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Abstract

Let § be a Riemann surface of tyg®, n) with 3p—3+n >0 andn > 1. In
this paper, we give a quantitative common lower bound for higperbolic lengths

of all filling geodesics orfs generated by two parabolic elements in the fundamental
group 71(S, a).

1. Introduction

Let & be a non-trivial closed curve on a Riemann surf&ef type (p, n) with
3p—3+n > 0. The length function

le: T(§ - RY

on the Teichmiiller spac&(S) is defined by sending each hyperbolic structare o (S)
of T(S) to the hyperbolic lengths(c) of the closed geodesic homotopic &on o (9).

It is well known ([11]) that the functiorlz achieves its positive minimum value
when € is a filling curve onS in the sense that every component Si\ {C} is ei-
ther a disk or a once punctured disk. The extremal value, ofsep depends only on
the homotopy class o. In this paper, we give a quantitative common lower bound
through T(S) for the hyperbolic lengths of certain kind of filling curves S.

Note that if S contains punctures, then some elemeaisiii the fundamental group
m(S a), ae S are represented by loopsthat pass througl and are boundaries of
once punctured disks. LeF denote the set of those elements.c 71(S, a).

The main result of this paper is the following:

Theorem 1. Let S be a Riemann surface of tyge, n) with 3p —3+n > 0
and n> 1. There are infinitely many homotopically independent fillmgves& on S
that can be expressed as products of two element$.inFor each suché and each
hyperbolic structures on S, we have

(1.1) le(0) = 2log(k? —5)— 4 log 2,
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wherexk =16p+8n—21if n>3; 16p+3if n=2; and16p+ 7 if n = 1.

REMARK. From the definition ofS we know thatp>0if n>4; p>1if n=
1, 2,3

Let H={z e C; Imz > 0} denote the upper half plane with the hyperbolic metric
om given by

(1.2) pu(@idz = 150

Let o: H — S be the universal covering with a covering groGp G is a torsion free
Fichsian group of the fist kind of typep(n) so thatH/G = &. The setF is one-to-one
correspondent with the set of parabolic element$Gof

Note that any hyperbolic elemegtis conjugate in PSYR) to z+— Ay z, where
Ag > 1 is called the multiplier of). Let Ay be the axis ofy. Using (1.2) one calculates
the hyperbolic length ob(Ay) is logAg.

The hyperbolic elemeng is called essential if every component 8f\ o(Ayg) is
either a disk or possibly a once punctured disk. Theorem lbearestated as follows:

Theorem 1. Let G be a finitely generated Fuchsian group of the first kind of
type (p,n) with 3p—3+n > 0 and n> 1. There are infinitely many essential hyperbolic
elements g of G that are generated by two parabolic elemdn@. d-urthermore for
each such element, ghe multiplier A4 of g satisfies

1 2
(L3) = {5629

wherex is given inTheorem 1.

2. Dilatations of pseudo-Anosov maps generated by two posie multi-twists

We first recall the definition and some basic properties o€tfimilller spaceT (R)
of a Riemann surfac® of type (p,n), 3p—3+n > 0. For more details see [3, 4, 8].

We define an equivalence class] [of a conformal structurer on S as follows.
Two conformal structures; ando, on R are called strongly equivalent if there is an
isometryh of o1(R) onto o,(R) such thatnglohocrl, as a self-map of the underlying
surfaceR, is isotopic to the identity. The collection of strong eqience classess|
of conformal structures form a Teichmiiller spacé@ (R). T(R) is naturally equipped
with a complex structure.

Let [01] and [o,] be two points inT(R). Let h: 01(R) — 02(R) be a quasi-
conformal mapping. Define the complex dilatiofe) = 9;h(z)/9,h(z) and denotg|v|| =
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esssup|v(2)|; z € 01(R)}. By definition, |[v|| < 1. The maximal dilatatiorK (h) is de-
fined by

_ 14|y

0= vl

The Teichmiiller distance betweem] and [0;] is defined as
1.
([oa]. [o2]) = 5 inflog K (),

whereh: o1(R) — 02(R) runs over all maps homotopic ttkoo*l_l. T(R) is a complete
metric space with respect to the Teichmuller metric.

