=ql 0 �
�

g

ql 0 +
(�1)L

ql 0
��1

.

First, we assume that! =
p

d to show the last assertion. Asg = pl 0 , (2.4) yields that
g=ql 0 = a0 + (r l 0=ql 0 ) � a0. Hence we see bya0 � 2 that

��'(t) < 2

a0
� �a0 +

(�1)L

ql 0
��1 � 2

a0(a0 � 1)
� 1.

Next, we assume that! = (1 +
p

d)=2. As g = pl 0 � (ql 0=2), (2.4) yields that

g=ql 0 = a0 +
r l 0
ql 0 �

1

2
� a0 � 1

2
.

Hence we see bya0 � 3 that

��'(t) < 2

a0 � (1=2)
� �a0 � 1

2
+

(�1)L

ql 0
��1 � 2

(a0 � 1)(a0 � 2)
� 1.

Thus, the assertion (ii) holds and our lemma is proved.

Next, we draw a comparison between the value ofmd = [�] and that ofm� = [��]
in the following lemma. There it is not necessary for the period l to be even.

Lemma 3.12. We let k be a positive integer� 2, and put� = 2q2
l =(Gl Q0), �� :=

2q2
kl=(Gkl Q0) and

 :=
q(k�1)l

ql

�al qkl

2
+ rkl

��1 > 0.

Then the following hold.
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(i) �� = (qkl=ql )�(1 + (�1)l ).
(ii) 0 < � < (1=Q2

0ql ) � (2=al )3.

Proof. As k � 2, note thatl � kl � 1. It follows from (2.9)n=l and (2.10)n=l of
Lemma 2.1 that

qkl = ql+1q(k�1)l + ql q(k�1)l�1,(3.30)

rkl = q(k�1)l r l+1 + q(k�1)l�1r l .(3.31)

(i) By adding (3.31) times�ql to (3.30) timesr l , we obtain

qklr l � ql rkl = q(k�1)l (ql+1r l � ql r l+1) = (�1)l q(k�1)l (by (2.3)),

so that

(�1)l =

�
qkl

r l

ql
� rkl

��al qkl

2
+ rkl

��1
=

�
r l

ql
� rkl

qkl

��
al

2
+

rkl

qkl

��1

.

Hence,

(3.32) 1 + (�1)l =

�
al

2
+

r l

ql

��
al

2
+

rkl

qkl

��1

.

If ! =
p

d (resp., = (1 +
p

d)=2) then, sinceGl=ql = a0 + (r l=ql ) (resp., = 2a0 � 1 +
(2r l =ql )) by (2.4), we have

Gl=ql =
Q0

2
al + Q0

r l

ql
= Q0

�
al

2
+

r l

ql

�
.

Similarly, we see thatGkl=qkl = Q0(al =2 + rkl=qkl ). Therefore, (3.32) yields that

����1 =
qkl

ql
� Gl=ql

Gkl=qkl
=

qkl

ql
� �al

2
+

r l

ql

��
al

2
+

rkl

qkl

��1

=
qkl

ql
(1 + (�1)l ),

which gives the assertion (i).
(ii) Dividing both sides of (3.30) byqklql ql+1 implies that

1

ql ql+1
=

q(k�1)l

qklql
+

q(k�1)l�1

qklql+1
.

Consequently, we have

q(k�1)l

qklql
� 1

ql ql+1
=

1

ql (al ql + ql�1)
� 1

al q2
l

.
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As kl � 2, rkl > 0. Hence,

 =
q(k�1)l

qklql

�
al

2
+

rkl

qkl

��1 < 1

al q2
l

� 2

al
=

2

a2
l q2

l

.

On the other hand, asGl=ql = Q0(al =2 + r l=ql ) � Q0al =2, we have

� =
2

Q0
� ql

Gl=ql
� (2=Q0)2 ql

al
.

Therefore we obtain

� < (2=Q0)2 ql

al
� 2

a2
l q2

l

=
1

Q2
0ql

(2=al )
3.

This proves our lemma.

Proof of Proposition 3.10. Letk := 2e + 1 � 3. As l is even, we see by Lem-
ma 3.12 (i) that�� = ce� + ce� . If ! =

p
d (resp., = (1 +

p
d)=2) then, asa0 � 2

(resp.,� 3) by our assumption, we haveal � 4. Lemma 3.12 (ii) yields that

0< ce� < ce=(8Q2
0ql ) � ce.

Hence we obtaince� < �� < ce(�+1). Consequently,cemd �m� < ce(�+1)< ce(md +2),
so that

(3.33) cemd � m� � ce(md + 2)� 1.

First, we assume thatL is even. The equation (3.24) of Lemma 3.11 implies that�0 =�����'(t). Since 0< ��'(t) < 1 by the assertion (ii) of it, we have���1< �0 < ��.
Therefore,m��1� md0 < �� < m� + 1, so thatm��1� md0 � m�. Hence, by (3.33),
we obtaincemd�1�md0 � ce(md +2)�1. Next, we assume thatL is odd. We see by
(3.24) that�0 = �� +��'(t). By Lemma 3.11 (ii), we have�� < �0 < �� + 1. Therefore,
m� � md0 < �� + 1< m� + 2, so thatm� � md0 � m� + 1. Hence, by (3.33), we obtain
cemd � md0 � ce(md + 2). This proves our proposition.

