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Abstract
In this paper we consider a free boundary problem for spacelike surfaces in the

3-dimensional Lorentz-Minkowski spaceL3 whose energy functional involves the
area of a surface and a timelike potential. The critical points of this energy for any
volume-preserving admissible variation are spacelike surfaces supported in a plane
and whose mean curvature is a linear function of the time coordinate. In this paper,
we consider those surfaces that are invariant in a parallel coordinate to the support
plane. We call these surfaces stationary bands. We establish existence of such
surfaces and we investigate their qualitative properties.Finally, we give estimates
of its size in terms of the initial data.

1. Introduction and statement of results

Let L3 denote the 3-dimensional Lorentz-Minkowski space, that is,the real vec-
tor spaceR3 endowed with the Lorentzian metrich , i = dx2

1 + dx2
2 � dx2

3, where x =
(x1, x2, x3) are the canonical coordinates inR3. Let 5 be a spacelike plane, which we
shall assume horizontal, and consider a potential energyY that, up to constant multi-
ple, measures at each point the distance to5. We are interested in the following

Variational problem. Find spacelike compact surfaces with maximal sur-
face area whose boundaries are supported on5 and which enclose a fixed
volume of the ambient space. We assume the effect of the potential Y.

The plane5 is called the support plane. If we search solutions up to the first or-
der, we are interested in surfacesS that are critical points of the corresponding energy
functional for any volume-preserving perturbation of the surface. The energyE of the
system involves the surface areajSj, the areaj�j of the planar domain��5 bounded
by the boundary�S of S and the potential defined byY. Then

E = jSj � cosh(�)j�j + Z
G

Y dS,

2000 Mathematics Subject Classification. 53C50, 53C42, 53A10.
Partially supported by MEC-FEDER grant no. MTM2007-61775 and Junta de Andalucia grant

no. P06-FQM-01642.



2 R. LÓPEZ

where� is a constant andG is the bounded region byS[ �. Consider then an ad-
missible variation ofS to our problem, that is, a one parameter differentiable family
of surfacesSt indexed by a parametert , with S0 = S, and supported all in5, that is,�St � 5. We assume thatSt is a volume-preserving variation ofS and we denote by
E(t) the corresponding energy of the surfaceSt . We look for those surfacesS that are
critical points of the energy for all admissible variations, that is,

d

dt

����
t=0

E(t) = 0.

In such case, we say thatS is a stationary surface. According to the principle of
virtual works, stationary surfaces are characterized by the following:

Theorem 1.1. A spacelike surface S inL3 is stationary if and only if the follow-
ing two conditions hold:
1. The mean curvature H of S is a linear function of the distance to 5:

(1) 2H (x) = �x3(x) + � (Laplace equation),

where� is a constant called the capillary constant, and � is a constant to be deter-
mined by the volume constraint.
2. The surface S intersects5 at a constant hyperbolic angle� along �S (Young con-
dition).

We refer to [2, 3, 5, 10] for more details. In absence of the potential Y, the con-
stant � is zero andS is a spacelike surface with constant mean curvature or, more
briefly, a CMC spacelike surface. Some results on CMC spacelikesurfaces have been
obtained in [1, 2]. Recently, the author has considered the case thatH is a linear func-
tion of the x3 coordinate in a series of articles. When the surface is compact, then it
must be rotational symmetric with respect to an orthogonal axis to the support plane
([10]). Rotational stationary surfaces have been described in [11, 12].

The present paper continues this work with non-compact surfacesS that are in-
variant with respect to thex2-coordinate. We say then thatS is a band. Our motiva-
tion for studying stationary surfaces under this conditionhas its origin in the theory of
CMC spacelike surfaces. The simplest examples of bands with constant mean curva-
ture are hyperbolic cylinders: up to isometry of the ambientspace, they are defined by
Ha = f((1=m) sinh(x1), x2, (1=m) cosh(x1)); �a < x1 < a, x2 2 Rg, m > 0 and whose
mean curvature isH = m=2. A hyperbolic cylinder is also the graph of the function

y(x1, x2) =
q

x2
1 + 1=m2 defined on the strip�a = f(x1, x2, 0); �a< x1 < ag �5. Hyper-

bolic cylinders and hyperbolic planes are used in the theoryof CMC spacelike surfaces
as barrier surfaces, as it can be seen in [15]. See also Section 5 below. Finally, max-
imal bands (H = 0) with singularities inL3 have been studied in the literature [8, 14].
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The purpose of this paper is to establish results on existence and certain qualitative
features of stationary bands. We begin by proving:

Given real numbers�, � and �, there exists a stationary band S supported
on a strip of a plane which is parallel to5 that satisfies the Laplace equa-
tion and makes a hyperbolic angle� with the support plane along its bound-
ary (Theorems 4.3and 6.5). Moreover, the surface can extend to be an
entire surface.

For this, Equation (1) is reduced to an ordinary differential equation of second order
and we analyze the existence of solutions. This is carried out in Section 3. The quali-
tative properties of the shapes of a stationary band depend on the sign of�. Following
the terminology of the Euclidean case, we call asessileor pendentstationary band if� > 0 or � < 0, respectively. In Sections 4 and 5 we study the case� > 0. We prove:

A sessile stationary band is a convex surface and asymptoticto a lightlike
cylinder at infinity (Theorem 4.1and Corollary 4.2).

