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Abstract

We develop the twistor theory db-structures for which the (linear) Lie algebra
of the structure group contains an involution, instead ofomplex structure. The
twistor spaceZ of such aG-structure is endowed with a field of involutiong e
['(EndT Z) and a J-invariant distribution’ ;. We study the conditions for the
integrability of 7 and for the (para-)holomorphicity of{;. Then we apply this
theory to para-quaternionic Kahler manifolds of non-zecala curvature, which
admit two natural twistor space&¢, J, Hz), € = £1, such that7? = eld. We
prove that in both cases/ is integrable (recovering results of Blair, Davidov
and Mwskarov) and thatt{; defines a holomorphice(= —1) or para-holomorphic
(e = +1) contact structure. Furthermore, we determine all the tiwia of the
Einstein equation for the canonical one-parameter familypseudo-Riemannian
metrics onZ¢. In particular, we find that there is a unique Kahler-Einst@i =
—1) or para-Kahler-Einsteine(= +1) metric. Finally, we prove that any Kahler
or para-Kahler submanifold of a para-quaternionic Kahleanifold is minimal
and describe all such submanifolds in terms of complex= (—1), respectively,
para-complex d = +1) submanifolds ofZ¢ tangent to the contact distribution.
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1. Introduction

Twistor methods were originally introduced by Penrose wfite aim of providing
a mathematical framework which could lead to a synthesisuaintum theory and rel-
ativity [13, 14]. They have proven very fruitful for the cdnsction and systematic
study of various geometric objects governed by non-lineatig differential equations
such as Yang-Mills connections, Einstein metrics, harmanaps and minimal sub-
manifolds.

Given a geometric problem on a real differentiable manifldendowed with cer-
tain geometric structuré, the twistor approach is to try to translate the given prob-
lem into a problem of complex geometry an a complex manifo)dcalled the twistor
space, which is the total space of a bundle dvierIn most casesZ can be defined as
the bundle of all complex structures in the tangent spaceldl afhich are compatible
with the geometric structur& and it comes with a natural almost complex structure
J, the integrability of which has to be derived from the prdigsr of the structures.

In the case of a four-dimensional oriented Riemannian ro&hiM, for instance,
the fibre atp € M of the twistor bundleZ — M consists of all skew-symmetric com-
plex structures iy M, which induce the given orientation [4]. It is identified fvithe
Riemann spher€P?! and, thus, carries a natural complex structure. On the died,
the Levi-Civita connection oM induces a horizontal (i.e. transversal to the fibers) dis-
tribution Hz c T Z and the horizontal spaces carry a tautological complexcisire.
Putting the complex structures on vertical and horizonpelces together, one obtains
a canonical almost complex structurg on Z. By the results of Atiyah, Hitchin and
Singer, J is integrable if and only if the Weyl curvature tensorMfis self-dual and, in
that case, self-dual Yang-Mills vector bundles Fhcorrespond to certain holomorphic
vector bundles orZ. Salamon et al. have extended these constructions fromtéour
higher dimensions, with the role of the self-dual four-dirsienal Riemannian manifold
played by a quaternionic Kahler manifold [15, 9]. In [3] theigtor method was used
to construct (minimal) Kéhler submanifolds of quaterntoKighler manifolds.

A G-structure is called ofwistor typeif the (linear) Lie algebrgg = Lie G of the
structure group contains a complex structure, i.e. an elendesuch thatJ? = —Id.
The twistor theory ofG-structures of twistor type is developped in [2], see alderre
ences therein. This includes the case of quaternionic K&h&mnifolds, for which the
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structure group iG = Sp(1)SpAh).

In this paper, we develop a similar theory f@-structures ofpara-twistor type
i.e. for which g contains an involutionl, rather than a complex structure. LBt— M
be such aG-structure and denote bi{ = Zg(J) the centralizer of the involutiond.
For any principal connectiom on P, we define the twistor space oP(w) as the
total space of the bundlg = P/K —» P/G = M, which we endow with & -structure
P — Z, a field of involutions7 € T(EndT Z) and a7 -invariant horizontal distribution
Hz, see Definition 11. We express the integrability6fand the (para-)holomorphicity
of Hz as equations for the curvature and torsionupfwhich generalize the self-duality
equation for the Weyl curvature of a pseudo-Riemannianimefrsignature (2, 2), see
Theorem 1.

A para-quaternionic structur@n a vector spac¥ is a Lie subalgebr® c EndV
which admits a basisJ{, J,, J3) such thatJ; = J;J, and J(f = €,ld, where €1, €2, €3) =
(-1, 1, 1). A pseudo-Riemannian manifol¥( g) of dimension> 4 endowed with a
parallel fieldM > p— Q, c EndT,M of g-skew-symmetric para-quaternionic struc-
tures is called gara-quaternionic Kéhler manifoldThe metricg has signature (g 2n)
and is Einstein [1]. Moreover, para-quaternionic Kahler ifudtls are related to cer-
tain supersymmetric field theories on space-times with atipegefinite rather than a
Lorentzian metric [11].

For a para-quaternionic Kahler manifoldM( g, Q), Blair et al. [6, 7] have de-
fined two twistor spaceZ¢ := {A e Q| A2 =¢}, € =+1, and endowed them with an
integrable structureg/ c EndT Z¢ such that7? = eld. We recover these results by con-
sidering the twistor space associated to the underl@nrstructure, which is of twistor
type, as well as of para-twistor type. More precisely, we wars

J esl(2,R) c g =52, R) ® sp(R™M) c gl(R? ® R™) = gl(4n, R).

Under the assumption that the scalar curvaturg &f non-zero, we prove, in addition,
that the horizontal distributiof{z defines a holomorphic (respectively, para-holomorphic)
contact structure orZ and that Z¢, 7) admits a Kahler-Einstein (respectively, para-
Kéhler-Einstein) metric and determine all Einstein metrim the canonical one-
parameter family of pseudo-Riemannian metrics, see The@&elt turns out that there
is always a second Einstein metric.

Finally, we generalize the twistor construction of Kéahlebmsanifolds of a quater-
nionic Kahler manifold (see [3]) to the case of Kéhler andapidéhler submanifolds
(see Definition 14) of a para-quaternionic Kahler manifoM, @, Q). We prove that
any Kahler or para-Kahler submanifold of a para-quateiini&é@hler manifold M, g, Q)
is minimal (Corollary 7). All such submanifolds can be oh&d as projections of com-
plex (€ = —1), respectively, para-complex € +1) submanifolds ofZ¢ which are tan-
gent to the contact distribution, see Theorem 4. It follohat the maximal dimension
of a Kéahler or para-Kéhler submanifold di( g, Q) is (1/2)dimM and that maximal
Kahler (respectively, para-Kahler) submanifolds df,(g, Q) correspond to Legendrian
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submanifolds of the complex (respectively, para-compogtact manifold Z¢, Hz).

2. (Almost) para-complex manifolds

2.1. Integrability of an almost para-complex structure.

DEFINITION 1. An (almos) para-complex structutein the weak senseon a dif-
ferentiable manifoldV is a field of endomorphismg € EndT M such thatJ? =Id. J
is callednon-trivial if J # +ld. We say thatJ is an @lmos) para-complex structute
in the strong sensef the +1-eigenspace distributioiE*M of J have the same rank.
An almost para-complex structure is calledegrable or para-complex structuré the
distributionsT=M are integrable, or, equivalently, the Nijenhuis tensbr, defined by

2.1)  Ny(X, Y)=[X, Y]+[IX IY] = I[IX Y] =JI[X,IY], X, YeTM,

vanishes. An glmos) para-complex manifoldM, J) is a manifold M endowed with
an (almost) para-complex structure.

Unless otherwise stated, by an (almost) para-complex tateiove shall understand
here an (almost) para-complex structure in the weak sense.

REMARK. The difference between weak and strong (almost) para-texmpan-
ifolds is that T;°M = {X +eJX| X e TM} c M ® C, p e M, is a free module
over the ringC := R[e], € =1, of para-complex numbers only in the strong case. In
particular, for weak para-complex manifolds, there is ndiam of para-holomorphic
local coordinatesZ) on M such that thedZ) form a basis ofT }-°M over C.

Let (V,J) and {, Jy) be vector spaces endowed with constant para-complex struc
tures. We can decompose the vector spaég)) :=U ® /\2V* of U-valued two-forms
on V according to type

(2.2) CAU) = > CP(),

p+q=2
where

a e CHYU) if a(IX, JY)=—a(X,Y) foral X,YeV,
a e C*U) if a(@X Y)=a(X,JY)=Jya(X,Y) foral X,YeV

and

a e COYU) if a(@X Y)=a(X,JY)=—-Jya(X,Y) foral X,YeV.
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Lemma 1. The projectionszP9: C3(U) — CP9(U), o — «P9, are given by

1,1 — 1
am (X, Y)= E(oz(X, Y) —a(J X, JY)),
1
a?9(X, Y) = 21(a(x, Y)+a(IX, IY)+ Jua(IX, Y)+ Jya(X, JY)),
1
a®3(X, Y) = Z(a(X, Y)+a(IX, JY) = Jua(IX, Y)— Jua(X, JY)).
For scalar valued formd) = R) we will always assume thaly = Id.