The mapping class group (or modular group) Mdd the group of isotopy classes
f* of self-mapsf of R. f* acts onT(R) by sending eachd] to [o o f~1]. Modg
is a group of isometries with respect to the Teichmiiller rnedefined above.

An element f* of Modgr is called hyperbolic if([o], f*[c]) assumes a positive
minimum value at a pointop] in T(R). An isometric image of the real lin& into
T(R) is called a Teichmiiller geodesic. Similarly, an isometnage of the unit disk
D={zeC(C;|z] <1} into T(R) is called a Teichmuller disk. According to Bers [4] and
Kra [8], f* is hyperbolic if and only if f* keeps a Teichmiller geodedicnvariant,
which is also equivalent to that* keeps a Teichmiiller disb invariant. In this case,
for any point p] €1, we let [p] be represented byR. Then f* can be realized ofR
as an absolutely extremal Teichmiller mappifig R — R. Let K(fg) (> 1) denote
the maximal dilatation offy.

Associated td (or D), there is a integrable meromorphic quadratic differénpia
that defines a singular Euclidean metigd on R. Thus it determines a pair of singular
measured foliation £, F,), where F, and F, are horizontal and vertical foliations
respectively.

The absolutely extremal mafy takes the two singular foliations into themselves.
Away from all singularities, the map stretches the horiabrieaves by the stretch-
ing factor A( fo) = K(fo)Y/?, and compress the vertical leaves by the factox(fo) =
K (fo)~Y2. By using the language of Thurston [15], such a mipis also called a
pseudo-Anosov diffeomorphism. We use the notatigns | and D, = D to emphasis
that thoseD and| are determined by.

In the homotopy class* of f, fyis a unique pseudo-Anosov diffeomorphism. So
the action of f* on T(R) is analogous to the action of a hyperbolic Mébius transfor-
mation onH. In particular, for each hyperbolic elemeft, there is a unique invariant
Teichmuller geodesic and a unique invariant Teichmillekdnh T (R).

Let A={a,...,an} and B ={B4,...,Bm}, N >1 andm > 1 be collections of disjoint
simple closed geodesics dd We assume thaf and B intersect minimally, andAU B
fills R in the sense that every non-trivial loop @t intersects with eithetA or B or
both. Letta andtg denote the positive multi-twists along some elements\aind B,



776 C. ZHANG

respectively. AU B is regarded as a graph dR According to Proposition 6.4 of [9],
when AU B is dominant (see [9] for the definition), all elements (in, tg) except
conjugates of powers dfy, tg', and possibly of ti o tg)" and g o ta)", n, m € Z,
are pseudo-Anosov mapstal tg)" and (g o ta)" are not pseudo-Anosov if the graph
AU B is critical (see also [9]).

Let Dy C T(R) be a Teichmuller disk. We consider the stabilizer SEaJ(in
Modg, which is called a Veech group on a surfacely. Since the Teichmiiller disk
is isometrically the same &H, StabQ,) actually determines a subgroup of BER).
Thus there defines a map

D: StabD,) — PSLy(R).

By the main theorem of [10], there exist Teichmdller didkg and D, such that
ta € StabD,) and tg € StabO,) and they determine elemeni3(ta) and D(tg) in
PSL(R). Furthermore,ty andtg also act on a common Teichmdiller digk with re-
spect to the flat structure constructed from the dual grapi ofB.

