ON A GENERALIZATION OF THE "DIV-CURL LEMMA"

INGENUIN GASSER and PIERANGELO MARCATI

(Received July 22, 2005, revised March 13, 2007)

Abstract

We present a generalization of the div-curl lemma to a Banach space framework which is not included in the almost existing generalizations. An example is shown where this generalization is needed.

1. The div-curl lemma and its generalization

In this note we present a generalization of the famous "div-curl lemma", which was first formulated by [1] in a Hilbert space setting. This lemma is widely used in the analysis of nonlinear partial differential equations. In [5] the result was generalized to an Banach space framework.

Here we present a further generalization to a setting, where on allows every component v_i^k , w_i^k of the vectors v^k , w^k to lie in different L^{p_i} spaces (for details see below). This is of special interest in problems arising from limiting procedures in the hydrodynamic equations for plasmas and semiconductors [3], where both the original version and the version presented in [5] are not sufficient for the analysis.

We denote by

(1)
$$(\operatorname{curl} w)_{i,j} = w_{i,x_j} - w_{j,x_i}$$

the curl (matrix) of a vector field. The superscript ()' indicates the conjugate index with 1 = 1/p + 1/p'. Then, the generalized version of the "div-curl lemma" reads

Theorem 1.1. Let $U \in \mathbb{R}^n$ be a bounded, open, smooth domain. Let $1 < p_i < \infty$ for i = 1, ..., n and let us denote $p_{\min} = \min_{1 \le i \le n} p_i$ and $p_{\max} = \max_{1 \le i \le n} p_i$. Let $v^k(x), w^k(x) \in \mathbb{R}^n$ for $k \in \mathbb{N}$ satisfying

• $\{v_i^k\}_{k=1}^{\infty}$ and $\{w_i^k\}_{k=1}^{\infty}$ are bounded sequences in $L^{p'_i}(U)$ and $L^{p_i}(U)$, respectively, with $1/p_{\min} - 1/n < 1/p_{\max}$.

• {div v^k }^{∞}_{k=1} lies in a compact set of $W^{-1,t}(U)$, where $t \ge \max_{1 \le i \le n}(p'_i) = (p_{\min})'$.

• { $(\operatorname{curl} w^k)_{i,j}$ } $_{k=1}^{\infty}$ lies in a compact set of $W^{-1,s_{i,j}}(U)$ for $1 \leq i, j \leq n$, where $\min_{1 \leq j \leq n} s_{j,i} \geq p_i$ for $1 \leq i \leq n$.

²⁰⁰⁰ Mathematics Subject Classification. 35L65.

Then, the following convergence holds in $\mathcal{D}'(U)$

(2)
$$v^k \cdot w^k \rightharpoonup v \cdot w,$$

where v, w denote the weak limits (of subsequences) of $\{v^k\}_{k=1}^{\infty}$ and $\{w^k\}_{k=1}^{\infty}$, respectively.

REMARK 1.1. Note that in the case $n \le p_{\min}$ the condition $1/p_{\min} - 1/n < 1/p_{\max}$ is always satisfied.

REMARK 1.2. The classical "div-curl lemma" is obtained by setting $p_i = p'_i = 2$ for $1 \le i \le n$. Then $\{\operatorname{div} v^k\}_{k=1}^{\infty}$ and $\{(\operatorname{curl} w^k)_{i,j}\}_{k=1}^{\infty}$ have to be in a compact set of $H^{-1}(U)$.

REMARK 1.3. As already mentioned in [5] a Banach space framework of the "div-curl" lemma is given. There, the case of $p_i = p$, $1 \le i \le n$ is covered.

Proof. The proof follows the ideas of the proof of the "div-curl lemma" given in [2].

In a frist step we define functions u_i^k , $1 \le i \le n$ as (unique) solutions of the problem

(3)
$$-\Delta u_i^k = w_i^k$$
 in U , $u_i^k = 0$ on ∂U .

The u_i^k are uniformly bounded in $W^{2,p_i}(U)$ for $1 \le i \le n$.

