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Abstract

The article studies approximations for stable like jump cesses on fractal
sets F ¢ R". Processes oml-sets are approximated by jump processes on the
e-parallel sets. For the special case of self-similar seth efjual contraction ratios,
approximations in terms of finite Markov chains are providdd. either case, the
convergence of Dirichlet forms, semigroups and resolvemés established as well
as the convergence of the finite-dimensional distributiomsler canonical initial
distributions. In the self-similar case also the weak cogeece of the laws under
these initial distributions irDg ([0, t5]) is proved.

1. Introduction and setup

The question how to approximate a certain stochastic psoisesf particular inter-
est for theory, physical models and numerical simulatiofise present article considers
approximations of jump processes on fractal sets. d&ets and some generalizations
such processes have been studied intensely, see e.q.227],[8] or [9]. On the other
hand, fractional diffusions on self-similar sets and thggneralizations have been con-
sidered by many authors, see e.g. [2] or [19] and the referetiterein. The idea to
consider the energy forms of these processes as limits ofedis Dirichlet forms is
well known to be a convenient way to construct them. See &2 [There are recent
results concerning the approximation of jump processe®RYnsee [16], by methods
similar to former works on continuous processes®h cf. [4], [28]. In [20] jump
processes on increasing domains were considered, whergaS]iprocesses od-sets
were approximated via processes on parallel sets decgetsithe d-set.

The aim of this work is to provide certain approximations fomp processes on
d-sets as well as on self-similar sets. In the latter case wg&ick ourselves to the
case of equal contraction ratios. Our approach is somewiffatesht from the works
mentioned above, except the last one, which made alreadpfusach methods.

We describe the settings and main ideas. For sub&eté R", we use the short
notation | A] to denote then-dimensional Lebesgue measure, for finite words of form
w = (wy, ..., wn), lw| denotes their lengtim and for finite setgxy, ..., Xn} the car-
dinality |{X, ..., Xmn}| =m. For x € R", the Euclidean norm ok is also denoted by
|X|. The respective meaning will be clear or pointed out. Fistsider the case of an
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arbitrary d-set that is a compact subsé& c R" which carries a finite Radon measure
1 such thatF = suppu and

@) Cir? < u(B(x, 1)) < Cor®

with C1, C; > 0 holds for allr < rg andx € F with 0 <d < n. See e.g. [12],
[18], or [29]. We will assumew(R") = 1. We approximate processes drsets by
processes whose state spaces arestparallel sets ofF, of course each of positive
n-dimensional Lebesgue measure. A generalized type of Mosawecgence for the
associated Dirichlet forms will be established, the cogeace of the associated spec-
tral structures in the sense of Kuwae and Shioya follows,[28e To do so, we make
use of a special construction which is well adapted to oup@ses. Some spatial av-
eraging is combined with the mentioned concept of convergea related method has
been described in [15].

Given ad-set F C R", consider the closed-parallel sets

2 F. = {x € R": dist(x, F) < &},

where distg, F) = infycr X —y|. Sometimes we will use =1 to haveF embedded into
some compact sef;. On F, we introduce probability measurgs such that for each

e > 0, u, is ann-measure orR". In particular it is then equivalent to the restriction of
n-dimensional Lebesgue measureRg These measures enjoy the following averaging
identity: For a functionf € L;(F,) we have

3) / F(0) ja(dx) = / (1).(x) p(dlx),
where
@) (0.00= -+ f(y) dy.

[B(X, 2¢) N Fe| Ja(x,20)nF,

Here | - | denotesn-dimensional Lebesgue measure. For any functiore C(Fy),
lim._o(f).(X) exists at allx € F and equalsf (x). In particular, the measurgs. con-
verge weakly tox on R".

Consider the quadratic form given by

6) U u)= / /(F 00~ ) () @), U € L)

where forx,y € F,

1
X = yl“p(B(x, [x = 1))’

(6) Jx,y) = | a€(0,2)
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and D = {(x, X): x € F} denotes the diagonal. Set
F={ueLyu): E(u, u) < oo}

If we equip F with the usual norm given by

1/2
( / u(x)? u(dx)) +&(u, u)¥?,
F

u € F, then F coincides with H¥?(F), which is the trace onF of the space
He/2+0-d/2(R") of Bessel potentiald = Gan—dy2* 9, g € L2(R"), where Gn—g)2

is the Bessel kernel of ordetr - n — d)/2 and* denotes the convolution. More pre-
cisely, there are a bounded linear restriction oper@orH®*/2*0-d/2(RN) \» H*/2(F)
and a bounded linear extension operaiy: H*/?(F) > H%/2*0-d/2(R") such that
R o Eo is the identity mapping orH%/2(F). For continuous functions, the restriction
coincides with the pointwise restriction. See [18], ChajteTheorem 1 p. 103, Chap-
ter VI, Theorem 1, p.141 and Theorem 3, p.155. Notice tk%lf(R”) in the notation
there coincides withH#(R") in the sense of equivalent norms. See also Theorem 1
p. 182 for the casa& < n and [17] and [29] for further methods. By this procedure
and since the continuous functions with compact supportiarese inH/2*0-d/2(Rn),
(€,F) is a regular Dirichlet form orLy(u). Further, define the approximating forms by

@) Ew,w) = f/( 00~ WO V) ) ). w € Lo

Here D = {(x, X): x € F.}, for brevity we use the same symbol. Fory € F,

1

X =y us(B(X, |Xx = y]))’ a € (0, 2).

® Je(x, y) = |

SetF, = {w € La(u.): £(w,w) < oo}. Again F = H*/2(F,) and each&®, F,) is a reg-
ular Dirichlet form onL,(u.) as a consequence of the tracing procedure with respect
to the n-set F,.

By the general theory, cf. [13], there existsug-symmetric Hunt processes® on
eachF, and au-symmetric Hunt procesX on F, uniquely determined by* resp.£.

Now supposeX is given and the objective is to approximate it. We prove that
spectral structures ok® converge to those oX in the sense of [23] as tends to zero,
as a consequence the finite dimensional distributionX‘fvith initial distributions .,
weakly converge to those of with initial distribution pu.

The second situation we study is that of a self-similar seie Wil introduce a
familiy of discrete probability measurg$.,,: m € N} on F and then follow the same
path as in the first case. This allows to approximate a givempjyprocessX on F
by finite Markov chains with the associated Dirichlet formsrétting simple discrete
representations.
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Let F ¢ R" be a the unique compact set satisfying

N
©) F=w(F)=Jw(F)

i=1

with contractive similaritiesy;, i =1,..., N all having the contraction ratio; = - - - =
rn =S. F carries the self-similar probability measuteuniquely determined by

N
(10) w=s"y oyt

i=1

Under the open set condition does also satisfy the volume growth property (1) with
d according to (10) andl = —log N/ logs is just the Hausdorff dimension d¢f. Ref-
erences on self-similar sets may be found e.g. in [12].