Let J be an almost para-complex structure on a manifdidand V a linear con-
nection which preserves. The following lemma shows thal is integrable if and
only if the (0, 2) component %2 = 72T vanishes.

Proposition 1. Let V be a connection which preserves an almost para-complex
structure J on a manifold M Then the Nijenhuis tensor of J is given by N—4T0%2,

In particular, J is integrable if and only if #2=0.

Proof. Applying Lemma 1 in the cadg =V =T,M, p e M, we have

1
TO(X, Y) = 21(T(x, Y)+TAX IY)=JITAX Y)=JIT(X,JY), X, YeTM.
ReplacingT (X, Y) by VxY — Vy X —[X, Y] in this formula, we get
02 1 1

TOAX, Y) = _Z([X’ Y]I+[IX, IY] = J[IX, Y] =J[X, Y] = —ZNJ(X, Y). O

2.2. Holomorphicity of distributions in almost para-complex manifolds.

DEFINITION 2. Let (M, J) be an almost para-complex manifold of real dimen-
sionn. A J-invariant distributionD =D, @ D_ c T"M & T-M =TM of rank m

is called para-holomorphicif it is locally defined by equations! = .. =X = ! =
...=a* =0, such thak, +k_=n—m,

(2.3) oy o J=+al,

and the (1, 1)-component
1,1 i — 1 i * i
7ot dal = E(dot+ —J"dal)
vanishes on\%(D: @ T~M) and the (1, 1)-component

1 .
atlda' = E(da'_ —J*do')
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vanishes on\%(T*M & D_).

Let (M, J) be an almost para-complex manifold of real dimensioendowed with
a J-invariant distributionD c TM of rank m and a connectiorV which preserves]
and D. Then we can define a two-form with values TiM/D by

S(X,Y):=T(X,Y) modD.

Since J induces a para-complex structure on the vector bufddlé/D, we can de-
compose

S= SZ,O+ Sl,l+ 50,2’
see Lemma 1.

Proposition 2. Let (M, J) be an almost para-complex manifold\ J-invariant
distributionD =D, & D_ c T*M @ T~M =TM is para-holomorphic if and only if

(2.4) [[(D1), T(TTM)] c I(TTM & Da).

Moreover if V is a connection which preserves J afig then (2.4) is equivalent to
(2.5) ShYIX, -)=—-ISYX, ),

for all X € D.

Proof. First we prove that (2.5) is equivalent to the parkmorphicity of D.
Let D be a para-holomorphic distribution defined by one-forsas in Definition 2.
The condition onr!dc!, is equivalent to

da'(X+, Y_)=0, XieDy, Y_eT™M,
do' (X4, Y.)=0, X.eT'M, Y_eD_.
Expressing the exterior derivative in terms of the covdrderivative and torsion we get
0 =da(Xe, Y2) = (V.0 Y= = (Vy_ad) X + el (T (X, Y2)).
The first two terms on the right-hand side vanish. In factceiW preserves the dis-
tribution D, the covariant derivativé/xco!, vanishes oD, @ T~M for all X € TM.

The last term can be written as

0 =l (T(Xs, Y2)) = oL (THY(X4, Y2)),
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which implies thatTYY(X,,Y_) e D, @ T"M for all X, e D, andY_ e T"M. A
similar calculation fora' shows thatTtY(X;, Y_) € T*M @ D_ for all X, € T*M
andY_ € D_. This proves that

StYD,, T™M) c (T"M +D)/D,
StYD_, T*M) c (T*M + D)/D.

In particular, S*{(D, D) =0 andS*}(J X, -) =—=JShY(X, ) for all X € D.

To prove the converse, we assume that the torsionVogatisfies (2.5). Let
(al,...,a%) and (ol,. . .,ozf‘) be local frames of . ®T-M)* and T*M&D_)* c
T*M, respectively. This implies (2.3). Sinee"la(T*M, T*M) =0 for any two-form
a, it is sufficient to check that**da!.(Ds, T"M) =rtlda' (T*M, D_)=0. We cal-
culate forX, e D, andY_ € T~ M:

ahldal (Xe, Y2) = dad (X, Y2) = (Vi @h) Yo — (Vv ad) Xe + ol (T(Xe, Y2))
= o (T(Xs, Y2)) = b (THH(Xs, Y2)) = 0 (SHH(Xs, Y2))

= o (SPYI X, Y2) B —al (IS (Xs, Y)) = = (SHH(Xs, YO)).

Therefore, 7 %*da! (X+,Y_) = 0. A similar calculation shows that''da' (D_, T*M)=0.
Now we prove the equivalence of (2.4) and (2.5). The condi{25) can be writ-
ten as

T(Dy, TFM) Cc TFM @ Ds.

Using thatV preserves the distributior®. and T*M, we calculate forXy e I'(D.)
and Yy € T(T*M)

TTM@® Dy > T(X4, Y¢) = VXiY$ - V\&Xi —[ X4, Y;;]
= —[Xi, Y1] mod TTM @ D..

This proves the equivalence of (2.4) and (2.5). ]

Let (M, J) be a para-complex manifold in the strong sense, i.e. thegiable
eigendistributionsT*M are of the same rank. Recall [10] thatGavalued one-form
y = a +eB is of para-complex typgl, 0), i.e. J*y = ey, if and only if B =« o J.
A (1, 0)-form y is para-holomorphicif 3y := 711dy = 0, which is equivalent to the
para-Cauchy-Riemann equations

(2.6) o_as ;= i oy = dra_ = e = 0,

wherea = a; + @ is the J-eigenspace decomposition ef
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Proposition 3. Let (M, J) be a para-complex manifold in the strong sense with
eigendistributions ¥M of rank n andD =D.®D_ c T"M@®T-M =TM a J-invariant
distribution such thatD,. are of the same rank mThenD is para-holomorphic if and
only if it is locally defined by equationg’' =0 (i = 1,..., k =n—m), where they'
are para-holomorphic one-forms

Proof. LetD be defined by para-holomorphic one-forpis= o +o' +e(a —a').
The o, satisfy (2.6), which imply the equations in the Definition 2.

To prove the converse, we now assume that the distribddas para-holomorphic.
Thanks to Proposition 2, this means that

[C(D1), T(TTM)] c T(TTM & D4).

In order to construct para-holomorphic one-forpis= ol +a' +e(e, —a' ) which de-
fine D, we choose locally linearly independent commuting vectehdﬁYii e I(TEM)
which generate distributionsl* ¢ T*M complementary t@.. We define one-forms
o, vanishing onD. @ TTM by

aii(in) = 5} .

It is clear thate!. o J = +a!, and thaty' := ol + o' +e(@} — a') define D. Now
we check that the/' are para-holomorphic, i.éi_«! = d.a' = 0. It is sufficient to
evaluate this equality onZ(*, Z~), where Z* = X* e I'(D.) or Z* = Y=,

d_al (X", X7) = X al(X7) = X"k (X*) =i ([X", X)) =0,
sincec!. vanishes oD, @ T-M and [X*, X"] e T-M & D, by (2.4). Similarly,
d_af (X", Y7) = X el (Y]) = Y/ ah(X") — el ([X*, Y] ]) = 0.
Finally,
d_ah (Y], Vi) = Yok (Y) = Yl (Y)) — ob([Y), YD) = 0= Y (8)) = 0 =0,
since, by construction,Yf", Y, '] = 0. Similarly, one can check that.o' = 0. 0

3. Para-quaternionic manifolds and para-quaternionic KaHer manifolds

DEFINITION 3. Let 1, €2, €3) = (-1, 1, 1), or a permutation thereof. Aadmost
para-quaternionic structuren a differentiable manifoldM (of dimension #) is a rank 3
subbundleQ c EndT M, which is locally generated by three anticommuting fields of
endomorphismsly, J,, J3 = J1Jo, such thatJa2 =¢,1d. Such a triple {,) will be called
a standard local basiof Q. A linear connection which preserved is called anal-
most para-quaternionic connectiomn almost para-quaternionic structugeis called a
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para-quaternionic structuréf M admits apara-quaternionic connectign.e. a torsion-
free connection which preserv&®. An (almos) para-quaternionic manifolds a man-
ifold endowed with an (almost) para-quaternionic struetur

An almost para-quaternionic Hermitian manifol(dM, g, Q) is a pseudo-Riemannian
manifold (M, g) endowed with a para-quaternionic structu@e consisting of skew-
symmetric endomorphisms. M, g, Q), n > 1, is called apara-quaternionic K&hler
manifold if the Levi-Civita connection preserve.

Proposition 4 ([1]). At any point the curvature tensor R of a para-quaternionic
Kahler manifold(M, g, Q) of dimensiondn > 4 admits a decomposition

(3.1) R=vRy+W,

where v = sca)(4n(n + 2)) is the reduced scalar curvature

1 1
Ro(X, Y) := +3 %“ €a9(J X, Y)Jy + Z(X AY — ; € X A JaY), X, Y e ToM,

is the curvature tensor of the para-quaternionic projeetspace of the same dimension
as M and W is a trace-free Q-invariant algebraic curvatureger where Q acts by
derivations In particular, R is Q-invariant

We define gpara-quaternionic Kahler manifold of dimensidnas a pseudo-Riemannian
manifold endowed with a parallel skew-symmetric para-guabnic structure whose
curvature tensor admits a decomposition (3.1).