Define N = Na g to be then x m matrix whose i, j)-entry isi(«;, 8;), the inter-
section number oty and 8;, whereo; € A and g; € B. By assumption,A U B fills
R. It follows that the graph defined bjU B is connected. Henchl Nt is irreducible.
Let (N NY be the maximum of moduli of the eigenvalues dN! (called the Perron-
Frobenius eigenvalue in the literature), and géAU B) = /(N NY). By [9, 16], we
have the representations:

pw=(o ")

and

Plte) = < —M(AlU B) 2)

Let u = n(AUB). The group(D(ta), D(tg)) generated byD(tp) and D(tg) is a discrete
subgroup of PSKR) if u > 2. In this case(D(tn), D(tg)) is free of rank 2. Denote
M =H/(D(tp), D(tg)). By Lemma 6.3 of [9], M has infinite area and its convex core
is a twice punctured disk. These results will lead to theofeihg Lemma 1.

Let €, be the larger root of the quadratic equation

X2+ (2—-pu?)x+1=0.
That is,
1
€u = 5(/‘2_2"/”“2—4)-

It is easy to check that, is an increasing function with respect to Notice that dif-
ferent metric scales were used in different papers, we negdview those arguments
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presented in [9] and [8] for the sake of consistency.

Let f be a pseudo-Anosov element {tp, tg). f determines a Teichmuller disk
isometric toH with respect to the Teichmuller metric db and the hyperbolic metric
on H. Thus f induces a hyperbolic Mdbius transformati@n(f) on H. DenoteF =
D(f). Let r denote the translation length &f:

v =inf pu(z, F(2).

From Section 7.34 of Beardon [2], we know that

T _ exp@/2) + exptt/2)
2° 2

1
(2.1) §|traceq:)| = cosh

By isometry we obtain
1
(2.2) élog K(f)=r.

SinceA(f) = K(f)¥2, from (2.2), we get
(2.3) logAr(f) =r1.
Let & = exp@/2). A simple calculation shows th#t satisfies
g2 — |tracef)|E +1 = 0.

By Lemma 6.3 of [9],£ > ¢,, i.e., expf/2) > €,, or /2> loge,. It follows that

T > 2loge,.
Together with (2.3), we obtain

logA(f) > 2loge,.

Hence, we have.(f) > ei. We summarize the result in the following lemma.

Lemma 1 (Leininger [9]). Assume thai > 2. For any pseudo-Anosov element
f of (ta, tg), we have that

AF) = €.

REMARK. Due to different metric scales the original result statedoi takes the
inequality A(f) > €.



778 C. ZHANG

SinceA(f) = K(f)¥2, from Lemma 1, we obtain:
4

(2.4) K(f) = {%wz_zwm)}

3. Translation lengths of essential hyperbolic elements

Let S be as in the introduction. Lea € S and letS=§\ {a}. Sis of type
(p, n+1). Associated tdT (S) there is a fiber spacg(S) defined as follows. For each
[v] € T(S), by Ahlfors-Bers [1], there is normalized quasiconforraatomorphismw”
of the complex planeC such that the restrictiom” |y to the lower half planéd* is
conformal, and its Beltrami coefficietw"’ /9, w” on H projects to a conformal struc-
ture that determinesv]. We form the Bers fiber space

F(S ={([v], 2; [v] € T(S), z € w’(H)}.

Note that in this settingl is considered the central fiber and the grdimcts onF(S)
in a natural manner.

In [3], Bers established an isomorphisgn F(S) — T(S) that is unique up to a
modular transformation off (S).

The isomorphismg determines an embedding® of G into the mapping class
group Mods such that each element in the imag&G) projects to the trivial map-
ping class on Mog defined by adding the punctuee back into S. Conversely, Bers
[3] also showed that if a mapping clagscan be projected to the trivial one in Mgd
then o lies in the imagep*(G).

It was shown in [8, 12] thag € G is parabolic if and only ifg* = ¢*(g) is in-
duced by a Dehn twist along a boundary cubu&, whereA is a twice punctured disk
on S enclosinga and another puncture, whereb is regarded as a puncture Sfthat
is determined by the conjugacy class @f In [8] Kra also proved thaty is essential
(that is, the complement of the projection of its aXig consists of disks and possibly
once punctured disks) if and only §* is a pseudo-Anosov mapping class in Mod
By abuse of language, in the sequel we denoteKl{g*) the dilatation of the corre-
sponding absolutely extremal map on a surf&that realizes the mapping clags.