As will be shown below, the measurgs, we introduce are just weighted sums of
point mass measures supported on discrete\sgtsFor f € L1(um), again the relation

an [ 100 n@9 = [ (00 ()

holds, where {)n, is an average off such that for any continuous functiohe C(F),
(12) rnIi_)ngo(f)m(x) =f(x), xeF.

In particular, the measurgs,, converge weakly tqx on F asm tends to infinity.

Again, consider the Dirichlet form given by (5) atfddefined as above. Alternative-
ly, we can usej = |x — y|=*~% in place of J in (5). Forw e La(um), set

13)  E"(w, w)= / f (W) = ()% Y) sn(@X) 1l
(FxF)\D
with
1 X,y € F.

4 Il ) Y (B, IX— Y’
If j was used instead a for &, usej in place of J,. Forme N, (€™, La(um)) is
a regular Dirichlet form. It is associated to a continuousetiMarkov chainY™ with
finite state spac&/, = suppum.

Again we prove the convergence of the spectral structurasgeneralized Mosco
convergence, similarly as above the convergence of the fdithensional distributions
as above follows. Now we additionally obtain the weak cogeace of the laws of the
approximating Markov chain¥™ to the law of X in the Skorohod spacB ([0, to]) of
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right-continuous functions on [@&] with left limits and values inF, considered under
initial distributions um and w, respectively.

Though of different type, the approximations in either iggttfollow by the same
method. Therefore the article is organized as follows: tFiirs Section 2, we define
both geometric settings, describe the concept of convesggare employ and state the
main results for either case. In Section 3 we state simplpeties of the measures
ue and um. Rewriting the approximating Dirichlet form8™, we obtain the conductiv-
ities for the approximating Markov chains. The following twections then contain the
proof of the generalized Mosco-convergence which implies rtiain Theorems. Sec-
tion 4 establishes the pointwise convergence of the Deicfilrms on the space of
Holder continuous functions. Then (3) resp. (11) allow tergaver some standard
type arguments known for Mosco-convergence in the case afiglesHilbert space to
our setting. This is done in Section 5. For the case of equalraction ratios, Nash
inequalities w.r.t. theu, are proved in the last section which lead to tightness baunds
We obtain the weak convergence of the laws of the process&s (0, to).

B(z, r) denotes the open ball with centgrand radiusr > 0. For A C R", |A|
denotes then-dimensional Lebesgue measure &f for a finite setB, |B| stands for
the number of elements. For a finite woud= wiw, - - - wk, |w| is its lengthk, see
below.

2. Definitions and main results

We define the notions of convergence we make use of. Then theséitings we
investigate are described precisely and the main resutstated in either case.

The following definitions are formulated more generallyuatton to cover both
cases. Letl be any directed index set arg;: i € 1} a family of measures on some
compact separable metric spadd,(¢). ConsiderL,(uxi) normed by| - |l and with
scalar product -, -)j. Let u be another measure dvi, and letLo(n), ||-|| and (-, -)
be defined similarly.

Let C be a dense subspace (). Suppose for any € | there is a bounded
linear operatord; : C — Lo(ui) such that for anyu € C we have

lim||®juli = [lull.

Then the spacek,(ui) converge toL,(u) in the sense of Kuwae and Shioya, see [23].
This will be assumed throughout the following. In Section éow we will see that
the families of measuregtm: m e N} and {u.: € > 0} on F resp.F; D F satisfy these
hypotheses.

We recall the notions of convergence of functions, opesatord quadratic forms
as introduced in [23].
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DEFINITION 2.1. (i) A sequence of functiongu;}ic;, Ui € La(ui), KS-strongly
convergesto a functionu € Lp(n) if there exists a sequendg;}§2; C C such that

lim limsup|®i¢; —uilli =0 and lim|l¢; —u| =0.
j—>00 i j—oo

(i) A sequence of functiongu;}i<;, U € Lo(ui), KS-weakly converge® a function
u € Lp(u) if for any sequencedu;}ici, vi € Lo(ui), that strongly converges to some
v € La(p),

Iiim(ui, Ui)i = (U, U).

(iii) A sequence of bounded linear operatdi }ic;, Bi: La(ui) — L2(ui) KS-strongly
convergedo a bounded linear operat®: Lo(u) — Lo(n) if for any sequencdu}ic,
Ui € Lo(ui), that strongly converges to somes Lo(u), the Biu; KS-strongly converge
to Bu.
(iv) A sequence(€'}ic; of quadratic formsE': Lo(ui) x La(ii) — RU{—00, 0o} gen-
eralized Mosco-converge® a quadratic form€: Lo(u) x Lao(n) - R U {—o0, oo} if
the following conditions are fulfilled:

(a) For any sequencgy;}i, KS-weakly converging tas € Lo(u),

lim inf E'(ui, u) > £(u, u).

(b) For anyu € Lo(n) there exists a sequends;}ic; KS-strongly converging to
u such that

lim sup€' (Ui, uj) < £(u, u).

In (iv), the definition of a quadratic fornd' is extended to the whole dfo(j;),
setting &' (u, u) = +oo for a functionu which is not in its domain. Similarly for a form
& on La(u), cf. [23] or [25].

Depending on the geometric settings we obtain similar tedor different types
of approximating processes.

The first situation is that of an arbitrarg-set FC R", by definition there ex-
ists a normed Radon measureon R" with F = suppu and such that (1) holds. Let
the closeds-parallel setsF, be defined by (2). Now consider the measumgson R"
given by

1 n
(15) (A= / OB AE] oy, MOV 0, ACE

Consider the spacebky(u.) resp.La(n) normed by| - || resp.| - || and with scalar
products(-, ). resp.(-, -). Later it will be shown theu, are normedn-measures
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with suppu. = F.. Below we will prove that the_,(u.) converge toL,(u) in the sense
of [23] and therefore the following statements make sensenole the operator semi-
groups and resolvents associated to the proce¥$eand X by (P k0 and G3)i-o0
respectively P;)i=0 and Gi)io.

Theorem 2.1. (i) The Dirichlet forms€® generalized Mosco-converge &as ¢
tends to zero
(i) For any A > 0, G5 KS-strongly converges to ;Gas ¢ tends to zero
(i) For any t> 0, P? KS-strongly converges to; Rs ¢ tends to zero

In particular, we observe

Corollary 2.1. The finite dimensional distributions of the® Xvith initial distri-
butions u, weakly converge to those of X under initial distributipn) i.e. for any
O<t <thp<--- <t < oo and any ue C(FK*') we have
. Xti) = EHU(XO, th, ey th).

lim B u(Xj, X, -

The second setting we study is that of a self-similar set.