Since the Levi-Civita connectiolV of a para-quaternionic Kéhler manifold pre-
serves the para-quaternionic struct@e we can write

(3.2) V3 = —€gw, @ Jpte,08®Jy,

where €, B, y) is a cyclic permutation of (1, 2, 3). We shall denote dy:=9g(J, -, -)
the fundamental formassociated with), and putp,, := —¢€y pq.

Proposition 5. The locally defined fundamental forms satisfy the followsirgc-
ture equations

(3.3) Vo), 1= —€qVpy = €3(dwy — €uwp A w)),
where («, B8, y) is a cyclic permutation of(1, 2, 3).
Proof. Using Proposition 4 and the fact that

[‘]aa \],3] = 263€y Jy:
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we calculate the action of the curvature opera®fiX, Y), X,Y € TM, on J,:

3
[ROX, Y), 3] = [VRo(X, Y), 1= =2 D pi(X, V)[ 35, 4]
=1

= e3v(—ep0,, (X, Y)Ip + €, 05(X, Y)Jy),
where ¢, 8, v) is a cyclic permutation of (1, 2, 3). On the other hand, udimg equa-
tion (3.2), we calculate
[R(X, Y), ] = [Vx, Vvl = Vix,v] de
= Vx(—epwy(Y)Jp + €,05(Y) ) — Vy(—€pwy (X)Ip + €, wp(X)Jy)
— (—epw, (1%, YD) Jg + €,p([X, YD) J,)
= —€p da),,(X, Y)Jﬂ te, da)ﬂ(X, Y)Jy - Gﬂa)y(Y)Vx\]ﬂ + éya)ﬂ(Y)Vx Jy
+ éﬁwV(X)Vy N eya)ﬂ(X)Vy Jy.

Applying again the equation (3.2), we finally get
[R(X,Y), ] = —€p(dw, — €,04 A wp)(X, Y)Ig +€,(dop — €pw, A wy)(X, Y)J,.
Comparing the two formulas forR(X, Y), J,] we obtain the structure equations.]

4. The twistor spaces of a para-quaternionic or para-quatemionic Kahler
manifold

4.1. The twistor spaces of a para-quaternionic manifold. In the following, it
will be useful to unify complex and para-complex structuireshe following definition.

DEFINITION 4. An almost e-complex structuree € {—1, 0, 3}, on a differen-
tiable manifold M of dimension 2 is a field of endomorphismgd € EndT M such
that J? = eld and, moreover, foe = +1 the eigendistribution§ *M are of rankn and
for € = 0 the two distributions ked and imJ have rankn. In other words, an al-
most —1-complex structure is an almost complex structure and amostl +1-complex
structure is an almost para-complex structure in the stsmmgse.

An e-complex manifoldis a differentiable manifold endowed with an integrable
(i.e. Ny = 0) e-complex structure].

We shall also use the unifying adjectiveholomorphicas a synonym of ‘holomorphic’
or ‘para-holomorphic’, depending on whether —1 or € = +1, respectively.

Let (M, Q) be an almost para-quaternionic manifold. We associath (t, Q) a
family of bundlesz: 2% — M, with two-dimensional fibres, depending on a parameter
s € R as follows:

Z°5:={AcQ|A#0, A2=g}.
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DEFINITION 5. The fibre bundler: Z5 — M is called thes-twistor spaceof the
almost para-quaternionic manifoldi( Q).

Proposition 6. Any almost para-quaternionic connectioh on an almost para-
quaternionic manifoldM, Q) induces a canonical almogtcomplex structure7® = Jg
on the s-twistor space Zwheree = sgn§) € {—1, 0, 1.

Proof. Let (, J, K) be a standard basis d@,,. Then any elementA € Qn
can be written asA = x| + yJ+zK and A e ZS if and only if —x2+ y?> +7° = s.
Hence, the fibres ofZ° are two-sheeted hyperboloids fer< 0, one-sheeted hyper-
boloids fors > 0 and light-cones without origin fog = 0. Each fibreZ$ =z ~1(m) is a
homogeneous space of the group SO(1, 2) with one-dimerisstaailizer SO(1, 2), =
SO(2) if s < 0, SO(1, 2), = SO(1,1) ifs > 0 and SO(1, 2), = (R, +) if s =0,
where As € Z5. First we define the canonical SO(1, 2)-invariaatomplex structure
on Z;, as follows. The three-dimensional vector sp&gg c EndT,M is a Lie sub-
algebra isomorphic tal;(R). The adjoint action preserves the indefinite scalar produc
(A, B) = —(1/(4n)) tr(AB), 4n =dim M, in Q and hence identifies the Lie algeb@
with s0(Q) = Lie SOQ) = so(1, 2). LetAe Z3, C Qm. Then Z; = SOQ)A and
the tangent space t@;, at A is identified withso(Q)A = s0(Q)/s0(Q)a = s0(Q)/RA.

It is easy to check that the adjoint action of/2)A on so(Q)/RA defines an SAD)-
invariante-complex structure]’ on Z3. Now we define an almost-complex structure
J*® on the twistor spac&s. We have the decomposition

(4.1) T,Z°=T,Z%+H; = T,(Z) ® T:zM,

where T} Z5 is the vertical space of the bundle: Z5 - M and H; is the horizontal
space of the connection in the bundieinduced by the para-quaternionic connectdn
of (M, Q). The latter is identified withT,,M via the projectionZs — M. We denote
by J? the tautologicale-complex structure ofi,,M defined byz € Z5. With respect
to the above decomposition we define

(4.2) Ty, =3 J?
By construction, 7% is an almoste-complex structure. ]

4.2. The twistor spaces of a para-quaternionic Kahler manisld. Let (M, g, Q)
be a para-quaternionic Kahler manifold with twistor spaZés The Levi-Civita con-
nectionV = V9 is a para-quaternionic connection and, hence, induces enizah al-
most e-complex structure7® = 75 on Z5.

Proposition 7. The twistor space Zof a para-quaternionic Kahler manifold
(M, g, Q) admits a canonical almost-complex structure7€, where ¢ = sgn§), and
a one-parameter family gt € R — {0}, of pseudo-Riemannian metrics such that the
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almoste-complex structure7s is skew-symmetriqrovided that sz 0. For s =0 there
exists a canonical one-parameter famil§,d € R — {0}, of symmetric bilinear forms
with one-dimensionalvertical) kernel such that7s is skew-symmetric Finally, for
s # 0, the projectionz : (Z%, ¢7) — (M, g) is a pseudo-Riemannian submersion

Proof. We denote byg’ := (-, - )|z the induced metric on the fibregs C
(Q, (-, -)). It is nondegenerate fog # 0 and has one-dimensional kernel ®r 0.
The e-complex structure]” on Z7 is g’-skew-symmetric. With respect to the decom-
position (4.1), we define

(9)z =19 @ Grz.

The almoste-complex structure7® defined above is skew-symmetric with respect to
the field of symmetric bilinear formsgf, which is nondegenerate far # 0 and has
one-dimensional vertical kernel far= 0. The above formula fogy shows that the de-
composition ofT Z into vertical and horizontal space @§-orthogonal and that the pro-
jection induces an isometrid, — T,,M. This proves thatr is a pseudo-Riemannian
submersion. O

The scalar multiplication bys|*’2 # 0 in the vector bundleQ — M induces an
isometry ¢, gf) — (Z°, gts/lsl), which preserves the almostcomplex structure, where
€ =sgng). This shows that it is sufficient to consider only three of tibove twistor
spaces, namelgZ* := z*1, z=:= z~1 and Z°. We will study the integrability of the
almost e-complex structure7¢ and the holomorphicity of the horizontal distribution
H c T z¢, which is J¢-invariant. For this we extend th&-structure approach devel-
oped in [2] to the para-case € 1).

4.3. Twistor spaces of para-quaternionic (Kéhler) manifolls as bundles as-
sociated to G-structures. In this subsection we interpret the twistor spa&ss(e =
-1, 0, 1) from the point of view ofG-structures.

Let (M, Q) be a para-quaternionic manifold. Note thi@t, := Rld+Qy, c EndT,,M
is an algebra isomorphic to the algebra of para-quaternibesto the matrix algebra
R(2). Since any irreducible module &(2) is isomorphic taR?, the Q,,-module T,M
is isomorphic to theR(2)-moduleR? ® R", 2n = dim M, with the action on the first
factor.

DEFINITION 6. Let (M, Q) be an (almost) para-quaternionic manifold. para-
quaternionic coframeat m € M is an isomorphismp: TnM — R2 ® R" which maps

Qm into R(2), i.e.

$oOmogp ' =R@2)®Id.
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Proposition 8. (i) The set P of all para-quaternionic coframes together with th
natural projectionz”: P — M is a G-structurei.e. a principal subbundle of the bun-
dle of all coframes with the structure group & SL; (R) ® GLa(R), where

SLE(R) = {A € GLy(R) | detA = +1}.

(i) Let Aesl(R)®Id c g =LieG such that A=¢ld and G, the stabilizer(i.e. cen-
tralizer) of A in G. There is a canonical isomorphism of fibre bundles

P/Ga— Z°.

Proof. (i) It is clear that any two para-quaternionic cofemrare related by an
element of Gh(R) ® GLn(R) = SLE(R) ® GLn(R).

