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Abstract
In this note, we shall show that Chow-stability and Hilbstability in GIT
asymptotically coincide. The proof in [5] is simplified inetpresent form, while
a quick review is in [6].

1. Introduction

For moduli spaces of polarized algebraic varieties, a @bl stability concepts
are known in algebraic geometry (cf. Mumford et al. [9]): Chstability and Hilbert-
stability. In this note, we clarify the asymptotic relatstrip between them. Through-
out this note, we fix once for all a very ample holomorphic limendle L over an
irreducible projective algebraic varietyl defined overC. Letn:=dimM > 0 and let
| be a positive integer with > n+ 1. ReplacingL by its suitable power, we may as-
sume thatH' (M, O(L1)) = {0} for all positive integers and j. Then associated to the
complete linear systerfl'|, we have the Kodaira embedding

u: M s PV,

where P*(V) is the set of all hyperplanes s := HO(M, O(L")) through the origin.
Let n and d, be respectively the dimension & and the degree of(M) in the pro-
jective spacéP*(V;). PutG := SLe(V) and W = {S* ()}, where $% (V) denotes
the d-th symmetric tensor product of the spade Take an elemenM; 7 0 in W*
such that the associated elemei;] in P*(W) is the Chow point of the irreducible
reduced algebraic cyclg(M) on P*(V;). For the natural action o5 on W*, let G,
denote the isotropy subgroup & at M;.

DEFINITION 1.1. (a) M, L") is called Chow-stableor Chow-semistableccord-
ing as the orbitG, - M, is closed inW* with |G|| < oo or the closure ofG, - M, in
W is disjoint from the origin.

(b) (M, L) is calledasymptotically Chow-stablé (M, L') is Chow-stable for all > 1.
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Let| andk be positive integers. Then the kerrlg| of the natural homomorphism
of SX(V)) to Vix := HO(M, On(L'™)) is the degreek component of the homogeneous
ideal definingM in P*(Vj). Putmy :=dimVix and yx ;= diml;x. Then A" |,k is
a complex line inF x := A7*(SY(V)). Take an elemenf # 0 in A" I, . For the
natural action ofG, on F , let él,k be the isotropy subgroup d at fi k.

DEFINITION 1.2. (@) M, L") is calledHilbert-stableif the orbit G, - fi  is closed
in F with |G | < oo for all k> 1.
(b) (M, L) is called asymptotically Hilbert-stabléf (M, L') is Hilbert-stable for all
> 1.

A result of Fogarty [4] (see also [9], p.215) states that Clstability for (M, L")
implies Hilbert-stability for M, L'). However, little was known for the converse im-
plication.

Consider the maximal connected linear algebraic subgtéugf the group of holo-
morphic automorphisms oM. To each positive integral multiple™ of L, we asso-
ciate the point L™ € Pic(M) defined byL™. For the naturalH-action on Pici),
we denote byH, the |dent|ty component of the isotropy subgrouptbfat [L™]. Put
H := H;. Since the orbitH, - [L] (¥ Hm/H) sitting in {L’ € Pic(M); (L")™ = L™}
reduces to a single point, we have

H=H, foral meZ.

Let {ki;i=0,1,2,...} be a sequence of integersn+1. For a positive integer, we
define a sequencf;} of positive integers inductively by setting.; :=l;ki andlg :=1.
In this paper, we shall show that

Main Theorem. (a) Assume that G- fj, i is closed in [ for all integers i> 0.
If A =(1)}, then G- M, is closed in W.
(b) (M, L) is asymptotically Chow-stable if and only(i¥1, L) is asymptotically Hilbert-
stable

As seen in the beginning of Section 3, (b) follows from (a). neks we here
sketch the proof of (a) of Main Theorem. Assurhe= {1}. SinceG;, - fj, k is closed
in F, , for all i, Lemma 3.10 shows that the polynomial Hilbert weight = w; (k;!)
in Section 3 is increasing

0 < wi(Kos 1) < wi(Kg; 1) < -+ < wa(Ki—g; 1) < wa(Ki; 1) <

for Kj, i =1,2,..., in (3.7), wherer: C* — G is an arbitrary algebraic one-parameter
subgroup. Since the asymptotic limit

wy(oo; 1) = kliﬁrr;o wi(k; 1)
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always exist, and sincK; — +oco asi — oo, we havew, (co;l) > 0. This means that
(M, L") is Chow-stable, i.e.G, - M, is closed inW.