DEFINITION 2.2. LetF c R" be compact and5={1,..., N}. For anyi € S
let ¥i: F — F be a contractive similarity and suppose there is a contiaunjection
7: SV — F such thaty; o =7 o 07, whereo;(wiw,---) =iwiw,---. ThenF is
called aself-similar set Let Wy, := S™ denote the words = (wy, . . ., wy) of length
lw| = m and setWy, = (J,.o Wm. For any finite wordw € Wy, of length m define
Y = Yuy 0 -0 Yy, Fu = ¥y (F) is called anm-cell.

Then F satisfies (9), that is

N
F=w(F)=JwuF).

i=1

Suppose thepen set conditiofOSQ holds, i.e. there exisO C R" open sucht that
¥(0) C O andy;(O) N (0O) =9 wheneveri 7 j. Then the uniquely associated self-
similar probability measurg is equivalent to thel-dimensional Hausdorff measufe?
with d from (10) and satifies (1). We further assume that ¢batraction ratios r of
the contractions/;, i =1,..., N, all equal a given numbess € (0, 1).

ExAMPLES 2.1. Among the sets fitting these assumptions are e.g. Caetsr
Sierpinski gaskets, the Sierpinski carpet and the KochecuBut also any closed in-
terval in R and any closed cube or block R".
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Let Vp ={x1,..., Xy} denote theN distinct fixed pointsx; of the contractiong/;.
We assume the maximum distance between two pointgyiis one. LetW be given
by (9) andw™ =W o WML SetV,, := ¥™(\Vg). Further, forx € F, let Fn(X) denote
the union of all ‘stepm-copies’ which contairx,

(16) 0= | Fu

weW: XeF,

Let Vim(X) := Fn(X) NV, and put

. 1
17) im(A) = / AT yevzm(x)ay(A)“(dx)’ ACF,

where §, assigns mass one tp and is zero anywhere else. Here| denotes the car-
dinality of a finite set. By dominated convergence, ihg define normed measures on
F. Obviously for f € Li(um) the averaging relation (11) holds if we set

> ).

YE€Vm(X)

1
(18) (F)m(x) := V)

For continuous functiong € C(F), (12) holds and therefore the measugs converge
weakly tou on F asm tends to infinity. Now consider the spacks(um) resp.Lo(u)
with norms|| - || resp.| - | and scalar products-, - ), resp.(-, -). The Lo(um) also
converge toL,(u) in the appropriate sense, see below.

Let £ andE™ be given according to (5) and (13). Denote the operator seus
and resolvents associated to the Dirichlet for&fs and £ by (PM)>0 and G0

respectively P;)=0 and G;);.-o.

Theorem 2.2. (i) The Dirichlet formsEé™ generalized Mosco-converge  as
m tends to infinity
(i) For any » > 0, GI" KS-strongly converges to ;Gas m tends to infinity
(i) For any t> 0, P™ KS-strongly converges to; Rs m tends to infinity

Recall Y™ and X denote the Markov processes correspondingToresp.£.

Corollary 2.2. The finite dimensional distributions of the™Ywith initial distri-
butions u, weakly converge to those of X with initial distributiony that is for any
O<ty <ty <--- <ty <oo and any ue C(F¥*') we have

mIiLnOO Efmu(Xg', X{, .. o0 Xg) = EFu(Xo, Xy, - -0 X

Employing Corollary 2.2, we can establish one more convesgeesult. Foty >
0, let Dg(]O, tg]) denote the space of-valued right continuous functions on [3]
with left limits.
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Theorem 2.3. The the laws of the processe$’ Yinder P#m weakly converge to
the law of X undeiP* in Dg([O, to]).

3. Approximation measures

This section investigates simple properties of the measureresp.um and shows
the above notions of convergence are well defined in ourngstti

Choose some’ € («, 2) and letC"/?(F) denote the space of ajl/2-Holder con-
tinuous functions o, endowed with the norm

lu(x) — u(y)|
u = ||Ulloo + SUp ————,
Iully/2 = ullos + sup = 2

where |[ulls = sup.g|u(x)|. Similarly, C*/2(F,) denotes the space of all bounded
y/2-Holder continuous functions oF,, | - ||, 2. defined as above but with the above
suprema taken over the whole &f. The spaceC?/?(F) is dense inL,(u), this fol-
lows from C?/2(R") being dense inH*/2*0-d/2(R") and the mentioned tracing pro-
cedure, recall the detailed references given in the inthol. In particular, the re-
striction of a function fromC*/2(R") to F resp.F., then in the pointwise sense, is a
function in C"/?(F) resp.C"/?(F,). Further, letE denote the Whitney extension op-
erator associated to the set cf. [26] Chapter VI or [18], Chapter 1.2, p.21E is a
bounded linear operator fro8?/2(F) into C*/?(R"). This follows from [26], Chap-
ter VI, Section 2.2, the Proposition on p.172 and Theorem 3pah74. Since the
measureg., are normed,E is equibounded fronC?/?(F) into the spaces »(u.) with
operator norm bounded independentlysof Now Recall (15).

Lemma 3.1. (i) For anye > 0, suppu. = F..
(i) There is a constant;a> 0 such that for arbitrarye > 0, ze F, andO0 <r < ¢
we have

2e97"r" < ue(B(z, 1)).

(iif) There is a constant,a> 0 such that for arbitrarye > 0, z€ F, and r > 0 we have
1e(B(z 1)) < ape® ",

(iv) For any ue C"/2(F),

lim [Eulle = [jull.
e—0

By (i), (ii) and (iii), the u, aren-measures. (iv) shows the spadegu.) converge
to L(u) in the sense of Kuwae and Shioya.
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Proof. (i) is obvious. (iv) directly follows from the weak ieergenceu, = wu.
For (iii), notice that by Fubini

1
1e(B(z, r)):[m[1B(z,r)(y)1B(x,25)ﬂFE(y)dY/L(dX)
1
:/18(z,r)ﬁFE(Y)/ mls(y,zg)(X) w(dx) dy.

For anyy € B(z,r) N F, there is somey’ € F such thatB(y, 2¢) ¢ B(y/, 3¢). Then
the inner integral in the last line is bounded above by

/ p(dx) - w(B(Y', 3¢))
FnB(y,3) |1B(X, 28)NF| = |B(0, ¢)]

since for anyx € F = suppu we haveB(x, ¢) C B(x, 2¢) N F.. Now (iii) follows.

