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Abstract

Inspired by a work of Hislop and Klopp, we prove precise Wegestimates for
three classes of Schrédinger operators, including Pauthilfanians, with random
magnetic fields. The support of the site vector potentialsy ha noncompact
(long-range type random perturbation) and, for one classhef operators, the
random vector potentials may be unbounded. In particulars&an random fields
are also treated. Wegner estimates with correct volumendigmee are applied to
show Holder estimates of the densities of states. We giwe @iper bounds on the
infimum of the spectrum to show the existence of the Andersmalization near
the infimum.

1. Introduction

In this paper, we consider the following three types of randschroédinger oper-
ators with magnetic fields:

(1.1) H* = (iV + A(X) + LA”(x))?,

(12) Hw9= <(i Y+ LAY(X)? 9—2’\ B“’(x)) ® <(i Y+ AAC(X)) + % B“’(x))
and

(1.3) H R = (7 + AX) + LA (X))% + o’ (1A A(X) 2,

where, 1 > 0, g > 2, A(X) is anR?-valued smooth functionA®(x) is anR2-valued
alloy type random vector potentigf_,_,. w(a)u(x — a) on R?, B“(x) = 01AF(X) —
dA7(x), andv’(x) is a real random field independent &f(x) defined by a parti-
tion of unity. The operatoréd*® and H***” are defined orlL?(R?), and the operator
H”**9 is defined onL?(R?) & L?(R?). For the details, see Sections 2, 3 and 4 below.
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In those sections, these operators are defined in generandiomal settings and we
treat these general dimensional settings. We prove Wegmer éstimates for these
operators and apply them to obtain Holder estimates of ttegiated densities of states
and to prove the Anderson localization.

The operatorH*® is the Schrodinger operator with magnetic fiel8“. For this
operator, Hislop and Klopp [12] gave a Wegner type estimat state that this esti-
mate is applied to prove the Anderson localization. HowelierWegner type estimate
holds under strict conditions and they did not give explamhditions for the Anderson
localization. In this paper we extend their method and obtabre precise Wegner
estimates. Then we construct several models on which we oave ghe Anderson
localization rigorously. We use the same methods to con$tdeli HamiltonianH**9,
whereg is the magnetic moment. Usually the cage 2 is studied, but here we treat
the caseg > 2 only. This case is called anomalous (cf. [1]). Then the afperH**9
has negative energies. We are concerned with the spectrusuffi¢iently low en-
ergy region. The condition for the Anderson localization flee operatorH*®9 is still
restrictive since the random field® must be bounded. On another moditt>#?, we
do not require the boundedness of the vector potential andnase choose, in partic-
ular, a Gaussian random field. The scalar potential (x)| A”(x)|? is artificial. How-
ever, sinceyw can be taken arbitrarily small, the results for the operaddf:*’ may
suggest properties of the operatdr®.

One difficulty of the proof of the Wegner type estimate for dam vector
potentials is that the quadratic formp,(H**¢) associated to the Schrédinger operator
is not monotone as a function of the random variaklefor each functionp. Thus
we cannot use the method of Wegner [32] to transform the tamiaof the energy to
that of the random variables. The same difficulty appears aisthe corresponding
problem for the Schrédinger operaterA + V“(x) with the alloy type scalar poten-
tial V2(x) = > .2 @(@u(x — a) whose single site potential(x) is nonsign definite
(cf. [4], [12], [16], [18] and [31]). In such situations, Kpp’'s method [16] using a
vector fieldA =", _,. w(a)d/(dw(a)) on a probability space is the effective method.
This vector field is a number operator in the context of thentwa field theory, and
its eigenfunctions are homogeneous polynomialsofTherefore his method is effec-
tive when the objective operator is a homogeneous polyrioafian. In [16] Klopp
applied the Birman-Schwinger principle to reduce the prFoblto the that for the op-
erator A — E)"Y2V®(x)(—A — E)~Y/2, whereE is in the resolvent set of the unper-
turbed operato—A. This operator is linear im. However any magnetic Schrodinger
operators with random vector potentials are not reducedptrators homogeneous in
w. In [12] Hislop and Klopp reduced to the problem of the opardi*® to the same
problem of the operator consist of the sum of the linear teif £ A)>—E)~Y2A{(i V+
A) - A?(x)+ A?(X) - iV + A)}((iV + A)? — E)~Y2 and the quadratic termi({ + A)? —
E)~Y2x2|A°(x)12((iV + A)?> — E)"Y2. Then they applied Klopp’s method [16] by
neglecting the effect from the quadratic term under the tmmdthat the vector po-
tential AA“ is small enough. Sincé is small, the spectrum is not necessarily broad
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enough to imply the localization in their paper. Here we addrthis problem, and
show the existence of the Anderson localization under icegiuations. On the other
hand, the operatoH*®9 consists of the 0 order term A, the linear termi{(iV -
A?(X)+ A®(x)-iV+gB®(x)/2)d (i V- A?(X)+ A®(x)-i1V —gB®(x)/2)} and the quadratic
term 22| A”(x)|2. We now apply Klopp’s method directly to this operator by leeting
the effects from the O-order and the quadratic terms undeiséime condition that the
vector potential. A” is small enough and the condition that the magnetic morgeist
large enough. For this case, the problem of the existencheoénergies treated by the
Wegner type estimates becomes simpler since we conceitnéteon sufficiently low
energies for which the main contribution comes from the acabtential. The con-
tribution can be estimated accurately in general. Theeefoe can give more general
examples where the Anderson localization occurs. On therdtand, for the operator
H*>u? - we use the same reduction to the operator consists of theofuime linear
termT'y = (i V+A)?—E)~Y2)(V- A?(x)+ A®(x)- V)((i V+ A)?>— E)~Y/? and the quadratic
term Ty = ((iV + A)? — E)~Y222(1 + uv? (X)) | A°(X)12((i V + A)2 — E)~Y2 with respect to
the random variabley. In this case, there is another random variapland only I',
depends on it. Then, by changing the variahleappropriately in the expectation with
respect to this variable, we can compensate the dispersichebinhomogeneity with
respect tow. Therefore we can apply Klopp’s method without neglectimy parts.

As relating works, Klopp, Nakamura, Nakano and Nomura [1@}egthe same
results for a certain discrete model correspondingit¢. On the other hand the author
[30] also give same results for a class of Schrédinger operat

(iV +A()* +V(x)

where the random vector potenti&”(x) and the random scalar potentidl”(x) are
correlated. However this class does not include any operateated above, since the
scalar potentiaV“(x) was assumed to be unbounded below: by the strong effect of
V?(x), the effect of A®(x) is dominated.

The organization of this paper is as follows. In Section 2 wterd the method
of the paper by Hislop and Klopp [12] for the operatdr® and make explicit the
condition for the Wegner type estimate and the Andersonlilat@on. In Section 3
we study the same problem for the operakbt*:9. In Sections 4 we study the same
problem for the operatoH*®**”, In Section 5 we study the same problem for the
operatorH**#? in the case that the vector potential is a Gaussian randonoh fiel

2. Random magnetic Schrédinger operators without scalar peentials

In this section we extend the theory [12] by Hislop and Klopprandom magnetic
Schrédinger operators. We treat the operator

d
(2.1) HA =3 "(19) + Aj(x) + LA7(x))?
j=1
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on L2(RY), whered = 2d’, A >0, A(x) is aC! vector potential such that the magnetic
field Bjk(x) = 9; AK(x) — 8 Al (x) is Z%-periodic, andA“(x) is the alloy type random
vector potential

(2.2) > w(@u(x — a).

aezd
u(x) is a nonzeroC?! vector field satisfying liny -, u(x) =0 and
(2.3) IVu(x)| < (1 +[x])~

for somea > d+ 1. w = (w(Q))acze is a family of independently and identically dis-
tributed real random variables whose distribution ha&’a density h(s) such that
supph C [—1, 1]. We set

H = 1+/ |sH(s)| ds.

The operatorH*® with the domaincgo(Rd) is known to be essentially self-adjoint on
L2(RY) (cf. [19]). Accordingly we take the unique self-adjointtexsion, and denote
it by the same symbol. In [12], the internal gaps of the speate(H®) of HC are
treated, whereH® is H*® with A = 0. In this paper, we assume

Bo:=info(H% >0

and concentrate only on the spectrum less tBgnfor the simplicity. The periodic-
ity of Bjc is also assumed for the simplicity and also for assuring tkistence of
the density of states. For eat¢h> 0, let H}” be the restriction ta_?(AL) with the
Dirichlet boundary condition, whera := (—L/2, L/2)4. The spectrum of this oper-
ator is purely discrete. For any self-adjoint operatorand any intervald in R, let
N(J : A) be the number of eigenvalues &f in the intervalJ. Then the following is
our extension of the Wegner type estimate given by Hislop ughp [12]:

Theorem 1 (Wegner type estimate). (i)We assumeuppu is compact We de-
note its diameter byliam suppi. Then there exists a finite constant ¢ depending only
on d anddiam suppu such that

(2.4) E[N([E —n, E+n]: H})] < cWy(E, 8, A, Bo, H)yL™

forany L>1, 0<8 <1, 0<E < By— (AA)?/(1—6) and 0 < 5 < §(By — E)/4,
where

)\.a B(()d+d)/2H,

Wy(E, 8, A, Bp, H') = ————,
a( 0. H') 5(By _ E)"L
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d = min{(2N) N (d, o)} and A = sup(|A®(X)|: x € RY, » € [—1, 1]Z}.
(i) For any g>d and le N satisfying g< | < («—1)q/d, there exists a finite constant
¢ depending only on dqg, | and « such that

(2.5) E[N(E — n, E+n]: H!)] < cWa,qi(E, 8, A, By, H)p*~ 9/ L%

forany L>1, 0<8 <1, 0<E < By— (AA)2/(1—8) and 0 < n < §(By — E)/4,
where

AIBY2( + /Bo)IH
8(Bo — E)¥*1-9/

Wd,q,'(El 81 A‘a BO! H/) =

(i) We assumeuppu is compact Then for any q>d and q<| € N, there exists a
finite constant ¢ depending only on d, | and diam suppu such that

(2.6) E[N(E —n, E+n]: H)] < cWy.q1(E, 8, A, By, H')n*~9/L°

forany0<é <1, L>1, 0<E< Bo—(AK)Z/(l—zS) and 0 < n < §(By — E)/4,
where

A4 Bd/2 A+ an/ B q(1-1/1)
Wi,q1(E, 8, A, By, H') = 5(050(— Eﬁzﬂ (BO*/?E % 1> :

In (iii), the bound is linear in the volume of the domaiv, . Therefore, as in
the original paper by Wegner [32], we can obtain a Holdemest2 of the density of
statesN(B), B € B(R), of the Schrodinger operatdd*® defined as a deterministic
Borel measure such that the Borel measure§N( - : H[*) on R converges vaguely
to N(-) asL — oo for almost allw:

Corollary. Under the situation ofTheorem 1 (iii), the density of states (N) of
the operator H® satisfies

2.7) N((E — n, E+n])] < cWyq(E, 8, A, B, H)n*~9/
forany0 <8 <1, 0< E < By— (AA)2/(1—§) and 0 < 5 < §(By — E)/4.