Next, we study properties of monotonicity on the parameter� and we compute
the size of the surface in terms of given data. We omit the statements and we refer to
Section 5 for details. Finally in Section 6 we study pendent stationary bands and we
describe the shapes of such surfaces:

A pendent stationary band is invariant by a group of translations in an or-
thogonal direction to the rulings of the surface. The x3-coordinate of the
surface is a periodic function and the surface extends to be agraph on5
(Theorem 6.1).

As we have pointed out, stationary surfaces generalize the family of CMC spacelike
surfaces. Constant mean curvature spacelike surfaces in a Lorentzian space are well
known from the physical point of view because of their role indifferent problems in
general relativity. See for instance [6, 13] and referencestherein. On the other hand,
the Laplace equation (1) is of elliptic type (see also Equation (3) below) and well-
known in the theory of partial differential equations. In this sense, the interest of this
equation in the Lorentzian ambient space has appeared in [4]. Finally, in connection
with the Euclidean ambient space, we recall that physical liquid drops are modeled by
surfaces whose mean curvature is a linear function of its height, as it occurs to the sta-
tionary surfaces ofL3. In Euclidean space there exists an extensive literature for such
surfaces. We refer to the Finn’s book [7], which contains an exhaustive bibliography,
and more recently, [9].
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2. Preliminaries

A nonzero vectorv 2 L3 is called spacelike or timelike ifhv, vi > 0 or hv, vi < 0,
respectively. LetS be a (connected) surface and letx : S! L3 be an immersion ofS
into L3. The immersion is said to be spacelike if any tangent vector to S is spacelike.
Then the scalar producth , i induces a Riemannian metric onS. Observe that~e3 =
(0, 0, 1) is a unit timelike vector field that is globally defined on L3, which determines a
time-orientation on the spaceL3. This allows us to choose a unique unit normal vector
field N on S which is in the same time-orientation as~e3, and henceS is oriented by
N. In this article all spacelike surfaces will be oriented according to this choice of
N. Because the support plane in our variational problem is horizontal, the hyperbolic
angle� betweenS and5 along its boundary is given byhN,~e3i = � cosh�.

The notions of the first and second fundamental form for spacelike immersions are
defined in the same way as in Euclidean space, namely,

I =
X

i j

gi j dxi dxj , and II =
X

i j

hi j dxi dxj ,

respectively, wheregi j = h�i x, � j xi is the induced metric onS by x andhi j =�h�i N, � j xi.
Then the mean curvatureH of x is given by

(2) 2H = trace(I�1II) =
h11g22� 2h12g12 + h22g11

det(gi j )
.

Locally, if we write S as the graph of a smooth functionu = u(x1, x2) defined over a
domain�, the spacelike condition impliesjruj < 1. According to the choice of the
time orientation,

N =
(ru, 1)p
1� jruj2

and the mean curvatureH of S at each point (x, u(x)) satisfies the equation

(1� jruj2)1u +
X

ui u j ui j = 2H (1� jruj2)3=2.

This equation is of quasilinear elliptic type and it can alternatively be written in diver-
gence form

(3) div

� rup
1� jruj2

�
= 2H .

In particular, ifu andv are two functions which are solutions of the same equation (3),
the difference functionw = u � v satisfies an elliptic linear equationLw = 0 and one
can apply the Hopf maximum principle. Then we obtain uniqueness of solutions for
each given boundary data.
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We now consider the type of surfaces which are interesting inthis work. A cylin-
drical surfaceS is a ruled surface generated by a one-parameter family of straight-linesf�(s) + t~w; t 2 Rg, parametrized by the parameters, where�(s), s 2 I , is a regular
curve contained in a planeP and~w is a given vector which is not parallel toP. The
curve � is called a directrix ofS and the lines are called the rulings ofS. The shape
of a cylindrical surface is completely determined then by the geometry of�. Assuming
that S is a spacelike surface, then both�0(s) and~w are spacelike vectors. For exam-
ple, the directrix of a hyperbolic cylinder is a (spacelike)hyperbola in a vertical plane
P and~w is a horizontal vector orthogonal toP.

If we impose the stationary condition to a cylindrical surface, then we prove that
the rulings of the surface must be horizontal, and then,� is an embedded curve. Ex-
actly:

Proposition 2.1. Let S be a spacelike cylindrical surface inL3. If the mean
curvature of S is a linear function of the time coordinate with � 6= 0, then the rul-
ings are horizontal.

Proof. We parametrizeS as

x(s, t) = �(s) + t~w, s 2 I , t 2 R,

where� is the directrix ofS parametrized by the length arc. The computation of the
mean curvatureH of S according to (2) gives

(4) 2H =
h�0(s)� ~w, �00(s)i
(1� h�0(s), ~wi2)3=2 ,

where� is the cross product inL3. In particular, the mean curvature function depends
only on thes-variable. Therefore, ifH satisfies the relation (1), that is,

H = �x3 Æ (�(s) + t~w) + � = �x3 Æ �(s) + � + �(x3 Æ ~w)t ,

we infer thatx3 Æ ~w = 0, and then,~w is a horizontal vector.