Assertion (ii) holds, sinceé < ¢ implies the existence of som# € B(z, r) such
that B(Z,r/2) Cc B(z,r)NF.. For anyy € B(Z, r/2), there is somg’ € F such that
B(y', &) C B(y, 2¢). We obtain

/ pw(dx) . H(BY, €)
FnB(y,2¢) |B(X, 28) N F:| = |B(0, Z)|

and
ne(B(z ) = [ Laea) [ o gy ez 00 ud) dy. s

Turn to the self-similar case. Recall (17). For some V, let wn(2) denote the
total number of different wordsy of lengthm such thatz € F,, i.e.

(19)  om(@ = |{wiwz - - - wm: there existwmiiwmez - -+ With w(wyw, -+ -) = z}|.
Lemma 3.2. (i) Let me N. Thensuppum =V and for any Ac F,

1

W Z om(2)8,(A).

2eVn

Um(A) =

In particular for any ze Vi, um({z}) = om(z)N~1smd.
(i) There are constants;bb, > 0 such that for all me N and all ze Vp, r < ro,

by(r® +s™) < pum(B(z, 1)) < bo(r® + ™).

(i) The spaces (um) converge to k(u) in the sense of Kuwae and Shioya
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Proof. To see (i), letA Cc F be such thatAn V, =@, then

p— 1 —
A= [ o 2 L uE=o.

Y€Vm(X)

Let z € Vi, be arbitrary, then

_ 1
(@)= [ o PIREORC

_ ;
B /F\Em [Vim(X)| L0 (2) u(dx),

where

En= |J (FunF),

w,veWy

which by the ©SQ is of zero measur@. Forx € F\ En, there is exactly onen-cell
Fu,..w, that containsx, i.e. Fn(X) = Fy,..u,. In particular Vin(X) = my,...u, (Vo) and
[Vin(X)| = |Vol, recall Vip(X) = Fn(X) N V. This implies

wm(z)
|VoIN™’

1
(20) um({Z}) = —~ 1r, (2 n(dx) =
Vol Jr\E,,

showing the first assertion in (i). The second follows usfig = N ands® = N—1.
For (i), first notice we may assumg < s. If r < s™, thenB(z,r) N Vy ={z}. If
s™ <r < s™1 then B(z r) contains Fn(z) and intersects at most,_1(z) and all

adjacent ih — 1)-cells, there are no more thany,_1(Z)N. Sincewm(z) < N and an
(m — 1)-cell contains|V;| < N|Vy| points of Vy,, therefore

Vol < [B(z,1) N Vim| < N3|V|.
If ™1 <r <s™?2, thenB(z r) containsFy,_1(z) and intersects,_»(z) and maybe
adjacent 1fh — 2)-cells of which there are at most,_»(z2)N < N2. Each ( — 2)-cell
contains|V,| < N|V1| points of Vy,, hence

Vil <1B(z, 1) N Vinl < N3V,

Continuing, we observe that fadc=1,..., m—1 ands™ k1 <r < g™k,

(21) IVk_1] < IB(z, 1) N Vil < N3|Vi4).
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(ii) holds sinceN =s9 and fors™ k1 <r < s™* we have by (21) and (20),

a B(x, r)NnV
! N1 < —| (. 1) ml < um(B(X, 1) N V)

Vol = VoINm
< [B(X, r) N V| SENk—m+1.
[VoIN™ [Vol

For (iii) recall againC"/?(F) is dense inLy(x). Givenm e N, let Rp,: C"/?(F) —
L2(um) denote the pointwise restrictioRmu := uly,, u € C?/?(F). Obviously each
Rm is a bounded linear operator and the weak convergence snplie

im IRmullm = ull
m—o00

for any u e C?"/2(F). O]

For f € Li(um),

(22) [ 100 @9 = 3 iz @,

2eVm

Plugging this into (13), we observe

(23) EMu,u)= > (u(w) —u@)*Cl,,

w,zeVm

where forw, z € Vi,

Om(W)om(2) Lz N ~2s2Md

lw —Z|*um(B(w, |w — 2))

(24) Cwm,z = In(w, Dum({w})um({z}) =

Similarly in the case ofj. ObviouslyC},=CJ,, CI", >0 andC}, > 0 for w #z

Now let X™ denote the finite symmetric Markov chain &f, defined by

Cm
PXP=z| XJ'=w) = C"r’f with CI'=%"Cn.
w reVm

Let Tp := 0 and Ty := Zik:l Ux i whereU, 1, Uy, 2, ... are ii.d. exponential random
variables with parameteE!) for w € Vin. The continuous time proce&§" constructed
from X™ by letting Y™ = X[" if T, <t < Tn+1 then corresponds to the Dirichlet form
EM. Y™ is right continuous and has left limits.

4. Pointwise convergence on the core

First consider the parallel set approximation. Recall thatenotes the Whitney
extension operator associated Fo
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Proposition 4.1. For any ue C"/2(F),

IimOSS(Eu, Eu) = £(u, u).
£E—>
Before heading into the proof, we collect some elementaeyeguisites.

Lemma 4.1. Let R> 0. Givengy > 0, there is some’ > 0 such that for all
(X, r) € Fy x [0, R] with |(x,r) — (X', r)| < &,

l(B(x, 1)) — n(B(X', )| < o.

Proof. The function X, r) — w(B(x, r)) is continuous at alk,r) € F; x [0, R]
since from

6 r) =X\ 1)l <é
follows that B(x, r —2¢’) ¢ B(x', r’) as well asB(x, r) c B(x/,r’+2¢’) and therefore
m(B(X, 1)) — n(B(X', 1)) = u(B(x, 1)) — n(B(x, r — 2¢"))
and
u(B(X', 1)) — w(B(x, 1)) = u(B(X, 1 +2¢')) — u(B(x, 1)),

which implies the continuity.F; x [0, R] being compact, we have uniform continuity
and the assertion holds. O

We use the short notatiob,(x) := B(x, 2¢) N F,. Notice that for &, y) € (F x
F) \ D!

(25) [IX=yl—lw—2z|<IxX=y)—(w—-2)| <X —w|+|w—12| <4

and in particular

(26)

lw — Z| ‘ 4e
e | .
X =yl IX =yl

wheneverw € b.(x), z € b.(y).
Lemma 4.2. For all ¢ >0, X,y € F such that|x —y| > 16¢ and all w € b,(x),
z e b(y),

|e(B(w, [w — z[)) — u(B(x, Ix — yI))|
< w(B(X, Ix — y| +8¢)) — u(B(X, [x — y| — 8¢)).
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Proof. We have

‘/ La(w, jw—2)) (&) Ms(dé)—/ls(x,\x—yn)@) u(dg)

1
1b.(£)] 1w, w2 — L, x— d d
5/ b, (8)] /bs(g)| B(w, w—2) (1) — La(x, iy (§)1 dn u(d§)

and
[1B(n, lw—zp)) (W) — LB(x, jx—yp) )
= Lg(y, lw—2) (W) Lex, x—yye (€) + Lo, lw—z)e (W) L, ix—y) (§)
=< 1pe, Ix—yi+6e) (W) 1 (x,Ix—y )= (§) * La(e, x—yi-6e)e (W) Lex, ix—y) (§)
= 1p(x,Ix—y1+8e)\B(x, x—yD) (§) * LB(x, ix—yD\ B(x, Ix—y1-8e)) (§)-
by (25). 0

Lemma 4.3. There is a constant,c> O such that for anye > 0 and x y € F
such that|x — y| > 16¢, we have

u(BO X = YD) _
e (B(w, w—2)) = "

wheneverw € b,(x) and ze b.(y).