From (i), we have the following result on the Anderson lazatiion by applying
the theory by Germinet and Klein [11]:

Theorem 2. We assumesuppu is compact Then for any positive number
€, there exist finite positive constantg, cc, and ¢ depending only on de and
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diam suppu such that0 < § < 1 and

P(|w(0)| > %(\/B*o— o~ VA —e))

- e )\,&+23
< {a(r8) ) A a+gy {C3<W) }

imply the following on the interval ¥ [0, By — (A,A_QZ/(l -9
(i) (Strong dynamical localizatignFor any 0 < ¢ < 1, there exists a finite constant
C, such that

(2.8)

E[ sup Il xx f(H*)E(I HAw)Xy|||§:| < Cexp=Ix — yl%)
feB1(R)

for any x y € Z9, where B;(R) is the set of all real valued Borel functions f on
R with sug f| < 1 and x4 is the operator of the multiplication of the characteristic
function of the box % A;.

(i) (Semi uniformly localized eigenfunctioRor any ¢ > 0, there exists m> 0 such
that the following holds for & w: o.(H**)N1 =@ and, if {¢>j“’},-€N is the normalized
eigenfunctions of M’ with energy E in I, then for any v > 1/2, there exist C°,

Che ¢ (0, 00) and X}Yjen C 79 such that

1+

ot < C22 exlm (oglx* )2 = m.fx x| )

and

A

|Xj > 6}74)]'1/(41’)

for any je N and xe Z9, wherg for any self-adjoint operator Aoc(A) is its con-

tinuous spectrum

From (ii) of Theorem 1, we have the following result on the Argbn localization
for a long range case by applying the theory of Kirsch, Stalim and Stolz [15]:

Theorem 3. We assumé2.3) for somea > (5++/21)d/2+1. Then for any pos-
itive numbers and ¢, there exist finite positive constants, @,, ¢ and ¢ depending
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only on d « and ¢ such that0 < § <1 and

P(|w(0)| > %(/ﬁo— Bo — (ff\); —~ e))

V/Bo— GAZ/(A—3) o
)1

<

Cl(m(l Vlog(1 +Bo) v (log((x + v/Bo)))-

NE 28 . 17\ (@+e)/(@-1-d)
2+ VB A

. 550 (d+e)/{(ald)2/(a1)3d}( N >C4
3 pd*d/24, A +/Bo

0

(2.9)

imply the exponential localization on the intervakI[0, Bo—(AA_\)Z/(l—(S)]: for a.e w,
the spectrum of B is pure point on the interval | with exponentially decayiriges-
functions In (2.9), (-)- means the negative part

Unless the spectrurm(H**) intersects with the interval where these results hold,
they would be meaningless. In order to address this problgengive an upper esti-
mate of the infimum of the spectrum in a simple 2-dimensionangle as follows:
we take A(x) as the vector potential{Bx,/2, Bx;/2) for the uniform magnetic filed
B > 0, and the single site potentia(x) as (0£(X1)¢(x2)), wherez(t) =0 for |t| > 3/2,
¢(t) =1 for |t| < 1/2, and¢(t) = (3—2|t])/2 for 1/2 < |t| < 3/2. ThenBy =B and
A =4, since

(2.10) Dt —a)=2.

e’

The estimate of the spectrum is the following:

Proposition 2.1. Letwo = (wo(a1, &2))a,,a,cz be the element of the probability space
[—1, 1]Zz defined bywo(ay, a2) = 1 for a; € 4Z — 1, wo(ay, ap) = —1 for ay € 4Z +1
and wo(ag, a2) =0 for &y € 2Z. Then it holds that

(2.11) info(H*®) < B(}),

where

).e—61—818/4 B
B(,) =B — 4Ae—6k(1 — e—B/B) _ T +2e-988(14+8/ 2 |
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By this proposition and the characterization of the almase spectral set by pe-
riodic operators (e.g. Theorem (5.33) in [23]1.4 in [28]), we have

(2.12) B(x) A B, B] C o(H")
if supph =[—1, 1]. Therefore, for the above theorems to be meaningfig,ahough that
B(L) < B — (41)%.

This holds if » is small andB is large. Then, for smalf > 0 so that the interval
[B(A), B — (41)?/(1 — 8)] is not empty, we can take the probability densityso that
the Anderson localization occurs on this energy intervafadisws:

ExampLE 2.1. For anyp, | € (0, 1/2], there exists a smooth probability density
functionh such that supp =[—1, 1] andfISlzl h(s)ds= p. Such a function can be taken

so that|h’| < 2/I12. This bound is independent gf. Then (2.8) holds for sufficiently
small p andl, since the right hand side of (2.8) is dominated from belovwalyuantity
independent ofp.

We next discuss the proof. To prove the Wegner type estintditdop and Klopp
[12] introduced Birman-Schwinger type operators by

(213) Ty = (HY - E) V2R ACR(HS — E) 2,

d
(2.14) It = (HP — E) Y20 ) {(i9; + ADAY + A?(i9) + A)I(HP — E) /2
j=1

and
M =T{H+T
for 0 < E < By. Then we have the following reduction:
Lemma 2.1. It holds that
(2.15) N(E —n, E+n]: H/) < N([1 —«, L+k]: —T'(*)
forany0O < E < By and0 < n < By — E, wherex =n/(By — E).

Proof. Letds,..., 8y be the all eigenvalues dfi’” — E in the interval F-n, 7]
including the multiplicity andvy, ..., vy be the orthonormal system consisting their
eigenfunctions. These vectors satisfy

8j(HY — E)™2vj = (I + T{“)wyj,
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wherew; = (H? — E)Y2v;. The vectorswy, . .., wy are linearly independent and
2 2 2
Aw 1 772
(1 +T) Y cwj| < Bo_E Yo cidjwi| =< By _E > civi
j j j
2
< K2 Z Cjwj
j
for any ¢y, €, ..., cy € C. Then, by the min-max principle, we obtain (2.15). [

To treat the operatoF}*, we prepare the following:

Lemma 2.2. Let0O< E < By. A
(i) ForanyAe L%A_ — R) with some ¢ d, the operator(H? — E)~Y/2A4 belongs
to the classZ, and satisfies

d/(2q)
2.16 HY — E) Y2A||l, < c—=2—=Allq,
where c is a finite constant depending only on d andangd ||| - [ll4 is the trace norm

defined byl Alllq := Tr[|A]9]"/9 and | Al = v A*A (cf. [24]).
(i) For any A € LA — R) with some ¢= d/2, we define an operator by

FL[A] = (HY — E) Y2AHP — E) V2.
Then this operator belongs to the clagg and satisfies

d/2

B
q 0 q
(2.17) ITLLANNG < C(BO — By IAllg,

where ¢ is a finite constant depending only on d and q
(i) For any B € L9(A_ — RY) with some o= d, we define an operator by
d
PL(B) = (HY — E) 2 ((i9; + A)B; +B;(i9; + A)(H — E) V2.
i=1

Then this operator belongs to the clagg and satisfies

(()d+q)/2
2.18 r B9 < c———— 8|9,
(2.18) ITLB)I = o g g7 151

where ¢ is a finite constant depending only on d and q
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Proof. (i) We first assume thaf € 2N. Then we have

I(H — E)™Y2 Al = IIAHD — E) ™Al 3-

For any R > 0, by the resolvent equation
H2—E)t=H2+R 41+ (R+E)H - E) }(H2+ R 3,
we have

By + R
By— E°

I(HE — E) ™2 Ally < II(H? + R)™2AJl,

As in Lemma 2.1 of [30], we use the diamagnetic inequality bbam
(2.19) I(H2+ R) 2| < (AL +R) g

for any ¢ € C°(AL), whereA is the Laplacian with the Dirichlet boundary condition
on L2(RY) (see (4.9) in [19] and (A.23) in [13]). By using (2.19) sussiely, we have
I(HP + R ™2 Al%)| < |(—=AL + R 2 Al%gl.
From this, Lemma 15.11 in [27] and Theorem 4.1 in [26], we have
I(HE + R)™2Allg < lI(=AL + R Allllg < lI(=A + R ™2l AlxLllq
< ¢l Axullq/ RO~/

if g > d, wherec is a finite constant depending only gnandd, and yx, is the char-
acteristic function ofA,. Since mirk.o(Bo+ R)/RE-9/4 =cBY4 we have (2.16). For

g ¢ 2N, we use the Stein interpolation theorem (cf. [25] TheorenRDX
(i) Since

ITLLATG < II(HE — E) Y21 Al 15,

(i) implies (ii).
(iii) Since
. B
II(H? = B ™29, + ADIl =< [ - ~
for any j, (i) implies (jii). O

As in [4] and [5], the right hand side of (2.15) is dominated by

3c/2
f At Tr(p) (~T2 — 1+1)],
—3k/2
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where p,(S) = p(s/x) and p is a smooth function orR such that 0< p <1 on R,
p=0o0n (oo, —1/2] and p =1 on [1/2, 00). Then Hislop and Klopp [12] used a
vector field A on the probability space defined by

(2.20) A=Y o) 0

i dw(a)
This vector field acts as
AT (=T = 1+)] = Trl(p.) (-T{ = L+1)(-T1 = 2T%)].