Let g € G be an essential hyperbolic element with axdg. For simplicity we
denoteC = o(Ag) C S. Then& is a filling geodesic orS and by a theorem of [11],
the length functiorls: T(S) — R* attains a minimum value agp] € T(S). We may
assume thatyo] = [0]. We need to see how the numbKi(g*) is dominated by([0]).
We review:

Lemma 2 (Kra [8]). With the conditions abovewe let Ay denote the multiplier
of g, i.e, g is conjugate to 2> Agz. Then

(32) K@) <22
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Outline of proof. For any poink € Ay C H, the translation lengthm(x, g(x)) =
[z([0]). By Royden’s theorem [13] (see also Earle-Kra [6])e theichmdiiller metric on
T(S) coincides with the Kobayashi metric oR(S). Since the restrictiorp|y: H —
T(9S) is holomorphic, it cannot increase the distance. Theegfor

3-2) (@(x), g7 0 9(x)) = (9(X), 9(9(x))) = pr(X, g(X))-

By definition, the translation length a§* is no larger than the distancg(x), g* o
¢(x)). It follows from (3.2) that

1
> log K(g") < (p(X), g* 0 ¢(X)) < pm(X, 9(X))
Ag 1
=10 = [ dy=logis.
1Y
It follows that
(3.3) K(g*) < A2,
as asserted. O

Let A={a,...,an} and B ={B1,...,Am}, N> 1 andm > 1, be defined in Section 2.
First we consider the case thatand B are restricted to contain only one element (the
case ofn=m=1). In this case, it is well known (see [7]) that there areudeeAnosov
maps f on S that are not represented by elements in the gr@iypts) generated by
ta andtg. In general case, it is not completely clear whether evepemtal element
g € G, g* is in the group(ta, tg). However, there exist infinitely many paifs, 1}
so that the grougt,,, ts,) contains pseudo-Anosov mapping classes of fogfswhere
g € G is essential. In particular, there are infinitely many pairs, 81}, wherea; and
B1 are peripheral orf5, so that(t,,, tg,) contains pseudo-Anosov mapping classes of
form g* for g € G being essential hyperbolic.

By combining Lemma 1 and Lemma 2, we can readily obtain thievdhg lemma:

Lemma 3. Assume that a hyperbolic elementds is essential and ‘ge (ta, tg)
for certain A= {a1,...,an} and B={B1,..., B8}, n>1and m> 1. Then AUB

fills S and
w(AUB) < max{z, %(1 +,/5+W)}.

Proof. Denotex = (AU B). By Lemma 1 and (3.3), we have

4
32 K@) =M@ = |Gt - 2euiE -9
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Note thatiy = exp(s[0]). We assume that > 2. Then clearlyu —2 < /u? —4. It
follows that

n?—p—(1+/ag) <0.

The lemma then follows immediately. O

REMARK. The estimation in the above lemma can be sharpened by appdyi
theorem of [5] that states that if > 2 then in facty > 2.0065936. This implies that
there is an integeN such that

u—(Z—i>§\//m-

N

A simple calculation shows thadl > 7.

4. Peripheral simple curves on punctured Riemann surfaces

In this section we prove that there are infinitely many esakeiementsg € G
generated by two parabolic elements.

Let S be of type , n) with 3p—3+n> 0 andn > 1. Letaec SandS= S\ {a}.
Then Sis of type (o, n +1). Letx; =&, Xp,..., Xp+1, N > 1, denote the punctures
of S. Let P(S, a) denote the set of equivalence classes of patt® S connectinga
and another puncture, where two pathsanda, are considered equivalent if they are
homotopic to each other by a homotopy fixing the end punctutes £(S, a) denote
the set of equivalence classes of twice punctured diskS trat enclosea and another
puncture, where two such disks are equivalent if their bamaurves are homotopic
to each other without interfering with any other punctures.

