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Abstract

In this paper we consider a free boundary problem for sgezaurfaces in the
3-dimensional Lorentz-Minkowski spade® whose energy functional involves the
area of a surface and a timelike potential. The critical {gobf this energy for any
volume-preserving admissible variation are spacelikdasas supported in a plane
and whose mean curvature is a linear function of the timedioate. In this paper,
we consider those surfaces that are invariant in a paratiefdinate to the support
plane. We call these surfaces stationary bands. We estabkistence of such
surfaces and we investigate their qualitative propertiEmally, we give estimates
of its size in terms of the initial data.

1. Introduction and statement of results

Let I8 denote the 3-dimensional Lorentz-Minkowski space, thatthg, real vec-
tor spaceR® endowed with the Lorentzian metric, ) = dx? + dx2 — dx2, wherex =
(X1, X2, X3) are the canonical coordinates kY. Let IT be a spacelike plane, which we
shall assume horizontal, and consider a potential en¥rglgat, up to constant multi-
ple, measures at each point the distancdltoWe are interested in the following

Variational problem Find spacelike compact surfaces with maximal sur-
face area whose boundaries are supportedlioand which enclose a fixed
volume of the ambient space. We assume the effect of the fmitéh

The planell is called the support plane. If we search solutions up to the &r-
der, we are interested in surfacBghat are critical points of the corresponding energy
functional for any volume-preserving perturbation of theface. The energ¥ of the
system involves the surface argsl, the ared2| of the planar domai2 C IT bounded
by the boundaryp S of S and the potential defined by. Then

E =S — cosh)|«] +/ YdS
G
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where 8 is a constant and is the bounded region b$ U Q. Consider then an ad-
missible variation ofS to our problem, that is, a one parameter differentiable fami
of surfacesS indexed by a parameter with § =S, and supported all if1, that is,
9§ C I1. We assume tha® is a volume-preserving variation & and we denote by
E(t) the corresponding energy of the surfage We look for those surfaceS that are
critical points of the energy for all admissible variatiprihat is,

d
—| E(@)=0.
il EO

In such case, we say th& is a stationary surface According to the principle of
virtual works, stationary surfaces are characterized leyfttiowing:

Theorem 1.1. A spacelike surface S ih? is stationary if and only if the follow-
ing two conditions hold
1. The mean curvature H of S is a linear function of the distarc&It

@) 2H(x) =k x3(x) + A (Laplace equatio)

wherek is a constant called the capillary constardnd A is a constant to be deter-
mined by the volume constraint

2. The surface S interseci3 at a constant hyperbolic anglg along S (Young con-
dition).

We refer to [2, 3, 5, 10] for more details. In absence of theeptiél Y, the con-
stantx is zero andS is a spacelike surface with constant mean curvature or, more
briefly, a CMC spacelike surface. Some results on CMC spacslikiaces have been
obtained in [1, 2]. Recently, the author has considered #se thatH is a linear func-
tion of the x3 coordinate in a series of articles. When the surface is comphen it
must be rotational symmetric with respect to an orthogom# & the support plane
([20]). Rotational stationary surfaces have been destribg11, 12].

The present paper continues this work with non-compactasesfS that are in-
variant with respect to the,-coordinate. We say then th&is a band Our motiva-
tion for studying stationary surfaces under this conditi@s its origin in the theory of
CMC spacelike surfaces. The simplest examples of bands eitistant mean curva-
ture are hyperbolic cylinders: up to isometry of the ambigpdce, they are defined by
Ha = {((1/m) sinhxy), X2, (1/m) coshki)); —a < X1 < &, X2 € R}, m > 0 and whose
mean curvature i = m/2. A hyperbolic cylinder is also the graph of the function
y(X1,X%2) = ,/xf +1/m? defined on the strif2; = {(X1, X2, 0); —a < X1 < a} C I1. Hyper-
bolic cylinders and hyperbolic planes are used in the thedrgMC spacelike surfaces

as barrier surfaces, as it can be seen in [15]. See also Sdctielow. Finally, max-
imal bands H = 0) with singularities inL® have been studied in the literature [8, 14].



STATIONARY BANDS IN THREE-DIMENSIONAL MINKOWSKI SPACE 3

The purpose of this paper is to establish results on existand certain qualitative
features of stationary bands. We begin by proving:

Given real numberg, A and 8, there exists a stationary band S supported
on a strip of a plane which is parallel tdl that satisfies the Laplace equa-

tion and makes a hyperbolic angkewith the support plane along its bound-

ary (Theorems 4.3and 6.5). Moreover the surface can extend to be an
entire surface

For this, Equation (1) is reduced to an ordinary differdnéiguation of second order
and we analyze the existence of solutions. This is carrigdro&ection 3. The quali-
tative properties of the shapes of a stationary band depentieosign ofx. Following
the terminology of the Euclidean case, we calbessileor pendentstationary band if
k >0 ork <0, respectively. In Sections 4 and 5 we study the case0. We prove:

A sessile stationary band is a convex surface and asymptoti lightlike
cylinder at infinity (Theorem 4.1and Corollary 4.2).