Sincel'(”, < (LA)2/(Bo—E) and —T'} > 1— 2« in the space of 4. ) (—I' —1+t) #0,
we have

(1-2- éj—’f)zE) TP (=T = 140)] < ATrlp (=1 — 1+1)].

Therefore, if 8o — E)(1—4) > (A,A_Qz andk < §/4, then we have

2
Tripc (=Tt = 1+1)] < 34 Trloc (=Tt = 1 +1)]

and
2 3k/2
BINQ -« 1) -0 <= [ dt Y L)
—3k/2 acZ2NA L+
where
0

1
I(L,t;a)= E[/l dw(a)h(w(a))w(a) Trlo (—T12 — 1 +t)]}.

dw(a)

To prove Theorem 1 (i), the following simple estimate is egtuu

Lemma 2.3. There exists a finite constant ¢ depending only on d diachsupp
such that
)“aB(d+a)/2 /
(2.21) sup |I(L, t;a)] SC—?{ d
—3c/2<t<3c/2 (Bo — E)

forany acZ9, L >1and0 <« <1/3.
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Proof. By the integration by parts, we have

1
(2.22) I(L,t;a) = IE[— /4 ds(h(w(@)) + w(@)h' («@))) Trip (-1 — E +t)]}.
For anyw, we have

Trlpe(—T — E +1)] < TE([L — 2¢, 00) : —T})]
(2.23) < THE(L — 2¢, 00) : —T}%)]
< @IT4lg)?.

By Lemma 2.2 (ii), we can complete the proof. O
To prove Theorem 1 (ii), we use the following estimate:

Lemma 2.4. Under the condition offheorem 1 (ii),for any q> d and q< 1 € N,
there exists a finite constant ¢ depending only p,l « and d such that

cAIBY2( + /Bg)IH/LY
(2.24) sup  [I(L,t;a)] < — o O+ vBo)TH |
—3¢/2<t=3¢/2 k9/1(Bo — E)d(1 + dist@, A))@1a/

for any ac 79, n >0and L> 1.

Proof. As in [4], [5] and [12], we rewrite (2.22) as follows cGaapply the theory
of the spectral shift functions:

1
(L t;a)= E[ [ . dw(a)(h(w(a)) + w(@)h'(w(a))

X Tl (~I220 _ 1 4t) — p (17 — 1 +t)1],

where w[a, 0] is an element of the probability space defined by reptaci(a) by O.
By Lemma 2.5 below and Theorem 2.1 in [4], [5] and [12], we h#we spectral shift
function (s : (T2 0 (T2)y for the pair €;“*%!, (1) such that

lg(s : (L0, @E) Mg < PR — (i) i,

(cf. [4], [B], [12], [26]). As in [4], [5] and [12], we apply tB Birman-Krein identity
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[2], [33] as follows:
Trpe (=T (2% — 141) = pe(=T(” = 1+1)]

= [ {garst -1 @y, @) as

0s
Since
® |y 1/a-q) =9/ -an ¢
| lgeesit =10l Tar)  se( o) < 2
0 0S R K'Q/
we obtain (2.24). ]

The following is the estimate of the difference of the operstused in the proof
of the preceding lemma:

Lemma 2.5. For any q>d and € N, the operator(I"'t“*%) — (r**)' belongs
to the super trace clasg;, and satisfies

a1 _ _CAIB(h+ V/Bo) L w(@) !

Aw[a,0] w
@28) WD = Ml = (5= e + dist, AT

where c is a finite constant depending only onlga and d
Proof. We apply Lemma 2.2 to the each term of

(Ft(u[a,O])l _ (Fﬁw)l
|
(2.26) ==Y (P [ Pw(@)u(x — a) - (A1R0 + A)]
h=1

+ 'L (ho(@u(x — &) )(TE) .
To estimate the normjully, we use
(2.27) UE| < (o = )7HL +[x)~. O
To prove Theorem 1 (iii), we use the following instead of Lean&\5:

Lemma 2.6. If suppu is compact then (2.25) is replaced by

,0 |
o — ey

(2.28) By C( BO\/EE y 1)q(1l/l)()‘(;+—\/IEB_())>qu/2|w(a)|q/l’
— 0 —
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where c is a finite constant depending only diam supp, g, | and d.

Proof. As in Nakamura [22], we take smooth functiops k =1, 2,..., such
that 0< ¢« < 1, ¢x = 1 on supppc_1 and supm C {x € RY: dist(x, suppu) < 1} for
anyk=1,2,..., where¢g = |u|?, and consider the commutator of these functions with
the resolvents to rewrite the expression (2.26) as follows:

(Fﬁw[a,O])l _ (Fﬁw)l
| Zl—l

— Z Z O'(h, m)(rtw[a,o])N(h,m)
h=1 m=1

—

x (P [Anmi ]+ TU{Anmt)) - - (T [Anea] + T Anmnea))
x (PL[A] + LAY (L[ Anmp1] + TL(Anmin-1))

X +oo X

< (L [Amt] + T ) (r O,

where o(h, m) € {+, -}, A = rw(@u(x — a), A = A2w@u(x — a) - (A“a0 + A),
each of (Anm ;. Anm,;) is One of f(x — a) A’20(x), gy (x — @) 2 Al202), (g (x —
a)LA?(X), pr(X —a)|LA?|?) or (i V(X —a), 0) for somek e N, N(h, m) is the number
of jin{h+1,...,1} such that(¢4/hm\’j, Zh\m/,) = (iVeéx(x — a), 0) for somek € N,
and M(h, m) is that of j in {1,..., h—1}. Then we obtain a bound independent of

L since the volumes of the supportsJé/fLm\,j anth,Tn,/j are dominated by a constant
independent ofL. ]

For the proof of Theorem 2, we use the following extension bedrem 3.4 in
Germinet and Klein [11], which is an improved theory of the ltisgale analysis
founded by Frohlich and Spencer [10]:

Proposition 2.2. Let Iy and I be compact and open intervals such thatd To.
For each Le N and xe Z9, let A (x) =x + A_ and let {H”,}oea be a family of
random operators on (A (x) — C") for somev € N, satisfying the following

(STA) (Stationarity The probability of each event determined by a condition
on an operator UH,f{XU;l is independent of xwhere U is the unitary operator
from L2(A_(X) = C") to L3(AL — C") defined by(Ux¢)(y) = ¢(y +Xx) for any ¢ €
LA(AL(x) = C);

(IAD) (Independence at distance There exists a finite constamt such that for
any finite number of boxe{sALj(xj)}T:1 with dist(A, (X)), AL (X)) = p for i # ], the
events determined by conditions on operatqr PH{”J.,X]ijl are mutually independent
inj=12,...,n
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(SLI) (Simon-Lieb inequalify There exists a finite constampt such that

||| F|3,X3(HI(;,X3 - E)_1X|1,X1 |||

(2.29) N 1 © _1
S y”|F|2,X2(HIZ,x2 - E) X|1,X1|” X |||F|3,X3(H|3,x3 - E) Iﬂ|2,Xz|”

for any E€ lo — o(H?,)) —o(H?,), 11, 12,13 € 2N and %, Xz, X3 € Z¢ such that
A1 (X1) C Ay,-3(%2) C Ar,(X2) C A, 2(x3), where for any Le N and xe Z¢, T'| x and
XxL.x are the operators of multiplication of the characteristienttions of A _;(X) —
AL_3(X) and A (x), respectively

(W) (Wegner type estimate There exist constants\ lo, no € (0, 00), h € (0, 1]
and be [1, co) such that

(2.30) P(d(E, o (H)) < 1) < Cwn"L"

forany Ee lp, 0<n <n and b < L € 2N;
(NE) (Number of eigenvalugs There exist constantsy& € (0,00) and v € [1, 00)
such that

(2.31) E[N(o : H{)] < CneL"
for any b < L € 2N.

Forany® >0, E€R, 6 <L eN and xe Z% we say a boxA,(x) is (9, E)-
suitable forw if E ¢ o(H{”,) and

ITLx(HE = E) M xejanll < L7
Forany m>0, EcR, 6<L e N and xe Z%, we say a boxA (x) is (m, E)-regular

for w if E ¢ o(H_"}) and

L
ITLx(HEx — E) xijaxll < exp(—m§>.

Form>0, 6<LeN, aninterval | inR and x y € Z%, we set
R(m, L, I, X, y) :={w: for every Ee I, either A_(X) or A_(Y) is (m, E)-regular}.

Then for anyd > 4(b+v)d/(3h), there exists a positive finite constaﬁtdepending
only on d p, Cw, b, h, lo, no, y and 8, and satisfying the followingif there exist
Eo € lg and £ < £ € 6N such that

(2.32) P(A . is (0, Ep)-suitable > 1 — 84179,

then there existgy > 0 depending only on dp, Cw, b, h, 59, Cneg, v, 6 and £ such
that, forany0O<¢ <1 and 1l <« < 1/¢, there exist lg € 6N depending only on d
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oy Cw, b, h, Cng, v, 0, L dist(%c, lo), ¢ and @, and m> 0 depending only ort
and Lo, satisfying

P(R(M, Li, lo(Eo, 80), X, ¥)) > 1 — exp(-Ly)

for any ke Z., x, y € Z9 with |X — y|o, > Lx + p, where Lu1 = max{(6N) N[0, L]}
and b(Eo, o) := [Eo — 80, Eo + 0] N lo.
The constantC can be taken as

233) L= @™ v (eSO v (M) v,
where g, ¢, and g are finite constants depending only on g, b, h, Iy and 6.

This proposition can be proved as§8.3 of [30] and is used to prove Theorems 2,
5, 7 and 9 below.