In the second step we define the functions

(4)
$$z^k = -\operatorname{div} u^k, \quad y^k = w^k - \nabla z^k$$

with

(5)
$$y_i^k = w_i^k - z_{x_i}^k = \left(u_{(j,x_i)}^k - u_{i,x_j}^k\right)_{x_j} = ((\operatorname{curl} u^k)_{j,i})_{x_j}.$$

Therefore, $\{z^k\}_{k=1}^{\infty}$ is bounded in $W^{1,p_{\min}}(U)$ and compact in $L^r(U)$ with $1/p_{\min}-1/n < 1/r \le 1$. The sequence $\{y_i^k\}_{k=1}^{\infty}$ is on one hand bounded in $L^{p_{\min}}(U)$ (second derivatives of u^k), on the other hand compact in $L^{\min_{1\le j\le n}(s_{j,i})}(U)$. Indeed, according to the assumptions $(\operatorname{curl} w^k)_{j,i}$ is compact in $W^{-1,s_{j,i}}(U)$. Therefore, $(\operatorname{curl} u^k)_{j,i}$ lies compactely in $W^{1,s_{j,i}}(U)$ according to the results in [4] (at this point the smooth boundary (C^{∞}) is required).

Then, the limits z, y, u of z^k , y^k , u^k satisfy z = -div u, $y = w - \nabla z$ and

(6)
$$-\Delta u_i = w_i \quad \text{in} \quad U, \quad u_i = 0 \quad \text{on} \quad \partial U.$$

Finally, using a test function $\Phi \in C_0^{\infty}(U)$ we obtain for $\min_{1 \le j \le n}(s_{j,i}) \ge p_i$, $1 \le i \le n$

(7)
$$\int_{U} v^{k} \cdot y^{k} \Phi \, dx \to \int_{U} v \cdot y \Phi \, dx$$

Similarly, for $t \ge (p_{\min})' = \max_{1 \le i \le n}(p'_i)$ we have

(8)
$$\int_U \operatorname{div} v^k z^k \Phi \, dx \to \int_U \operatorname{div} v z \Phi \, dx.$$

Due to the assumption $1/p_{\min} - 1/n < 1/p_{\max}$ there exist always values of r such that (where r is the parameter used above)

(9)
$$\frac{1}{p_{\min}} - \frac{1}{n} < \frac{1}{r} < \frac{1}{p_{\max}}.$$

Then, the second inequality (in (9)) garantuees the convergence

(10)
$$\int_{U} v^{k} \cdot \nabla \Phi z^{k} \, dx \to \int_{U} v \cdot \nabla \Phi z \, dx.$$

Combining (7)-(10) we obtain

(11)

$$\int_{U} v^{k} \cdot w^{k} \Phi \, dx = \int_{U} v^{k} \cdot y^{k} \Phi \, dx - \int_{U} \operatorname{div} v^{k} z^{k} \Phi \, dx - \int_{U} v^{k} \cdot \nabla \Phi z^{k} \, dx$$

$$\rightarrow \int_{U} v \cdot y \Phi \, dx - \int_{U} \operatorname{div} v z \Phi \, dx - \int_{U} v \cdot \nabla \Phi z \, dx$$

$$= \int_{U} v \cdot w \Phi \, dx.$$

This ends the proof.

EXAMPLE. Suppose n = 2 and $p_1 < 2$ $(p'_1 > 2)$, $p_2 > 2$ $(p'_2 < 2)$. The curl matrix has two (nonvanishing) elements (curl w^k)_{1,2} = $-(\text{curl } w^k)_{2,1}$. Then $t > p'_1$ and $s_{1,2} > p_2$ are required in order to apply the theorem. This is an examples where the results in [5] do not apply.

References

 L. Tartar: Compensated compactness and applications to partial differential equations; in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium IV, Pitman, Boston, Mass, 1979, 136–212.

^[2] L.C. Evans: Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS Regional Conference Series in Mathematics 74, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1990.

 ^[3] I. Gasser and P. Marcati: A quasi-neutral limit in the hydrodynamic model for charged fluids, Monatsh. Math. 138 (2003), 189–208.

- [4] C.E. Kenig: Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, CBMS Regional Conference Series in Mathematics 83, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1994.
- [5] J.W. Robbin, R.C. Rogers and B. Temple: *On weak continuity and the Hodge decomposition*, Trans. Amer. Math. Soc. **303** (1987), 609–618.

Ingenuin Gasser Fachbereich Mathematik Universität Hamburg Bundesstraße 55, D-20146 Hamburg Germany e-mail: gasser@math.uni-hamburg.de

Pierangelo Marcati Dipartimento di Matematica Pura e Applicata Universitá degli Studi dell'Aquila I-67100 L'Aquila Italy e-mail: marcati@univaq.it