Next, we study properties of monotonicity on the parametesind we compute
the size of the surface in terms of given data. We omit theestahts and we refer to
Section 5 for details. Finally in Section 6 we study pendeatienary bands and we
describe the shapes of such surfaces:

A pendent stationary band is invariant by a group of trarisias in an or-
thogonal direction to the rulings of the surfac&he x-coordinate of the
surface is a periodic function and the surface extends to lpgaph onIl

(Theorem 6.1).

As we have pointed out, stationary surfaces generalize ahelyff of CMC spacelike
surfaces. Constant mean curvature spacelike surfaces iorentzian space are well
known from the physical point of view because of their roledifferent problems in
general relativity. See for instance [6, 13] and referertbesein. On the other hand,
the Laplace equation (1) is of elliptic type (see also Eaqumt{3) below) and well-
known in the theory of partial differential equations. Iristlsense, the interest of this
equation in the Lorentzian ambient space has appeared .inH#pglly, in connection
with the Euclidean ambient space, we recall that physicgiidi drops are modeled by
surfaces whose mean curvature is a linear function of itghteias it occurs to the sta-
tionary surfaces of.3. In Euclidean space there exists an extensive literaturetoh
surfaces. We refer to the Finn's book [7], which contains &haestive bibliography,
and more recently, [9].
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2. Preliminaries

A nonzero vecton € L2 is called spacelike or timelike ifv, v) > 0 or (v, v) < 0,
respectively. LetS be a (connected) surface and JetS — L2 be an immersion oS
into 3. The immersion is said to be spacelike if any tangent vedds is spacelike.
Then the scalar produgt, ) induces a Riemannian metric d&@ Observe thai; =
(0,0,1) is a unit timelike vector field that is globally defihenL3, which determines a
time-orientation on the spade®. This allows us to choose a unique unit normal vector
field N on S which is in the same time-orientation &g, and henceS is oriented by
N. In this article all spacelike surfaces will be oriented @ding to this choice of
N. Because the support plane in our variational problem iszbotal, the hyperbolic
angle 8 betweenS and IT along its boundary is given byN, &) = — coshg.

The notions of the first and second fundamental form for dpj@cénmersions are
defined in the same way as in Euclidean space, namely,

I:Zgij dx dx;, and “:Zhij dx dx;,
ij ij

respectively, where;j = (9; X, 9jX) is the induced metric o by x andh;; =—(9; N, 9; X).
Then the mean curvatutd of x is given by

h11022 — 212012 + h2o011
det(gij ) '

Locally, if we write S as the graph of a smooth functian= u(x;, x;) defined over a
domain 2, the spacelike condition implieg/u| < 1. According to the choice of the
time orientation,

(2) 2H = trace(™I1) =

(Vu, 1)
V1-1Vu|2

and the mean curvature of S at each pointX, u(x)) satisfies the equation

N =

(1—|Vud)Au+ Z uiuju; = 2H(1 — |[Vu?)®2,

This equation is of quasilinear elliptic type and it can rdagively be written in diver-
gence form

3) div(\/%) = 2H

In particular, ifu andv are two functions which are solutions of the same equatipn (3
the difference functiorw = u — v satisfies an elliptic linear equatiobw = 0 and one
can apply the Hopf maximum principle. Then we obtain unigssnof solutions for
each given boundary data.
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We now consider the type of surfaces which are interestindnigywork. A cylin-
drical surfaceS is a ruled surface generated by a one-parameter family aigbtrlines
{a(s) +tw; t € R}, parametrized by the parametgr where«(s), s € |, is a regular
curve contained in a planB and b is a given vector which is not parallel 8. The
curve « is called a directrix ofS and the lines are called the rulings 8f The shape
of a cylindrical surface is completely determined then by ¢feometry otx. Assuming
that S is a spacelike surface, then bats) and v are spacelike vectors. For exam-
ple, the directrix of a hyperbolic cylinder is a (spacelikg)perbola in a vertical plane
P and w is a horizontal vector orthogonal tB.