Given a path representativec P(S, a), we can always fatter, giving rise to an
element in€(S, a). Conversely, for every elememt € £(S, a), there is a pathx con-
necting the two end punctures and lying entirelyAn « is unique up to a homotopy,
i.e., any two such paths are homotopic withinand fix the end punctures. We thus
obtain a bijection:

(4.2) j:P(S a) — &S a).

two elementsy, 8 € P(S,a) are called to fillS if every component ofS\{«, 8} is either
a disk or a once punctured disk. We need the following lemmas.

Lemma 4. Leta, B € P(S,a) and assume thafw, 8} fills S, then{d(«), dj(B)}
must also fill S in a regular sense

Proof. DenoteA, = j(x) and Ag = j(B). It is easy to see thah, N Ag consists
of quadrilateral (that are homeomorphic to disks) and tweme punctured disk com-
ponents (depending on whether or moand 8 share both end punctures). The rest of
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components iNA, U Ag include components oA, \ Ag and components of\g \ A,,
all of which are homeomorphic to disks. The remaining congm® of S\ {A, U Ag}
are essentially the same as the componentéin{oz U B} which are either disks or
punctured disks. This proves Lemma 4. O

The following lemma comes from referee’s comments:

Lemma 5. Let S be of typdp,n+1), 3p+n > 3, n> 1. There are infinitely
many pairs(«, 8) of paths inP(S, a) so that{«, g} fills S.

Proof. Observe tha can be thought of as a Riemann sphere withandles and
n punctures. Letd be a handle withdDo, dDg) the two boundary components. Let
y, 8 be two curves orH that are not to be homotopic argt, 6} fills H. Note thaty
can be winded around as many time as possible. The end pointsyofre denoted
by s, t, and the end points of are denoted bw, v. See Fig. 1.

We removep pairs O;, Dj) of small disks andh + 1 pointsx; = a, X, . . . Xn+1,
n > 1, from the Riemann sphei®’, obtainingS. & is drawn in Fig. 2 in the case
that p is even (if p is odd, the positions oD, and D, in Fig. 2 are switched).

Fori=1,...,p, let (ui,s) and @i, t;) be pairs of marked points ofD; and d D]
respectively. Past@ copies ofH to § in such a way thatdDo, dD;) and @Dy, 9D;)
are glued together withy; =u, v = v, § =s, andti =t. Then we can define €
P(S, a) as follows. Connect = x; ands;, followed with y, then connect; and s,,
and then followed withy again, and so forth. Aftep steps, we conned, and Xp+1
by a path away from all punctures other than the end punctugsiilarly, we can
define 8 € P(S, a) to be a path that goes from=x; to v1, followed with the inverse
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Fig. 3.

Xn+1

8~1 of 8, then go touy, then connecu; and v,, and so forth. Afterp steps, we
draw a path connecting, to x,+1 in such a way that the component 8f{«, g} that
includesx;, i =2,...X,, is a once punctured disk (this could occur only whep
3). Fig. 3 below shows the case thptis even and the two pathe and g are in
£(S, a). One can easily check that any componentSof {«, 8} is either a disk or a
once punctured disk, which says, 8} fills S. ]

From Lemma 4 and Lemma 5, one obtains:

Lemma 6. There are infinitely many essential elements G that are generated
by two parabolic elements

Proof. From the construction there are infinitely many pdirsg) that fills S.
According to Lemma 4, there are infinitely many paiig«), j(8)) that fill S. By
Lemma 3 of [17], there are parabolic elemeffifsi = 1, 2, so thaty*(T;) =9 («) and
©*(T) =0j(B). Sincedj(x) andaj(B) are homotopic to trivial loops aa is filled in,
we see that any finite product

(4.2) [ e otihe), m.m ez,

projects to a trivial mapping class. It follows from Bers it (4.2) is of formg*(g)
for an essential elememte G. Clearly, g is generated byl; and T,. This proves the
lemma. O