REMARK 3.3. We see by the above proof thatm� � 1 � md0(t) � m� + 1 for all
positive integerst . Since the integerm� depends on an integere� 0, if e is fixed then
the values ofmd0(t) do not change very much whent is various. Indeed, they are con-
stant in the tables of Section 5. Also, we can similarly show that 4mdce�4� md0(t) �
4(md + 2)ce + 3 holds under the assumption thatd0(t) � 2, 3 mod 4 in the assertion [B]
of Theorem 3.6.
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4. Main results

We begin with quadratic irrationals! with period 2, 4 given in [4], and by using
results of Sections 3.3 and 3.4, construct real quadratic fields Q(

p
d0) with even period

of minimal type whose Yokoi invariant is relatively large. For brevity we putce :=
q(2e+1)l=ql .

4.1. The case wherel = 2.

Proposition 4.1. Let e and m be any positive integers, and a any positive integer
such that a� 2 and 4a4 + 8a2 + 2 > m. We define positive integers qn, n � 1 by

using partial quotients a, 2a, appeared in the continued fraction expansion
p

a2 + 2 =
[a, a, 2a], and the recurrence equation(2.1). For any positive integer t, we put

d0(t) := (q2e+2 + q2e)
2q2

2e+1t
2 + 2(q2e+2 + q2e)

2t + (a2 + 2).

Then the following hold.
(i) Each d0(t) is a positive integer with period2(2e+ 1) of minimal type for

p
d0(t).

(ii) When a is even, we have d0(t) � 2 mod 4.When a is odd, if t is even then d0(t) �
3 mod 4, and if t is odd then d0(t) � 2 mod 4.
(iii) For all positive integers t, we have ce� 1� md0(t) � 3ce. Also, md0(t) > m.

Proof. We putd := a2 + 2, l 0 := 2(2e + 1) and L 0 := 2e + 1 for brevity. We know
from [4, Example 4.2] that whena is odd (resp. even), Case (I) (resp. Case (II)) occurs
for “the symmetric string of a positive integera”, and

p
d = [a, a, 2a] is the continued

fraction expansion of
p

d. Also, d � 2, 3 mod 4,s0 = 1, s = 2 andmd = 1. In [4] we
calculated the Yokoi invariantmd under the assumption thatd is square-free. However,
as we have explained in the beginning of Section 3.4, this value is obtained from the
continued fraction expansion of

p
d. Hence, md = 1 holds without this assumption.

Since P1 = aQ0 � P0 = a from (2.16), we see by (2.17) thatQ1 = d � a2 = 2.
(i) The definition of d0(t) and Theorem 3.6 [A] imply that the period of

p
d0(t)

is equal tol 0. As l 0 � 2, L 0 � 3 andq3 = 2a2 + 1� 3, we obtain

(q2
L 0 � (Q1=Q0))(qL 0+1 + qL 0�1)qL 0 t=q2 + (ql 0=q2)� 1

� (q2
3 � 2)(q4 + q2)q3=q2 � 1 = s� s0.

Therefore, we see by Remark 3.2 thatd0(t) is of minimal type for
p

d0(t).
(ii) For brevity, we put A0 := (qL 0+1 + qL 0�1)2q2

L 0 and A1 := 2(qL 0+1 + qL 0�1)2, and
write d0(t) = A0t2 + A1t + d. First, we assume thata is even. Then, we easily see by
the definition ofqn that the parity ofn coincides with that ofqn. Consequently, as
qL 0+1 + qL 0�1 is even, we haveA0 � A1 � 0, so thatd0(t) � d � 2 mod 4. Next, we



982 F. KAWAMOTO AND K. TOMITA

assume thata is odd. Then, we easily see that

q4k � 0, q4k+1 � q4k+2 � q4k+3 � 1 mod 2

for any integerk � 0. As L 0 is odd, this yields that bothqL 0 and qL 0+1 + qL 0�1 are
odd. Consequently,A0 � 1, A1 � 2, so thatd0(t) � t2 + 2t + 3 mod 4, which gives the
assertion (ii).

(iii) As d0(t) � 2, 3 mod 4, a � 2 and md = 1, Proposition 3.10 implies that
ce� 1� md0(t) � 3ce. By the definition ofce, we obtain

md0(t) � ce� 1� c1� 1 = 4a4 + 8a2 + 2> m.

This proves our proposition.

4.2. The case wherel = 4. For brevity we putl 0 := 4(2e+1) andL 0 := 2(2e+1).

Proposition 4.2. Let e and m be any positive integers, u any integer� 0, and a
any positive integer such that16a� 1> m. We put

d := f(8a2 + 6a + 1)u + 8a2 + 4a + 1g2 + (4a + 2)u + 4a + 1,

and define positive integers qn, n � 1 by using partial quotients appeared in the peri-
odic part of the continued fraction expansionp

d = [(8a2 + 6a + 1)u + 8a2 + 4a + 1,

4a + 1, (4a + 1)u + 4a, 4a + 1, (16a2 + 12a + 2)u + 16a2 + 8a + 2]

and the recurrence equation(2.1). For any positive integer t, we put

d0(t) := (2a + 1)2(q4e+3 + q4e+1)
2q2

4e+2t
2 + 2(2a + 1)2(q4e+3 + q4e+1)

2t + d.