If we impose the stationary condition to a cylindrical sadathen we prove that
the rulings of the surface must be horizontal, and thens an embedded curve. Ex-
actly:

Proposition 2.1. Let S be a spacelike cylindrical surface . If the mean
curvature of S is a linear function of the time coordinatehwit # O, then the rul-
ings are horizontal

Proof. We parametriz& as
X(s, t) =a(s) +tw, sel,tekR,

where« is the directrix of S parametrized by the length arc. The computation of the
mean curvatureH of S according to (2) gives

_ (d(s) x w, &"(s))

(L (e(9), )2

4) 2H

where x is the cross product if.3. In particular, the mean curvature function depends
only on thes-variable. Therefore, ifH satisfies the relation (1), that is,

H = kX3 o0 (a(S) +ti) + A =k Xz 0 a(S) + A + k(X3 0 W),
we infer thatxz o w =0, and then,w is a horizontal vector. ]

As a consequence of Proposition 2.1, we can choose the Bplacentaining the direc-
trix to be vertical, with the rulings being horizontal sghat-lines. On the other hand,
becausex is a spacelike curve in a vertical plane,is globally the graph of a certain
function u defined on an interval of any horizontal line 8 Hence, we conclude:

Corollary 2.2. Any cylindrical surface if.® that satisfies the Laplace equati¢h)
is a band

DEFINITION 2.3. A stationary band ii.® is a cylindrical surface that satisfies
the Laplace equation (1).
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3. Stationary bands: existence and symmetries

In this section, we write our variational problem in termstio¢ theory of ordinary
differential equations, strictly speaking, the Laplacaia@pn (1) is reduced to an or-
dinary differential equation of second order. The purposéhis section is to establish
results of existence of solutions of the corresponding Hamn value problem together
with properties of symmetries of the solutions. L®te a stationary band df3. We
have then

KXz + A= (o x,a”)=Cy,

where C, denotes the curvature ef. In addition, the angle between such a surface
and the given horizontal support plane is constant.

If « =0 in the Laplace equation (1), the surface has constant ro@aatureH =
A/2. Then the curvatur€, is constant, namelyC, = 1. Thereforex is a straight-line
or a spacelike hyperbola @f° and the corresponding surfaces are planes or hyperbolic
cylinders respectively. Assuming that# 0, we do a change of variables to get 0
in the Laplace equation. For this, it suffices with the chanf¢he immersionx by
X+(A/x)&. Then the new surface is a stationary band with mean cue/at(x) = « Xs.
The support plané€l has been changed to another horizontal plane, narfiey A/« }.
However, the contact angle af along its boundary i$ again. It also follows that the
shape of the original surfacB is independent of the constraintin (1). Throughout
this work, we shall consider the case thaf 0 andA =0 in the Laplace equation (1).
Then the problem of existence of our variational problemxpgressed as follows:

Variational problem Let 8 and« # 0 be two real numbers and I€f be
a horizontal plane. Does there exist a stationary b8nsupported onll
such that: i) the mean curvature in each poing S is H(x) = kX3 and;
i) the hyperbolic angle betwee8 and IT alongaS is g?

Let S be a stationary band given as the graph of a functiodefined on a strip
Q,. We parametrizeS by S={r, X2, u(r)); —a <r < a, X € R}. According to the
choice of the orientation oi%, the hyperbolic anglgg betweenS and IT along S is

(Uxys Uxyy 1) > 1
coshB = —(Ng, & =—<;, 0,0,1)=——— at |r|=a
pe-Ne &= OO = 2
Laplace and the Young equations are written, respectiasy,
u’(r)

(5) W:Ku(r), —a<r <a,

(6) u'(+a) = £ tanhgs, u(a) =u(-a).
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In order to attack the problem (5)—(6), we first begin with thext initial value
problem

u//(r) _
(7) W —KU(I’), r >0,
(8) u(0) =up, u'(0)=0,

whereug is a real number.

Theorem 3.1. Given w, there exists a unique solution @7)~8). The solution
u =u(r; ug, k) continuously depends on the parametegs 1. The maximal interval of
definition of u isR.

Proof. Putv =u'/+/1—u?2. Then the problem (7)—(8) becomes equivalent to a
pair of differential equations

v

(9) u' = m! U(O) = Uo,
(10) v ' =«u, v(0)=0.

The solutionu that we look for is then defined by

S O
0o J1+v(t)?2

Then standard existence theorems of ordinary differeetiplations assures local exis-
tence and uniqueness of (9)—(10) as well as the continuitly wispect to the parame-
tersup and«. We study the maximal domain of the solution. On the confranppose
that [0, R) is the maximal interval of the solution, with R < co. By (10) and (11),

(11) u(r) = ug +

u)l < luol +r, ()l < I« (|Uo| + %)

Thus, and using (9)—(10), the limits af and v' atr = R are finite, which would
imply that we can extend the solutions, @) beyondr = R: a contradiction. ]

Corollary 3.2. A stationary band of.® supported on a horizontal plane can be
extended to a graph defined M, that is it is an entire spacelike surface &f.