This paper is organized as follows. First, Section 2 is giasna preparation for
Section 5. Then the proof of Main Theorem will be outlined irct8 3, while two
main difficulties (3.6) and Lemma 3.10 will be treated in $mw 4 and 5, respectively.

2. A test configuration and the group action py

Hereafter, we fix an action of an algebraic torlis= C* on A' := {s; s € C} by
multiplication of complex numbers

TxA' > AL (t,s) > ts.

Let 7: Z — A' be aT-equivariant projective morphism between complex vaggtiith

a relatively very ample invertible she#f on Z over Al, where the algebraic group

acts on., linearly on fibers, lifting theT-action onZ. Now the following concept
by Donaldson will play a very important role in our study:

DEFINITION 2.1 (cf. [1]). n: Z — Al above is called @est configuratiorof ex-
ponentl for (M, L) if, when restricted to fibersZs := 7 ~(s), we have isomorphisms

(Zs, L12) = (M, On(L"), 0#seAl

Let 7: Z — A’ be a test configuration of expondnfor (M, L). To each positive
integerk, we assign a vector bundlEx over A' associated to the locally free sheaf
. LX over A, i.e., O (Ey) = m. LK. For the naturall -action

k. T x Ex = Ex
induced by theT -action onL, we denote bypy o the restriction of theT -action px to

the fiber Ex)o over the origin. By thisT-action px, the natural projection oEy to Al
is T-equivariant. Note also that, over', we have the relative Kodaira embedding

(2.2) Z < P*(Ey).

For the structure ofy, the following equivariant trivialization of the vector hdle Ey
is known:

Lemma 2.3 (cf. [3], Lemma 2). The holomorphic vector bundleBver A® can
be T-equivariantly trivialized by

Ex = (Ex)o x AL,

where (Ex)o denotes the fiber of [Eover the origin
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Let Ax: T — GLc((Ex)o) denote the algebraic group homomorphism induced by
k.0 on (Ex)o. Then the identification in Lemma 2.3 allows us to write théicac px
above in the form

(2.4) p(t, (€ 9) = (k(t)(®), ts), (e S) € (Exo x A",

3. Proof of Main Theorem

The isotropy subgrougs; of G; at [M;] € P*(W) containsG, (cf. Section 1) as a
subgroup. HenceM, L') is Chow-stable if and only if

|G| <oco and G;-M, is closed in W,

because if dinG, < dim G, thenG, - M, = C*M,, and the origin is in the closure of
G- M, in W*. Now for all 0 <1 € Z, the identity componenG? of G; is isogenous

to an algebraic subgroup ¢, while by GIT [9], Proposition 1.5,@% is isogenous to
H for all multiplesm > 0 of some fixed integel> 1. Hence W, L) is asymptotically

Chow-stable if and only if

(3.1) H={1} andfor I >1, G;-M is closedin W

Similarly, if | > 0 is a multiple of some fixed integes- 1, we see that the identity
component oféhk with k > 1 is isogenous toH. Hence (M, L) is asymptotically
Hilbert-stable if and only if

(3.2) H= {1} and forall | > 1, Gjk-fix isclosedin Fy if k> 1.

In view of (3.1) and (3.2) above, (b) of Main Theorem followsnimediately from
Fogarty’s result together with (a) of Main Theorem. Hence, hage only to show (a)
of Main Theorem.