Proof.

1
/ 18w, |w—z)) (&) ne(d€) = / B /b o 1(y, jw—zpy) (w) dn p(d&)

1
1b.(8)| 1 w—Z|—Z2¢ d d
Z/ |be (§)! /bf(g) B(&. w-z-2:)) (w) dry 1(d§)

= / 18w, jw—z1—2¢))(§) n(d&)
> u(B(X, lw —z| — 4¢))

> u(B(X, [X —y| — 8¢))

> u(B(x, [x —Yyl/2)),

where we used (25) antk —y| — 8 > [x —y| — [Xx —y|/2 = |x — y|/2. Now the
assertion follows sincew possesses a doubling property. O

We establish Proposition 4.1.
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Proof. Throughout the following we will also write to denote the Whitney ex-
tensionEu, recall Eu e C?/?(F;). By the identity (3),

E%(u, u)

_ 1 (U(w) — u@)?
-/ YOI /bf<x)/bs<y, w0 21 (B, [w — zp)) O A2 AX) 1(dY):

STep 1. We consider the part af(u, u) related to the relatively larger jumps,

1
//Ixy>1& el y)m udx) p(dy),

where for each X, y) with |x — y| > 16,

1 (U0n) ~ U@ (Bx, 1x— yD)
PN = E TR oy o2 2

Set

1 (u(w) — u@)?
O ) = G ) /bg(x)/bg(y) Wz dwa?

and

(Ue) — uy)?

Py = X —y

For any &, y) € (F x F)\ D then

27) Iirr(1) W, (X, y) = D(X, Y)

sinceu € C?/?(F;). We will prove

(28) JIm (X, Y)Lix-yi=161 (X, Y) = P(X, Y).

Consider the left member in (28), for smallit does not vanish andk — y|/2 > 4e.
Clipping with (26),

lw—2 [x-—yl—4

29 >
(29) X =y [X =yl

1
>
2

providedw € b.(x), z € b.(y).
Now fix (x,y) € (F x F)\ D and leteg > 0. By (25) and (29) we have

1 1 2¢

<
X =yl* Jw—2z*| 7 x—y*
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whenevere is small enough. By Lemmata 4.1, 4.2 and 4.3 then also

LSS N
(B, Tw—20) ~ | = (B =)’

Consequently,

1 (u(w) —u@)* w(B(X Ix = ylI)) B
‘Ibs(x)l Ib. ()l /bg(x)/k;g(y) X —yl*  we(B(w, lw—2])) dw dz—We(x, y)

Cu€0
= KRB =y &Y
where
- 1 _ 2 - 2
ik Y) = o /W) /bs(y)(”(w) u@)? dw dz < 4ull..
Similarly,
1 (u(w) — u@)? dw dz u(B(x, x — yI))
X Y)— ——— dwd
0N = BT B o)) /w)/bf(y) K—yle (B, jw = z)) 9
280
< WFS(X’ y).
Combining,

!@0 . (X, Y)Lx—y>16c) = !ij}) Y. (X, y) = (x,y)

for any , y) € (F x F)\ D.
STEP 2. By Lebesgue’s theorem we have

!@o // D (X, Y)Lx—y>166) (X, Y)m uw(dx) n(dy)
(30) - 1
=&(u, u),

provided we can show that th&,(X, y)1{x—y~16; are dominated by anu(B(x, |x —
yD))~t n(dx) w(dy)-integrable function. To see this, note that far— y| > 16e,

iz, / f
T lw—z]""*dwdz < c|ull?,lx — y[’ ™
e (X)1 16:(Y)I Jb. ) Jb.(y) v/2

sinceu e C"/?(F;), and using Lemma 4.3,

WX, y) <

P, (X, Y) < CuWe(X, ¥) < cllull plx — yI" 7,
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¢ > 0 independent of. Now

[/ (|Bx(x_ |yx| aym u(dx) u{dy) < oo

justifies the above.
SteP 3. Turn to the small jump part of®(u, u),

1
Ly 49 ey e

LYjw—z=20e) (u(w) — u(z))?
// b0 [b-(y) /b(x)/b o 10 = 201 (B, w — zy) O 329 (dY)

_ (U(x) — u(y))?
- / /stw X =y (BOx, x =y (@) #e(AY)

Apart from the factor|ull, 2, for arbitraryx € F the inner integral in the last line is
bounded above by

rv—¢«

260 y-a
/o (B 1) e (B(x, dr)) = Z/.  (BX, r))/Lg(B(X, dr))

i(y—a we(B(X, 27i))
=3z (B, )

2—Jo(y—a)
=K %2

i=jo

<ce"

where jo = jo(e) is the largest integer such that2 is greater than 20 Note that by
Lemma 3.1 there is a uniform doubling constaht> 1 such that

for all x € F andr < 20s. Together with (30) the above shows the assertion. []

For the self-similar case the method simplifies since theenties of the measures
um are better, cf. Lemma 3.2.

Proposition 4.2. For any ue C?/2(F),

rrI]i_r)noo EM(u, u) = &(u, u).
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Notice that form € N and x € F, diamFqy(x) < Ns™. Notice that forx,y € F
and w € Vip(X), z € Vin(y), similar to the other setting,

[lw—2z| —|x —y|| < 4Ns™

Lemma 4.4. Let$ > 0. For m large enoughall x, y € F such that|x —y| > §
and all w € Vn(X), z € Vin(y), we have

tm(B(w, [w — 2[)) — n(B(x, [x — yI))|
< u(B(X, [x — y| +4NS™) — u(B(x, [x — y| — 4Ns™)).

The proof is the same as for Lemma 4.2. We briefly sketch thefprb Proposi-
tion 4.2.
Proof. For|x —y| >3 andw € Vn(X), Z € Vm(y),

NI

lw—2zl > |x—yl —4Ns" >

for given gg > 0 and largem then by Lemma 4.4,

‘ pBOG X =YD [ e 2%
um(B(w, lw — z)) Talw—2z9 T 4
We claim
1

l (6 Y)———————— u(dX) u(d

Al //X_Mq’ ) B0 x =y A @)
(1) (u(x) — u(y))?