In Fig. 1 we have the graphs of two solutions of (7)—(8) fofatint initial values.
A first integration of (7)—(8) is obtained by multiplying tosides in (7) byu’:

2 1
12 u2=u2+—(——1).
(12) i =
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aN W U
o
«

(@) (b)

Fig. 1. (a): the solutiom(r;1,0.5); (b): the solutiom(r;—1,—0.5)

Denote byy = ¢ (r) the hyperbolic angle between the directsig) = (r, u(r)) and the
horizontal direction. Put

u 1

13 sinhy = —, coshy = ——.
49 VE i O e
Then the Euler-Lagrange equation (7) takes the form
(14) (sinhy)’ = ku,
and so,

;
(15) sinhys :/c/ u(t) dt.

0

The identity (14) actually corresponds with the mean cumetequation in its diver-
gence form (3). Using (12) and (13), we have

(16) u?=u3+ g(cosmp —1).
K

We study the symmetries of a stationary band, excluding th@&lt symmetries with
respect to each orthogonal plane to the rulings.

Theorem 3.3 (Symmetry). Let u be a solution of(7).
1. If u'(rp) =0, the graph of u is symmetric with respect to the vertical ljne=rq}.
2. If u(rg) =0, the graph of u is symmetric with respect to the pdint 0).

Proof. In both cases, we can assume that 0. We prove the first statement.
The functionsu(r) and u(—r) are solutions of the same equation (7) and with the
same initial conditions at = 0, namely, up and u’(0) = 0. Then the uniqueness of
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solutions givesu(r) = u(—r). The proof of the second statement is similar in showing
u(r) = —u(—r): now both functions are solutions of (7) with initial cotidns u(0) =0
and u’(0). L]

Finally, we establish a result that says that we can take ithes sof ug and « to be
the same. As a direct consequence of the uniqueness ofs@utive have:

Proposition 3.4. Let u=u(r; ug, ) be a solution of(7)}«8). Then ur; ug, k) =
—u(r; —Uo, k).

Then it is possible to choosey to have the same sign as This will be assumed
throughout the text.

4. Stationary bands: the casex > 0

This section is devoted to studying the qualitative prapsrof the shape of a ses-
sile stationary band. Assume> 0. Recall thatuy > 0. The geometry of the directrix
is described by the next:

Theorem 4.1 (Sessile case). Let u=u(r; up) be a solution of(7)«8). Then the
function u has exactly a minimum at=0 with

lim u(r)=oc, lim u'(r)=1.
r—-oo r—-oo
Moreover u is convex with

lim u’(r) =0.
r—o0

Proof. Sinceu’(0) = 0, we restrict ourselves to studyingor r > 0 (Theorem 3.3).
Since the integrand in (15) is positive nearrto= 0, sinys > 0, and so,u’(r) > 0.
This means thatl is increasing near = 0. If r, is the first point wheraJ'(r,) = 0,
then (12) implies thau(ry) = u(0): a contradiction. Thusy'(r) > 0 for anyr and
this proves thau is strictly increasing and = 0 is the unique minimum. On the other
hand, atr = 0, u”’(0) =kup > 0, which implies thatu is convex around = 0. Since
u(r) > ug > 0, Equation (7) implies that” does not have zeroes, that isjs a convex
function.

Becauseu(r) — oo asr — oo, it follows from (12) that coshy(r) — oo, that is,
u'(r) — 1 asr — oo. Finally, from (7) and (16),

K

cosht ¥

oO<u"=

2
\/ug + ;(COShlﬂ —-1)— 0,

asr — oo. O
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In Fig. 1 (a), we show the graph of the directrix of a sessisgichary band.

As a consequence of Theorem 4.1, a sessile stationary banthédowest height
if up > O (or the highest height ifiy < 0) and this height is reached at the ruling
{(0, X2, Ug); X2 € R}. The fact thatu'(r) - 1 asr — oo can be written as follows:

Corollary 4.2. Any sessile stationary band &f° is asymptotic at infinity to a
lightlike cylinder of LS.

Recall that, up to isometry, a lightlike cylinder ih® is the surface defined as
{(x1, X2, X3) € L3; xf—xg =0}. Sinceu is an increasing function on (6¢), we bound
the integrand in (15) by < u(t) < u(r) obtaining

(17) Uo < m < seu(r).

Moreover,

(18) jim SO _
r—0 r

We establish the existence of the original variational fobintroduced in this
work.

Theorem 4.3 (Existence). Let Q4 be a strip of the(xy, x2)-plane a > 0. Given
constantsc > 0 and B, there exists a stationary band @, whose directrix is defined
by a function u= u(r; ug), that makes a contact hyperbolic angbewith the support
plane {x3 = u(a)}.