For one-dimensional algebraic torlis= C*, we consider an algebraic one-parameter
subgroup

AT — G

of the reductive algebraic grou@, := SL(V;). Then to each. as above, we assign a
test configuration of exponemtas follows:

DerINITION 3.3. TheDeConcini-Procesi family(cf. [13]) associated ta. is the
test configuration of exponent for (M, L) obtained as therl-equivariant projective
morphism

7 Z(1) — Al
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where Z(1) is the variety defined as the closure ®f- (4(M) x {1}) in P*(V) x Al
and the morphismr is induced by the projection dP*(V;) x A! to the second factor.
Let pr;: Z(A) — P*(Vi) denote the map induced by the projection®{(Vi) x Al to
the first factor. For the open subsgt c A?, the holomorphic mag: C* — Hilbp:y)
sending each e C* to A(t) := pry(Z(1);) € Hilbp«y) extends to a holomorphic map

ﬁ: Al — Hllbpx(vl),

where Z(1)s ;= 77Y(s), s e A, denotes the scheme-theoretic fibermofover s. Now
we can regardZ(i) as the pullback, by:, of the universal family oveHilbp-(y;). Note
also thatT acts onP*(Vj) x Al by

T x (P*(Vi) x AY) — (P*(M) x AY), (¢, (w, 8)) = (M(t)w, ts),

where G, acts naturally orP*(\}) via the contragradient representation. Then the in-
vertible sheaf

L= pr{ O]px(\/l)(l)

over Z(1) is relatively very ample for the morphism, and allows us to regard as
a projective morphism. Since the bundle space @#()(—1) is identified with the
blowing-up of V* at the origin, theG,-action onV,* induces naturally & -action on
L lifting the T-action onZ(1). By restricting L to Z(1)s, we have isomorphisms

(Z()s, Ls) = (M, Om(L"), 0#seAl,

where Ls := Lz, for eachs € A, Hencer: Z(x) — Al is a test configuration of
exponentl for (M, L).

For the DeConcini-Procesi family : Z(1) — A! as above, lety (L) € Z denote
the weight of theT-action on the complex line

/\(Ex)o <%/\H°(Z(x)o, £y if k> 1>,

where Ex)o := (m.L¥)y denotes the fiber, over the origin, of the locally free sheaf:
7 L% — AL If k> 1, then dimHO(Z(1)o, £§) is My := dimHO(M, Ow(L'¥)), and we
write my and ng(A) as

(3.4) my = Zul,iki,
i=0

n+l

(3.5) () =Y (K,

j=0
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wherew i, i =0,1,...,n, andy j(*), j =0,1,...,n+1, are rational real numbers
independent of the choice of positive integérs

Let 0 # M? € W* be such that the associateM]] € P*(W) is the Chow point
for the cycleZ(1)o on P*(V) counted with multiplicities. First, we observe that, =
"¢y (L)' [M]/n! > 0. Next, in Section 4, we shall show that

a

(3.6) v nea(h) = Y

whereg denotes the weight of th&-action onC*MP. We now put
wi(k; 1) = ne(A)/(kmy).
REMARK. Besides the embedding(1)g — P*(V,), we also have the embedding
Z(A)o = P*((E1)o)

for the linear subsystem associated ;) in the complete linear systeroy| on
Z(A)o. In the same manner as the weightabove is obtained from the cycle &)
on P*(M), we similarly obtain a weight/ from the cycleZ(1)o on P*((E1)o). Now
by Mumford [6], Proposition 2.11,

al/

v ne1(A) = e

Then (3.6) above claims thaf is replaced byg in this last equality.