As a consequence of Proposition 2.1, we can choose the planeP containing the direc-
trix to be vertical, with the rulings being horizontal straight-lines. On the other hand,
because� is a spacelike curve in a vertical plane,� is globally the graph of a certain
function u defined on an interval of any horizontal line ofP. Hence, we conclude:

Corollary 2.2. Any cylindrical surface inL3 that satisfies the Laplace equation(1)
is a band.

DEFINITION 2.3. A stationary band inL3 is a cylindrical surface that satisfies
the Laplace equation (1).
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3. Stationary bands: existence and symmetries

In this section, we write our variational problem in terms ofthe theory of ordinary
differential equations, strictly speaking, the Laplace equation (1) is reduced to an or-
dinary differential equation of second order. The purpose of this section is to establish
results of existence of solutions of the corresponding boundary value problem together
with properties of symmetries of the solutions. LetS be a stationary band ofL3. We
have then

�x3 + � = h�0 � ~w, �00i = C�,

where C� denotes the curvature of�. In addition, the angle between such a surface
and the given horizontal support plane is constant.

If � = 0 in the Laplace equation (1), the surface has constant meancurvatureH =�=2. Then the curvatureC� is constant, namely,C� = �. Therefore� is a straight-line
or a spacelike hyperbola ofL3 and the corresponding surfaces are planes or hyperbolic
cylinders respectively. Assuming that� 6= 0, we do a change of variables to get� = 0
in the Laplace equation. For this, it suffices with the changeof the immersionx by
x+(�=�)~e3. Then the new surface is a stationary band with mean curvature H (x) = �x3.
The support plane5 has been changed to another horizontal plane, namely,fx3 = �=�g.
However, the contact angle ofx along its boundary is� again. It also follows that the
shape of the original surfaceS is independent of the constraint� in (1). Throughout
this work, we shall consider the case that� 6= 0 and� = 0 in the Laplace equation (1).
Then the problem of existence of our variational problem is expressed as follows:

Variational problem. Let � and � 6= 0 be two real numbers and let5 be
a horizontal plane. Does there exist a stationary bandS supported on5
such that: i) the mean curvature in each pointx 2 S is H (x) = �x3 and;
ii) the hyperbolic angle betweenS and5 along �S is �?

Let S be a stationary band given as the graph of a functionu defined on a strip�a. We parametrizeS by S = fr , x2, u(r )); �a < r < a, x2 2 Rg. According to the
choice of the orientation onS, the hyperbolic angle� betweenS and5 along �S is

cosh� = �hNS,~e3i = �� (ux1, ux2, 1)p
1� u02 , (0, 0, 1)

�
=

1p
1� u02 at jr j = a.

Laplace and the Young equations are written, respectively,as

u00(r )

(1� u0(r )2)3=2 = �u(r ), �a < r < a,(5)

u0(�a) = � tanh�, u(a) = u(�a).(6)
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In order to attack the problem (5)–(6), we first begin with thenext initial value
problem

u00(r )

(1� u0(r )2)3=2 = �u(r ), r > 0,(7)

u(0) = u0, u0(0) = 0,(8)

whereu0 is a real number.

Theorem 3.1. Given u0, there exists a unique solution of(7)–(8). The solution
u = u(r ; u0, �) continuously depends on the parameters u0, �. The maximal interval of
definition of u isR.

Proof. Putv = u0=p1� u02. Then the problem (7)–(8) becomes equivalent to a
pair of differential equations

u0 =
vp

1 + v2
, u(0) = u0,(9)

v0 = �u, v(0) = 0.(10)

The solutionu that we look for is then defined by

(11) u(r ) = u0 +
Z r

0

v(t)p
1 + v(t)2

dt.

Then standard existence theorems of ordinary differentialequations assures local exis-
tence and uniqueness of (9)–(10) as well as the continuity with respect to the parame-
tersu0 and�. We study the maximal domain of the solution. On the contrary, suppose
that [0, R) is the maximal interval of the solutionu, with R<1. By (10) and (11),

ju(r )j < ju0j + r , jv(r )j � j�jr�ju0j + r

2

�
.

Thus, and using (9)–(10), the limits ofu0 and v0 at r = R are finite, which would
imply that we can extend the solutions (u, v) beyondr = R: a contradiction.

Corollary 3.2. A stationary band ofL3 supported on a horizontal plane can be
extended to a graph defined in5, that is, it is an entire spacelike surface ofL3.

In Fig. 1 we have the graphs of two solutions of (7)–(8) for different initial values.
A first integration of (7)–(8) is obtained by multiplying both sides in (7) byu0:
(12) u2 = u2

0 +
2�
�

1p
1� u02 � 1

�
.
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(a) (b)

Fig. 1. (a): the solutionu(r ;1, 0.5); (b): the solutionu(r ;�1,�0.5)

Denote by =  (r ) the hyperbolic angle between the directrix�(r ) = (r , u(r )) and the
horizontal direction. Put

(13) sinh =
u0p

1� u02 , cosh =
1p

1� u02 .