By this proposition and its application to the proof of thed&nson localization in
[11], we have only to show that the assumptions in this pritippsare satisfied with
the compact intervaly = [0, B — (A,A_\)Z/(l — §)] and the open intervalg = [0,B —
(/\K)z/(l — §/2)) for arbitrarily fixeds € (0, 1). Then (STA) obviously holds. (IAD)
holds by takingoe as diam suppi. (SLI) holds withy = ¢y(1 ++/Bp), wherec; is a
finite constant depending only oth. Theorem 1 (i) implies (W) withb =2, h =1,
o = (AMA)25/(4(2 — 8)) and Cw = cp(2 — 8)31BE* /237 /(19+25), wherec; is a finite
constant depending only ahand diamsupp. (NE) holds withv = 1 by the following
lemma:

Lemma 2.7. For any q> d, there exists a finite constant ¢ depending only on d
and q such that

(2.34) N([0, Bo — ¢ : H2?) < cBY ™ V/2||A A% 3¢
forany¢ > 0, w and L> 1.

Proof. We use Lemma 2.1 witlk = n = (Bg — ¢)/2. Then by using also the
positivity of I't,, we have

NG, B cl: 1) < N[ G2 o) s-riy) = () e

By Lemma 2.2, we obtain (2.34). ]
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Now, by Proposition 2.2, we have only to show the correspapdnitial esti-
mate (2.32) for anyEq € lg, someé > 4d and £ € 6N satisfying

B(d+(§)/2H/ 4/(0—2d)
Ao V Cg,

(2.35) L> YT

C3 _
= (A28)4/(30+2d) V (ca(1 +Bo)¥ -2y v Cs(

wherecs, ¢4, Cs and ¢g are finite constants depending only 6nd and diam suppl.
For this we use the following Combes-Thomas type estim&tggp:

Lemma 2.8. We takev > 0, Ep € [0, By), L > 1, A, BC AL so that
dist(Eo, o(H}*)) >v and DA, B) >0,

where DA, B) = SURcge: =1 INfxeayes v - (X — y). Then there exist universal finite
positive constants;cand ¢ such that

Gy
1+./Eo/v

where xa and xg are the operators of multiplying the characteristic fuiocts of A and
B, respectively

C
(2.36) lxa(HY — Eo) txell < ;1 exp( D(A, B)>,

Proof. For anyw € RY such thatjw| < v, we have
e HM e = H} + 2w - iV + A”) — |w]?.
Since
T o 1 Lo R 2
[w-(V+A)g| < ﬁ“(HL — Eo)oll + Elwl +v Eolwl )¢l

for any R > 0 and¢ € Cg°, we have
1 -1
lle™"(H{ — Eo)™"e"™| < {v(l— ﬁ) — L+ R)wl* - 2\/Eo|w|}
:
and

llxa(H{ — Eo) *xall

< sup exp(w-(x—y»{v(l—%)—(1+R)|w|2—2ﬂ|w|}

-1
xeA,yeB +
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By taking w = —kv with k > 0 andv € RY such thatjv| = 1 and taking the infimum
with respect tov, we have

-1

llxa(H” — Eo) *xslll < exp(~kD(A, B)){ v(l - %) — (1+RK-2/E k}

As an simple bound we takie so that

1 1- 1 R
v<1— §> (1+RK —2/Egk = "1 =R
Then we obtain (2.36). O
By this lemma, forA, to be @, Ep)-suitable, it is enough that
(2.37) info(HA”) > Eo + (0, L)y Eo + (0, £)?
where f (6, £) = ¢;(0 log £ +log(8d))/L and c; is a finite constant. Since
1
Hio > (1— -) H2 — (t — 1) supa A” ]
t Ar
1 A2
>|1-=-)Bo—(t-1)RA)" sup |w(a)l
t aeAURmZd

for anyt > 1, (2.37) is replaced by

supl(1 - 1/t)Bo — (t - DAY’ sup |w(@) — Eo)
(238) t>1 acA p+rNZ4
> (0, L)VEo+ f(0, L)%,

where R is an integer such that suppc Ar. Therefore a sufficient condition for the
corresponding (2.32) is

(2.39) ]P’(AA_\ sup  |w(a)] > v/Bo — vEo — f(6, £)> <8419,

aeAuRmZd

Sincew is identically distributed, this condition is replaced by

VBo—VEo— (0, E))
LA

P(w)(on >

wherecg is a finite positive constant depending only @rand diamsupp. We now let
Eo = suplg, substitute the right hand side of (2.35) £o and takef and £ sufficiently
largely. Then we obtain the condition in (2.8).
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To prove Theorem 3 following Kirsch, Stollmann and Stolz][1&e use the fol-
lowing to estimate the probability of events drn’}’*; by taking the supremum with re-
spect to{w(a): a € Z% — A, (x)} so that events orHL*,“;( and Hf,",’x, can be treated as
if they are independent when, (x) N Az (X)) =@, where Hﬁ"; is the restriction of
H*® to L2(AL(x)) with the Dirichlet boundary condition:

Lemma 2.9. We assumé2.3) for somea > d+1, limy_ u(x)=0, L >1 and
w=a on Ay NZY. Then we have

CA

< -
- Le—1-d

(2.40) MLJ(HP) — S (HE

for any je N, wherepj(H/”) is the j-th eigenvalue of } including the multiplicity
and c is a finite constant depending only on d and

This lemma is proved by using the min-max principle and,syp/(A” — A“)(X)| <
C/La—l—d_

In the theory of [15], the main part is to dominate the follogiprobability of the
resonance to proceed well the multiscale analysis:

(2.41) P(dist: (H%), o1 (H{)) < ),

where x, x/, L, L’ are taken so that\ (X) N Az (X) = @, o1(H%) = o(H%) N
[0, Bo — (AA)?/(1—8) + E/2],
dist(or (H/%), o1 (H/%,)
= inf{dist(o) (H{%), o1 (H{7,)):
B0 eQsto=w0n Ay (X)NZY, o = on Ay (x)NZ°}

and E is a number in the interval (By) we should specify. We here note that

, £
Iy (HE?) = (HE)) < (:1(7_/?'—.;1%1)

holds in the situation of Lemma 2.9, jf; (H}?) A uj(H{*") < Bo. Thus we can cover
m(Hﬁ/“,’;/) by

A, c1<\/§o+x)x} : H%):

N »=inf{ N —
w, X, X in [ <|:01 Bo 1—3§ Le—1-d

o e stw=won Ay (x)N Zd}
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number of intervalgl; . xx : j < Nuxx} depending only ofw(a) : a € Z9N Ay (X))
with the length less thany(v/Bg+1)A/L* 9. Then the probability in (2.41) is dom-
inated by

Botpe| Y. Poux(inf{dist) (H}), 1j,wxx): =0 on Ax () N2} < &) |,
ijm.x,x’

whereP,  is the probability with respect t¢w(a): a € Ay (x) NZ%} and By  is its

expectation. The probability in these expectation and satiom is dominated by

(VBo + KM)

PZL,x(dist(al(Hé?;), Ej o) < B0 VT

which is estimated by Theorem 1 (i), afith, «[N, xx] is estimated by Lemma 2.7,
where E; , x x is the middle point oflj ., xx. Now we see thaE = (v/Bg +A)A/(L A
L")¢-1-9 is an appropriate choice in (2.41). The rest of the proof imesas in [15].

Finally we prove the upper bound of the infimum of the spectinnthe simple
2-dimensional case:

Proof of Proposition 2.1. By the definition, we have

. —3 -1
2 if 7+4n§x1§7+4n for some neZ,
. —1 1
4(4n — x4) if —+4n<x, < =+4n for some ne7Z,
AwO(X): 2 2
2 1 3
-2 if §+4n§x1§§+4n for some ne 7,
. 3 5
4(x, —2—4n) if E+4n§x1§§+4n for some neZ.

Thus we have

-1 1
—4 if 7+4n§x1§ E+4n for some n e Z,
wo = . 3 5
B*(x) 4 if §+4n§x1§§+4n for some n e Z,
0 otherwise.
We set
X1
Fo(x) :/ AZ°(s, x2) ds
0

and

™ (x) = exp(—§|x|2 - AF”O(X)>.
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Then we have

(qb)u(uo , H )»a)o(b)uwo)

a+l/2
=Bl P-4 Y [ dw [ dxis0of
acaz Ja-1/2
a+5/2
+4), Z/ dx1/dxz|¢“’°(x)|2.
acaz, Ja*3/2

Since 0> F“(x) > —3, we have 2/B < ||¢**|? < €¥27/B,
1/2 2T
[ ax [ @i er = T - e
—-1/2 B
and

- _((@a+1/2v(a—1/2))B

e |
a+1/2 —\V B )
/ dx / dxlrg@()2] ' B 2

o < \/% exp<6A _(ary2y na 1/2)2)B>

for a # 0. Therefore we see thap’(®, H*®¢*)/||¢*||? is dominated by the right
hand side of (2.11). By the min-max principle, we can congkéte proof. O

3. Random Pauli Hamiltonians with an anomalous magnetic mormnt

In this section we consider a random family of Pauli Hamilkms defined as fol-
lows: letd be an integer greater than 1, andand o = (w(a))acze be anRY-valued
function onRRY and random variables satisfying the same conditions aseiria$t sec-
tion. We consider the random vector potentitt(x) defined as in (2.2) and the cor-
responding magnetic fiel@“(x) = (Bj‘;((x))lfkkfd represented as

Bik(x) = ) w(@)(du)jk(x — a),

aezd

where flu)jx = djux — dkuj. We setA as in Theorem 1 () ands = sudlliBX)ll4: x €
RY, we[-1, 1]Zd}, where ||| - |l is the trace norm. Lef, y», ..., yq be Hermitian
matrices satisfying the commutation relation

21 i =k
VJM(+)/|(VJ_ o) if j;ék

where | and O are the identity and the zero matrices, respectively. We amarstruct
such matrices acting o8P, whereD = 2192l and [d/2] is the largest integer less than
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or equal tod/2 (see e.g. [7T§12.2). Then our object is the operator

d
w,g — P, w 2 g . w
(3.1) H 0 = | jZ:;@ 0 + 1AL () + 2 jg'yjyk)\Bjk(x)

acting onCP-valued functions, wherg is a constant greater than 2 aad> 0. This
operator with the domaini:go(]Rd — CP) is known to be essentially self-adjoint on
L2(RY — CP) (cf. [19]). Accordingly we take the unique self-adjointtersion, and
denote it by the same symbol. This operator is called thei Parhiltonian with the
magnetic momeng and the magnetic field B“. If the magnetic momeng is 2, then
this operator is the square of a Dirac operator and this isnibst studied case. The
case ofg > 2 is called anomalous (cf. [1]). In this case, the operaidf 9 has spec-
trum in the negative half line. For the negative spectrum,cae discuss the Wegner
type estimate and the Anderson localization.