Proof of (a) of Main Theorem. The argument at the beginning ho$ tsection
shows that the identity compone@® of G, satisfies

where Gﬁ is isogenous to an algebraic subgrouptbf Hence the assumptiod = {1}
of (a) of Main Theorem implies

IG,| <oo foral 0<ieZ
Put K; = ]_[ijzo kj for 0 <i € Z, where we putK_; := 1 for simplicity. Moreover,
we putl; :=1Kj_; for 1 <i € Z. Applying Lemma 3.10 below tol’(1”, k', k") =

(I, 1, Ki—1, Ki), we obtain

(3.7) w(Ki;1) > wi(Ki_p;1), 1=0,1,2,..,
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for all algebraic one-parameter subgroupC* < G;. On the other hand, by Appen-
dix, we haven;(1) =0, i.e.,

(3.8) wi(K_1; 1) = wy(2;1) = 0.
In view of (3.4) and (3.5), we see that

U n+1(A) _

(3.9) lim w,(k; 1) =
k—o00 Mn

By (3.7), (3.8) and (3.9) together with , > 0, it follows that
Vne1(A) >0 for all .

By (3.6), we conclude thatM, L') is Chow-stable, as required.

Lemma 3.10. Letn+1<keZ, and let K, I be positive integers with & n+1.
Assume that - ), ¢ is closed in F i for k" :=kk' and I” :=k'l". If H = {1}, then
w; (K”; 1) > w, (K';1") for all algebraic one-parameter subgroups C* — Gy.

4. Proof of (3.6)

In this section, we shall prove (3.6) by calculating the tem(i) in (3.4) in detail.
Hereafter, by considering the Decontini-Procesi fangily: Z(1) over A, we study the
bundlesEy, k=1, 2,... as in Section 2. A difficulty in calculating(A) comes up
when Z(1) sits in a hyperplane oP*(V;). Let N be the, possibly trivial,T-invariant
maximal linear subspace off vanishing onZ(1)o, where we regardZ(1)o as a sub-
scheme inP*(\V) (= {0} x P*(\M)). Then for someT -invariant subspac€; of V|, we
write the vector spac®, as a direct sum

Vi=Q:i:®N.

By Qi = Vi/N, we naturally have & -equivariant inclusionQ; C R;, where R; :=
(E1)o = (m:L)o ® C. Then

Z(Mo C P*(Qq) C P*(M),
i.e., Z(X)o sits in the T-invariant linear subspacB*(Qi) of P*(V). By taking the
direct sum of the symmetric tensor products @f, we putQ := Ppe, S(Q1), where
S(Qs) denotesC for k = 0. Let J(Q) ¢ Q denote theT -invariant homogeneous ideal
of Z(A)o in P*(Q1). Then by settingd (Q)x := J(Q) N SX(Q1), we define

Qk = S(Q1)/I(Qk-
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By Theorem 3 in [7], the natural homomorphisn8¢(E;) — Ei is surjective over
A\ {0} for all positive integerk. We also have thd -equivariant inclusion

(4.1) QC R, O<keZ,

where R := (Ex)o = (m.£¥)o ® C. By choosing general elemenss, i =0, 1, 2,...,n,
in Q1, we have a surjective holomorphic map

Pren: Z(A)o = PY(C), 2> (00(2) 1 01(2) : - - - on(2)),

so that the fiber @:l(q) overq:=(1:0:0:-.-:0) consists ofr points counted
with multiplicities, wherer :=1"c;(L)"[M]. For eachk > 1, we consider the subspace
Fi := prt HO(P"(C), Op(K)) of Qk. Then

(n+k)!

dim F = —I"I! Kl

is a polynomial ink of degreen with leading coefficient Ainl. For some positive in-
tegerky, there exist elements;, 7p,..., & in Qy, \ Fx, which separate the points in
pr];nl(q) including infinitely near points. Then fdt > 1, the linear subspaces

T1 Frekgr T2Fk—kos - - -+ Tr Frekg
of Q all together span a linear subspace of dimension

+ Kk — kp)!
r dim Fe_y, = ru = Lk + lower order term irk.