5. Minimal intersections of two peripheral curves

In the previous section we constructed two curweand 8 that are boundaries of
twice punctured disks enclosiry In this section we give an estimate of lower bound
of intersections ofx and 8. We first prove:

Lemma 7. Leta, B € P(S a). Suppose thafw, 8} fills S. Then in addition to a
and another end puncturex intersects withg at least2p —3+n points In particular,
if n =1, 2, thena intersects withg at least2p points
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Proof. Note that if punctures oi% are considered distinguished points on the
compactification§ of S, « U B defines a graph ors with a numberE of edges, a
numberF of vertices, and a number of vertices. We know that the Euler character-
istic x(S) =2—2p.

Assume that in addition t@ and possible another end point, intersects withj
k times. Letn’ be the number of once punctured disk components §f{«, 8}. If
k =0, thene U 8 is a binary tree or a circle. In former casg,=2, V =3. Since
F+V—-E=2-2p, F=1-2p, which implies thatF =1. In order fore, g to fill
S, we must haven’ < 1 and S is of type (0,n + 1) for n < 3, contradicting to our
hypothesis.

In later case,E =2 andV =2. SinceF+V —E=2-2p, F =2—-2p. This
implies thatF = 2. So we must have' < 2, andS is of type (O,n+ 1) for n < 3.
Again, this is a contradiction.

Now we assume thdt > 0 and that all the intersections are distinct. There are
two cases to consider.

Case 1. « and B share only one endpoirg. In this case, we hav® =k + 3,

E =2(k+1). SinceeUB fills S, F > n’, wheren"+3=n+1. Now fromx(§) =2-2p
we obtain

2-2p=V+F—-E>(kk+3)+(n—2)—2(k+1).

It follows thatk > 2p+n — 3.

CASE 2. o and g share both end punctures. In this case,) S is closed when
the two endpoints are added. We must h&ve k+2, E =2(k+1) andF > n’, where
n+2=n+1. Hence

2-2p=V+F—-E>k+2)+(n—1)—2k+1).

It follows thatk > 2p+n—3.

In the case o =1, 2, the author was informed by the referee that 2p. In
fact, we first assume thait=1. Thena and g share the same end punctures. |80
is a closed when the two endpoints are added. Since each cempof S\ {«, 8} is a
disk, S\ {«, B} is not connected. Henceé > 2. Recall thatV =k+2, andE =2(k+1).
We have

2—-2p=V+F-E>(k+2)+2-2Kk+1).

It follows thatk > 2p. In the case oh =2, whenea, 8 share the same end punctures,
by the same argument as above, we hkve 2p. Otherwise, we assume that ter-
minatesx, and 8 terminatesxs with xo # x3. ThenV =k+3 andE =2(k +1). Since

F > 1, we have

2-2p=V+F—-E>(k+3)+1-2Kk+1).
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Thusk > 2p, as asserted. 0

Let #c,, co} denote the set of the minimal intersection points of arbjtravo
curvescy, ¢; on S, andi(cy, ¢p) the intersection number af; and c,. We have

Lemma 8. Letw andp be defined as ihemma 4. Then any point id{«, 8} other
than end punctures af and 8 contributes at leastl intersection points t@#{cy, c,} for
c1=3j(x), and @ = 3j(B).

Proof. We only handle the case thatand 8 share both end punctures, as drawn
in Fig. 3. Lety; be such an intersection in{éN g}. By hypothesis,b = X1 is
the other endpoint of and B, respectively. Leftc; ~ c1, ¢, ~ C; be representatives
of 9j(x) and 3j(B), respectively. Assume thay andc, are very close tax and g
respectively. Observe that contributes 4 intersections tdef, c;}. In fact, the inter-
section near; is a quadrilateral. Then the lemma follows from the fact thaiomo-
topy does not decrease the intersection number. ]

Together with Lemma 6, Lemma 7, and Lemma 8, we are able toepttor fol-
lowing:

Lemma 9. LetS be of typgp, n) with 3p—3+n > 0 and n> 1. Then there are
infinitely many pairg(cy, ¢;) of simple closed curves on S with the following properties
(1) ¢ =0A; and g =09A; for Ay, Ay € E(S, a),

(2) {c1, ¢} fills S in the regular senseand
(3) the intersection numberd;, c;) > 8p+4n—10if n > 3; i(cy, C2) > 8p+4if n =1,
and i(cy, ¢) > 8p+2ifn=2.