(i) Let ¢ € P be a coframe am € M. It induces an algebra isomorphism
é: R2) > Om, B ¢ 1Bp. The imaged(A) € Qn satisfiesp(A)? = eld, hence
B(A) € Z&. If k € Gp then kg(A) = ¢~k LAkp = ¢(A). So the mapP — Z¢,
¢ — ¢(A), factorizes to an isomorphis®/Ga — Z¢ of fibre bundles. ]

Assume now thatMl, g, Q) is a para-quaternionic Kéhler manifold of dimension
4n, or more generally an almost para-quaternionic Hermitiamifold. OnR? @ R?"
we fix the standard scalar produgdsn = wr2 ® wgr=, Wherewr= denotes the standard
symplectic structure oR?".

DEFINITION 7. Let (M, g, Q) be an almost para-quaternionic Hermitian mani-
fold of dimension 4. A para-quaternionic Hermitian coframat m € M is a linear
isometry¢: (TmM, gm) = (R?2 ® R?, gean) Which mapsQy, into R(2).

Proposition 9. The set P of all para-quaternionic Hermitian coframes tbget
with the natural projectionz®: P — M is a G-structure with G= Go U £€Gq, Gg :=
SLy(R) ® SpR?"), £ = A® B € SLF(R) ® GLy(R), detA = —1 and B'wgan = —wpan.
Moreover the twistor space Zis canonically isomorphic to the bundle/B s, where
0 # A e slp(R) with A? = eld.

5. G-structures of para-twistor type and their twistor spaces: obstructions
for integrability

5.1. Groups of para-twistor type and para-complex symmetii spaces.

DEFINITION 8. A connected linear Lie grou® c GL(V), V =R", is called of
para-twistor typeif its Lie algebra contains a para-complex structure, ire.element
J such thatJ? = Id. (If G is not connected, we shall assume, in addition, that the
conjugation byJ preservess.)
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Since the endomorphisi is semi-simple, the adjoint operator a$ semi-simple and,
hence, we have the direct susrF £ +m, wheret =kerady = Z;(J) andm =[J, g]. It
follows that

m={Aecg|{J, Al=AJ+JIA=0).

This implies that fn, m] C ¢ and, hence, thag = ¢ +m is a symmetric decomposition.

Proposition 10. The orbit S:= Adg(J) = G/K, K = Zg(J), is an affine sym-
metric space and carries a canonical G-invariant para-céempstructure 5.

Proof. The involutive automorphism — JAJ™1 = JAJ of G hasK as its fixed
point set and defines the symmetry @fK at the pointeK.

The formulaJ, A=JA=(1/2)[J, A], A € m, defines aK-invariant para-complex
structure onm, which extends to @-invariant para-complex structur@® on S. The
structure JS is integrable, since it is parallel under the canonicalitorsree connec-
tion of the symmetric spac8. ]

The projections ontd andm are given by

(5.1) A %J{J,A}:%(A+JAJ),
(5.2) A %J[J, Al = %(A— JAJ).

5.2. The space of curvature tensors. Let G ¢ GL(V) be a linear Lie group of
para-twistor type with Lie algebrg, J € g a para-complex structure angd= ¢ +m
the corresponding symmetric decompositidns Z4(J) and m = [J, g]. Recall that
m carries the para-complex structudg,: A— JA = (1/2)[J, A]. For any subspace
U c EndV we denote by

2
R(U):=[RGU®/\V*

R satisfies the first Bianchi identi}y

the vector space of algebraic curvature tensor of type
The projectionr,,: g — m induces a projection

T C2(g) » C?(m).

According to (5.2), the projection™ := o € C2(m) of a € C?(g) is given by

(5.3) a™(X, Y) = %(a(X, Y) — Ja(X, Y)J).
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Recall that, sincen c EndV is endowed with the para-complex structukg, we have
the decomposition (2.2)

C¥m)= > CPI(m).

p+q=2

We putrh® := 7P9 6 7,1 C%(g) » CP9m) and RP9(m) := R(m) N CP9(m).
The action ofJ as an automorphism of the tensor algebra induces invoklition

Ty: C¥g) —» C¥g), Ts: C*V)— CAV).
We denote thet1-eigenspaces of; on C%(g) by C3(g), such that
C%(g) = CX(g) + C2(9),
and putC2(U) := C2(g) N C3(U) and R+(U) := C2(g) N R(U), whereU =¢, m.
Proposition 11. (i) The eigenspaces of ;Ton C%(g) are given by

(5.4) CZ(m) = CY(m),

(5.5) C2(m) = C2%m) + C%2(m).

(i) The action of F on CP9(V) is given by
Tyalt=—Jo?,
Tya?0= Ja?

Tya%2=Ja%2

In particular,
CHY(V) = ker(Ty + L),
C2oV) + CO4(V) = ker(T) — L),

where Lo =Joa.
The action ofJ as a derivation on the tensor algebra induces an endomorphis
a> Ja=[J,a]l —a(d-, )—a(-,J")
of C%(g). Similarly, J acts as a derivation 062(V).
Proposition 12. (i) The action of J as a derivation on?@) is given by

J-aP9=2qJaP9 forall «P9e CPIm),
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Joa==20(J-, ) forall «eC2®),
J.C3@)=0.

In particular, the vector space of J-invariants is given by
(5.6) C3(g)? = C2(¥) + C*(m).

(i) The action of J as a derivation on%QV) is given by

J-a?0= 302",
J-a%?=3Ja"%?,

J-abt=Jat,

In particular,

C>%V) = ker(D; + L),
C%%(V) = ker(D; — 3L3),
cti(v)=ker(D; — L),

where Do = J - «.
The proposition shows thatl1C?(g)? = 722C?(g)? = 0 and72°C?(g)’ = C%%m).

Proposition 13. The following holds
() R(g) = R+(g) + R—(g),
(i) R(m)=R4s(m)+R_(m),
(ii)) TmR+(g) = 71 ¥R+(g) D Re(m) = RVY(m),
(iv) 70:*R(g) = R%?(m),
V) TwR-(g) = (75°+ 72AR-(g) D R—(m) = R*%m) + R*(m).

Proof. (i) and (i) follow from the fact thal;: C%(g) — C2(g) preserves the sub-
spacesR(m) c R(g) c C?(g) and (i) follows from the equation (5.4). The equa-
tion (5.5) and (iv) imply (v). Therefore it suffices to prov&)( For R € R(g) and
X,Y, Z e V we calculate

(x%2R)(X, Y) = %(R‘“(X, Y)+ R™(JIX, JY) = IR*(IX, Y) = IR™(X, JY))

= %(R(X, Y) — JR(X, Y)J +R(IX, JY) — JR(IX, JY)J

—JRIX, Y)+RAX, Y)J — IRX, JY)+ R(X, IY)J)
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(R(X, Y) — IJR(X, Y)J — JRIX, Y) — IR(X, JY))

(oo

+ %(—J R(IX, JY)J +RIX, JY) + R(X, JY)J + R X, Y)J)

(JJ-R(X, Y) = (J-RIX, IY)J)

@l

and, therefore,

1 1
2 PR, V)Z =23 3 (3-R(XNZ -2 > (3-REIX, INIZ=0,

cyclic cyclic cyclic

where the sum is over cyclic permutations of, (Y, Z). Here we used the fact that
A-R(g) C R(g) for any A € g. ]

5.3. G-structures with connection and associatedK-structures. Let G C
GL(V), V =R", be a linear Lie group.

DEFINITION 9. A G-structureon a manifoldM is G-principal bundler: P —
M endowed with a displacement foré i.e. a G-equivariantV-valued one-form such
that kerd = TP := kerdr.

We shall identify a pointp € P with the coframe
p: TapM =V, X 6p((dn),1(X)).
DEFINITION 10. A principal connectionin a G-principal bundler: P — M is
a G-equivariantg-valued one-formw: TP — g such thatH := kerw is a distribution

transversal to the vertical distributioR? P.

Recall that the wedge product of two one-formasg with values in a Lie algebra is
the Lie algebra valued two-form given by

[ A BI(X, Y) = [a(X), B(Y)] = [(Y), BX)]-
The curvature of a connectionw is the g-valued G-equivariant horizontal two-form
1
Q:da)+§[a)/\a)].

If 7: P —> M is a G-structure with displacement for, then thetorsion of w is the
V-valued G-equivariant horizontal two-form

®:=dob +[w A0,
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where the Lie bracket is taken in the affine Lie algebta g.
If 6 is the displacement form of &-structurer: P — M and w a principal con-
nection then:

k=0+w.: TP>Vag

is a Cartan connection i.e. a G-equivariant absolute parallelism which extends the
canonical vertical parallelisnT*P — g. The curvature of the Cartan connectior
is defined as the\( & g)-valued G-equivariant horizontal two-form

1
Q =dr + E[K A K]

Notice that theV andg-components of2, are exactly the torsion and curvature forms
of w:

Q'=0, Q=Qq.

Let now K ¢ G be a Lie subgroup with Lie algebraand g = ¢ + m a K-invariant
direct decomposition of the vector spage Accordingly, anyg-valued forma on P
is decomposed as

a=at+a™.