Proof. If B =0, we takeS= {x3 = 0}. Without loss of generality, we now assume
B > 0. The problem is equivalent to search a solution of (5)—&)t this, we take the
initial value problem (7)—(8), witlug > 0. The problem then reduces to fing > 0
such thatu’(a; ug) = tanhB. By the continuity of the parameters, lign.o u’'(a; ug) = 0.
On the other hand, by using (17), we have

U(a: up) = tanhyr(a) > —— 22

1 +;c2u§a2

asup — oo. As a consequence, and by continuity again, we canding O such that
u'(a; up) = tanhp. ]

The uniqueness of solutions will be derived at the end of Hastion: see Corol-
lary 4.8. After the existence of solution of (5)—(6), we shoartain results about the
monotonicity of the solutions with respect to the paranseteandug of the differential
equation. First, for the capillary constant we prove:
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Theorem 4.4. Letky, ko > 0. Denote y = u;(r; ug, i), i =1, 2, two solutions of
(7)H8) with the same initial condition g1 If «1 < «, then u(r) < uy(r) for any r Z0
and U (r) < uy(r) for r > 0.

Proof. Denote byy® the angle functions defined by (13) for each functign
By (15), we know that

(19) thwekm-—smhdﬂna):tArMQUAO-—K1uﬂ0)dL

At r =0, the integrand is positive and sg;@(r) > v®(r) on some interval (05).
Then uy(r) > uj(r) and becauseix(0) = u1(0), we haveuy(r) > uai(r) in (0,¢€). We
prove thatu,(r) > uj(r) holds for anyr > 0. If rq > O is the first point wherei,(ro) =
uj(ro), thenuj(ro) < uj(ro) anduy(ro) > ui(ro). But (7) gives

u?y(ro)
(1 —uy(re)?)®?

us(r
e = Culho) = ko) > kata(r9) = G 1) =
This contradiction implies that,(r) > u(r) for anyr > 0 and thenuy(r) > uy(r). O

We now return to the boundary value problem (5)—(6). We prine for fixed g,
the solution and its derivative with respectrtoare monotone functions omn.

Theorem 4.5 (Monotonicity with respect tac). Let k1, k, > 0. Denote by u=
ui(r), i =1, 2, two solutions of(5)+6) for k¥ = k; with u;(0) > 0. If k1 < ko, then
1. uy(r) >uy(r) for0O<r <a.
2. u(r)>uj(r)for0<r <a.

Proof. Puty; = sinhy®). For each O<rg <r < a, Equation (15) yields

1ﬂm—m0@:xwmm®dt
Then
(20) v2(r) — va(r) = va(ro) — va(ro) + /ror (k2U2(t) — aus(t)) dt.
Becauseu; (a) = uj(a),

(21) vl(ro) — Uz(ro) = /a(KzLIz(t) — Klul(t)) dt.

Claim 1. If xous(ro) = k1Us(ro), thenva(rg) < vi(ro).
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On the contrary case, that is, #(ro) < v2(ro), then 0< uj(ro) < u5(rg). The fact that
k1 < k2 implies k1U) (ro) < kauy(rg). Hencexiuy < kauUp on a certain intervalrg, ro+38).

Let r1 € (ro, a] be the largest number where such inequality holds. In viéw20),

for eachrg < s <ry, v2(s) > vi(S). Thusuy(s) > uj(s) and kouj, > kyu;. This implies
KkoUz > KUy for eachrg < s <rj;. Sincer; is maximal,r; =a. We put nows = a

in (21) and we obtain

0> vi(ro) — valro) = / (kaUa(t) — r1us (1)) dt > O,

which is a contradiction. This proves the Claim.

Let us prove the Theorem and we begin with the item 2. Assuragethxistsro,
0 < rp < &, such thatu(ro) < u5(ro). Thenwvi(rg) < va(ro). By the Claim, kouy(rg) <
k1u1(ro), and so, (7) implies,(ro) < vy(ro). For a certain neighborhood on the left of
ro, we obtain then

0 < wa(ro) — va(ro) < va(r) —va(r)

which yields vo(r) > v1(r). Becausev;(0) = 0 =v,(0), there exists a last number,
0 <r; < rg, such thatv, > vy in the interval (1, ro) and vx(r;) = v1(r1). The Claim
implies nowx,uy(r) < k1us(r), forry <r <rg. But (21) yieldsv,(r) < v1(r) and that
is a contradiction. Consequently;, < u’ in (0, a).
Let us prove the item 1. Becausg < uj, vp < v1. If r is close to O.«ui(r)r >
kUi (O)r, it follows from (18) that
(r)

. Vi
lim —=
r-0 I

= kiU (0)

Becausev; > vo, we infer thenuy(0) < u1(0). Sinceu, < uj, an integration leads to
Uz < u; on the interval [0a]. O

Given a capillary constant, we would like to control the dependence of solutions
u(r; upg) with respect to the initial conditionig. We will obtain monotonicity, that is,
if Up < vg, thenu(r; ug) < u(r; vo) for anyr. Moreover, we can estimate the distance
between the two solutions.