Then the following hold.
(i) Each d0(t) is a positive integer with period4(2e+ 1) of minimal type for

p
d0(t).

(ii) When u is even, we have d0(t) � 2 mod 4.When u is odd, if t is even then d0(t) �
3 mod 4, and if t is odd then d0(t) � 2 mod 4.
(iii) For all positive integers t, we have16ace�1�md0(t) � (16a+2)ce. Also, md0(t) >m.

Proof. We know from [4, Proposition 5.2 (i)] that whenu is odd (resp. even),
Case (I) (resp. Case (II)) occurs for the symmetric string ofpositive integers 4a + 1,
(4a + 1)u + 4a, 4a + 1, and the continued fraction expansion of

p
d has the above form.

Also, whenu is even (resp. odd), we haved � 2 (resp.,� 3) mod 4, s0 = u + 1, and
md = 16a (without the assumption thatd is square-free). Furthermore,d is of minimal
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type for
p

d. For brevity, we puta0 := (8a2+6a+1)u+8a2+4a+1. By (2.16) and (2.17),
we haveP1 = a0 and Q1 = d�a2

0 = (4a + 2)u + 4a + 1, so thatP2 = (4a + 1)Q1� P1 and

Q2 = 1 + (4a + 1)(P1� P2) = 1 + 2(4a + 1)P1� (4a + 1)2Q1

= 1 + 2(4a + 1)f(8a2 + 6a + 1)u + 8a2 + 4a + 1g
� (4a + 1)2f(4a + 2)u + 4a + 1g

= 1 + (4a + 1) = 4a + 2.

Thus, Q2=2 = 2a + 1.
(i) The definition of d0(t) and Theorem 3.6 [A] imply that the period of

p
d0(t)

is equal tol 0. As l 0 � 4, L 0 � 2 andq2 = 4a + 1, we obtain

(q2
L 0 � (Q2=Q0))(qL 0+1 + qL 0�1)qL 0 t=q4 + (ql 0=q4)� 1

� (q2
2 � 4a� 2)(q3 + q1)q2=q4 > 0 = s� s0.

Therefore, we see by Remark 3.2 thatd0(t) is of minimal type for
p

d0(t).
(ii) For brevity, we putA0 := (2a+1)2(qL 0+1+qL 0�1)2q2

L 0 and A1 := 2(2a+1)2(qL 0+1+
qL 0�1)2, and writed0(t) = A0t2 + A1t + d. By the definition ofqn, we easily see that

q8k � 0, q8k+1 � q8k+2 � 1, q8k+3 � u + 1,

q8k+4 � u, q8k+5 � u + 1, q8k+6 � q8k+7 � 1 mod 2

for any integerk � 0. Consequently, asL 0 � 2 mod 4, qL 0 is odd andqL 0+1 + qL 0�1 �
u mod 2. First, we assume thatu is even. Then, asqL 0+1 + qL 0�1 is even, we have
A0 � A1 � 0, so thatd0(t) � d � 2 mod 4. Next, we assume thatu is odd. Then,
since bothqL 0 and qL 0+1 + qL 0�1 are odd, we haveA0 � 1, A1 � 2, so thatd0(t) �
t2 + 2t + 3 mod 4, which gives the assertion (ii).

(iii) As d0(t) � 2, 3 mod 4 andmd = 16a, Proposition 3.10 implies that 16ace�
1� md0(t) � (16a + 2)ce. Hence we obtainmd0(t) � 16ace� 1� 16a� 1> m, and our
proposition is proved.

Proposition 4.3. Let e and m be any positive integers, u any integer� 0, and a
any odd integer such that a> m + 1. We put

d := f(a2 + 3a + 2)u + a2 + 2a + 2g2 + 4f(a + 2)u + a + 1g
and define positive integers qn, n � 1 by using partial quotients appeared in the peri-
odic part of the continued fraction expansion

(1 +
p

d)=2 =

�
(a2 + 3a + 2)u + a2 + 2a + 3

2
,

a + 1, (a + 1)u + a, a + 1, (a2 + 3a + 2)u + a2 + 2a + 2

�
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and the recurrence equation(2.1). For any positive integer t, we put

d0(t) := (a + 2)2(q4e+3 + q4e+1)
2q2

4e+2t
2 + 2(a + 2)2(q4e+3 + q4e+1)

2t + d.

Then the following hold.
(i) Each d0(t) is a positive integer with period4(2e + 1) of minimal type for(1 +p

d0(t))=2, and d0(t) � 1 mod 4holds.
(ii) For all positive integers t, we have ace� 1� md0(t) � (a + 2)ce. Also, md0(t) > m.