Proposition 14 ([2]). Let(x: P —> M, 0, ») be a G-structure with a connection
and K c G a Lie subgroup Then

7' P—> Z:=P/K
is a K-structure with displacement form
0 =0+0™: TP>V =Vodm

and connection

The curvature®2’ and torsion®’ of «’ are given by
1
0= (@) +(O)" = (O —[0" A + Q" — [0 A ™",

1
Q= — z[a)m A o™t
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5.4. The twistor space of aG-structure of para-twistor type. Let G c GL(V)
be a linear Lie group of para-twistor typd, e g a para-complex structure apd= ¢+m
the corresponding symmetric decompositiérs Z,(J) andm =[J,g]. Letz: P - M
be a G-structure endowed with a principal connectien TP — g. (P, o) will be
called aG-structure of para-twistor typeThe vector spac®/’ :=V & m has the para-
complex structurel’ = J & J,,. The natural action oK = Zg(J) on V’ preserves this
structure and is identified with a subgropc GL(V’, C) := Aut(V’, J'). This implies
that the K-structure

7' P— Z:=P/K

is subordinated to a GM/, C)-structure, i.e. to an almost para-complex structgre
on Z. At the pointz=n'p e Z, p € P, the almost para-complex structugg is de-
fined by:

where p: T,Z — V'’ is the coframe associated with € P. It is easily checked that
this definition does not depend gne (7')~(2).

Similarly, we can associate a para-complex structiytel,,M — T,,M with any
point z= Kp € Z by the formula

J,=podop

using the isomorphisnp: T,,M — V. This allows to identify theG/K-bundlerz: Z =
P/K —- M = P/G with a bundle of para-complex structures on the tangentespac
of M.

We denote byH; =, kerw C T Z the projection of the horizontal distribution of
o to TZ. We call it thehorizontal distributionof Z.

DEFINITION 11. Let @r: P > M, w) be aG-structure of para-twistor type and
K = Zg(J). Then the inducedK-structuren’: P - Z = P/K endowed with the
induced connectionv’ = ¢ o w, the horizontal distributiorf{; and the almost para-
complex structure”7 is called thetwistor spaceassociated to th&-structure of para-
twistor type P, w) and to the para-complex structudee g.

Notice that the almost para-complex structUfeand the horizontal distributioftz
are invariant under the parallel transportTrZ defined by the connection’. There-
fore, we can apply Propositions 1 and 2.

Theorem 1. Let(7: P - M, w) be a G-structure of para-twistor typevherew
is a principal connection with curvature for® and torsion form® and (Z, J, Hz)
the corresponding twistor spacdhen
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(i) The almost para-complex structuggé on Z is integrable if and only if

(5.7) 7%200=0 and 72%20Q=0,

(ii) The horizontal distributiorf{; c T Z is para-holomorphic if and only if
rhloQ =0,

where we consider the values of the horizontal fotngnd 2 at pe P as

2 2
Op: A\ TepZ—>V and @y A\ TopZ 0.

Proof. SinceG is of para-twistor type,g = ¢ +m is a symmetric decomposition
and, in particular, th, m] C ¢. By Proposition 14, the torsion of the connectiehin
the K-principal bundlex’: P — Z is given by

@ = (@) +(@)" = (@ —[o™ A0]) + Q™.
The second terma[™ A 6] : /\2 TrpZ = V' =V &m, pe P, on the right-hand side
is of type (2, 0) since
0'=60+0™: TypZ - V'
is of type (1, 0):
0 0 Tpp=[0@®In)ob.

Therefore the integrability condition®2®’ = 0 of Proposition 1 reduces to (5.7).
To prove (ii), we notice that the cofram@: T, pZ — V' =V & m maps the hori-
zontal space’{z)., to V. Therefore the tensor

S=T mod Hz

corresponds to@)™ = Q™ and S'! corresponds tarllo Q. The two-formQ™ on P
vanishes on the vertical distributioh’ P = x~(g). This implies thatrl1o Q vanishes
on p~%(m). Therefore the para-holomorphicity condition (2.5) obpwsition 2 reduces
to 1o Qly, <2, =0, which is equivalent torllo Q = 0. O

Since anyp € P is an isomorphisnmp: T,,M — V we can identify the horizontal
two-forms ® and 2 with G-equivariant functions

2 2
T:P> AV'®V and R:P> AV'®g.

In particular, T + 7 o R: P = A2V* ® V/ = CX(V’) = @CP4(V’). Now we can
reformulate the theorem in terms of and R, ;== 7, o R.
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Corollary 1.  Under the assumptions of the previous theqréra following is true
(i) The almost para-complex structure is integrable if and dhlyf and R, take val-
ues in GOV’ @ CLY{(Vv).
(i) The horizontal distribution is para-holomorphic if and gnf R, takes values in
C_(m) = C>%m) @ C%2(m).
Both conditions are satisfied if and only if ,Rs of type(2,0)and T is of typg2, 0)+
1, 1).

Now we choose a local sectiopp: M — P and identify P locally with M x G.
We denote byT (™) and R(P) the restrictions off and Rto M =M x {e} ¢ M x G.
Then

Tog = 6T = gTP)(g™ -, g7 )

and

Rxg = 0:RP =gR™(g™t., gt )gh.

This implies, for allu, v e V,

T Rix,g) (U, v) = T R™ (97U, g7 10)g ™"
= 97g-1mg RP(G7MU, 0710)g 7" = 0 (Tg-1mg RP) (U, v).

For any para-complex structuie= gJg—* € S= G/K we have the vector spaceg|) =
[l,g] = gmg~t andV'(I) =V @ m(l) with the para-complex structuresl,,g~! and
I’ =gJg, respectively.

The above calculation implies that the, ) component ofT or R,,, with respect
to (J, J'), vanishes if and only if theg, ) component ofT (") or 7y o R(P), with
respect to [, 1), vanishes for alll € S. We will use he symbok >, := 7% o ),
where 7”%: C?(m(1)) — C%m(l)) is the projection onto thep( g)-component with
respect to [, I’) for any | € S. Similarly we definer%: C2(V) — CP%(V) as the
projection onto the {§, q)-component with respect tb.

This motivates the definition of the following twG-submodules ofR(g):

Rint(g) = {R e R(g) | 7oG)R=0 for all | e S},
Rhoi(g) = {R € R(g) | 7R =0 for all | e S}.

We also define @-submoduleZin(g) c C3(V) by

Ti(g) = {T € C¥(V) | n>*T =0 for all | € S}.
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Corollary 2. Under the assumptions dfheorem 1the following is true
() The almost para-complex structufg is integrable if and only if the functions(¥
and R™), associated to a local framegptake values in the G-moduleBy(g) and
Rint(g), respectively
(i) The horizontal distribution is para-holomorphic if and gnif R(™) takes values
in Rhoi(g)-
Both conditions are satisfied if and only if,)R is of type(2, 0) and T is of type
2,0+ (1, Dforall I € S.

Corollary 3. Under the assumptions dfheorem 1the almost para-complex struc-
ture 7 on the twistor space Z is integrable and the horizontal distion 7, is para-
holomorhic if for all xe M there exists a frame g 7~1(x) such that the curvature
R(P) ¢ R(g) takes values in the G-module

R(@Ps={ReR() || -R=0forall | €S

and the torsion 1 satisfiesz%2T(P) = 0.
Proof. This follows from (5.6) and the previous corollary. ]

Corollary 4. Let G be a group of para-twistor type such that,;)R(g) C
C29%m(l)), for all 1 e S, for example ifR(g) = R(g)Ps. Then for any G-structure
(7: P > M, w) with a torsion-free connectiow, the almost para-complex structure
J on the twistor space Z is integrable and the horizontal distion 7z is para-
holomorhic

6. Integrability and holomorphicity results for the twistor spaces of a para-
guaternionic Kahler manifold

Theorem 2. Let (M, g, Q) be a para-quaternionic Ké&hler manifold and
(Z¢, J¢, Hze) its twistor spacewheree = £, seeSections 4and 5.4. Then fore = —1
the almost complex structurg® is integrable and the horizontal distribution is holo-
morphic Similarly, for € = 1 the almost para-complex structugg< is integrable and
the horizontal distribution is para-holomorphic

Proof. By Proposition 9, the para-quaternionic Kéhlercttrite defines &-structure
w: P — M, whereG c GL(R? ® R?") is the normalizer of the connected Lie group
Go := SL(R)®SpR?") in SO(2h,2n). Any para-quaternionic coframge P defines an
isometry p: (T;pM, Grp) = (R?@R?", gear), Which mapsQ;p to sl(2,R) =s((2,R)®Id,
see Definition 7. The linear grou@ is of para-twistor type and also of twistor type,
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i.e. there exists elements J € g = s[(2, R) @ sp(R?") such thatl? = —Id and J? = Id.
In fact, we can choosé = poJioptandJ=poJop Lt The symmetric space

sI(2,R) =52, R)®1d O S™ = Ads(l) = G/Zs(l) = GLo(R)/ ZoL,m (1)
= GL2(R)/GL4(C) = SL; (R)/SO(2)

is the two-sheeted hyperboloid in the three-dimensionalkblivski spacesi(2, R) =
R21, whereas the symmetric space

sl(2,R) D S" = Adg(J) = G/Zs(J) = GL2(R)/ ZeL,m)(J)
= GL2(R)/GL1(C) = SL(R)/SO(1, 1)

is the one-sheeted hyperboloid.
To finish the proof, in the case=+1 we apply Corollary 4, in the case= —1
[2] Theorem 7.3, since, by Proposition 4, the space of cureatensors

R(g) = R(g)*'®™ = R(g)"s,
for S= S, ]

7. The canonical e-Kahler-Einstein metric and contact structure on the
twistor space Z¢ of a para-quaternionic Kahler manifold

DEFINITION 12. An e¢-Kahler manifoldis a pseudo-Riemannian manifolt( g)
together with a parallel skew-symmetiecomplex structurel. An e-Kahler manifold
(M, g, J) is called aKahler manifoldif ¢ = —1 and apara-Kahler manifoldif ¢ = +1.
The parallel symplectic fornw =g(J -, -) is called theK&ahler form

REMARKS. The metric of a para-Kahler manifold has signatumen, since the
+1-eigendistributionsT*M of J are isotropic. Moreover, they are parallel and
w-Lagrangian.