Theorem 4.6. Fix x > 0. If § > 0, then ur;ug+8) —3 > u(r; up) for any r # 0.
Proof. By symmetry, it is sufficient to show the inequality fo> 0. Define the

function us = u(r; up +8), and lety® be the corresponding hyperbolic angle, see (13).
It follows from (15) that

(22) sinhy?® — sinhy =« /Or(u(g(t) — u(t)) dt.



STATIONARY BANDS IN THREE-DIMENSIONAL MINKOWSKI SPACE 13
Since the integrand is positive at= 0, there exists > 0 such that
sinhy®(r) —sinhy(r) >0, in (0,¢).
Because
sinhy%(0) — sinhy(0) = 0,
we have the inequalityy® > v in the interval (O¢). In addition,
(us(r) — u(r)) = tanhy’(r) — tanhy(r) > 0.

Therefore the functiorus — u is strictly increasing orr. So, us(r) — & > u(r). Let
ro > € be the first point wheraus(rg) — § = u(rg). Again (22) yields sinh%(rg) —
sinhyr(rg) > 0 and (15 — u)'(ro) < 0. But this implies thaty’(ro) < ¥ (ro), which it is
a contradiction. As conclusionys — 8§ > u in (0, co) and this shows the result. [

Corollary 4.7. Let §, S be two sessile stationary bands with the same capillary
constantx. Let h be the lowest heights of,S =1, 2. If 0 < h; < hy, we can move
S by translations until it touches;9n such way that Slies completely above;S

Corollary 4.8 (Uniqueness). The solution obtained iMTheorem 4.3is unique

Proof. By contradiction, assume thgt and S are two different stationary bands
on ©, and with the same Young condition. By the symmetries of gmiubf (5) and
Theorem 4.1,5 and S are determined by functiong; = u(r; ug) and u, = u(r; vo)
respectively, solutions of (7)—(8) on the same sfip and withu’(a) = uy(a). Without
loss of generality, we assume that<Oup < vg. The proof of Theorem 4.6 says that
us(r) > uy(r) in some interval (G¢). Actually, we now prove that this inequality holds
for anyr > 0. If rg is the first point whereau}(ro) = u5(ro), thenuj(ro) < uj(ro) and
Uz > Uz on [0,rg]. But Equation (7) implies that

uy(ro)
(1—ui(ro)?®?

uz(ro)

W = kUy(ro) > xug(ro) =

This contradiction implies tham,(r) > uj(r) for anyr > 0. But then it is impossible
that uj(a) = u’(a). ]

This section ends with a result of foliations of the ambiepace L2 by stationary
bands.

Corollary 4.9. Fix « > 0. Then the Lorentz-Minkowski spa&€ can be foliated
by a one-parameter family of sessile stationary barfds the same capillary constant
k. The foliations are given by stationary bands that are engjpacelike surfaces whose
profile curves are{u(r; ug); Up € R} and w is the parameter of the foliation
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Proof. Let @, b) be a point in the X;, x3)-plane. We have to show that there
exists a uniguedp such thatb = u(a; ug). If b =0, we takeup = 0. We assume that
b > 0 (the reasoning is similar ib < 0). By the dependence of solutions of (7)—(8)
and because(r; ug) > Up (assumingup > 0), we have

lim u(a; ug) =0, lim u(a; ug) = oo.
Uup—0 Up—>00

Then we employ again the dependence of the paramgtéo assure the existence of
Ug suchu(a; ug) =b. The uniqueness dfip is given by Theorem 4.6. ]

REMARK 4.10. It is worth to point out that in Relativity, there is amérest of
finding real-valued functions on a given spacetime, all oo level sets provide a
global time coordinate. Consequently, Corollary 4.9 sd tve can find a foliation
of the ambient spac&?® whose leaves are sessile stationary bands tending toikightl
cylinders at infinity.

5. Sessile stationary bands: estimates

This section is devoted to obtaining estimates of the sizeafsessile stationary
band. Strictly speaking, we will give bounds of the heighttié solutions of our vari-
ational problem in terms of the lowest heigly, the hyperbolic angle of contagt or
the width 2 of the strip ;.

Fix x > 0. Let S be a stationary band that is a graph €3 and given by a
solutionu = u(r; ug) of (7)—(8). Supposer'(a) =tanhg. A first control of u(a) comes
from the identity (12):

(23) u(a) = \/ug + %(coshﬂ —1).