Proof. We know from [4, Proposition 5.2 (ii)] that Case (III)occurs for the sym-
metric string of positive integersa + 1, (a + 1)u + a, a + 1, and the continued frac-
tion expansion of (1 +

p
d)=2 has the above form. Also, we haves0 = u + 1, and

md = a (without the assumption thatd is square-free). Furthermore,d is of mini-
mal type for (1 +

p
d)=2. If we put a0 := f(a2 + 3a + 2)u + a2 + 2a + 3g=2, then

d � (2a0 � 1)2 = 4f(a + 2)u + a + 1g. Since P1 = 2a0 � 1 and

Q1 = (d � 1)=2 + a0(1� P1) = fd � (2a0 � 1)2g=2 = 2f(a + 2)u + a + 1g
from (2.16) and (2.17), we see thatP2 = (a + 1)Q1 � P1 and

Q2 = 2 + (a + 1)(P1� P2) = 2 + 2(a + 1)P1� (a + 1)2Q1

= 2 + 2(a + 1)f(a2 + 3a + 2)u + a2 + 2a + 2g
� 2(a + 1)2f(a + 2)u + a + 1g

= 2 + 2(a + 1) = 2(a + 2).

Thus, Q2=2 = a + 2.
(i) The definition of d0(t) and Theorem 3.6 [C] imply that the period of (1 +p

d0(t))=2 is equal tol 0 and d0(t) � 1 mod 4. As l 0 � 4, L 0 � 2 and q2 = a + 1, we
obtain

(q2
L 0 � (Q2=Q0))(qL 0+1 + qL 0�1)qL 0 t=q4 + (ql 0=q4)� 1

� (q2
2 � a� 2)(q3 + q1)q2=q4 > 0 = s� s0.

Therefore, we see by Remark 3.2 thatd0(t) is of minimal type for (1 +
p

d0(t))=2.
(ii) As md = a, Proposition 3.10 implies thatace� 1� md0(t) � (a + 2)ce. Hence

we obtainmd0(t) � ace� 1� a� 1> m, and our proposition is proved.

4.3. Proof of Theorem 1.1. We denote bymd and hd the Yokoi invariant and
the class number (in the wide sense) of a real quadratic fieldQ(

p
d), respectively. We

shall show the following by using Propositions 4.1 and 4.2.
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Proposition 4.4. Let l0 be an even integer� 4 which is not divisible by8, and h
and m any positive integers. Also, let Æ = 2 or 3. Then, there exist infinitely many real
quadratic fieldsQ(

p
d), d � Æ mod 4 with period l0 of minimal type such that hd > h

and md > m.

Also, we shall see by Proposition 4.3:

Proposition 4.5. Let e, h and m be any positive integers. Then, there exist infinitely
many real quadratic fieldsQ(

p
d), d � 1 mod 4with period4(2e+1) of minimal type such

that hd > h and md > m.

Hence, by Proposition 4.4, we find the existence of an infinitefamily of real qua-
dratic fieldsQ(

p
d) satisfyingd � Æ mod 4 which is asserted in Theorem 1.1. Further-

more, if we assume that the period is congruent to 4 modulo 8 then, by Proposition 4.5,
we also find the existence of an infinite family of real quadratic fields Q(

p
d) satisfying

d � 1 mod 4. To prove Propositions 4.4 and 4.5, we use the same argument in [4]. A
theorem of Nagell [7, Section 2] yields:

Lemma 4.6 ([4] Proposition 6.1). Let f(x) = ax2 + bx + c be a quadratic poly-
nomial in Z[x] with a > 0. As a> 0, there is some integer t1 for all integers t� t1
such that f(t) > 0. We suppose that the discriminant d( f ) = b2 � 4ac of f(x) is not
equal to0, the greatest common divisor(a, b, c) is square-free, and there is some in-
teger t for which f(t) 6� 0 mod 4. Then, the setf f (t) j t 2 Z, t � t1g contains infinite
square-free elements.

Yokoi [12, Theorem 1.1] and a theorem of Siegel (Narkiewicz [8, Theorem 8.14])
imply:

Lemma 4.7 ([4] Lemma 4.3). We suppose that a sequencefdngn�1 of square-free
positive integers is strictly monotonously increasing. Let mdn and hdn denote the Yokoi
invariant and the class number of a real quadratic fieldQ(

p
dn), respectively. We assume

that mdn � 1 for all n � 1 and the sequencefmdngn�1 of positive integers is bounded.
Then, the sequencefhdngn�1 of positive integers is not bounded. Namely, for any positive
integer h, there exist infinitely many numbers n� 1 such that hdn > h.

We remark in Propositions 4.1, 4.2 and 4.3 that a sequencefmd0(t)gt�1 of positive

integers is bounded if an integere is fixed and the continued fraction expansion of
p

d
or (1 +

p
d)=2 is given.

Proof of Proposition 4.4. When 2k l 0, as l 0 > 2, there is some positive integere
such thatl 0 = 2(2e + 1), and when 22 j l 0, as 23 ∤ l 0, there is some integere� 0 such
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that l 0 = 4(2e+ 1). Then, since our proposition follows from [4, Proposition 5.2 (i)] if
e = 0 (l 0 = 4), we may assume thate> 0.