To give the Wegner type estimates, we consider the resimi(tﬂié“"g to L2(AL —
CP) with the Dirichlet boundary condition for each > 0: HL*“”g is the self-adjoint
operator corresponding to the closure of the quadratic form

d

g 9(d, V) = Z((i dj +AAT(X))D(x), (19j + AAT (X)W (X))

(3.2) =

‘ <<I>(x), g S ivnk Bj-‘f((x)\ll(x)>

j<k

with the domainC{°(A. — CP), where (-, -) is the Hermitian inner product of the

spaceL?(A_ — CP). The spectra on“"g are purely discrete. Then our Wegner type
estimates are stated as follows:

Theorem 4 (Wegner type estimate). (i)We assumesuppu is compact Then
there exists a finite constant ¢ depending only on d diam supp, and satisfying
the following

(3:3) E[N(E —n, E+7]: H/™9)] < cWy(8, gr, H')nL™
foranys >0, L >1, E<0andn> 0 such that B+ 25 < —(AAT)Z — &8, where

H/(g)\)d/Z

Wd(8, gi, HI) = 5

(i) For any q>d and | e N satisfying(q—1)/2 <1 < (q(a —1)/d —1)/2, there exists
a finite constant ¢ depending only ond, « and d and satisfying the following

(3.4) E[N(E —n, E+n]: H %] < cWqi(8, gr, H )t ¥/@+D 2



RANDOM MAGNETIC FIELDS 587

foranyé >0, L>1, E<0and0 < n < 1 such that EFZnS—(AA_)Z—S, where

H/(g)\‘ + 1)q(l +2)/(2+1)

Wa (8, gr, H') = 5

(iii) We assumeuppu is compact Then for any g> d and (q—-1)/2 <1 €N, there
exists a finite constant ¢ depending only ¢rg] d anddiamsupp, and satisfying the
following:

(3.5) E[N((E — 7, E+75]: H 9] < cWy, (8, gr, H)pt~¥/@* DL d

foranyé >0, L>1, E<0and0<n < 1 such that ang—(k,é_\)z—é, where

H/(g)\. + l)q(l+2)/(2|+1)

Wq,|(8! g)\'v Hl) = 8

REMARK 3.1. By the same method, we can also treat the operator

d

HAAS = | 3 (0; + Aj(x) + L AL(X)? + % 3 i (Bj(X) + ABG (X)),
=1 j<k

where A(x) is another deterministic vector potential aBgx) is its magnetic field. If
we replaceH, 9 by H}“*9 in the right hand side of (3.3), theWy(s, g, H) is
replaced by

N\ 929y
gd/z(sunnB(x)uhmB) 5
X

and the conditiorE +2n < —(LA)2—3§ is replaced byE +2n < info (HOA9) — (L A)2—5.
(3.4) and (3.5) are also modified similarly.

In (i), the bound is linear in the volume of the domaiv, . Therefore, as in
Theorem 1 (iii), we can obtain a Holder estimate of the dgnsftstatesN(B), B e
B(R), of the random Pauli Hamiltoniak*>:9 defined as a deterministic Borel measure
such that the Borel measurésdN( - : Hf“”g) on R converges vaguely tiN( -) as
L — oo for almost allw. For this definition and the fundamental properties of the
density of states, see [29]. The Hélder estimate is the atig:

Corollary. Under the situation ofTheorem 4 (iii), the density of states (N) of
the random Pauli Hamiltonian M9 satisfies

(3.6) N((E — 7, E +7]) < cWe, (8, gA, H/)nl—q/(2I+l)

foranys > 0, E <0and0 < n < 1 such that B+ 2y < —(AA)2 — 6.
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From (i) and (ii) of Theorem 4, we obtain the following resutin the Anderson
localization by referring Germinet and Klein [11] and KinscStollmann and Stolz [15]:

Theorem 5. (i) We assumeuppu is compact Then for any positive number
€, there exist finite positive constants, cc, and & depending only on de and
diam suppu such that § < —(AA)? and

1P><|w(0)| . 4%)

e C —EO—AZA_?)E}
< {Cl(_EO —A A) }A (1+gk)‘ A {C3< (gk)d/ZH’

(3.7)

imply the same results ifiheorem Zor the operator H*'9 on the interval I= (—oo, Eq].
(i) We assumer > (5 ++/21)d/2 + 1. Then for any positive numbet, there exist
finite positive constants;c ¢, ¢z and ¢ depending only on do and ¢ such that
Eo < —(AA)? and

—Eo — €
]P’(|a)(0)| = 49)\.—8)

(—Eo— ()LK)Z) A 1) @re)/(@—1-d) .
(3.8) < Cl( Mg+ 2) ) A foa G T

_ e
/\{ s ( —Ep— (LA >d(a 1)/((«~1-dp~3d(@—1)+e

(gr + 1)« \ H/(gA(g + )= 9/D)

imply the exponential localization on the intervakl(—ooEp]: for a.e. w, the spectrum
of H*9 is pure point on the interval | with exponentially decayirigemfunctions

In order to show the intervals in this theorem intersect it spectrum, we prove
the following:

Proposition 3.1. We assum® e supph. Then for any ¢ and R> 0, there exist
ke r € (0, 00) depending only on du, ¢ and R such that

69 |t (kar @rRIGA? - g7 ) A0, ) caties)
I

€X supph

for a.e. w.

Since the lower bound of the interval in (3.9) is less thathA)? if g is suffi-
ciently large, we can construct examples such that the Aodelocalization occurs as
in Example 2.1.
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We next proceed to the proof. To prove the Wegner type estBnatve dominate
the number of eigenvalueN([E — n, E +n] : Hf""g) directly by

3n/2
[ dtTi-p) (0 - E w0l
—3n/2

Since Hf‘”’g is bounded below, we here takg so that its support is bounded above
as follows: p,(s) = p(s/n) and p is a smooth function oR such that 0< p <1 on
R, p=1o0n (oo, —1/2] andp =0 on [1/2, 0). The vector fieldA defined in (2.20)
acts as

ATH(—py)(H[® = E+1)]
= Tt[(—p,) (H 9 — E +t)(H% + A + |AA?}2)]
< TH{(—p,) (H{"® — E+))(E + 27 +22A2).

Therefore, under the condition th& + 2n +22A2 < —§, we have the bound

1
Trl(—p,) (H(9 = E+0)] < SATrp, (H{*® — E+1)]

and
(3.10) E[N(E —n, E+n]: H}*9] < ;_L /Zn//zzdt Z I(L, E, t;a),
=N aezd
where
I(L, E, t;a) = E[/l da)(a)h(a)(a))w(a)L Tr[ (Hijgl —E +t)]}
54 9 do@ L '

To prove Theorem 4 (i), the following simple estimate is egtuu

Lemma 3.1. There exists a finite constant ¢ depending only on d diath suppu
such that

(3.11) sup |I(L, E, t;a)| < cLYgr)?H’
—3n/2<t<3n/2

for any ac Z9, L > 1, E < 0 and n > 0 such that E+ 25 < 0.

Proof. As in the proof of Theorem 2.3, the proof is reduced tonthating
Trlp,(H”? — E +1)]. We dominate this as
Trlp,(H"® — E+1)] < THE((—00, E + 2] : H9)]

(3.12)
< Trlexp(=tH,"%)] expt(E + 27)).
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Since E + 2 < 0, we dominate the second term by 1. Using the representafitine
heat semigroup by the Feynman-Kac-Ité formula (cf. [14R]]2 we dominate the first
term by

2DL¢ tgrB/4
(4rrt)d/2

By takingt so that the second term of the right hand side,isve have
Trlexp(-tH"9)] < cL%(gr)""?
and the same bound of Tx[(H;”® — E +1)]. O

To prove Theorem 4 (ii), we use the following:

Lemma 3.2. Under the condition of Theorem 4 (ii), for any q > d and
(q—1)/2 <1 e N, there exists a finite constant ¢ depending only pn,l diam supp
and d such that

. 2+1
gi(gh + 1) )q“ g

(3.13) sup |I(L, E, t;a)] < cH’(n(dist(a, A+ 1yt

—3n/2<t<3n/2
forany acZ% O<np<2land L>1.

To prove this lemma, we use the following as in the proof of bean2.4:

Lemma 3.3. Under the condition of Theorem 4 (ii), for any q > d and
(@ —1)/2 <1 €N, the operator(H1#%9 + A= — (H/9 + M)~ belongs to the
super trace clasgq, -1y and satisfies

[a,0], — o, - 21+1
ICHE 0+ ™ — (R + MGG

q/(2+1)
(3.14) e grlw(@)| 0|/(2|+1)Ld
— "\ (1 +dist@, Ap))? ’

where M =1 +gx I§/4 and c is a finite constant depending only onlgand d.

To prove this lemma, we use the following, which is proved mtémma 3.4 (i):

Lemma 3.4. For any A € L9A_ — R) with some q> d, the operator
(H/9+ M)~Y2A belongs to the clasg, and satisfies

(3.15) I(HES + M2 Al < cll Al

where c is a finite constant depending only on d and q
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To prove Theorem 4 (iii), we use the following instead of Lean®\3:
Lemma 3.5. If suppu is compactthen (3.14) is replaced by

(316)  I(HZO9 + My - (HE M) G < clgrlo(@)Y @,

where ¢ is a finite constant depending only diam suppu, g, | and d.
We next proceed to the proof of the localization.