n'(k—kg)! nl
In view of (4.1), r dim F_y, < dim Qx < dim R =m,. Hence
4.2) dimR/Qx < Cik" 1

for some positive constar@®; independent ok. Putdy := dimQy, and letggx(A) denote
the weight of theT-action on /\‘Sk Qk, where the weight of thd -action on A\™ R¢

is ng(2). Then the weight of theT-action on /\mk"sk(Rk/Qk) is ng(A) — gk(2). On

the other hand, in view of Remark 4.6 below, the weightor the T-action on every
1-dimensionalT -invariant subspacé\ of R,/Qy satisfies

(4.3) la| < Cok

for some positive constar@, independent of the choice & Then we see from (4.2)
and (4.3) that

(4.4) INk(%) — ak(2)] < C1CK"™.
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Now a classical result of Mumford [8], Proposition 2.11, ass¢hat

n+1

—m + lower order term ink,

(4.5) k(%) =

where the weight in [8] and ours have opposite sign. From)(344) and (4.5), we
obtain (3.6) as required.

REMARK 4.6. PutXq := Z(A)o. For Xp sitting in P*(V;) x {0}, we choose a
sequence of scheme-theoretic intersections

Xj::X()ﬂElﬂEzﬂ--'ﬂEj, j:1,2,...,n,

where 4, o, ..., X, aren distinct general hyperplanes iP*(\;) x {0}. Then there
exists an integery satisfyingip > n such that

HP(Xj, Ox, (L)) ={0}, i=>io—n,

forall p>0andj=0,1,...,n Then by the arguments in the proof of Theorem 2
in [7], the natural homomorphisms

HO(Z(M)o, £h) ® HO(Z(W)o, Lo) = HU(Z(W)o, L5, i > ig,

are surjective. In particular, for all positive integeks the natural homomorphisms:
(R)®k - Ry are surjective for all integers> iq.

5. Proof of Lemma 3.10

In this section, we apply Section 2 t6 = Z(1) and| =1’, where the actions of
T :=C* on £ and Z(1)o are induced by the one-parameter groupC* < Gy in
Lemma 3.10, where for each positive intederthe corresponding -action px on Eg
induces

A T = GLe((Ex)o)

as in (2.4). Recall thak” = kk andk > n+ 1. For eachs € AL\ {0}, let Z(Z(1)s)
denote the kernel of the naurd@lequivariant surjective homomorphism

(s — (En)s,
between fibers oves for bundles §(Ek,) and Ey», where theT-actions onSR(Ek,)

and Ex- are by o and pyr, respectively. By the trivialization in Lemma 2.3 applied
to k =k, we can identify eaclGrs, s e A, with Gry. HereGrs denotes the complex
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Grassmannian of all compley. ¢-planes through the origin irSR(Ek/)S. The holo-
morphic map sending eache A\ {0} to Z(Z())s) regarded as an element i =)
Gro extends naturally to a holomorphic mag! — Grg, where the image of the ori-
gin under this holomorphic map will be denoted B¢Z (1)) by abuse of terminology.
For the inclusionZ(A) — P*(Ey) in (2.2), the action of eache T mapsZ(1)s onto
Z(A\)xs, and we have

(5.1) Z(Z(Mhs) = o (D(Z(Z(V)s))-

Here, via theT-action onZ(1)o, T acts onSR(Ek/)o preservingZ(Z(A)p). At s=1,
the fiber Z(1)s := 7w ~%(s) over s is thought of asy (M) sitting in P*(V)). Hence by
the notation in Section 1, we have