(i) The case wherel 0 = 2(2e+1). We suppose thata is a positive integer such that
a � 2 and 4a4 + 8a2 + 2> m. For any positive integert , we let d0(t) be a non-square
positive integer as in Proposition 4.1. For brevity, we putA0 := (q2e+2 + q2e)2q2

2e+1,
A1 := 2(q2e+2+q2e)2 andd := a2+2, and writed0(t) = A0t2+ A1t +d. As a2 ��2 modd,
we easily see by induction ine that

q2e � (�1)e�1ea, q2e+1 � (�1)e(2e+ 1) mod d.

Consequently, sinceq2e+2 + q2e � (�1)ea modd, we obtainA0 � a2(2e+ 1)2 and A1 �
2a2 modd, so that

g := (A0, A1, d) = (a2(2e+ 1)2, 2a2, d).

If we assume thatg has an odd prime divisorp, then p j a from p j 2a2. As p j d, we
have 0� d � 2 mod p, and this is a contradiction. Hence,g is a power of 2. On the
other hand, asd � 2, 3 mod 4, ord2(g) � ord2(d) � 1. Here, ordp(�) denotes the ad-
ditive valuation on the rationalsQ with ordp(p) = 1 for a prime numberp. Therefore,
g = 1 or 2. In particular,g is square-free. Also, Lemma 3.8 yields that the discrimi-
nant of a quadratic polynomiald0(t) is not equal to 0, and we see by Proposition 4.1
(i) that d0(t) is a positive integer with periodl 0 of minimal type for

p
d0(t).

First, we take an even integera. By Proposition 4.1 (ii) and (iii), we haved0(t) �
2 mod 4 andmd0(t) > m. In particular, there is some integert for which d0(t) 6� 0 mod
4. Hence, Lemma 4.6 implies that the setfd0(t) j t 2 Ng contains infinite square-free
elements. Consequently, asA0 > 0, we can choose a sequencefdngn�1 of square-free
positive integers which is strictly monotonously increasing such thatdn � 2 mod 4 and
mdn > m. Since the sequencefmdngn�1 of positive integers is bounded by Proposi-
tion 4.1 (iii), we see by Lemma 4.7 thatfhdngn�1 is not bounded. Therefore we obtain
the assertion forÆ = 2.

Next, we take an odd integera. Furthermore, we take an even integert , and write
t = 2u with someu 2 N. Since the discriminant of a quadratic polynomiald0(2u) in
Z[u] is equal to the product of 22 and that ofd0(t), it is not equal to 0. By Proposi-
tion 4.1 (ii) and (iii), we haved0(2u) � 3 mod 4 andmd0(2u) > m. (In particular, there
is some integeru for which d0(2u) 6� 0 mod 4.) Asd = a2 +2 is odd, the greatest com-
mon divisor of coefficients of a quadratic polynomiald0(2u) = 4A0u2+2A1u+d is equal
to (4A0, 2A1, d) = g = 1. Hence, Lemma 4.6 implies that the setfd0(2u) j u 2 Ng con-
tains infinite square-free elements. Consequently, we can choose a sequencefdngn�1 of
square-free positive integers which is strictly monotonously increasing such thatdn �
3 mod 4 andmdn > m. Similarly, Proposition 4.1 (iii) and Lemma 4.7 yield the asser-
tion for Æ = 3.

(ii) The case wherel 0 = 4(2e+1). We suppose thatu is an integer� 0 anda is a
positive integer such that 16a�1>m and 2a+1 is square-free. For any positive integer
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t , we let d0(t) be a non-square positive integer as in Proposition 4.2. Forbrevity, we
put L 0 := 2(2e+ 1), A0 := (2a+ 1)2(qL 0+1 +qL 0�1)2q2

L 0 and A1 := 2(2a+ 1)2(qL 0+1 +qL 0�1)2,
and writed0(t) = A0t2 + A1t +d. Also, we puta2 := (4a+ 1)u + 4a. We see by the proof
of Proposition 4.2 thatQ2=2 = 2a + 1, and the proof of (3.5) in Lemma 3.1 yields that
P3 = P2 = a2Q2=2. Therefore, by (2.18),

2d = 2P2
3 + 2Q2Q3 = Q2

�
a2

2
Q2

2
+ 2Q3

�
,

so that we obtain a factorization ofd: d = (Q2=2)1. Here, we put

(4.1) 1 := a2
2(Q2=2) + 2Q3.

If we put g := (A0, A1, d) and

g0 := ((Q2=2)(qL 0+1 + qL 0�1)2q2
L 0 , 2(Q2=2)(qL 0+1 + qL 0�1)2, 1)

then, asd = (Q2=2)1, we have

(4.2) g = (Q2=2)g0.
We look for g. The proof of Lemma 3.1 implies thatQL 0 = Q2. As L 0 is even, it
follows from Lemma 2.7 that

G2
L 0 � dq2

L 0 = Q2Q0.

SinceGL 0 = (Q2=2)(qL 0+1+qL 0�1) from (3.5) andd = (Q2=2)1, we obtain (Q2=2)(qL 0+1+
qL 0�1)2�1q2

L 0 = 2Q0, so that

(Q2=2)(qL 0+1 + qL 0�1)2 � 2Q0 mod 1.