Proof of Theorem 5 (i). We takéy = (—00, Eg], o= (—o0, (Eo — A2A2)/2) and
He, = H”¢ in Proposition 2.2, wheréd”J is the restriction ofH**9 to L2(AL(x) —
CP) with the Dirichlet boundary condition. Then the assummion that proposition
hold with p = diam supp, lo =1, no = (~Eo — A2A?%)/8, h=1,b=2,v=1, y =
civ/I+gx and Cw = co(gh)2H/ /(—Eo — A2A2), wherec; and ¢, are finite constants
depending only ord and diam supp. Then we have only to show the correspond-
ing (2.32) for anyE € lg, somef > 4d and £ € 6N greater than the right hand side
of the corresponding (2.33). We now use a Combes-Thomaseyimate obtained by
estimating the heat semigroup in Lemma A.1 of Fisher, Lescmd Mdiller [9]: under
the condition that

@) ._

0<—Eo—giB  sup
aEAUzﬁﬂZd 4

we have

® _ C:
IT2(HE® — Eo) xzyslll < 53 exp(—cavBL),

wherecz andc, are positive finite constants depending onlyanThus, forA . to be
(9, Ep)-suitable, it is enough that

(3.17) sup (@) < 4~Eo—((6+2)logL +log Ca)2/(CsL)? .

C,
a€A£+2/,ﬂZd g B

wherecs is a positive finite constant depending only dn Therefore a sufficient con-
dition for the corresponding (2.32) at the eneffgy is

(3.18) P(jw(0)] = C) < cs(£ +20) ",

wherecg is a positive constant depending only dn By taking L largely so thatC >
4(—Ep —¢)/(gB) and Proposition 2.2 can be applied, we have the conditiory.(3]

To prove Theorem 5 (ii) following Kirsch, Stollmann and $tqlL5], we use the
following as in the proof of Theorem 3:
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Lemma 3.6. We assumég2.3) for somex > d+1, limy_ . u(x)=0, L >1 and
®=w on Ay NZY. Then we have

i (H9)
(3.19) 2o, C1A rolgn . QLB Y2 A Cogh
= m(H" )+ = ( i(H" 9+ = ) =l
for any j e N, where u;(H, "9 is the j-th eigenvalue of {{*¢ including the multi-

plicity, and g and ¢ are finite constants depending only on d amd Moreovey if
a>d+2and L>ca @29 then we have

® ' C1A ', g)‘B v ng)"
(320)  wy(H{™%) = pj(H/ ‘%—ﬁ( (R0 + == ) ~ Led’

where g is a finite constant depending only on d and

Proof. For anye > 0 and® € C5°(AL — CP) such that]|®| = 1, we have

g’ 9(®, D)
< (1 +e)g*" 9@, ) + <1 * }>A2 Sup|A®(x) — A% (x)I?
€ XEAL
, 7B
+ 2 supl|B(x) — BY (9l +e .

XeAL

Since Ju(x)| < cj(1 +|x[)"**1, the other terms are estimated by

C/
suplA“(x) — A% (x)| < |_a—21

XeAL

and

/

supll B“(x) — B ()|, <

XEAL Lo—d

Thus, by the min-max principle, we have

" W 1 S \? I 1B
i (HE0) < (L +e)j (H] 'g)+(1+g>(|_afl_d> +g & e

The right hand side attains its minimum at

oA [(gAB sa) Y2
= Lafl—d( 4 -i-/}‘l'(HliL g)>
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and this gives (3.19). If

(3.21) IV +AA”)D| > A sup|A®(x) — A% (X)],

XEAL

we also obtain

q* 9P, P)
, A2 ,
> (1—)q™"9(®, d) — — sup|A°(x) — A (x)[?
€ xeAL
A , 7B
— 9 supliBe(x) — BY ()il — e 22
4 XeEAL 4

and (3.20) by the same method. By using the diamagnetic aliggucf. [3]) and
recalling the well known first eigenvalue of the Dirichletflacian, we obtaim > d+2
and L > csn¥(@=2-9) a5 a simple sufficient condition for (3.21). O

By this lemma, we see that

w, ', Cl(g+)"))"
|Mj(H|/_\ g)_lvbj(Hﬁ 9 =< TLe-i—d

holds in the situation of Lemma 3.6, if; (H,*9) A p;(H/“"%) < 0. Therefore we dom-
inate the probability (2.41) whergl/%, H'’,, o1(H%) and & are replaced b;Hﬁ”’x'g,
HI%E, ai(HS%) = o(H5®) N (=00, Eo + (g + M/QRL A L)) and
(g + A)A/(L A L)*1-9) respectively. The rest of the proof is same as in [15] and
the last section.

Finally we prove the results on the spectral set:

_ Proof of Proposition 3.1. We take e RY andw € [—1, 1]Zd so that|| B*(Xo)[ll1 =
B — ¢/3. There existsN € N such that|||B“N(Xp)|ll; > [IIB®(X0)lll; — €/3, wherewy
is the periodic extension t@¢ of the restriction ofw to Ay NZ9. For any 0% u €
A supph and R > 0, we have

inf o (H*“n-9)

; 1 2 N i 112 g - ® :
< |nf{<1+§>llv<bll +(L+R)|u AN D= + (‘D, > jZ;ijkMBjqu))

® e CFRY — CP), @] = 1}

by the min-max principle. We use a coordinate so tp;ﬁj*f(’“ (Xo) = 0 for (j, k) ¢
{(11 2)1 (31 4)1 vy (d - 1! d)1 (2! 1)! (41 3)r ey (d! d - 1)} andMBT)kN (XO) z 0 for (J! k) €
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{(1,2),(3,4),..,(d—-1,d)}. Then we have

Il 4 B~ (%0 ll2

1. .
5 2 VinuB (x0)Q = - 2

j<k

Q,

where Q is the projector to the intersection of the eigenspaces ef itiatrices
iy2ij—1y2j, J =1,2,...,d of the eigenvalue-1. We can take a small baB; (xo) =
{X: |x —Xo| <r} so that

1B (Xo)lll, — &/3
4

1.
> D iyinaBR(0Q < —|ul
j<k

Q

on B (Xo). By restrictingCg°(RY — CP) to C°(B,(X0) — QCP), we have
1 . B—
inf o (H*N9) < c<1 + §> +(1+R)A2A% — g|u,|Tg,

wherec is a constant depending only @h u ande. Since info (H#*N:9) is continuous
in u ando (H®9) = [0, 0o), we have

. 1 —5 g—e
Le;QIpph«l + ﬁ)c +(L+R)uAY - ng) A0, oo)

C {o(H"**N9): u € A supph}.

As in (2.12), we obtain (3.9) by the representation of thecgspé set of the ergodic
operators by those of periodic operators (e.g. Theoren8)5r8[23], §1.4 in [28]). [

4. Random magnetic Schrodinger operators with certain scalr potentials

In this section we consider random Schrddinger operatdfiaete by

d d
(4.0) Ho? = 310y + A 00 + APG0) + v’ () D (AT ()

j=1 j=1

on L?(RY), whered = 2d’, A(x) and A°(x) are same as in Section 2 except for that
we do not assume the compactness of the support of the plibpaeinsity functionh

of w(a). u > 0 and¥ = (¥(a))acze is another family of independently and identically
distributed real random variables independentwof We assume that their distribution
has aC! densityk(s) such that supk c [0, 1]. v”(x) is the alloy type random potential
defined by using? and a partition of unity as follows:

v’ (x) = ) P(@v(x —a),

aezd
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wherev € L*(RY — [0, 1]) with a compact support such thafv € L™ for any j =
1,2,...,d, and}_, s v(x —a) = 1. The operator in (4.1) with the doma(bg"(Rd)
are known to be essentially self-adjoint &3(R?) (cf. [19]). Accordingly we take the
unique self-adjoint extension, and denote it by the samebsym

To give Wegner type estimates for these operators, we cemssid restrictiorH "’
to L2(AL) with the Dirichlet boundary condition for eadh > 0. We set

IC’:/ |K'(s)| ds, Hp:/ Is|Ph(s)ds and H’p:/ |s|P|sH(s)| ds
for any p > 0. Then our Wegner type estimate is stated as follows:

Theorem 6 (Wegner type estimate). (i)We assumesuppu is compact and
H4 < oco. Then there exists a finite constant ¢ depending only pmlidm supp and
diam supp such that

(4.2) E[N((E — n, E+n]: H""")] < cWu(E, 8, Bo, 1, h, K)yL*

forany L>1, 0<E < By and0 < n < (By — E)/2, where

Béd+&)/2 K’
Wy(E, 8, Bg, i, h, k) = - 1+ s+ HL L.
a( 0, 1L ) (B E)d+l{< A l)Hd Hd}

(i) We assumé{,q < oo for some o> d. Then for any e NN(q, (@ — 1)q/d), there
exists a finite constant ¢ depending only ongd |, « and diam supp such that

(4.3)  E[N(E —n, E+n]: H”")] < cWaqi(E, 8, Bo, i, h, K)p*~9/ L
forany L>1, 0<E < Bp and0 < 5 < (By — E)/3, where
B(d+d)/2 K’
Waai(E, 8, Bo, 11, h, K :O—A{(1+—>HA+HC}.
d,q. ( 0, i, N, K) (Bo — E)i a1t

(i) We assumesuppu is compact andsupph C [—1, 1]. Then for any q> d and
g <! €N, there exists a finite constant ¢ depending only ormgdl, diam supp and
diam supp such that

(4.4) E[N([E —n, E+n]: Hli‘w,;u?)] < cWy,q1(E, 8, Bo, u, h, k)nl—q/l Ld
forany L>1, 0<E < By and0 < < (By — E)/3, where
W q.(E, 8, Bo, 1, h, K)

_BYPA(WBo (uv I VB N1 K
=T (Bo— Byl <Bo— E “) {H * A1<1+MA1>}'
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REMARK 4.1. If supph C [-1, 1], Wa,q.(E, 8, Bo, 1, h, K) is replaced by

BY” (M Ip+ VB[, K
(Bo—E)l_Q/'( Bo— E )( /m1>'

We use this estimate in the application to the localizatieee(Theorem 7 (ii) below).