Conversely, ai-Lagrangian manifold[8], i.e. a symplectic manifold NI, w) with
two complementary Lagrangian integrable distributicii§M, has the structure of a
para-Kahler manifold, wherd|r=y = £ld andg=w(J -, -).

An integrable skew-symmetrie-complex structure on a pseudo-Riemannian man-
ifold is parallel, and hence defines antKahler structure, if and only if the Kahler
form w is closed, see [10] Theorem 1.

DEFINITION 13. An e-holomorphic distributionD of real codimension 2 on an
e-complex manifoldZ is called ane-holomorphic contact structureif the Frobenius
foom [-, -]: /\ZD — TZ/D is non-degenerate.

Theorem 3. Let (Z¢, 7€) be thee-twistor space of a para-quaternionic Kahler
manifold (M, g, Q) with non-zero reduced scalar curvatute Then



238 D. ALEKSEEVSKY AND V. CORTES

(i) the canonical metric 9= gf on Z¢ is e-Kahler-Einstein if and only if & —¢/v.
Moreover g; is Einstein if and only if = —€/v or t = —e¢/(v(n + 1)).
(i) The horizontal distributiorf{; c T Z¢ is an e-holomorphic contact structure

Proof. (i) By Theorem 2 and Proposition 7 thecomplex structure7€ is inte-
grable andy-skew-symmetric for alt. By the above remark, to check when“( 7€, g;)
is e-Kahler it is sufficient to check when the Kahler form = g:(J°€ -, -) is closed.
The twistor bundlezc = P/Ga — M, see Proposition 9, is a bundle associated
with the principal bundle

P":= P/Zs(GLy) > M = P'/SC;,
where SQ = SO(2, 1) fore = +1 and SQ = SO(1, 2)= SO(2, 1) fore = —1. In other

words, P’ is the S@-principal bundle of standard bases= (Ji, J., J3) of Q%, x e M,
where J2 = €ld, J?=1d and J2 = —eld. We have a natural projection

Tpr . P — z¢= P//Sq, (Jl, J2, J3) (d Jl,
where SQ = SO(1, 1) fore = +1 and SQ = SO(2) fore = —1 is the stabilizer of
(1,0, 0) € R3.

The closure ofw; is equivalent to the closure of its pull baek = 7}w; to P’
The two-formw, can be written as

(7.1) o =g(J1-, ), G =tg" +7pQ.

Herenf, g is the pull back of the metrig on M and g’ is the metric on the vertical
bundle T"P’, which corresponds to a suitably normalized ad-invariarlas product
(-, -) onso§ = Lie SG;, extended by zero to the horizontal bundieassociated with
the Levi-Civita connection oM. The normalization of the scalar produgct, -) on
s05 = ad6l>(R)) = slp(R) = sparfd?, 39, 39} is given by

(7.2) —e(adyp, ady) = —4eades = 43, I7),

where @7, J2°, J39) is the standard-quaternionic basis of[,(R), with the relations

(7.3) (Jo?)2 =e,ld, (€1, €2, €3) = (€, 1, —¢).

The above scalar product amg has signature (2, 1) i€ = +1 and (1, 2) ife = —1.
The factor 4 is chosen such that the canonical project®nd) — (Z¢ = P'/SG, at)
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is a pseudo-Riemannian submersion. Notice that the veraaors
ady,, ady, € T)P’ = s05 = adGl(R)), pe P,
are mapped to
ady, J1 =—-2J, ady J1=—-2cXheT"Z C Qf =sh(R), X=mp(p).

The field p — (J.), is defined atp = (J1, J, Ja) as the following endomorphism of
TP =T'P' & Hp = 505® TuM, X =7p(p),

1
Telrty: TM = TM, X 3X, Tl = > adp

It is sufficient to checkdw] = 0 on three vectors, each of which are horizontal or ver-
tical. Moreover, it is sufficient to consider the fundamentettical fields Y1, Vo, V3),
which correspond toJ?, J2, J9) and basic horizontal fieldX,Y, Z,... on P/, i.e. hor-
izontal lifts of vector fieldsXy, Ym, Zm on M.

Lemma 2. With the above notations we have
(1) [Vi, Vo] = 2V3, [V3, V1] = —2€Va, [Vo, V3] = =2V,
(i) the functions {V,, Vg) and w;(V., Vg) are constant for alle, g € {1, 2, 3,
(i) [ Va, X] =0,
(V) [X,Y]" ==(v/2)2 € G (T X, Y) Ve = =(v/2) 2 €29(Je XM, YM) Ve, Where[ X, Y]"
is evaluated at the point p (Ji, J, J3) € P/,
(V) Lv,0,=0, Ly,J1 =0, Ly,J1 = —2T3, Ly, J1 = —2¢J> and
(Vi) (Lxg))U,V)=0forall U,V e T"P".

Proof. (i) follows from thee-quaternionic relations
(30, 21=23, 33, 91=—2¢33, 1[I, 3= -2

(i) Since the metricg’ corresponds to the ad-invariant scalar product (7.2), the
functions

O (Varr V) = 19" (Va, Vi) = —4et (32, J9) = deteydup

are constant. Similarly, the functions (V,, V) are constant, because, for all funda-
mental vector fields/,, the vector field 71V, is again a fundamental vector field.

(i) The vector field M,, X] is horizontal, since the principal action preserves
the horizontal distribution. On the other hand, it is mapped0, Xy] = 0 under the
projection P’ - M. This shows that\f,, X] = 0.

(iv) follows from Proposition 4, sinceX, Y] = —Q'(X, Y), where ' stands for
the curvature form of the principal bundie’ — M.
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(v) Ly,g{ =0 follows from the ad-invariance of”, cf. (7.1). The remaining
equations are obtained from (i) using

JV1=0, Vo=V, JiVz=€eVa.
Finally, (ii) and (iii) easily imply (vi). ]
Part (i) and (ii) of the lemma, yields
dawi(Vi, V2, V3) = Viwy(V2, Vs) — wy([V1, Vo], Vs) +cycl. = 0.
Using part (i), (ii), (v) and (vi) of the lemma, we calculate
det(Ve, Vg, X) = = ([V: X1, V) — {([X, Val, V) = =(Lx)(Var Vi)

= =G ((LxT)Ve, Vp) = =G ([X, T1Ve] = J1[X, Val, Vp)

= G (X, [Vg, iVa)) + g (X, [71V5, Va]) = 0.
By (iii), (iv) and (v) of the lemma, we compute

do(V1, X, Y) = Via(X, Y) — ([ X, Y], V1)

3
= G(LUI)X )+ 5 D €l Xm, Y (Ve Va)

a=1

3
v / _
=0+ > El €9(Je Xm, YM)G(J1 Ve, V1) = 0,

since 71 TP’ = sparfV,, V3}. Similarly, we calculate

dw|(Va, X, Y) = Vaw|(X, Y) — (X, Y], V2)

3
= (L T)X, )+ 2 D (X, Yo (Ve Vo)

a=1

3
= —2G(JaX, ) + 2 D" €0 Xm YO (Fi Ve, Vo)

a=1

t
=—-29(3Xwm, Ym) + %ng(Jst, Ym)9 (T Vs, Vo)

vt
=—-29(J:Xwm, Ym) + E(_E)Q(JSXMa Ym)g'(€Va2, Va)

= —2g(J3XM, YM) - 2€Utg(J3XM, YM),
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since g'(Vz, Vo) = —4€(J39, 39) = 4ee, = 4e. In the same way, we obtain
vt
da){(V:g, X, Y) = —269(J2XM, YM) + Eg(ngM, YM)gv(jj_Vz, V3)

vt
= —2¢g(2Xwm, Ym) + EQ(JZXMv Ym)g’(Va, Va)
= —2€g(J2XM, YM) - 2Utg(J2XM, YM),
since g°(Vs, V3) = —4€(J2, J9) = 4eez = —4. This shows thatlw; (U, X, Y) =0 for all

vertical vector fielddJ if and only if vt = —e.
It remains to check thatlw;(Xp, Yp, Zp) vanishes on three horizontal vectors

Xp, Yp, Zp€Hp, PeP.

Let t — €(t) = (J1(t), Jo(t), J3(t)) € P’ be the horizontal lift of a curve — c(t) € M
such that€(0) = p and €(0) = X,. Notice that the horizontality of means that —
J.(t) is parallel alongc.