If we assume thatg0 has an odd prime divisorp, then the definition ofg0 yields that
p j 1, so that

(Q2=2)(qL 0+1 + qL 0�1)2 � 2Q0 mod p.

Also, since p j 2(Q2=2)(qL 0+1 + qL 0�1)2 and p is odd, we have 0� 2Q0 mod p. As
Q0 = 1, we obtainp = 2 and this is a contradiction. Thus,g0 is a power of 2. Also,
the proof of Proposition 4.2 implies thatP1 = a0 � (2a + 1)u + 1, Q1 � 2u + 1, P2 �
Q1�P1 � (2a+1)u and Q2 � 2 mod 4. Consequently, we see by (2.16) and (2.17) that
P3 = a2Q2�P2 � (2a+1)u and Q3 � Q1+u(P2�P3)� 2u+1 mod 4. AsQ2=2 = 2a+1,
(4.1) yields that

1 � u2(2a + 1) + 2 mod 4.
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When u is even, 1 � 2 mod 4. As we have seen in the proof of Proposition 4.2,
qL 0+1 + qL 0�1 is even. Therefore, sinceg0 is a power of 2, we haveg0 = 2 by the
definition of g0. We see by (4.2) thatg = 2(2a+ 1). Whenu is odd,1 � 2a+ 3 mod 4,
so that1 is odd. Therefore,g0 is also odd from the definition ofg0. Since g0 is a
power of 2, we haveg0 = 1. We see by (4.2) thatg = 2a + 1. Thus, g is square-
free by our assumption. Also, Lemma 3.8 yields that the discriminant of a quadratic
polynomial d0(t) is not equal to 0, and we see by Proposition 4.2 (i) thatd0(t) is a
positive integer with periodl 0 of minimal type for

p
d0(t).

First, we take an even integeru. By Proposition 4.2 (ii) and (iii), we haved0(t) �
2 mod 4 andmd0(t) > m. In particular, there is some integert for which d0(t) 6� 0 mod
4. Hence, Lemma 4.6 implies that the setfd0(t) j t 2 Ng contains infinite square-free
elements. Consequently, we can choose a sequencefdngn�1 of square-free positive in-
tegers which is strictly monotonously increasing such thatdn � 2 mod 4 andmdn > m.
Since the sequencefmdngn�1 of positive integers is bounded by Proposition 4.2 (iii),
we see by Lemma 4.7 thatfhdngn�1 is not bounded. Therefore we obtain the assertion
for Æ = 2.

Next, we take an odd integeru. Furthermore, we take an even integert , and write
t = 2v with somev 2 N. Since the discriminant of a quadratic polynomiald0(2v) in
Z[v] is equal to the product of 22 and that ofd0(t), it is not equal to 0. By Proposi-
tion 4.2 (ii) and (iii), we haved0(2v) � 3 mod 4 andmd0(2v) > m. (In particular, there
is some integerv for which d0(2v) 6� 0 mod 4.) As g = 2a + 1 is odd, the greatest
common divisor of coefficients of a quadratic polynomiald0(2v) = 4A0v2 + 2A1v + d is
equal to (4A0, 2A1, d) = g = 2a + 1. Hence, Lemma 4.6 implies that the setfd0(2u) j
u 2 Ng contains infinite square-free elements. Consequently, we can choose a sequencefdngn�1 of square-free positive integers which is strictly monotonously increasing such
that dn � 3 mod 4 andmdn > m. Similarly, Proposition 4.2 (iii) and Lemma 4.7 yield
the assertion forÆ = 3. Our proposition is proved.

Proof of Proposition 4.5. We suppose thatu is an integer� 0 anda is a positive
odd integer such thata > m + 1 anda + 2 is square-free. For any positive integert ,
we let d0(t) be a non-square positive integer as in Proposition 4.3. Forbrevity, we put
L 0 := 2(2e+ 1), A0 := (a + 2)2(qL 0+1 + qL 0�1)2q2

L 0 and A1 := 2(a + 2)2(qL 0+1 + qL 0�1)2, and
write d0(t) = A0t2 + A1t +d. Also, we putg := (A0, A1, d) anda2 := (a+1)u+a. We see
by the proof of Proposition 4.3 thatQ2=2 = a + 2. If we put1 := a2

2(Q2=2) + 2Q3 and

g0 := ((Q2=2)(qL 0+1 + qL 0�1)2q2
L 0 , 2(Q2=2)(qL 0+1 + qL 0�1)2, 1)

then the argument in the proof of Proposition 4.4 (ii) implies that d = (Q2=2)1, g =
(Q2=2)g0, and (asQ0 = 2) g0 is a power of 2. Sinced � 1 mod 4,1 is odd. By the
definition of g0, g0 is also odd so thatg0 = 1. Consequently, we haveg = a + 2 so that
g is square-free by our assumption. Also, Lemma 3.8 yields that the discriminant of
a quadratic polynomiald0(t) is not equal to 0, and we see by Proposition 4.3 (i) and
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(ii) that d0(t) is a positive integer with periodl 0 of minimal type for (1 +
p

d0(t))=2,
d0(t) � 1 mod 4, andmd0(t) > m. (In particular, there is some integert for which
d0(t) 6� 0 mod 4.) Hence, Lemma 4.6 implies that the setfd0(t) j t 2 Ng contains infi-
nite square-free elements. Consequently, we can choose a sequencefdngn�1 of square-
free positive integers which is strictly monotonously increasing such thatdn � 1 mod 4
and mdn > m. Since the sequencefmdngn�1 of positive integers is bounded by Propo-
sition 4.3 (ii), we see by Lemma 4.7 thatfhdngn�1 is not bounded. This proves our
proposition.