As in previous sections, we can obtain a Holder estimate efdénsity of states
N(B), B € B(R), of the random Schrodinger operatdid«#’ defined as a determin-
istic Borel measure such that the Borel measure§N( - : “’ ’”9) on R converges
vaguely toN(-) asL — oo for almost allw.

Corollary. Under the situation ofTheorem 6 (iii), the density of states (N) of
the random Schrédinger operators*#*? satisfies

(4.5) N((E — n, E +7]) < cWaq(E, 8, Bo, i1, h, K)p*~ 9/
foranyO<E < By and0<n < (By— E)/3.

As in the last sections, we obtain also the following resoltsthe Anderson lo-
calization:

Theorem 7. (i) In the situation of Theorem 6 (i), for any ¢ > 0, there ex-
ist finite positive constants;c ¢, and g depending only on de, diam suppu and
diam supp such thatO < ¢ < By and

P(|w(0)| > %(JE —Bo—¢ - e))

(4.6) d+1 ‘
<©)A 2 Ao —— ‘
1+ Bo)e B(()d+d)/2((l +K/(n A 1))7_{& + 'H&)

imply the results inTheorem 2on the interval 1= [0, By — ¢] for the operator H#7.

In particular, for any e > 0, there exist a finite positive constant ¢ depending only
on d, €, Hg, K, diam supp anddiam supp such that B > c implies the results in
Theorem 2on the interval 1= [0, By — B§"™/?] for the operator H~”.

(i) In the situation of Theorem 6 (ii), we assumesupph is compact ande >
(5++/21)d/2 + 1. Moreover we assum@ < u < 1 < A for simplicity Then for any
€ > 0, there exist finite positive constantg, ©,, ..., cs depending only on de, o and
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diam supp such that0 < ¢ < By and
1
dCCERICENCEEE)

C1 Co
= {log(1 +Bo))® " 3@ a2

¢ (d+e)/(e—1-d)
: !C3<x(m+(uv1)x)> }

Ca
" (109 7(</Bo + (i v 1))

4.7)

: {CS(A(JE +§(MV1)/\)>CG

d (d+€)/{(a—1~d)?/(e—1)—3d}
¢
X T ~
( BY A Ad(H! + K /(1 A 1)))

imply the results iriTheorem 3on the interval 1= [0, By — ¢] for the operator H®#?,

We can construct an example such that the spectrgbh®*?) intersects with the
intervals in this theorem as follows:

EXAMPLE 4.1. As in Proposition 2.1, letl = 2, A(X) = (—Bxz/2, Bx;/2) and
u(x) = (0, ¢(x1)¢(x2)), where¢(t) =0 for |t| > 3/2, ¢(t) =1 for |t| < 1/2, and¢(t) =
(8 —2It})/2 for 1/2 < |t| < 3/2. Moreover we assume supp=R. Then we have
o (H®?) D [Bo/T0/(P0 + 1), 00), Where = inf suppk. The necessary condition dn
for this is only supgk C [0, oc). In particular, we haver(H®?) = [0, 0o) if 99 =0. In
fact, for anyr e R, ¢ > 0 andL > 0, the following holds with a positive probability:
lw(@) —raj] < e and 99 < (@) < Yo + € for any a € Z? N A +p. Then we have
|AZ(X) — 4rxy| < 9e on AL by (2.10) and

(4.8) Z ars(xy — ag) = 2xq.

e’

Therefore our operator is close to the operator
B \? B 2
H = (i 01 — §X2> + (i 0o + Exl + 4Rx1> + 9 (4rx.)2.

The spectrum of this operator is

o (H) = [((B +4r)* + 0(4r)*) "2, 00)
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(cf. [20], [21]). Then we can show that the infimum of the speat of H”" is

in a neighborhood of inf(H) by the min-max principle. Then by the same method as
in Theorem (5.33) of [23], we have inf(H) € o(H®?). info(H) varies over
[Bov/Do/(%0 + 1), 00) asr varies overR.

We next discuss the proof. For<OE < By, we introduce Birman-Schwinger type
operators by

(4.9) rys” = (HE = E) Y2(uv” () + 1) A?2(H>° — E) /2,
d

(410) TPy =(HP—E) Y2 ) {195+ ADAY + AY(id; + AY(HX® — E) Y2
j=1

and
WU 7
et =Tey" +TY
By the same proof for Lemma 2.1, we have the following:

Lemma 4.1. It holds that
(4.11) N(E —n, E+n]: H**") < N([1 =k, 1 +&] : =T'"*)
foranyO< E < By and0 < n < By — E, wherex =n/(By — E).
For Theorem 6 (i), as in [16], we write
N([1—k, L+k): =)
(4.12) = TH-c,00) (=T = Tr gz 00 (=T )]
= THtqre,00) (= K] = Tr gz 00 (=T,

where, for any intervall, y, is its characteristic function an& = (1 +«)/(1 — «).
Introducing an orderinga(1), a(2),... of Z% so that the supremum norta(j)|s is
an increasing function irj, we define transformationk;, j € N, on the probability
spaceRZ" by

(4.13) K;w)K] = {Z[ﬁ][k] Ig: ::; j

where w[k] = w(a(k)). Then we can write as

M(u,L)
(4.14) EIN(L—, 1+6) 1 =TP")] = 37 1+ 1o,
j=1
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where M(u, L) is the maximal integelj such that supp(- —a(j)) N AL # 9.

K r s o Ts"
j+1@ , jw ,
|] = ]E|:TI' |:X[1+K,oo) (—FL’Jll - T) — X[1+k,00) <_FL,11 — T)]:|

for j > 1 and

Fw,/u?
lo = E[Tf |:X[1+/<,oo) (—Fﬁ’,l - Lkz ) - X[1+K,oo)(—1“f’“0)ﬂ-

For eachj > 1, we have

I :E[ [ {en(“H) - i [xm,oo) (—FE"f’ : FE;)} dwm}

by changing the variable on the probability space. By theitipdyg of Ff"'z”"ﬁ and
Lemma 2.2 (ii), we have

I,Kjw,ﬂ
Tr [X[1+K,oo)<_FLK,jf) - Lé )} < Tf[X[1+K,oo)(—F||_<,jf))]
(4.15) A
o B
=[Ircylls < CdmllA xllg-
Since
1 i ) 1 . . .
—h(@) ~hGliD = - [ o)+ tolilN oliD) dt
K K 1/K
we have
(()d+(j)/2 1 . ' . ; .
i = et [ B [oli) + ol ol DA x 1 dof] |t

The expectation in the right hand side is estimated as

E[/{h(tw[il) +[tol [0t iDDIA X dw[i]}
(4.16) d
§(H3+H&)/ (Z|u(x—a)|> dxg(dp_\)&(Hdeé)Ld.

AL\ aeze

Thus we have

(d+d)/2

(4.17) I1j] < c(Hg +H5)m« — 1LY,
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wherec is a finite constant depending only @hand diam supp. On the other hand,
by changing the variable on the probability space, we have

l0=E [(Mﬁ)/dﬂmm(mm+ )

M(v,L)

- l_[ /dﬂ(a)[”k(ﬂ[]])> Trl X[244,00)(— r'w;u?)]i|

whered[j] = #(a(j)) andM(v, L) is the maximal integef such that supp(- —a(j)) N
AL #0. Since

<k(kotins ) - kot

"
= /K{k<w[j]+ t- 1) +t<z9[j]+ l)k/(w[m t- 1)} dt,
1 W “w "
we have
K’ B(d+&)/2 g
(4.18) o] < cHd(l + o 1) (BOO_ E)&(K — 1)L,

wherec is a finite constant depending only alh diam suppu and diam supp. By all
these, we can complete the proof of Theorem 6 (i).

For Theorem 6 (ii), we introduce a smooth functipnon R such that O< p < 1,
p=0o0n (oo, 1+«x] and p =1 on [K(1—«), c0), whereK = (1 +«)/(1— 2«). Then
we obtain

(4.19) N([L — ke, 1+] 0 =TP47) < TH{o(=KTP")] = Trlp(~T7"")].
As in Lemma 2.4 of [30], we have

E[Tp(~KI" ') = Jim E[Tr{o(-T %y — 10" /K)]],

whereK; is the transformation on the probability space defined astih3j usingK
instead ofK. Therefore we obtain

(4.20) E[N(1 -k, 1+k]: =T7"")] < i Ij +Io,
j=1

where

L = [Tp(-r ey - 15 1] - To(-r Yy - P /)]
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for j > 1 and
Io = E[Trp(—T{ ; — T4 /K)] — Trlp(—T"")]].

We here note that (4.16) holds evendifis replaced by anyg > 1. Moreover we
have the following more general estimate:

@) [ [ IO ERE) o] < @A [ 1o ds
R R

for any g > 1 andk € C(R — R), where h is an integrable function such that
h > h, and

AC(x) = 3" K (@)u(x — a).

aezd

In fact we can show this estimate as in (4.16)jifs an integer. Then the general case
is treated by the Stein interpolation theorem (cf. [25] THeeo 1X.21).
By using (4.21) as in (4.18), we have

(K — 1)L~

K/ B(()d*'(l)/2
Ry, 1) (Bo — E)

(4.22) [Io| < cHq <1 +

for any q > d, wherec is a finite constant depending only ah «, q and supp. On
the other hand, as in Lemma 2.4, we have

=== [ {3n(“48) - netin)

(4.23) X Tr[p(—FHf’ilw — Fﬂij;’ﬂﬁ/K)
Ow Ow, .
— (et = ) dot |

where

_ JKjw)lk] for k#j,
(K )k = {o ] for k=j.