Let t = Y(t) € Hegry be the horizontal lift of the vector field

t Yu(t) = 155 dp Yp € Te M,

which is parallel along the base curge The initial value ofY is Y(0) =Y. It suffices
to prove that

(Vi,@)(Yp, Zp) = 9i((Vy, J1)Yp, Zp) =0,

where V’ is the Levi-Civita connection ofj;. We have to check that the horizontal
component of

(V, JI)Yp = Vi (J1Y) = AV, Y
vanishes. Therefore, we calculate
dre (V, (1Y) = J1Vx,Y) = Ve (dt)Ym(t) — Ju(0) Ve Ym(t)
= (Ve a(t)Ym(0) = 0.

Here we have used two facts: first, that> 7;Y(t) is a basic horizontal vector field
along €, which projects onto

drp J1Y(t) = Ji(t)Ym(t)

and, second, thadzp V{Y = Vy,, Yu for any two basic horizontal vector fields, Y
(e.g. along a horizontal curve), wheke is the Levi-Civita connection irM. The lat-
ter is a standard fact about pseudo-Riemannian submersiohs proves thaty; is
e-Kahler-Einstein if and only it = —e/v. The above argument proves also the follow-
ing proposition.
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Proposition 15. For any horizontal vectors XY, Z on P anda =1, 2, 3,we have
% (VxJ)Y, Z) = 0.

Next we study the Einstein equations for the fangly We recall the definition of
the O'Neill tensor and the O’Neill formulas for the covariagerivative of a pseudo-
Riemannian submersion: E — M with totally geodesic fibres, see [12, 5]. The
O'Neill tensor A € QY(EndTE) is a one-form with values in skew-symmetric endo-
morphisms. It is given by

1
(74 AU=0, AXY =—AX=(VxY) = SIX YT, AU = (VxU),
whereU is a vertical vector field and, Y are horizontal vector fields. The super-

scriptsv and h stand for the vertical and horizontal components, respaygti If X is
a basic horizontal vector field then, in addition

(7.5) AxU = (VxU)" = vy X.

The covariant derivatives ift are given by

(7.6) VoV = ViV,

7.7) VuX = (VuX),

(7.8) VxU = (VxU)" + AxU,
(7.9) VxY = AxY + (VxY)".

Here VF and VM denote the covariant derivative in the fibrEsand in the baséM,
respectively. For basic horizontal vector fields Y, we have U, X]" = 0 for any
vertical (and hence projectable) vector fiedd Moreover, we have

(7.10) (VxU)" =[X, U],

(7.11) mVxY = VY.

In particular, VxY is a projectable vector field ok.

Proposition 16 (cf. [12]). Letn: E - M be a pseudo-Riemannian submersion
with totally geodesic fibres FThen the Ricci and scalar curvatures of E are given by

(7.12) Ric(U, V) = RicF (U, V) + D 6 (Ax U, A V),

(7.13) Ric(X, U) = ((div A)X, U) = D" & {(Vx A)x X, U),
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(7.14) Ric(X, Y) = RicV (7, X, 7,.Y) — 2 Z 6 (AxXi, Ay Xi),
i

(7.15) scal =w*scal" +scal — > eiej(Ax X}, Ax, X;).
i

Proposition 17. The divergencaliv A € I'(EndT P’) of the O’Neill tensor of the
principal bundle P — M preserves the horizontal distributionn particular,

Ric(X, U) = g/((div A)X, U) = 0.

Proof. By (7.4) and Lemma 2 (iv), the value of the O’Neill ten®n two basic
horizontal vector fieldsX, Y is given by

1 [ — % /
(7.16) AXY = SIX, Y] = = Z €aGi(Ju X, Y)Va.

It is sufficient to prove thag((VxA)yZ, U) = 0. This follows from the remark that
VxV, = AxV, is horizontal, by (7.5), and Proposition 15. ]

The skew-symmetry ofAx and (7.16) imply

(7.17) AxU = 2 > €wti(U, Vo) JuX.

In fact,

G(AXU, Y) = =G(U, AXY) = 2 D" €Gi(duX, V)G, Vo).

Proposition 18. Let P’ be the total space of the principal bundle » M of
admissible frames of Q over a para-quaternionic Kahler rfadi (M, g, Q). Then
the Ricci curvature of the metric{ @n P is given by

(7.18) Ric(U, V) = —e(z—lt + vznt)g;(u, V), U,VeT’P,
(7.19) Ric(U, X) =0,
(7.20) Ric(X, Y) = (v(n +2)+ 36”2t)g;(x, Y), X,YeH=(T'P)L.

Proof. We calculate the Ricci curvature using the formuta®iioposition 16. The
fibre F is identified with the Lie group SO(2, 1) with a bi-invariandgudo-Riemannian
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metric g{, which is related with the Killing formB by
(7.21) 6 =58,
see (7.2). Therefore

—€

1
. i =—-B=—¢g.
(7.22) Rid 2 5 %

We compute the second term in equation (7.12) using (7.17):

2
Do alA U, Ax V) =D 6z 3 €U, VoGV V)Gl Xi, TaXi)
2
= :__6 Z Giz(_ea)g{(ug Vo()g'é(vr Va) = _Evzntq(u’ V)
i

This implies the first equation (7.18). The second equatioid9) was already es-
tablished in Proposition 17. Sinckl is an Einstein manifold with scalar curvature
scaM = 4n(n + 2)v,

I
(7.23) Rid = 244 = y(n +2)g.
4n
We compute the second term in equation (7.14) using (7.16):

2
—ZZi: € (Ax Xi, Ay Xi) = _2%: ; ;_69{(%()(, X)9(T Y, X)) (Vs Vo)
V2
=—5 > G (Ta X, T )G (Verr Ver)

2
= _% D (—e) g (X, Y)(dete,)

3ev’t
= —&(X.Y).

This proves the proposition. ]

Corollary 5. Let P be the total space of the principal bundle€ » M of ad-
missible frames of Q over a para-quaternionic Kéhler madifgV, g, Q) with reduced
scalar curvaturev. Then the metric gis Einstein if and only if

t=—% or t=—_°
Ty T y(@n+3)
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The corresponding Einstein constant iespectively

. n+1 and ¢ 42 +14n+9
= - =
2 in+6

Next we calculate the Ricci curvature of the metgic on the twistor spaceZ¢ =
P'/SC, € = 1.

Proposition 19.

v
(7.24) (AxY)y = E(g(Jzyr*X, 7.Y)J — 9(Br. X, 7.Y) ) € Ty Z = spaiJp, Ja},

—~— t/-\_/

t
(7.25)  Axdh= —62%J37T*X = —%ngx,

vt —

t
(7.26)  Axd= 53% 3. X = —e 2 B X,

where X and Y are horizontal vectors adty e T, Z¢ denotes the horizontal lift of
the vector X € Ty M.

(7.27) Ric(U, V) = —e(% + vznt) g (U, V),
(7.28) Ric(X, U) =0,
(7.29) Ric(X, Y) = (v(n + 2) +ev?t)gf (X, Y),

where U and V are vertical vectars

Proof. The equations (7.24)—(7.26) are obtained from {7.{B.17) and (7.21).
We calculate the Ricci curvature using the formulas in Psiffion 16. In fact, the
projectionnw: Z¢ — M is a pseudo-Riemannian submersion with totally geodesie fib
F =S0,/SC;, where SQ = SO(2,1) and S§*' =SO(1, 1) and S§ ' =SO(2). Here
Zg C Q5 =sparfJi, b, J3}, where (1, Jp, J3) is an admissible basis such thi;ﬁ: €, ld
and €1, €2, €3) = (¢, 1, —€). In both cases, the Lie algebsa; = Rad(J;). The fibreF
is a two-dimensional symmetric space, with symmetric dgmusition

s05 = s05+m, m=RadJ)+RadJs).
The curvature tensor is given by
R(ad(J2), ad(ds)) = — ady, 3] Im = 2 adh, |

and the sectional curvature of the metgE = gf|r =tg¥ is —e/t. In particular,

(7.30) RIE = —eg’ = —%gF.
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Next we compute the second term in equation (7.12) using)7.2

v2t2
D agi(Ax o Ax ) = o > 6 g(JamXi, Jam. Xi)
i i

=12t?n(—e3) = ev’t?n

= —evztngf(Jz, Jo),

since g (Jp, Jp) = —te; = —t. The same calculation folJ( V) = (J, J3) and U, V) =
(J3, J3) shows that for any two vertical vectots$, V, we have

> g (AxU, Ax V) = —ev?tng (U, V).

This proves (7.27).
Now we calculate the second term in equation (7.14) using4j7.

—2" @ g (AxXi, ArXi)
i
UZ
=—% > a9(Lm X, mX)9(Bm.Y, 7.X) g (I3, Js)
i

2
- VE Z € g(\]37T*x1 N*Xi)g(J37T*Y, n*xi)gté(\br JZ)
i

V2 V2
= —EQ(JQJT*X, J27T*Y)gt€(\]3, \]3) - Eg(Jgn*X, Jgﬂ*Y)gte(Jz, Jz)

2

- —%[(—62)(_t€3) + (—e3)(—te]gf (X, Y) = ev2tg (X, V).