I(Z()\)s)lszl = I|~,|2

by identifying Eyxs=1, Ekrs=1 With Vi», V,.;, respectively. Consider the closed disc
A:={se AL |s| <1} of AL Since A"*Z(Z(A)s) in A% S(Ex)s is a complex line,
for eachs € A, we can choose an elemegt, ((s) 7 0 in the line in such a way that
Y11 k(S) depends ors holomorphically. Theny;, ((1) is regarded as a nonzero element
in the line A" 1, ¢ in A" SK(Vi»). By the trivialization in Lemma 2.3 applied to
k=K', we hereafter identifyEy)s, s € A, with (Ex)o. Consequently, this identification
allows us to regardj;, ¢(s) as an element inb := A\""* §2(Ekf)o for eachs e A, and
Gy is viewed as Sk((Ex)o). For eacht, t' € C*, by taking an unramified cover of
C* of degreemy,, we can write

t=t" and t' = ()™,

for i, ' € C*, wheremy is the rank of the vector bundl&,. The closedness of
G - i g Iin Ry i in the assumption of Lemma 3.10 means that the orbit (&« )o) -
V1 k(1) is closed inw. Now by the Hilbert-Mumford stability criterion,

(5.2) AMC*) - Y1) is closed in W,

where: C* — SLc((Ex)o) is an algebraic group homomorphism defined by

/TN — )‘k’(t) ~ *
)\.(t) = m, teC f

for Ak as in Section 2. To eaclh, ((s), s € A, we can naturally assign an element
[¥1 k(8)] in the complex Grassmannia@irg. Here [/, ¢(s)] corresponds to the sub-

spaceZ(Z(1)s) in SR(E«)O via the identifications‘z(Ek,)s = §(Ek/)0 in terms of the
trivialization in Lemma 2.3 applied t& = k’. Obviously,

[V k()] = [¥1k(0)] as s— 0.
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Moreover, in view of (5.1), we obtain
() - Yo i (S) € C° - Y (ts), s e A,

for all t € C* satisfying|t| < 1. For somes € R with 0 < ¢ < 1, we putD, :={t
C*; It] < ¢}. Then

A . Ak . "k 1 ~
(5.3) 10w = £ D “pry 0, ceo,

for some nonvanishing holomorphic map > s+— ¥(s) € ¥, where byA,, we mean
the subsefs € C; |s| <&} =D, U {0} of A. Now by (5.2) and (5.3), we obtain

(5.4) B <O.
On the other hand, since the mgpis continuous, (5.3) implies
(5.5) Im T30 - v k(1) =¥ (0).

If t, ' € D,, then from (5.3), it follows that

AOME) - ¥ j(1) =2ET) - v k@) = Ay ().

Hence A(E)({T#A(T) - ¥y, (1)} = PPy (tt'). Lett’ — 0. Then this together with (5.5)
implies

(5.6) M) - (0) =Ty (0).

In view of (5.4) and (5.6), the argument as in [1], 2.3, applie SR(Ek/)O — (Ex)o
allows us to obtain

ke nie G
O>13:rn(m—k|,(()_

k/ mk’ k/, mk//

N (3\’) - k”mk/f{ N ()") B Ni ()") },

wheren, (1) andni (%) are the weights of th€*-actions on/\™ (Ex)o and A™" (Ex)o,
respectively, induced by. Sinceiy is induced by, the definition off andA shows that

nk’(j\) nk”(j\) _ Y "oy
e~ e = Ml (1) = w, (1)

and hencew; (K’;1") < wy(k”;1"), as required. This completes the proof of Lemma 3.10.
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6. Appendix

The purpose of this section is to study tfieaction px o on (Ex)o with k =1 for
the DeConcini-Procesi familyg = Z(1) over A'. Let

pr: P*(M) x Al = P*(V), #:P*(V) x Al - Al

be the projections to respective factors. Put= pr;Op-(vy(1). Then for everye € V,
the map sending eache A' to (g, s) € Vi x A! defines a holomorphic section, denoted
by z(e), in HO(AL, #.£). The pullback:*z(e) by the inclusion map

1 Z(0) = P*(M) x Al

is naturally regarded as a holomorphic sectionEgfover A = {s € C}, wheres is the
affine coordinate forA'. Note that, fors # 0, the map