Proof. First we consider the casemf 3. If «, 8 share only one end punctuee
by Lemma 7, there are at leasp2 3+n distinct intersection pointy; in #{«, 8}. By
Lemma 8, eachy;, 1 <i <2p—3+n, contributes at least 4 intersections t{#c,}.
The puncturea contributes at least 2 intersections ifc# c,}. Therefore,

i(C, ) >4(2p+n—3)+2=8p+4n— 10.

If « and 8 share both end puncturea énd b), by Lemma 7 againe and 8 cross
at least  — 3 +n times. Lety,, 1 <i < 2p — 3 +n denote these intersections. By
Lemma 8, eachy; contributes at least 4 intersections t{t#c,}, The puncturesa and

b each contributes at least 2 intersections fo, #c,}. We conclude that

i(C1,C)>4(2p+Nn—-3)+2+2=8 +4n—8.

It follows thati(cy, ¢o) > 8p+4n — 10 if k > 3.
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If n=1, thenS has only two punctures andJU 8 has to be closed as the two end
punctures are filled in. By Lemma 7 and Lemma 8, we hieg, c;) > 4(2p) +4 =
8p+4. If n=2, thenS has three punctures. By Lemma 7 and Lemma 8 again, we
havei(cy, ) > 4(2p) + 2 if other thana « and 8 have different terminal punctures;
andi(cy, ¢z) > 4(2p) + 4 if « and B have the same end punctures\( g is closed as
the end punctures are filled in). Overall we havey, cp) > 4(2p) +2 if n=2. This
proves the lemma. ]

6. Proof of Theorem 1

The fact that there are infinitely many essential elemgnt$ G that are generated
by two parabolic elements was proved in Section 4. ¢etG be an essential element
generated by two parabolic elemeriis and T,. Let t; = ¢*(T,) andty = ¢*(T2). By
Theorem 2 of [8, 12],t; andt, are Dehn twists along; andc, for ¢c; = 9A; and
C1 = 0A,, whereAy, A, € £(S, a).

We remark that in our situation the fixed poitof T;, i =1, 2, cannot be vertices
of a common fundamental region @. For otherwise, letw: G — 71(S, a) denote
a canonical isomorphism. Then we have tadf;"! o T,*') is either a simple loop
bounding 2 punctures of, or a “figure 8” loop onS that is not a filling loop unless
Sis of type (0, 3), which has been excluded by our assumption.

From Lemma 9, the intersection numbhéc,, c,) > ko, wherexgo =8p +4n — 10
if n>3;,kp=8p+4ifn=1; andxkp=8p+2 if n=2. SinceA={c;} and B = {c,}
consist single element, we have= m = 1 in the discussion of Section 2. Hence by
definition, #(N N') =i(cq, ¢)?. Thus

(6.1) w(AUB) =y u(NN) =i(cy, ¢2) > ko,

In particular, sincep > 0, andp > 1 if n < 3, we see thaky > 2. It follows that

u(AU B) > 2. Sinceiq > 1,
1
§<1+,/5+4\/)Tg) > 2.

Now from Lemma 3 along with (6.1), we have that

ko < w(AUB) < %(1+,/5+4\/Tg),

where 14 = exp{lz([0])}. A simple calculation shows that
1 2
oz [362-9]
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wherex =16p+8n—-21if n>3; k =16p+3 if n=2; andx =16p+7 if n=1. This
proves Theorem’l Sincelg([0]) = log A4, we obtain

lz(0’) > 2 log(? — 5) — 4 log 2.
This proves Theorem 1. O
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