This proves (7.29).

To prove that RicK, U) =0, by Proposition 16 we have to check that dipre-
serves the horizontal distributioh; c T Z¢. It sufficient to prove that

g (VxA)Z, JU) =0

for all basic horizontal vector fieldX, Y, Z and vertical vector field&). We compute
this using the fact tha¥ 7 =0 and (7.10):

O (VxA Z, TU) = X (AvZ, TVU) — g (AvZ, TVxU)
= Xg(AvZ, JU) — g (AvZ, T[X, U)).
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Lemma 3. For any basic horizontal vector fields,X and vertical vector field
U we have

(7.31) o (AxY, JU) = L;g(un*x, m.Y) = —%th(x, Y),

wherew = gf (J< -, -) is thee-Kahler form and the value Y) € T} Z = sparfJ, Js} C
Qx, X =m(Jy), of the vertical vector field U at the point; & Z¢ is considered as an
endomorphism of ;M.

Proof. The first equation follows from (7.24) and the fornswa J, = J3, J¢J3 =
€J,. For the second equality we use thbk,[X] and [U, Y] are vertical and that; is
closed:

Ly (@ (X, Y)) = (Luw)(X, Y) = (dwar)(X,Y)
=—w(U, [X, Y]) = =2g9{(T°U, AxY). 0

The following corollary finishes the proof of Theorem 3 (i).

Corollary 6. Let Z¢, e =41, be the twistor spaces of a para-quaternionic Kéhler
manifold Then the metric gis Einstein if and only if
€

€
t=—— or t=-— .
v v(n+1)

The corresponding Einstein constant isspectively

n2+3n+1

c=(n+1 and c=
(n+1p i1

(i) By Theorem 2, we know that the horizontal distributidty c T Z¢ is holo-
morphic ife = —1 and para-holomorphic § = —1. We show that it is a para-holomorphic
contact structure ik = +1. The cases = —1 is similar. We have to check that the
Frobenius form

HEOx HE% 5 (Z, W) > ([Z, W] mod HL ) e T1O0z¢ /110

of H%? is nondegenerate.

Let X andY be basic horizontal vector fields d& and Z = X +e7: X and W =
Y +e 1Y the corresponding sections #f° c H®C = H +eH the (+€)-eigenbundle of
the C-linear extension of7; on H® C. Notice thatjfm =eld=1d, sincee =+1. Let
us calculate, with the help of part (iv) of Lemma 2, the verticomponent of Z, W]
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at any pointp = (J1, J, J3) € P

v
[Z, W]" = 3 Z €a(9(Je XM, YM) + 9(Je J1 Xm» J1YM)) Ver

v
- ez ; €a(9(J Xm, I1YM) + 9(Je 1 X, YM)) Ve

= —v(p2(Xm, Ym)Va — p3(Xm, Ym)Va)
+ev(p3(Xm, YmM)Vz — p2(Xm, Ym)Vs)
= —v(p2(Xm, Ym) — €03(Xm, Ym))(V2 +eVs),

where p, = g(J, -, -). This shows that the Frobenius form &f*°c TP’ ® C is
nondegenerate. Let us denote f(y,. and Yy the horizontal lifts of Xy and Yy to
vector fields onz¢. We putZ := Xy +eJ7¢Xy and W := Yy + e7¢Yy. Thanks to
the above formula, we can calculate the vertical componértZo W] at the point
z=J; € Z¢, which is the image ofp = (J1, J2, J3) € P’ under the natural projection
P’ — Z¢ = P'/SC,.

[Z, W]" = —v(p2(Xm, Ym) — €03(Xm, Ym))([J2, J1] + €[z, Ji))
= 2v(p2(Xm, Ym) — €03(Xm, Ym))(Js +ed).

This shows thatH; c T Z¢ is a para-holomorphic contact structureeif= +1. ]

8. Twistor construction of minimal submanifolds of para-quaternionic Kéhler
manifolds

8.1. Kahler and para-Kahler submanifolds of para-quaternionic K&hler man-
ifolds.

DEFINITION 14. Let (M,qg, Q) be a para-quaternionic Kéhler manifold of dimen-
sion M. An e-Kahler submanifolde = 1) of M is a triple (N, J¢, gn), whereN is a
2m-dimensionalg-nondegenerate submanifold ®, gy = g|n is the induced pseudo-
Riemannian metric and€ is a parallel section of the para-quaternionic bun@gy
such thatJ*TN =T N and ()2 =eld. Fore = —1 (M, J¢, gy) is called also &ahler
submanifoldand fore = +1 it is called apara-Kéhler submanifold

We shall includeJ¢ into a local frame §; = J¢, ), J3 = J1J, = —JJ;) of Q|n
such thath2 =1d. Such framesJ,) will be calledadaptedto the e-K&hler submanifold
N c M.

Proposition 20. Let(M, g, Q) be a para-quaternionic Kahler manifold of dimen-
sion4n with non-zero reduced scalar curvatureand N a g-nondegenerate submanifold
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of M endowed with a sectionk I'(N, Q) such that(J€)2=¢ld and ¥*TN=TN. Let
(J») be a standard local basis of Q such thatijJ= J¢. Then the triple(N, J¢, gn) is
an e-Kahler submanifold if and only itv;|n = ws|n = 0 or, equivalently TN L T N.
In particular, the dimension of ar-Kahler submanifold NC M is at most2n.

Proof. It is clear thatJ; is parallel if and only ifw,|n = w3y = 0, see (3.2).
Moreover, if wo|ny = w3y = 0, then, by the structure equation (3.3), we have that
p2In = p3ln = 0. Conversely, assume thdTN L TN, i.e. po|ny = p3ln = 0. Dif-
ferentiating the structure equations fos and p3, we get

vdp, = —€4Vpp A @, + €VWpE A Py
Restricting this equation for = 2, 3 to the the submanifolt yields
P1 A w2|n = p1 A wz|n =0.
This shows thatw,|n = ws3|n =0, i.e. thatd€ e I'(N, Q) is parallel. O

Proposition 21. The shape operator A of anrKéahler submanifold(N, J¢, gn)
of a para-quaternionic Kahler manifol@M, g, Q) anticommutes with 3= J¢|t .

Proof. Lett be a normal vector field oN. Then the shape operataf € I'(EndT N)
is defined by

g(A* X, Y) = —g(Vx&, Y) = —g(Vv&, X) = g(€, VyX).
Thus

9(AIX, Y) =g(&, Vy(IX) = g(&, IVyX) = —g(J&, VyX) = —g(J&, VxY)
=g(&, IVxY) =g, Vx(IY)) = g(A°X, JY) = —gJAX,Y). O

Corollary 7.  Any e-Ké&hler submanifold of a para-quaternionic Kéhler mandfol
is minimal

Proof. SinceA! anticommutes with], we have A} = —J A8 J-1. Hence trAf =
—tr A = 0. O

8.2. Twistor construction of Kéhler and para-Kahler submanifolds of para-
guaternionic Kahler manifolds. Let (M, g, Q) be a para-quaternionic Kahler man-
ifold and 7z: Z¢ —> M its e-twistor space with the horizontal distributiollz. For
any e-Kahler submanifold NI, J¢, gn) the sectionJ : N — Z¢ ¢ Q defines an em-
bedding of N into Z¢. The imageN = J¢(N) c Z¢ is called the canonical liftof
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N in the twistor spacez¢. The following theorem gives the description efKéhler
submanifolds ofM in terms of e-complex horizontal submanifolds af¢, i.e. sub-
manifoldsL ¢ Z¢ such that7TL=TL andTL C Hz.

Theorem 4. Let (N, J¢, gn) be ane-Kahler submanifold of a para-quaternionic
Kahler manifold(M, g, Q) and N = J¢(N) c Z¢ its canonical lift Then
(i) N c z¢ is an e-complex horizontal submanifold which is nondegenerat é-
spect to the canonical one-parameter family of metri¢sog Z¢. Moreover in the
casee = +1 the restriction of7¢ to N is a para-complex structure in the strong sense
(i) Converselylet L c Z¢ be ane-complex horizontal submanifold which is non-
degenerate with respect t§ @nd such thatrz| : L — 7z(L) C M is a diffeomorphism
Then its projection(N = z(L), J¢, gn) is a (minimal) e-Kéhler submanifold of M
where

J=drzoJ¢0(dnz)™: TN— TN, gn=0In-

Proof. (i) SinceJ¢ is parallel, the submanifoldN = J¢(N) c Z¢, is horizontal.
Its tangent bundlelr' N c Hz is Je¢-invariant, since

drz o J€ = J€ odnyg,

on the horizontal distributiort{z, by the definition of7¢, see (4.2). In the case=
+1, J¢ is a para-complex structure in the strong sense, because skew-symmetric
for the metricgy. Since [I;N, J5R) = (TkN, J5), x =mz(2), J€ restricts to a para-
complex structure in the strong sense Kn

(i) The e-complex structure)® € T'(N, Q¢) is parallel, sinceL = N is horizontal.
This proves thatN, J¢, gn) is ane-Kahler submanifold ofM. ]

REMARK. The nondegeneracy assumption on the mejfit. is essential even if
we assume that dih = 2n. Indeed there existr2dimensional J¢-invariant isotropic
subspace$) c T4M.
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