The estimates that we shall obtain are a consequence of thpatison of our station-
ary bands with hyperbolic cylinders. Considgr and y, two hyperbolas defined on
[0, a] and given by

1
(24) ya(r) = Uo — pua +\/r2 + 2, =

a
25 = — + 2 4 2, = — )
(25) Y2(1) = Uo — iz m H2= Sinhy(a)

Let X; and X, be the hyperbolic cylinders whose directrix areand y,, respectively.
Both surfaces have constant mean curvature:

_ % KUg _ % _ sinhy(a)

= —, H
277 2a

H
17T
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The functionsy; andy, agree withu atr = 0. On the other hand, the mean curvature
of S at the point (0x., Up) agrees with that o, andu’(a) = y,(a).

Lemma 5.1. The surface S lies betweety and X».

Proof. In order to prove the result, it is sufficient to shegwv< u < y, on the
interval (0,a]. Denote byC, the curvature of the graph ai. At r =0, C,(0) =
kug = Cy,(0), but C, is increasing orr since bothx and u’ are positive. Because
u(0) = y1(0), we conclude thay,(r) < u(r) in 0 <r <a. We now prove the inequality
u < Y. Since the curvey, has constant curvature, inequalities (17) yield

Cyz (O) = Cyz (a) =

inh
Simvyia) ;/’(a) > KU = Cy(0).

Then atr =0, C,(0) < Cy,(0). Sincey,(0) = u(0), it follows that there exist$ > 0
such thatu(r) < y»(r) for 0 <r < §. We assume thai is the least upper bound of
such values. By contradiction, suppose that a. As y»(8) = u(8) and y5(8) < u'(é),
v@(5) < ¥(8) and thus

)
(26) / %(Sinhl//(r) — sinhy@(r)) dr = sinhy(8) — sinhy@(8) := «(8) > 0.
0
Hence there exists € (0, §) such that

Cu(F) = (sinhy ) (F) > (sinhy @) () = Cy, (7).

As Cy(r) is increasing,Cy(r) > Cy,(r) for r € (r, @). In particular, and usingl'(a) =
ZG

a a d
< — = —(si —qgj 2 = _
0 /8 (Cur) = Cy,(r))dr /8 dr(smhtp(r) sinhy*</(r)) dr a(6),
which contradicts (26). ]

As a consequence of Lemma 5.1 and puttin¢p) < u(a) < y»(a), we have:

Theorem 5.2. Letx > 0 and let u be a solution of the proble(B)—6) given by
u=u(r; ug). If ugis the lowest height of ,uthen

1 ) 1 coshg — 1
Up— —+ [a*+—— <U@ <U+ta—————.
Kk Ug K2ug sinhg
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We point out that the upper bound fafa) obtained in Theorem 5.2 does not de-
pend onk but only onug and 8. Other source to control the shape wfcomes from
the integration ofu. We know from (15) and Lemma 5.1 that

(27) K /Oa yi(t) dt < sinhy (@) < « /Oa yo(t) dt.

Actually, these inequalities inform us about the volume yeit of length that encloses
each one of the three surfaces with the support plage u(a)}. The difference with
the estimate obtained in Theorem 5.2 is that we now obtain rara@oof the value
¥(a) = B. For the integrals involvingy;, we write

a a m? a++a2+m?
/ (Vrz+m?+c)dr := F(c, m) =ac+ Ex/a2+m2+ > Iog(T)
0

Then inequalities (27) are written ag=(Ug — w1, 1) < SinhB < k F(Ug — w2, 12).

Theorem 5.3. Fix x > 0 and let u= u(r;up) be a solution of the problem
(5)+6). Then

sinhg a acothp ap sinhpg
+ Ug <

(28) ac sinhg 2 2sinkp = ax

Proof. The left inequality in (28) is a consequence of gink x F(up — o, 12).
The right inequality comes by comparing the slopesypfand u at the pointr = a,
that is, y;(a) < u'(a). ]

We obtain a new estimate of the solutian For this, let us move down the hyperbola
Yo until it meetsu at (@, u(a)). We denote byy; the new position ofy,.

Lemma 5.4. The function y satisfies y < u on the interval[0, a).

Proof. With a similar argument as in Lemma 5.1, we comparectheatures of
u andys. By (17), we have

Cu(a) =ku(a) > w

=Cy,(a).

Thus, around the point = a, y3 < u. By contradiction, assume that there dse
(0, @) such thatys(r) < u(r) for r € (8, a) and y3(§) = u(8). Sinceu’'(s) > y;(8), then
YO(8) < yw(8). This implies

(29) /:(cys(r) — Cy(r)) dr = sinhy/(8) — sinhy ®)(8) > 0.
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Then there would be € (8, a) such thatCy,(r) — Cy(r) > 0. BecauseC,(r) is increas-
ing onr, Cyu(r) < Cy(r) on (0,r) and hence the same inequality holds also throughout
(0,8) Cc (0,r). Thus

0< /S(Cys(r) — Cy(r)) dr = sinhy®(35) — sinhy (5) <0
0

by (29). This contradiction shows the result. ]

As conclusion, we have the estimates:

ya(r) <u(r), 0<r <a.