Then the Euler-Lagrange equation (7) takes the form

(14) (sinh )0 = �u,

and so,

(15) sinh = � Z r

0
u(t) dt.

The identity (14) actually corresponds with the mean curvature equation in its diver-
gence form (3). Using (12) and (13), we have

(16) u2 = u2
0 +

2� (cosh � 1).

We study the symmetries of a stationary band, excluding the trivial symmetries with
respect to each orthogonal plane to the rulings.

Theorem 3.3 (Symmetry). Let u be a solution of(7).
1. If u0(r0) = 0, the graph of u is symmetric with respect to the vertical linefr = r0g.
2. If u(r0) = 0, the graph of u is symmetric with respect to the point(r0, 0).

Proof. In both cases, we can assume thatr0 = 0. We prove the first statement.
The functionsu(r ) and u(�r ) are solutions of the same equation (7) and with the
same initial conditions atr = 0, namely, u0 and u0(0) = 0. Then the uniqueness of
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solutions givesu(r ) = u(�r ). The proof of the second statement is similar in showing
u(r ) = �u(�r ): now both functions are solutions of (7) with initial conditions u(0) = 0
and u0(0).

Finally, we establish a result that says that we can take the signs of u0 and � to be
the same. As a direct consequence of the uniqueness of solutions, we have:

Proposition 3.4. Let u = u(r ; u0, �) be a solution of(7)–(8). Then u(r ; u0, �) =�u(r ;�u0, �).

Then it is possible to chooseu0 to have the same sign as�. This will be assumed
throughout the text.

4. Stationary bands: the case� > 0

This section is devoted to studying the qualitative properties of the shape of a ses-
sile stationary band. Assume� > 0. Recall thatu0 > 0. The geometry of the directrix
is described by the next:

Theorem 4.1 (Sessile case). Let u = u(r ; u0) be a solution of(7)–(8). Then the
function u has exactly a minimum at r= 0 with

lim
r!1 u(r ) = 1, lim

r!1 u0(r ) = 1.

Moreover, u is convex with

lim
r!1 u00(r ) = 0.

Proof. Sinceu0(0) = 0, we restrict ourselves to studyingu for r � 0 (Theorem 3.3).
Since the integrand in (15) is positive near tor = 0, sin > 0, and so,u0(r ) > 0.
This means thatu is increasing nearr = 0. If ro is the first point whereu0(ro) = 0,
then (12) implies thatu(ro) = u(0): a contradiction. Thus,u0(r ) > 0 for any r and
this proves thatu is strictly increasing andr = 0 is the unique minimum. On the other
hand, atr = 0, u00(0) = �u0 > 0, which implies thatu is convex aroundr = 0. Since
u(r )> u0 > 0, Equation (7) implies thatu00 does not have zeroes, that is,u is a convex
function.

Becauseu(r ) !1 as r !1, it follows from (12) that cosh (r ) !1, that is,
u0(r ) ! 1 as r !1. Finally, from (7) and (16),

0� u00 =
�

cosh3  
r

u2
0 +

2� (cosh � 1)! 0,

as r !1.
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In Fig. 1 (a), we show the graph of the directrix of a sessile stationary band.
As a consequence of Theorem 4.1, a sessile stationary band has the lowest height

if u0 > 0 (or the highest height ifu0 < 0) and this height is reached at the rulingf(0, x2, u0); x2 2 Rg. The fact thatu0(r ) ! 1 as r !1 can be written as follows:

Corollary 4.2. Any sessile stationary band ofL3 is asymptotic at infinity to a
lightlike cylinder ofL3.

Recall that, up to isometry, a lightlike cylinder inL3 is the surface defined asf(x1, x2, x3) 2 L3; x2
1 � x2

3 = 0g. Sinceu is an increasing function on (0,1), we bound
the integrand in (15) byu0 < u(t) < u(r ) obtaining

(17) �u0 < sinh (r )

r
< �u(r ).

Moreover,

(18) lim
r!0

sinh (r )

r
= �u0.

We establish the existence of the original variational problem introduced in this
work.

Theorem 4.3 (Existence). Let �a be a strip of the(x1, x2)-plane, a > 0. Given
constants� > 0 and �, there exists a stationary band on�a whose directrix is defined
by a function u= u(r ; u0), that makes a contact hyperbolic angle� with the support
plane fx3 = u(a)g.

Proof. If � = 0, we takeS= fx3 = 0g. Without loss of generality, we now assume� > 0. The problem is equivalent to search a solution of (5)–(6).For this, we take the
initial value problem (7)–(8), withu0 > 0. The problem then reduces to findu0 > 0
such thatu0(a; u0) = tanh�. By the continuity of the parameters, limu0!0 u0(a; u0) = 0.
On the other hand, by using (17), we have

u0(a; u0) = tanh (a) � �u0aq
1 +�2u2

0a2
! 1

as u0 !1. As a consequence, and by continuity again, we can findu0 > 0 such that
u0(a; u0) = tanh�.