= d dy),

/ /XM X =y (B, x =y @9 #@)
where
Dn(x, y)

1 3 (u(w) —u@)* w(B(X, Ix = 1))

V0O V()] w;ﬂm ity XY rm(Bw, fw —2)))

dwdz

As before we conclude

(u(x) — u(y)y?

lim & =
m em( ¥) = =5 e

now for (x,y) e (F x F)\ {x,y € F: |[x —y| < §}. Since for suchx, vy,

DX, Y) < (2e08™ + D)ullZ,
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Lebesgue’s theorem vyields (31). For the small part, note

1
/ /Ix—yss Pm(X, y)m p(dx) p(dy)

(u(x) — u(y))?
d d
< /,/|1<y|55+4NSm IX — y|aMm(B(X, X — y|)) w(dx) u(dy)

and

5+4NS™ ry—e
/0 (B 1) um(B(X, dr))

< Z oy M‘;Té'?)((x 22| ')l))) < o(5 + ANy @

by Lemma 3.2. j,, denotes the largest integer such thaim2> § + 4Ns™. A similar
bound holds for the double integral w.nt, taken over|x —y| <4§. As § > 0 was
arbitrary small, this completes the proof. ]

For j in place of J and J,, the proof is similar but simpler.

5. Generalized Mosco-convergence

In order to prove the generalized Mosco-convergenc&“ofesp.E™ to £ condi-
tions (a) and (b) of Definition 2.1 (iv) will be verified. Basity we use a Banach-
Saks type argument similar to [3].

We formulate the proof for the measurgs, for the measureg., it is analogous.
Choose somé > 0, let

50y, u) = / / 00 U260 iy 1Y) ()
and
£9(u, u) = / /( o 00 U6 Yy 10) (0.

Assume{u,} KS-weakly converges to € Lp(u). Without loss of generality, we may
assume lim. £¢(u,, u,) exists and is finite.
Givengg > 0, by Lemma 4.1, Lemma 4.2 and Lemma 4.3,

1 1 1
(0, 2) = I = e | B, w =) a(Bl X = YD)
g g B0 D1 +86)) — (B, x— ]~ 8)
(B(x, 5))

< &0
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whenevere is sufficiently small uniformly for allx, y € F such thatjx —y| > § and all
w € be(x), z € b,(y). Recall that by Lemma 4.1(B(X, r)) is uniformly continuous
on the compact seff; x [§, 2diamF]. By (4) and Fubini therefore

5%8M>9mwua

L _ HIx=yi=8) _ 2
// | (x)| 1b.(y)| [b(x)/b(y)(us(w) Ue(2))“Je(w, 2) dw dz pu(dy) p(dx)

_Lx-yiza _ _
/ / RN /b ., /b ()~ U@, ) o) G2 (A ()

> / / (U (0) — (U)o ()2, ) u(d) pe(dly) — 2600,
[X—y|=4
= 8(6)((u8)6! (us)s) - 280||(u8)8 I

because

— 1 —
(600 = (U 9) = e /bg(x) L(y)(ug(w) U,(2)) dw dz

1 IR
: <|bs(X)| b (y)] /bg(x)/bs(y)(ug(w) U (2))° dw dz)

by Hoélder’s inequality.

Since{u.}. KS-weakly converges, we have sulpi. ||, < oo, see [23], Lemma 2.3.
By (3), I[(Ue)ell < lluglle. By the above,{(u,).}. is therefore bounded in the Hilbert
space formed byt () with norm €®(-, -)+| - [|)Y2. Fix an arbitrary{e;}; with
ej — 0. By the Banach-Saks theorem there exists a subseqdeppe, we write uy :=
Ugy » (Uidk := (U )y, » such that )« weakly converges to some in La(u),

lim =
k—

1 n
- D Uk —v
k=1

and
1 1<
Jim 8(‘3)<E D Uk — v, = D (U — v) =0
*© k=1 k=1

On the other hand, the KS-weak convergence implies thatpferC(F)

I|m (W, @) = / k(y) dy ¢(x) n(dx)

|be;, (X)]

= |im u E d dx
Jim |mﬁm|mM@kW)¢W)YM()



APPROXIMATION OF JUMP PROCESSES ONFRACTALS 161
= lim (uk, Eg).,
k— 00 I
= (U, ¢).

C(F) being dense inL,(u), we see thatuk)x weakly converges tal in Ly(u) and
thereforev = u. Clipping the statements, for any fixed sequelﬁeg}j with resulting

subsequence as above,

“Jnl)logf 58] (u£j! ué‘j) Z “Jnl)Ior(])f SSj’((S)(USja uaj) Z “m Supg(s)((u&‘] )8]! (USJ')SJ')

j—00
13 1o
> kIim 5(8)<ﬁ Z(Uk)k. - Z(Uk)k) =£0(u, u),
o k=1 k=1

notice
1 n 1 n 1/2 1 n
EO=Y Uk, = Y (u < =) EOuk, ()2
- ;( Kk - ;( Kk “h i (PN

by the triangle inequality. The above holds for ahy 0 and any chosen subsequence,
therefore necessarily

lim i(r)1f E8(ug, Ug) > E(u, u),

which is condition (a).
To see condition (b), we make use of Proposition 4.1. For aryF, there is a
sequenceg;}52; C C7/%(F) such that

(32) lim &(gj, ¢j) =€, u) and lim [l¢; —u| =0.
]—o00 ]—00
For j e N, consider the Whitney extensiortsy; C C"/?(Fy) of @j, for brevity denote

it again by ¢;. By u. converging weakly tou and by Proposition 4.1, there exists
someeg; > 0 such that

lllgr — @olle — llor — @oll] < 27°

and

1€ (¢1, ¢1) — E(pr, p1)] < 277
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for £ < ;1. There also exists somg < £, such that

lllg2 — @olle — gz — @oll| <272
and

llgz — @1lle — o2 — @ull| <272

and

E5(¢2, 92) — E(92, p2)| < 272
whenevere < g;. Continuing this way, for anyj € N there is some; such that
(33) [llgj —@ille—llg; —@ll| <271 for i<j and (¢, ¢))—E@wj, )l <27

if ¢ <egj. For anyk e N, there is someé (k) such that|lg; — ¢i|| < 27500, | = i(K)
due to (32). In particular

lo; — il < 27 for | >i(K).
Clipping with (33),
lgi — @iglle < llgj — @iyl +27) <27F+ 27

wheneverj > i(k) ande < ¢j. Setu, =0 for e > g1, U, = ¢1 for e, < & < & and
Us = @ for ej+1 <& < &j. Putyy = ¢, then fore small enough

—j —k
ue — Yl <270 +275,
hence

lim supllue — ylle < 27
&

Since lim|lu — Y|l =0, theu, KS-strongly converge ta.
On the other hand, by (32) and (33),

lim £%(u,, u;) =lim &£(u,, u,) = £(u, u).