F(u(a) —acothg, uz) < sir:(hﬂ.

Both inequalities give the next

Theorem 5.5. With the same notation as ifiheorem 5.3,we have

(30) u(@ —acothp+ [r2+ .az <u(r), 0<r <a,
\ sini? B

(31) u(a) < sinhg a ag
Ka

+—= cothf — ————.
2 P 2sintt B

6. Stationary bands: the casex <0

In this section we study stationary bands wher: 0. We assume thaig < O.

Theorem 6.1. Let u(r;ug) be a solution of the problenf7)<8). Then u is a
periodic function that vanishes in an infinite discrete sepoints The inflections of u
are their zeroes Moreover ug < u(r) < —ug, attaining both values at exactly the only
critical points of u

Proof. From (15),u" is positive near = 0 and then,u is strictly increasing on
some interval [O¢). As a consequence of (7Y is convex around =0 with u” > 0
providedu < 0. This implies thatu must vanish at some poimt=r,. From (12), v’
vanishes wheru = +ug and from (7), the inflections agree with the zeroesuofBy
Theorem 3.3, we obtain the result. O

Corollary 6.2. Let S be a pendent stationary band’hen S is invariant by a
group of horizontal translations orthogonal to the rulings

In Fig. 1 (b), we show the graph of the directrix of a pendemtighary band.
Using (12) again and Theorem 6.1, we have
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Corollary 6.3. Let x < 0. Then the maximum slope of a solutiofr wyg) of
(7)+8) occurs at each zero of u and its value is

—u
u'(ro) = 0 5/ 12U — .
2 — kug

We show the existence of pendent stationary bands in thatiaral problem. We
need the following

Lemma 6.4. Consider u=u(r; ug) a solution of (7){8) and denote ¢ the first
zero of u Then

| =2 / 2
(32) 7 < ug — ; <To.

Proof. We consider the hyperbola defined by

1\2 1
= 24— + - —.
w0 = rts () suo-
Using the same argument as in (17), the functiois negative in the interval (0,)
and then,«ru(r) < sinhy(r) < «rue. It follows that u'(r) < y,(r). Since y4(0) =

u(0), u(r) < ya(r). Becausey, meets the -axis at the poim;/u% — 2/k, a comparison
betweeny, andu gives the desired estimates. ]

Theorem 6.5 (Existence). Let Q4 be a strip of the(xy, x2)-plang a > 0. Given
constantsk < 0 and 8, there exists a stationary band that is a graph @3 whose
directrix is defined by a function @ u(r; ug), that makes a contact hyperbolic angle
B with the support plangxs = u(a)}.

Proof. If B =0, we takeS= {x3 = 0}. Without loss of generality, we now assume
B > 0. The problem is equivalent to searching a solution of &)—for this, we take
the initial value problem (7)—(8), withip < 0. The problem is reduced to finding <
0 such that'(a;ug) =tanh8. We will search the solution in such way thats negative
in its domain. We know by the continuity of parameters that,|i.o U'(a; ug) = 0.

On the other hand, we show that |im _ u'(a;up) = 1. For this, we know that if

luol is sufficiently big, thera < ,/u3 — 2/k <o, Wherer, is the first zero ofu(r; uo).

It follows from the proof of Lemma 6.4 that(r; ug) < ya(r), for 0 <r < a. Since
both functions are negative, we have from (15) that

sinhyr(a) =« /a u(t) dt > « /a ya(t) dt = F(uo — i i) — +00,
0 0

KUp KUg
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asug - —oo. Thusu'(a; ug) = tanhys(a) — 1, asug — —oo. By the continuity of
parameters, we conclude the existence of a number 0 with the desired condition
of Theorem 6.5. 0

Finally, we establish some estimates of the solutiofior the problem (5)—(6).
By the periodicity ofu, we restrict ourselves to the interval [Q] and thata < r, (for
example, this condition holds # < /—2/k, see Lemma 6.4). We use the function
V4. Thenu(r) < ya(r) for 0 <r <a and

foa u(t) dt < /Oa ya(t) dt.

A similar argument as in Theorems 5.2 concludes

1 1
u@ <up— —+ a2+ ——.
KkUg K2ug

For pendent stationary bands we do not have a result of moiediowith respect
to the parameters, such as it was done in Theorems 4.4 anidbdifef casec > 0.
This is due to the periodicity of solutions. At this state, wan only assure the fol-
lowing results of monotonicity on a certain interviak= (—¢, €) aroundr = 0:
1. If k1 < ko, thenu(r; ug, k1) > u(r; Ug, k2), r € 1\ {0}.
2. Leté>0. Thenu(r;ug—38)+38 > u(r;ug), r €1\ {0}.
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