The uniqueness of solutions will be derived at the end of thissection: see Corol-
lary 4.8. After the existence of solution of (5)–(6), we showcertain results about the
monotonicity of the solutions with respect to the parameters � andu0 of the differential
equation. First, for the capillary constant�, we prove:
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Theorem 4.4. Let �1, �2 > 0. Denote ui = ui (r ; u0, �i ), i = 1, 2, two solutions of
(7)–(8) with the same initial condition u0. If �1 < �2, then u1(r ) < u2(r ) for any r 6= 0
and u01(r ) < u02(r ) for r > 0.

Proof. Denote by (i ) the angle functions defined by (13) for each functionui .
By (15), we know that

(19) sinh (2)(r )� sinh (1)(r ) =
Z r

0
(�2u2(t)� �1u1(t)) dt.

At r = 0, the integrand is positive and so, (2)(r ) >  (1)(r ) on some interval (0,�).
Then u02(r ) > u01(r ) and becauseu2(0) = u1(0), we haveu2(r ) > u1(r ) in (0, �). We
prove thatu02(r ) > u01(r ) holds for anyr > 0. If r0 > 0 is the first point whereu02(r0) =
u01(r0), then u002(r0) � u001(r0) and u2(r0) > u1(r0). But (7) gives

u002(r0)

(1� u02(r0)2)3=2 = Cu2(r0) = �2u2(r0) > �1u1(r0) = Cu1(r0) =
u001(r0)

(1� u01(r0)2)3=2 .

This contradiction implies thatu02(r ) > u01(r ) for any r > 0 and then,u2(r ) > u1(r ).

We now return to the boundary value problem (5)–(6). We provethat for fixed�,
the solution and its derivative with respect tor are monotone functions on�.

Theorem 4.5 (Monotonicity with respect to�). Let �1, �2 > 0. Denote by ui =
ui (r ), i = 1, 2, two solutions of(5)–(6) for � = �i with ui (0)> 0. If �1 < �2, then
1. u1(r ) > u2(r ) for 0� r � a.
2. u01(r ) > u02(r ) for 0< r < a.

Proof. Putvi = sinh (i ). For each 0� r0 < r < a, Equation (15) yields

vi (r )� vi (r0) =
Z r

r0

�i ui (t) dt.

Then

(20) v2(r )� v1(r ) = v2(r0)� v1(r0) +
Z r

r0

(�2u2(t)� �1u1(t)) dt.

Becauseu01(a) = u02(a),

(21) v1(r0)� v2(r0) =
Z a

r0

(�2u2(t)� �1u1(t)) dt.

Claim 1. If �2u2(r0) � �1u1(r0), then v2(r0) < v1(r0).
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On the contrary case, that is, ifv1(r0) � v2(r0), then 0< u01(r0) < u02(r0). The fact that�1 < �2 implies �1u01(r0)< �2u02(r0). Hence�1u1 < �2u2 on a certain interval (r0, r0+Æ).
Let r1 2 (r0, a] be the largest number where such inequality holds. In view of (20),
for eachr0 < s� r1, v2(s) > v1(s). Thusu02(s) > u01(s) and �2u02 > �1u01. This implies�2u2 > �1u1 for eachr0 < s � r1. Since r1 is maximal, r1 = a. We put nows = a
in (21) and we obtain

0� v1(r0)� v2(r0) =
Z a

r0

(�2u2(t)� �1u1(t)) dt > 0,

which is a contradiction. This proves the Claim.
Let us prove the Theorem and we begin with the item 2. Assume there existsr0,

0< r0 < a, such thatu01(r0) � u02(r0). Thenv1(r0) � v2(r0). By the Claim,�2u2(r0) <�1u1(r0), and so, (7) impliesv02(r0) < v01(r0). For a certain neighborhood on the left of
r0, we obtain then

0� v2(r0)� v1(r0) < v2(r )� v1(r )

which yields v2(r ) > v1(r ). Becausev1(0) = 0 = v2(0), there exists a last numberr1,
0 � r1 < r0, such thatv2 > v1 in the interval (r1, r0) and v2(r1) = v1(r1). The Claim
implies now�2u2(r ) < �1u1(r ), for r1 < r � r0. But (21) yieldsv2(r ) < v1(r ) and that
is a contradiction. Consequently,u02 < u01 in (0, a).

Let us prove the item 1. Becauseu02 < u01, v2 < v1. If r is close to 0,�i ui (r )r ��i ui (0)r , it follows from (18) that

lim
r!0

vi (r )

r
= �i ui (0).

Becausev1 > v2, we infer thenu2(0) < u1(0). Sinceu02 < u01, an integration leads to
u2 < u1 on the interval [0,a].

Given a capillary constant�, we would like to control the dependence of solutions
u(r ; u0) with respect to the initial conditionu0. We will obtain monotonicity, that is,
if u0 < v0, then u(r ; u0) < u(r ; v0) for any r . Moreover, we can estimate the distance
between the two solutions.