Vis e {i"t(e}(s) € (En)s

is a linear isomorphism. Her&y with k = 1 is written asE;, and E;)s denotes the
fiber of the vector bundleE; over s. In terms of theT-action onV, via the one-
parameter group.: T — SL(V), write the vector spac¥, as a direct sum

p
(6.1) N=EPN,

i=1

whereN; = {e e Vj; A(t)e=t%e for all t € T} for some mutually distinct integers;,
i=1,2,..., p. For eachi, consider theC[s]-module N;[s] := N; ®¢ CJ[s], where by
C[s], we mean the ring of polynomials is with coefficients inC. Let {e, ,...,€n}
be a basis for the vector spabg, wheren; :=dimN;. For everye € N;[s], by writing
eas a sumZT‘:l fi(s)e; € Ni[s] for some polynomialsf;(s) € C[s] in s, we put

(e) := Z fi(s)z(e) € HO(AL, #.L).
j=1

From theT-action onV, via A, we have a natural fiberwisg-action on the trivial bun-
dle Vi x A over Al. This then induces a fiberwisE-action on the vector bundI&;
over Al, while the restriction of this induced-action to the fiber E;)o is exactly py o.

Proposition 6.2. There exists a non-decreasing sequence of nonnegativgeiste
Bi1 < Bi2 < --- < Bin, together withC[s]-generators{e;; j = 1, 2,..., n;} for the
C[s]-module N[s] such that

(6.3) Fr(e)) =My, i=1,2,...,p j=1,2,...,m,
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for some holomorphic sections; to E; over Al where
(6.4) {0ij(0);i=1,2,...,p, j=1,2,...,n)
forms a basis for the vector spa¢&;)o.

Proof. By inductionon =1,2,...,n;, we defineg; ando;j from{e1,&2,...,6j-1}
and{oi1, 0i2, ..., 0ij—1} as follows. LetB;_1 be theC[s]-submodule ofN;[s] generated
by {61, &2,...,&j_1}, where we putB;_; = {0} for j =1. Let)); denote the set of
all C[s]-submodulesYy c N;[s] generated by — j +1 elements such that

(6.5) Y +Bj_1 = Ni[s],

whereY + Bj_; is the C[s]-submodule ofN;[s] generated byy and Bj_;. For each
Y €)Jj, let B(Y) denote the maximal nonnegative integesuch that all*z(e), e€,
are divisible bys? in HO(AY, ©,41(E1)). In view of the inequalityj < n;, the maximum

Bij = max p(Y)

exists because, otherwise, (6.5) would imply tiat(N;) C «*7(Bj_1) modulos? for
all positive integerss, in contradiction ton; > j — 1. By the definition ofg;;, it now
easily follows thatgi; < fi» <--- < Bin,. Take an elemenY;; of );; such thatB(Y;;) =
Bij- Then the maximality of;; allows us to obtaire; € Yi; andoj; € H(AY, 04:1(Ey))
satisfying (*z(ej) = sfioij; such thatoij(0) is C-linearly independent fronmo;(0),
0i2(0), ..., 0ij—1(0) in (Ey)o. Since this induction procedure stopsjat n;, we obtain
both (6.3) and the required condition for (6.4). ]

Now the vector bundlé; is generated by the global sectidas; i =1,2,...,p, j =
1,2,...,n;} over Al. Then by (6.1) and (6.3),

p1,0(t, 0ij (0)) =t*0i; (0)

for all i and j. In particular,ny(1) = Zip:l niai. Sincex is an algebraic one-parameter
subgroup inG, = SL(V,), by the definition ofN;, it follows from (6.1) that

1 = detg.(t)) = tZm e

forallt € T, i.e., ny(A) = 0. Note that this equality follows also from Lemma 2.3 by
the equivariant isomorphisnE(); = (E1)o (see also [11]).
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