Foru e Ly(u) \ F we have&(u, u) = +oo, thus condition (b) is verified.

This proves assertion (i) in Theorem 2.1 and Theorem 2.2erfisgs (ii) and (iii)
in either case directly follow from Theorem 2.4 in [23].

It remains to conclude the Corollaries 2.1 and 2.2. We proeeoltary 2.1, the
other proof is similar.
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Write || - |1 and || - |l.,1 to denote the norms ih3(x) and Li(u.). For functions
u, KS-strongly converging tal € Lo(u), by (3), Definition 2.1 and Theorem 2.1,

Iimgsup||(Pt8u8)6 — Pu| < Iign Iimssup|| Pfu, —gjlle + Ii5n|| Pu — gjl
and thus by Hélder,
lim{I(Ru)e — Prulls < lim (R ue). — Rull = 0.
Again by (3) then
IiEnll P Uelle,1 = [IPUlla.

The product of a functionn € C(F;) and a sequence of functions KS-strongly con-
verging tou € Lp(u) KS-strongly converges tov, notice that if{¢;} C C(F) is the
sequence according to Definition 2.1, we have

[usv = @jvlle < flvlleollUe — @jlle

and
llov — uvl| — 0,
pjv € C(F). lterating these arguments fop, ug, ..., ux € C(Fy) then yields
lim B [ug(Xg)us(X5) - - - U(X; )]
= 1m [ oG0P WP (U B, oWkt Py U0+ )00 (e
= [ Uo00RU Py (U2 Pu P )+ ()
= Epfuo(Xo)ua(Xy,) - - - k(g )]
By the Stone-Weierstrass theorem we may pass from functigxs, ..., X) =

Uo(Xo) - - - Uk(Xk), Ui € C(F1) to generalu e C(Ff*l). This proves the Corollary.

6. Nash inequalites, tightness and convergence D

Adapting an idea used in [10], we will now obtain Nash inedied for the ap-
proximating Dirichlet forms. We will use these inequalitim deduce a tightness bound
on theY™ and then verify the convergence of the processeB [0, to]). The argu-
ments we use are similar to those in [5], [8] and [16].

Let m be arbitrary but fixed. For & r < 1 and a functioru on V, set

1
ur(x) = (B, 1) s u(y) um(dy), X € Vm.



164 M. HINz
The following local Poincaré inequality holds.
Lemma 6.1. There is somegc> 0 such that for any function & L2(um), we have
lu—ur i3 < cor“€™u, u).

Proof. For anyx € Vp,

lu(x) — ur (x)| < lu(x) — u(y)[* m(dy).

1
um(B(X, 1)) Jax.r)
Integrating,

o . (@) pm(dX)
hu—u 2 //B 00— U yy g L

< byr*€™u, u)

since for|x —y| <r,

1 B
306 YimBoa ) =T

A Nash inequality follows. Lef| - |m 1 denote the norm irLq(um).

Proposition 6.1. There is a constant & 0 such that for all me N and all ue
LZ(/'LTTI)I

2+20/d -1 2 2a/d
ullzy /¢ < e(€™(u, u) +rg Hula) lullyy-

Proof. Let O<r <rg. We have|lu||? = (u— U, U)m + (Ur, U)ym. By the previous
lemma,

1/2 2
(U= Ur, U < U = Ur llm [Ullm < c5/°T¥/2€™(u, u)ullm
and by Lemma 3.2,
—1 —d 2
(U, Wm < NIUr lloo IUllm,1 < by (r +8™) 7 lull, 1.

Then for allr > 0,

2 1/2 2 -1, — 2\1/2 —1,-d 2
ull?, < cg2r/4(EM(u, u) + 3 rg  IullZ) Y2 ullm + by ~uli?, ;.
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Minimizing the right hand side yields

-1, — 20 2d
1l < cler, dE™(U, 1) + 5 g ulF] 2 fula 2D up =,

where
od \ @/(@+2d) o \2/@H )\ 4 iad), —a(r2d)
(o, d) = ((U) + (%) a2y .
Simplifying, the result follows. ]

As an additional result, we observe that Proposition 6.Ekttogr with our notions
of convergence allows to obtain a Nash inequality§omusually proved by other means,
as a limit of the Nash inequalities for the forrd§'.

Corollary 6.1. For any ue F,
U279 < e(€(u, u) + ¢ HulP)liuls,
where ¢ is the constant frofAroposition 6.1and || - ||, denotes the norm in {(u).
Proof. Foru € C(F) the result follows from the weak convergence together with
Proposition 4.1. For general € F, it holds since by definitiorC(F) is dense inF

w.r.t. &;. ]

Proposition 6.1 allows to proceed to a uniform tightnessnidohy standard argu-
ments. Forme N and A C F, let

(A Y™ =inf{t > 0: V" ¢ A}
denote the first exit time.

Proposition 6.2. Given A> 0 and Be (0, 1), there exists a constant > 0 such
that for all me N and all 0 <r < diamF,

Pin(z(B(z, Ar); Y™) < yr%) < B.

The proof of this proposition is shifted to the appendix.

Together with Corollary 2.2, Proposition 6.2 now leads t®ditem 2.3. Fox € F
and x,, € Vi, converging tox, let Qn denote the law ofY™ in Dg([O, to]) under P#m
and Q the law of X underP*.

We make use of Aldous’ Theorem on tightnessDr ([0, to]), cf. [1], [11] or [6].
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Theorem 6.1. Supposegt> 0 and (Y™) is a sequence of processes i (D, to]).
Assume that for all sequencés,} of random variables with values i, tg] such that
Ty iS a stopping time wt. the filtration o(Y{": s < t) and for all sequenceg, > 0
with [iMmm_ s 8m =0,

Y™ s —Yo'| — 0 in probability as m— oo.

Assume eithe(Y]") and maxcp,i;|Y" — Y{"| are tight or Y" is tight for every te
[0, to]. Then the laws ofY™),, are tight in D=([0, tg]).

We prove Theorem 2.3. Lag >0, x € F, let (tm)m be a sequence of [@]-valued
stopping times andsf,)m a sequence tending to zero. Given> 0 and B € (0, 1),
Proposition 6.2 provides a constant= y(n, B) > 0 such that

(34) Prm(z(B(xm, n)); Y™) <y) < B

for all m. Wheneverm is large enough, so that, < y, the strong Markov property
together with (34) imply

P (0(Yomesns Yon) > 1) = PEm(o(Yan, Yg") > 1)
< P*(z(B(Xm, 1); Ym) <d&m) < B.