Theorem 4.6. Fix � > 0. If Æ > 0, then u(r ; u0 + Æ)� Æ > u(r ; u0) for any r 6= 0.

Proof. By symmetry, it is sufficient to show the inequality for r > 0. Define the
function uÆ = u(r ; u0 + Æ), and let Æ be the corresponding hyperbolic angle, see (13).
It follows from (15) that

(22) sinh Æ � sinh = � Z r

0
(uÆ(t)� u(t)) dt.
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Since the integrand is positive atr = 0, there exists� > 0 such that

sinh Æ(r )� sinh (r ) > 0, in (0, �).
Because

sinh Æ(0)� sinh (0) = 0,

we have the inequality Æ >  in the interval (0,�). In addition,

(uÆ(r )� u(r ))0 = tanh Æ(r )� tanh (r ) > 0.

Therefore the functionuÆ � u is strictly increasing onr . So, uÆ(r ) � Æ > u(r ). Let
r0 > � be the first point whereuÆ(r0) � Æ = u(r0). Again (22) yields sinh Æ(r0) �
sinh (r0) > 0 and (uÆ � u)0(r0) � 0. But this implies that Æ(r0) �  (r0), which it is
a contradiction. As conclusion,uÆ � Æ > u in (0,1) and this shows the result.

Corollary 4.7. Let S1, S2 be two sessile stationary bands with the same capillary
constant�. Let hi be the lowest heights of Si , i = 1, 2. If 0< h1 < h2, we can move
S2 by translations until it touches S1 in such way that S2 lies completely above S1.

Corollary 4.8 (Uniqueness). The solution obtained inTheorem 4.3is unique.

Proof. By contradiction, assume thatS1 and S2 are two different stationary bands
on �a and with the same Young condition. By the symmetries of solution of (5) and
Theorem 4.1,S1 and S2 are determined by functionsu1 = u(r ; u0) and u2 = u(r ; v0)
respectively, solutions of (7)–(8) on the same strip�a and withu01(a) = u02(a). Without
loss of generality, we assume that 0< u0 < v0. The proof of Theorem 4.6 says that
u02(r ) > u01(r ) in some interval (0,�). Actually, we now prove that this inequality holds
for any r > 0. If r0 is the first point whereu01(r0) = u02(r0), then u002(r0) � u001(r0) and
u2 > u1 on [0, r0]. But Equation (7) implies that

u002(r0)

(1� u02(r0)2)3=2 = �u2(r0) > �u1(r0) =
u001(r0)

(1� u01(r0)2)3=2 .

This contradiction implies thatu02(r ) > u01(r ) for any r > 0. But then it is impossible
that u02(a) = u01(a).

This section ends with a result of foliations of the ambient space L3 by stationary
bands.

Corollary 4.9. Fix � > 0. Then the Lorentz-Minkowski spaceL3 can be foliated
by a one-parameter family of sessile stationary bands, for the same capillary constant�. The foliations are given by stationary bands that are entirespacelike surfaces whose
profile curves arefu(r ; u0); u0 2 Rg and u0 is the parameter of the foliation.
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Proof. Let (a, b) be a point in the (x1, x3)-plane. We have to show that there
exists a uniqueu0 such thatb = u(a; u0). If b = 0, we takeu0 = 0. We assume that
b > 0 (the reasoning is similar ifb < 0). By the dependence of solutions of (7)–(8)
and becauseu(r ; u0) � u0 (assumingu0 > 0), we have

lim
u0!0

u(a; u0) = 0, lim
u0!1 u(a; u0) = 1.

Then we employ again the dependence of the parameteru0 to assure the existence of
u0 suchu(a; u0) = b. The uniqueness ofu0 is given by Theorem 4.6.

REMARK 4.10. It is worth to point out that in Relativity, there is an interest of
finding real-valued functions on a given spacetime, all of whose level sets provide a
global time coordinate. Consequently, Corollary 4.9 says that we can find a foliation
of the ambient spaceL3 whose leaves are sessile stationary bands tending to lightlike
cylinders at infinity.

5. Sessile stationary bands: estimates

This section is devoted to obtaining estimates of the size for a sessile stationary
band. Strictly speaking, we will give bounds of the height ofthe solutions of our vari-
ational problem in terms of the lowest heightu0, the hyperbolic angle of contact� or
the width 2a of the strip�a.

Fix � > 0. Let S be a stationary band that is a graph on�a and given by a
solution u = u(r ; u0) of (7)–(8). Supposeu0(a) = tanh�. A first control of u(a) comes
from the identity (12):

(23) u(a) =

r
u2

0 +
2� (cosh� � 1).

The estimates that we shall obtain are a consequence of the comparison of our station-
ary bands with hyperbolic cylinders. Considery1 and y2 two hyperbolas defined on
[0, a] and given by

y1(r ) = u0 � �1 +
q

r 2 +�2
1, �1 =

1�u0
,(24)

y2(r ) = u0 � �2 +
q

r 2 +�2
2, �2 =

a

sinh (a)
.(25)

Let 61 and62 be the hyperbolic cylinders whose directrix arey1 and y2, respectively.
Both surfaces have constant mean curvature:

H1 =
Cy1

2
=
�u0

2
, H2 =

Cy2

2
=

sinh (a)

2a
.
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The functionsy1 and y2 agree withu at r = 0. On the other hand, the mean curvature
of S at the point (0,x2, u0) agrees with that of61 and u0(a) = y02(a).