As in Lemma 2.4, we apply the theory of the spectral shift fioms to obtain

O(K — 1)BY/2LY (i + 1) (Haq + Hpg) + BY2(Hq + H,))
K9/ (By — E)I(1 + dist@(j), Ap))e—Da/

(4.24) II;| <

for any j € N, wherec is a finite constant depending only on q, « andl. By (4.22)
and (4.24), we obtain Theorem 6 (ii).
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For Theorem 6 (iii), we use the bound by the summation (4.2@) the repre-
sentation (4.23), and apply the theory of the spectral $hifttions as above. In this
case we use also the calculation of commutators in [12] akdrptoof of Lemma 2.6.
Then we obtain

(4.25) |Ij| <cH’

(K — DBY*GA(VBo+ (1 + AN ( VBo 9a-1/1)
k91 (By — E)d (Bo—EV ) ,

wherec is a finite constant depending only @l g, | and diam supp. Moreover we
apply the same theories @:

m(v,L)

Ip = Z Jj,
j=1
where
hf [TI’[ ( Mw GK)|+1(MI9))] Tr[ ( uw GK)J(Hﬁ))]]
and K);, j € N, are the transformations dRZ’ defined by

(wolkl +1 - K)/K for k< |,

{(K)j(ﬂﬂ)}[k] = {(,Uﬂ?)[k] for k> j.

By changing the variables, we rewrite as

J; :E[/{Kk<Kﬁ[j]+ K- 1) - k(ﬁ[j])}

X Tr[p(=T ,\w(K)J(w?)) p(_rtw‘(K)?(W))] dﬁ[j]i|-

where

(K)S(uo))[k]  for k?—‘J,
for k=j.

(K)(u)K] = {

By the same estimate fdl;, we obtain
(4.26)
K—1 K\ By20.A(V/Bo + (u + VLAY [ /Bo ac-uh
il = <1+MV1) (197 1)(Bo — E)° (Bo— E Vl) |

where ¢ is a finite constant depending only ah ¢, | and diam supp. By (4.25)
and (4.26), we obtain Theorem 6 (iii).

We next proceed to the proof of Theorem 7. To prove (i), we thkel, and
HP, as [0,By — ¢], [0, Bp — ¢/2) and HL .. respectively, in Proposition 2.2. Then

X
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the assumptions in that proposition are satisfied with diam suppu v diam suppv,
b=2 h=1170=¢/6v=1 y =c(l+Bo) and Cw = {(1 +K'/( A D)Hg +
H’a}B((,d+d)/2/;a+l, where ¢; and c, are finite constants depending only ah
diam suppu and diam supp. Then we have only to show the corresponding (2.32)
for Eg = Bp — ¢, somef > 4d and £ € 6N greater than the right hand side of the
corresponding (2.33). As in the proof of Theorem 2, we camnwstiat (4.6) is a suf-
ficient condition. The second statement of (i) is proved bylgipg J_—JIB()—— >
¢ /(24/Bp) and the Chebyshev inequalii(|w(0)| > n) < IE[|a)(O)|d]/r] to the left hand
side of (4.6).

We next consider the situation of Theorem 7 (ii). As in thegbrof Theorem 3
and Theorem 5 (ii), we apply the theory of Kirsch, Stollmamd &tolz [15]. Lem-
ma 3.6 is modified as follows:

Lemma 4.2. We assumdg2.3) for somea > d + 1. If L > 2 diam supp and
(w, ¥) = (o, ¥') On Ay, then we have

» o, ’ CA. w', ! 1
@.27)  py(HE") < g (HE “ﬂ)J’W(m”(‘H Lwld»

for any j e N, where p1;(H/"") is the j-th eigenvalue of A” including the multi-
plicity, and c is a finite constant depending only on d andMoreover if « > d +2
and L> cat@=2-9 then we have

w w" ! C)\. ', ’
@28) (R = () = g (Vi (R ) + ),

where ¢ is a finite constant depending only on d amd
By this lemma, we see that

Cu(v/Bo +A(u v 1)

La—1-d

i (HEY = i (HEO ) <

holds in the situation of Lemma 4.2, jf;(H"*") A uj(H}"*") < Bo. Therefore we
dominate the probability (2.41) wherd}%, H/",, o1(H) and E are replaced by
HES HESET o (RIS = o (HE )N [0, By — £+ (V/Bo+ A v DI/(@L 1)
and (/B + A(u v 1))A/(L A L")*~1-9, respectively. The rest of the proof is same as
in [15] and the last sections.

5. Gaussian random vector potentials

In this section we consider the random magnetic Schrodingerator (4.1) where
the random vector potentigh®(x) is an R9-valued stationary ergodic Gaussian random
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field with mean zero and the covariangg(x) = E[A7(x)A¢(0)] represented as
r N ——
B0 = Y [ ol (c+ y)oF) dy
=1
for some complex value@s functions o/ (x), 0<j<d, 1<c¢<r, onRY with com-

pact support ané > d + 3. Then our Wegner type estimate is the following:

Theorem 8 (Wegner type estimate). There exists a finite constant ¢ depending
only on d B and diam supp such that

®-1) E[N((E — n, E +n]: H"")] < cWas(E, Bo, 1, K)n*"9/sL

forany L>1, 0<E < By and0 < n < (By — E)/3, where

B(d+d‘)/2 K v1 (d+1)d/s
Wy s(E, Bo, i1, K') = 0__ 1+ 1+84 = .
' (B — E)d+1-d/s nAl VBo

By using this estimate and Germinet and Klein theory [11]ra¢hie last sections,
we have the following result on the Anderson localization:

Theorem 9. For anye > 0, there exist a finite positive constant ¢ depending only
on d, ¢, B, u, K and diam supp such that B > ¢ implies the results imheorem 2
on the interval I=[0, By — BS+1/2] for the operator H»*?,

To prove Theorem 8, we use the following representation imio@ 2.2 in [30]:

Lemma 5.1. The Gaussian random field“{x) is represented as

2r
(5.2) AYX) =Y Woea(x)

=1 aezd

in LP(AL x Q) for any 1 < p < oo, where{W/,}1<,<2r acz¢ is a family of independently
and identically distributed random variables with the sdard normal distribution and
€aj, 1<t<2r,aeZ% 1<j <d, are R%valued C functions such thatfor any
0<I<s,

(5.3) supV'e,q j(x)| < cLS'"92)q)! s,

XeAL

where ¢ is some finite constant depending only on the coweeign
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By this lemma, we can treat the Gaussian random field sipilslthe alloy type
random potential whose single site potentials have nonectrgupports. Therefore we
can give a Wegner type estimate similarly as in the proof oéoram 6 (ii). We esti-
mate the each term of the bound by the summation

(5.4) EIN(L — &, 1+]: =T < 30T + 1o,
j=1

1,2,..., is an ordering off1, 2,..., 2r} x Z9 such thatja(j)|~ is an increasing function
in j. We here use the estimate

corresponding to (4.20), wherg[]] is identified with Wiiy.a() and ¢(j),a(j)), j =

(5.5) E[ A x [3IWIT] < (o) @ /2L
foranyq=>1,r=>0,jeN, te{l,2,...,2}, acZ® andK < 4, where|8(0)| is
a norm of the matrixg(0) andc is a finite constant depending only ap r andd.
Similarly we have

(5.6) E[IAS x 11 W2 '] < c|B(0)| @ /2LY,

Then, as in (4.22) and (4.24), we have

K’ ) B(()d"'Q)/z

GRS

57 Il < 1+
(5.7) |0|_C1< 2

and

Co Bg/z((l/« +1)1 + Bg/z)(K _ 1)Ld+(s_d/2)q/|

(5.8) = (B, — Byi(al)m v 15

wherec; and ¢, are finite constants depending only dn 8, g, | and diam supp.
However the bound of (5.8) is unnecessarily big for smallThus we use this bound
only for the termsl; satisfying

(H/ v +\/§Q)I/S|_lfd/(23)
B/®) s

\

la(j)leo =

and use the simpler bound

csBI (K — 1)L
(Bo — E)d '

for the other terms, where; is a finite constant depending only @h g andq. The
bound (5.9) is obtained as in (4.17). In the obtained bouhe,dependence oBy and

(5.9) I
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w is better for smallet and q. Accordingly we takeq = d andl =d+1. Then we
obtain Theorem 8.

To prove Theorem 9, we takk, E and H”, in Proposition 2.2 as in the last
section. Then the assumptions in that proposition arefigatisvith p = diam sup v
diamsupp, b=2, h=1-d/s, no=¢/6, v=1, y =c1(1+/Bg) and

K/ vi d(d+1)/s B(d+c§)/2
Cw=cyf1+ 144 7= 0 ,
uAl +/Bg ;—d+l—d/s

wherec; andc; are finite constants depending only dng and diamsupp. Then we
have only to show the corresponding (2.32) 8§ = By — ¢, someé > 4d/(1—d/s)
and someL greater than the right hand side of the corresponding (2.38f corre-
sponding (2.32) is reduced to (2.39) as in Section 2. We natlus following lemma
by Fischer, Leschke and Muller [9], which is based on Ferrigtleeorem [8]:

Lemma 5.2 (Lemma 5.3 in [9]). There exists a positive finite constant k&
Lo(Bjj (0), IVBij ll«) such that

2
P( sup|A?(x)| > n ) < 22@*D ex (_ﬂ_)
(XGA'?' i )|—”> = P\~ 2008;;(0) log L

forany L> Lo andn > 0.

By this lemma, (2.39) is reduced to

VBo—+/Bo—¢ >c3/log L+ £(6, L),

wherec; is a finite positive constant depending onlyedandg. Sincey/By—+/Bp — ¢ >
¢/(2+/Bg) and (0, L) decays asL — oo, this condition is reduced to

(5.10) ¢ > ¢4/ Bplog L,

wherec, is a finite positive constant appending only dn g and 6. By substituting
the bound ofL given by the corresponding (2.33) to the right hand side dfQf we
obtain the condition in terms of and By,. However since the bound appears in the
order of the logarithm in (5.10), we easily see from (5.1@tth= BSWZ and By > cs
constitute a sufficient condition, wherg is a finite constant depending only ah 8,

w, K', diam supp, 6 ande.
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