The tightness of theY{™) for anyt € [0, to] follows since F is compact.

By Theorem 6.1 the sequenc®d)m is tight in Dg([O, to]). Together with the
weak convergence of the finite-dimensional distributio@syollary 2.2, this shows that
the Qn weakly converge taQ and therefore proves Theorem 2.3, see e.g. [6], Theo-
rem 13.1 or [11], Theorem 7.8.

7. Appendix

We consider Proposition 6.2. Since the method has become sisindard mean-
while, so we only give a brief exposition. For further detaile refer the reader to
[5], [8], [14] or [16]. Fix m e N. For é € (0, D], D a number to be chosen later,
introduce the measures

pm(3A)

sd ACSIF

1(A) =

on §°1F = {x € X: 8x € F}. Then supps, = § 1Vy, analogously defined and for
zed Wy, O0<r <81,

bl (7% + 595 7%) < i3 (B(x, 1)) = b(r¢ + "% ),
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recall Lemma 3.2. Consider the procegd’ := §~1Y[l, with values in§=Vi, associ-
ated to the Dirichlet form

EMS(u, u) = 8*79EM(f, f)

for f(x) =u(s1x), ue La(ud). For the corresponding small jump part Dirichlet form

g (CCRTe) AT
crw / /x-m X =yl m(BOx, (x— yp) Fm @) (@)

we have

0 < E™¥(u, u) — C™4(u, u)

_ ) 13, (dy) ) 5 (d
=2 [ e </x-y|<mlsm X = yiam(BGx, x — iy ) “m @

= cljulls,m,

with ¢ > 0 independent o8 andm and | -||5,m denoting the norm iLo(ud). The Nash

inequality proved in Proposition 6.1 can now be shifted aeea Nash inequality for
c™?®, cf. [8]. It follows that the procesZ™?® belonging toC™? possesses transition
densitiesp?,(t, x, y) which admit the bound

Pl (t, X, y) < 't Ve B@XYHE -t 5 0 x,ye§TIF

with constantsc and ¢’ independent of and m. For details, see [7], Theorems 2.1
and 3.25. In the above,

E(t, X, y) = sup|¥(x) — v ()| — A(¥)*: A(Y) < oo},
AW)? =maxX|e T (e, &), 17T, €)oo}

and

(ev©) — g¥(m)2
r 1ﬁ, v =
(", €°)(E) /x—y<1vsm & —nl*um(B(E, 1§ —nl))

Using the cut-off functiony (&) = |&, x| v |x—Y|, we obtain|y(n) — ¥ (&) < |€ —n| and

1 (dn).

(1 — eV -v(E)2

eHOINE O = | e eun(BE &~y 0@
X=y|=< m 1
(W (n) — p(E)22VOVOl
d
= /stl & — 1 (B, & =y “m(@)

<C
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with C > 0 independent o and m. Hence
pl(t, X, y) < ct Vg ekt 5 0 x, y e s IF.

Fort € [1/2, 1], § € (0, D] and » > 0 we obtain for anyx € § 1V,

(35) PX(1ZM™ — 28| > ) = Ph(t, X, y) 1o (dy) < ce /2,
t 0 m m

[X=y[>4

¢ > 0 independent of andm. If now £™ and A™® denote the generators &f™?
and Z™9 respectively, we have

Em,S - Am,B +Bm,8

with

. o0 —uy)?
S /m,m X =y m(BOx, x =y “m@Y)

It is easily verified that there are positive constaatand ¢’ independent ofm such
that for anyu € Lo(u8) and v € Loo(8~ Vi),

IB™ ullLygas) < CllUlLyes)
and
I1B™v]le < €[[V]]oo-
If (QM%) denotes the transition semigroup af"4,
S(t) = QM

and
t
() = / S 1(9B™ QM ds, k> 1,
0

we obtain bounded linear operatdggt) on L,(«?) with operator norm bounded above
by (ct)k/k!, ¢ > 0 independent ofn. By [24], see also [11], R™’) with P™° =

Y koo &(t) then is the semigroup associatedd®?. Similarly, eachS(t) is abounded
linear operator orlL ., (8~1Vy,) with operator norm bounded above bytf</k!, ¢ > 0
independent ofn. Then alsoP™® = Y oo (t), with convergence in the operator norm
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on La(ud). In particular, forv € L(8~1Vp),

0 /+\K
5 5 (c't) c't
IP™ v — Q™ vl < E m vl < C'te” vl
P

and for anyx € 6§ 1Vp,
PXIY™ — x| > 2) < P*(1Z™ — x| > 1) + C'te"" < ce** +ct

for t € [1/2, 1] with with ¢ > 0 independent ofm and§ by (35). Introducing the exit
times o () = inf{t > 0: |th"3 — Y(;""S| > A} and using the strong Markov property we
have for allt < 1/2 andx € § *Vj,

P <squSm'8 — Y5l > x)

s<t

A A
= PX <a(k) <t Y — Y > E) + P> (a(,\) <t Y™ - Y| < E)

A A
< IP’X<|Ylm’5 - Yo"l > E) + P <a(,\) <t Y =Yl = E)

m, A
<ce** +ct+E" |:a(k) <t IPYU<5<|Y{“'§(A) - Y™ > 5)}

m A
<ce M Hct+EX| o(r) <t; sup PO <|Y{“_'ﬁ - Y > —)
u<1/2 2

A
<ceM*+ct+ max sup IP’Y(|Y1“’{Sj — Y| > —>
yesd—Vm u<1/2 2

which is bounded bye /4 + ct with ¢ > 0 independent ofm and§. Integrating,

/ ]P’Z<sup|YSm"3 - Y| > A) pé(d2) < 679(ce™* +ct)
8 Vn

s<t

for t € [0, 1]. Scaling back,

P“m<sup Y& — Y| > 5A>

s<déot

:/ ]Px<sup Y=Y > (SA) um(dx)

s<éet

(36)

=4 / N Pz<sup|Ysm"3 - Y > A) ul(d2)
37 +Vm

s<t

<ce M +ct.
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Choosety < 1/2 and A large enough that the right hand side is smaller tigamnd
A/)x < diamF. Then puts := Ar/x which is in (0,D] for D = (diamF)2. Finally, set
y = Atp/1*, what yields the assertion.

REMARK 7.1. Establishing a parabolic Harnack inequality and prouhe equi-

continuity of the pn(t, X, y) one can also deduce the convergenceDif([0, to]) with
arbitrary starting distributions. This follows along thieds of [16].
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