Lemma 5.1. The surface S lies between61 and 62.

Proof. In order to prove the result, it is sufficient to showy1 < u < y2 on the
interval (0,a]. Denote byCu the curvature of the graph ofu. At r = 0, Cu(0) =�u0 = Cy1(0), but Cu is increasing onr since both� and u0 are positive. Because
u(0) = y1(0), we conclude thaty1(r ) < u(r ) in 0< r < a. We now prove the inequality
u < y2. Since the curvey2 has constant curvature, inequalities (17) yield

Cy2(0) = Cy2(a) =
sinh (a)

a
> �u0 = Cu(0).

Then atr = 0, Cu(0) < Cy2(0). Since y2(0) = u(0), it follows that there existsÆ > 0
such thatu(r ) < y2(r ) for 0 < r < Æ. We assume thatÆ is the least upper bound of
such values. By contradiction, suppose thatÆ < a. As y2(Æ) = u(Æ) and y02(Æ) � u0(Æ), (2)(Æ) �  (Æ) and thus

(26)
Z Æ

0

d

dr
(sinh (r )� sinh (2)(r )) dr = sinh (Æ)� sinh (2)(Æ) := �(Æ) � 0.

Hence there exists̄r 2 (0, Æ) such that

Cu(r̄ ) = (sinh )0(r̄ ) > (sinh (2))0(r̄ ) = Cy2(r̄ ).

As Cu(r ) is increasing,Cu(r ) > Cy2(r ) for r 2 (r̄ , a). In particular, and usingu0(a) =
y02(a),

0< Z a

Æ (Cu(r )� Cy2(r )) dr =
Z a

Æ
d

dr
(sinh (r )� sinh (2)(r )) dr = ��(Æ),

which contradicts (26).

As a consequence of Lemma 5.1 and puttingy1(a) < u(a) < y2(a), we have:

Theorem 5.2. Let � > 0 and let u be a solution of the problem(5)–(6) given by
u = u(r ; u0). If u0 is the lowest height of u, then

u0 � 1�u0
+

s
a2 +

1�2u2
0

< u(a) < u0 + a
cosh� � 1

sinh� .
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We point out that the upper bound foru(a) obtained in Theorem 5.2 does not de-
pend on� but only onu0 and �. Other source to control the shape ofu comes from
the integration ofu. We know from (15) and Lemma 5.1 that

(27) � Z a

0
y1(t) dt < sinh (a) < � Z a

0
y2(t) dt.

Actually, these inequalities inform us about the volume perunit of length that encloses
each one of the three surfaces with the support planefx3 = u(a)g. The difference with
the estimate obtained in Theorem 5.2 is that we now obtain a control of the value (a) = �. For the integrals involvingyi , we write

Z a

0

�p
r 2 + m2 + c

�
dr := F(c, m) = ac+

a

2

p
a2 + m2 +

m2

2
log

 
a +

p
a2 + m2

m

!
.

Then inequalities (27) are written as�F(u0 � �1, �1) < sinh� < �F(u0 � �2, �2).

Theorem 5.3. Fix � > 0 and let u = u(r ; u0) be a solution of the problem
(5)–(6). Then

(28)
sinh�

a� +
a

sinh� � a coth�
2

� a�
2 sinh2 � < u0 < sinh�

a� .

Proof. The left inequality in (28) is a consequence of sinh� < �F(u0 � �2, �2).
The right inequality comes by comparing the slopes ofy1 and u at the pointr = a,
that is, y01(a) < u0(a).

We obtain a new estimate of the solutionu. For this, let us move down the hyperbola
y2 until it meetsu at (a, u(a)). We denote byy3 the new position ofy2.

Lemma 5.4. The function y3 satisfies y3 < u on the interval[0, a).

Proof. With a similar argument as in Lemma 5.1, we compare thecurvatures of
u and y3. By (17), we have

Cu(a) = �u(a) > sinh (a)

a
= Cy3(a).

Thus, around the pointr = a, y3 < u. By contradiction, assume that there isÆ 2
(0, a) such thaty3(r ) < u(r ) for r 2 (Æ, a) and y3(Æ) = u(Æ). Sinceu0(Æ) � y03(Æ), then (3)(Æ) �  (Æ). This implies

(29)
Z a

Æ (Cy3(r )� Cu(r )) dr = sinh (Æ)� sinh (3)(Æ) � 0.
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Then there would bēr 2 (Æ, a) such thatCy3(r̄ )�Cu(r̄ ) > 0. BecauseCu(r ) is increas-
ing on r , Cu(r ) < Cy3(r ) on (0,r̄ ) and hence the same inequality holds also throughout
(0, Æ) � (0, r̄ ). Thus

0< Z Æ
0

(Cy3(r )� Cu(r )) dr = sinh (3)(Æ)� sinh (Æ) � 0

by (29). This contradiction shows the result.