REMARK 4.1. We begin with quadratic irrationals! with period 8, and then by
using the above argument, it may be possible to find the existence of an infinite family
of real quadratic fields with even period� 4 which is not divisible by 16 satisfying the
same property as in Theorem 1.1. However, that is a open problem.

5. Numerical examples

In this section, we give numerical examples of Propositions4.1, 4.2 and 4.3 in
Tables 1, 2 and 3, respectively. In the beginning of each table below, the symbol�
in the values oft means thatd0(t) has a square factor. Then the class number is not
given. (In fact, as we have mentioned in Definition 3.1, for any non-square positive
integer d, we can give the definition as the class number of a certain (not necessary
maximal) order in “a real quadratic fieldQ(

p
d)”.) Also, a factorization ofd0(t) into

prime numbers is symbolically written in the last term of each table. There the nota-
tions p, q and p1, p2, : : : denote distinct prime numbers, and they satisfyp < q and
p1 < p2 < � � � . Since these values and the values ofa00 and a0 in the footnote are
relatively large, we do not give them explicitly. In particular, we note that the values
of md0(t) are constant as we have stated in Remark 3.3.
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Table 1. e = 4, m = 397, a = 3 d = 11, l = 2,

p

11 = [3, 3, 6], s0 = 1,
s = 2, Case (I),hd = 1, md = 1.

t d0(t) hd0 md0 s0 (= s00) factorization ofd0(t)
1 5694692744076689288198 586731780 45506014561 54501530706758363042 p1 p2 p3 p4

2 22778770975305624832403 1500801728 45506014561 109003061411121371042 p1 p2 p3

3 51252234693686806632626 3796614660 45506014561 163504592115484379042 p1 p2 p3 p4

4 91115083899220234688867 2241483780 45506014561 218006122819847387042 p1 p2 p3

5 142367318591905909001126 5939930848 45506014561 272507653524210395042 p1 p2 p3 p4

6 205008938771743829569403 4039479852 45506014561 327009184228573403042 pq
7 279039944438733996393698 4437850032 45506014561 381510714932936411042 p1 p2 p3

8 364460335592876409474011 6691740720 45506014561 436012245637299419042 p1 p2 p3 p4

9 461270112234171068810342 8133745152 45506014561 490513776341662427042 p1 p2 p3

10 56946927436261797440269111140664040 45506014561 545015307046025435042 p1 p2 p3 p4

11 689057821978217126251058 9049583040 45506014561 599516837750388443042 p1 p2 p3 p4 p5 p6 p7

12 820035755080968524355443 8329322828 45506014561 654018368454751451042 pq
13 96240307367087216871584613437783832 45506014561 708519899159114459042 p1 p2 p3

14 1116159777747928059332267 8932263352 45506014561 763021429863477467042 p1 p2 p3

15 128130586731213619620470614029074272 45506014561 817522960567840475042 p1 p2 p3 p4

16 145784134236349657933316312262575704 45506014561 872024491272203483042 p1 p2 p3 p4

17 1645766202902009208717638 8326036656 45506014561 926526021976566491042 p1 p2 p3 p4

18 184508044892767408435813124836590641 45506014561 981027552680929499042 p
19 205578408044049120625464212565341686 45506014561 1035529083385292507042p1 p2 p3

20 227787709744046057440717130966590388 45506014561 1090030614089655515042p1 p2 p3

l = 18, Case (I),

p
d0(t) = [a0

0,3, 6, 3, 6, 3, 6, 3, 6,a0, 6, 3, 6, 3, 6, 3, 6, 3, 2a0

0].
Distinct prime numbersp, q and pi satisfy p < q and p1 < p2 < � � � .
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Table 2. e = 1, m = 14, u = 1, a = 1 d = 795, l = 4,

p

795 =
[28, 5, 9, 5, 56], s0 = 2, s = 2, Case (I),hd = 4, md = 16.

t d0(t) hd0 md0 s0 (= s00) factorization ofd0(t)
1 15328651059393793906782 1941840102 2927366816 1359148436947933929 p1 p2 p3

2 61314604223611635909219 5178887184 2927366816 2718296873586340896 p1 p2 p3 p4 p5

3 137957859492653526008106 6180051072 2927366816 4077445310224747863 p1 p2 p3 p4 p5

4 245258416866519464203443 5438690864 2927366816 5436593746863154830 pq
5 383216276345209450495230 7979517984 2927366816 6795742183501561797 p1 p2 p3 p4 p5