As conclusion, we have the estimates:

y3(r ) < u(r ), 0� r < a.

F(u(a)� a coth�, �2) < sinh�� .

Both inequalities give the next

Theorem 5.5. With the same notation as inTheorem 5.3,we have

u(a)� a coth� +

s
r 2 +

a2

sinh2 � < u(r ), 0� r < a,(30)

u(a) < sinh��a
+

a

2
coth� � a�

2 sinh2 � .(31)

6. Stationary bands: the case� < 0

In this section we study stationary bands when� < 0. We assume thatu0 < 0.

Theorem 6.1. Let u(r ; u0) be a solution of the problem(7)–(8). Then u is a
periodic function that vanishes in an infinite discrete set of points. The inflections of u
are their zeroes. Moreover, u0 � u(r ) � �u0, attaining both values at exactly the only
critical points of u.

Proof. From (15),u0 is positive nearr = 0 and then,u is strictly increasing on
some interval [0,�). As a consequence of (7),u is convex aroundr = 0 with u00 > 0
providedu < 0. This implies thatu must vanish at some pointr = ro. From (12), u0
vanishes whenu = �u0 and from (7), the inflections agree with the zeroes ofu. By
Theorem 3.3, we obtain the result.

Corollary 6.2. Let S be a pendent stationary band. Then S is invariant by a
group of horizontal translations orthogonal to the rulings.

In Fig. 1 (b), we show the graph of the directrix of a pendent stationary band.
Using (12) again and Theorem 6.1, we have
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Corollary 6.3. Let � < 0. Then the maximum slope of a solution u(r ; u0) of
(7)–(8) occurs at each zero of u and its value is

u0(ro) =
�u0

2� �u2
0

q�2u2
0 � 4�.

We show the existence of pendent stationary bands in the variational problem. We
need the following

Lemma 6.4. Consider u= u(r ; u0) a solution of (7)–(8) and denote ro the first
zero of u. Then

(32)

r�2� <
r

u2
0 � 2� < ro.

Proof. We consider the hyperbolay4 defined by

y4(r ) =

s
r 2 +

�
1�u0

�2

+ u0 � 1�u0
.

Using the same argument as in (17), the functionu is negative in the interval (0,ro)
and then,�ru(r ) < sinh (r ) < �ru0. It follows that u0(r ) < y04(r ). Since y4(0) =

u(0), u(r ) < y4(r ). Becausey4 meets ther -axis at the point
q

u2
0 � 2=�, a comparison

betweeny4 and u gives the desired estimates.

Theorem 6.5 (Existence). Let �a be a strip of the(x1, x2)-plane, a > 0. Given
constants� < 0 and �, there exists a stationary band that is a graph on�a whose
directrix is defined by a function u= u(r ; u0), that makes a contact hyperbolic angle� with the support planefx3 = u(a)g.

Proof. If � = 0, we takeS= fx3 = 0g. Without loss of generality, we now assume� > 0. The problem is equivalent to searching a solution of (5)–(6). For this, we take
the initial value problem (7)–(8), withu0 < 0. The problem is reduced to findingu0 <
0 such thatu0(a;u0) = tanh�. We will search the solution in such way thatu is negative
in its domain. We know by the continuity of parameters that limu0!0 u0(a; u0) = 0.

On the other hand, we show that limu0!�1 u0(a;u0) = 1. For this, we know that if

ju0j is sufficiently big, thena < qu2
0 � 2=� < ro, wherero is the first zero ofu(r ; u0).

It follows from the proof of Lemma 6.4 thatu(r ; u0) < y4(r ), for 0 < r < a. Since
both functions are negative, we have from (15) that

sinh (a) = � Z a

0
u(t) dt > � Z a

0
y4(t) dt = F

�
u0 � 1�u0

,
1�u0

�! +1,
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as u0 ! �1. Thus u0(a; u0) = tanh (a) ! 1, asu0 ! �1. By the continuity of
parameters, we conclude the existence of a numberu0 < 0 with the desired condition
of Theorem 6.5.

Finally, we establish some estimates of the solutionu for the problem (5)–(6).
By the periodicity ofu, we restrict ourselves to the interval [0,ro] and thata � ro (for
example, this condition holds ifa < p�2=�, see Lemma 6.4). We use the function
y4. Then u(r ) < y4(r ) for 0< r � a and

Z a

0
u(t) dt < Z a

0
y4(t) dt.

A similar argument as in Theorems 5.2 concludes

u(a) < u0 � 1�u0
+

s
a2 +

1�2u2
0

.

For pendent stationary bands we do not have a result of monotonicity with respect
to the parameters, such as it was done in Theorems 4.4 and 4.6 for the case� > 0.
This is due to the periodicity of solutions. At this state, wecan only assure the fol-
lowing results of monotonicity on a certain intervalI = (��, �) aroundr = 0:
1. If �1 < �2, then u(r ; u0, �1) > u(r ; u0, �2), r 2 I n f0g.
2. Let Æ > 0. Thenu(r ; u0 � Æ) + Æ > u(r ; u0), r 2 I n f0g.
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