6 551831437928723484883467 8923863728 2927366816 8154890620139968764 p1 p2 p3 p4

7 75110390161706156736815421121124856 2927366816 9514039056778375731 p1 p2 p3 p4 p5

8 98103366741022369794929113950612192 2927366816 10873187493416782698 p1 p2 p3 p4 p5

9 124162073530820987662687816576692168 2927366816 12232335930055189665 p1 p2 p3 p4 p5

10 153286510531102010340091524818176448 2927366816 13591484366693596632 p1 p2 p3 p4 p5

11 185476677741865437827140216450950752 2927366816 14950632803332003599 p1 p2 p3 p4 p5 p6

12 220732575163111270123833925745388768 2927366816 16309781239970410566 p1 p2 p3 p4 p5

13 259054202794839507230172625143543850 2927366816 17668929676608817533 p1 p2 p3

14 300441560637050149146156322814342688 2927366816 19028078113247224500 pq
15* 3448946486897431958717850 2927366816 20387226549885631467 p1 p2 p3

2 p4 p5 p6

16 392413466952918647407058721586636896 2927366816 21746374986524038434 p1 p2 p3

17 442998015426576503751977432048761984 2927366816 23105523423162445401 p1 p2 p3 p4 p5 p6

18 496648294110716764906541144724503880 2927366816 24464671859800852368 p1 p2 p3 p4

19 553364303005339430870749831120884336 2927366816 25823820296439259335 p1 p2 p3 p4 p5 p6

20 613146042110444501644603552617867776 2927366816 27182968733077666302 p1 p2 p3 p4 p5

l = 12, Case (I),

p
d0(t) = [a0

0, 5, 9, 5, 56, 5,a0, 5, 56, 5, 9, 5, 2a0

0]. The sym-
bol * in the values oft means thatd0(t) has a square factor, and distinct prime
numbersp, q and pi satisfy p < q and p1 < p2 < � � � .
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Table 3. e = 2, m = 1, u = 1, a = 3, d = 1405, l = 4, (1 +

p

1405)=2 =
[19, 4, 7, 4, 37], s0 = 2, s = 2, Case (III),hd = 2, md = 3.

t d0(t) hd0 md0 s0 (= s00) factorization ofd0(t)
1 60319534423282785183184709635126405100692089190954613104511127136034542449226015418508544687950672pq
2 241278137693131103909062571288251405214012831086745613104511127136039084898452030836323824410585822p1 p2 p3 p4 p5 p6 p7

3 5428758098095449561776335849593764054087239709328032131045111271360313627347678046254139104133220972p1 p2 p3 p4 p5 p6

4 9651125507725243419888977506485014053395111490225808131045111271360318169796904061671954383855856122p1 p2 p3 p4 p5

5 15079883605820692613428550683556264055646542135303784131045111271360322712246130077089769663578491272p1 p2 p3 p4

6 21715032392381797142395055380807514056262132059357472131045111271360327254695356092507584943301126422p1 p2 p3 p4 p5 p6

7 29556571867408557006788491598238764055932897382333814131045111271360331797144582107925400223023761572pq
8 38604502030900972206608859335850014057120095324529294131045111271360336339593808123343215502746396722pq
9 488588228828590427418561585936412640510666555286013088131045111271360340882043034138761030782469031872p1 p2 p3 p4

10* 6031953442328276861253038937161251405 131045111271360345424492260154178846062191667022p1 p2
2 p3 p4 p5 p6

11 72986636652172149818631551669763764058742568815707016131045111271360349966941486169596661341914302172p1 p2 p3

12 868601295695271863601596454880950140511975429794558924131045111271360354509390712185014476621636937322p1 p2 p3

13 1019400131753478782371146708266062640519734644954653392131045111271360359051839938200432291901359572472p1 p2 p3 p4

14 118226287469634225449496627685297514058684679689795424131045111271360363594289164215850107181082207622p1 p2 p3 p4

15 1357189524523862279973055160641687640514110791881487128131045111271360368136738390231267922460804842772p1 p2 p3

16 1544180081236038858805413359632200140515184541144140632131045111271360372679187616246685737740527477922p1 p2 p3 p4

17 1743234544832871990992040873824512640516096720191517056131045111271360377221636842262103553020250113072p1 p2 p3 p4

18 1954352915314361676532937703218625140516362586409444832131045111271360381764086068277521368299972748222p1 p2 p3 p4 p5

19 2177535192680507915428103847814537640514816081371825224131045111271360386306535294292939183579695383372p1 p2 p3

20 2412781376931310707677539307612250140525636583247086656131045111271360390848984520308356998859418018522p1 p2 p3 p4

l = 20, Case (III), (1 +

p

d0(t))=2 = [a0

0, 4, 7, 4, 37, 4, 7, 4, 37, 4,a0, 4, 37, 4, 7, 4, 37, 4, 7, 4, 2a0

0 � 1].
The symbol * in the values oft means thatd0(t) has a square factor, and distinct prime numbersp, q
and pi satisfy p < q and p1 < p2 < � � � .
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