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Abstract
In this article, we study the group structure of the Galoisugr of the maximal
pro-p extension unramified outside of imaginary quadratic fields by using lwasawa
theory.

1. Results

Let k be a number field. Throughout this article, denotefwgn odd prime num-
ber. Let My/k be the maximal prg extension unramified outside all primes lying
above p and Gi(p) = Gal(Mi/k) its Galois group. In the caske is a finite extension
of @, many deep investigations on extensions with restrictedifigation have been
made under several motivation, which was originated in &lesfch’s work [17].

The most basic invariants dby(p) are the minimal number of topological gener-
ators (the generator rank) and the minimal number of defimaigtions (the relation
rank), of Gx(p). These invariants can be expressed by the dimensions oireabgy
groups as follows;

dimg, HY(Gk(p), Z/p) = the minimal number of topological generators ®§(p),
dimg, H2(G«(p), Z/p) = the minimal number of defining relations @(p).

HereF stands for the field op-elements. It is also well known that th|ecohomological
dimension ofGk(p) is less than 3, the Euler-Poincaré characteristic saitfie equation

2
@ > (—1) dimg, H (Gk(p), Z/p) = —r2(K),

i=0

wherer,(k) is the number of complex primes & and Leopoldt’s conjecture fok
and p implies that H(Gy(p), Qp/Zp) = 0, and so on, see Section 8 and 10 of [14]
for reference.

It is known that the generator rank and the relation rankpfp) can be expressed
by arithmetic invariants ok (see Section 8.7 of [14]). Also, there are two types of
relation, the first one is “local relation”, which comes frdhe relation of Galois groups
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of local fields. The second one is called “unknown relatiowhich is suggested by
Koch [8]. We shall explain the definition of unknown relatifor the extensionMy/k.
Let p be a prime of a number fiel#t lying above p, k, the completion ofk at p
and Gy, (p) the Galois group of the maximal prp-extensionMy, /k,. By the natural
mapping Gy, (p) — Gk(p) induced from an inclusiokk — k,, we can get a mapping
of cohomology groups HGk(p),Z/p) — Hi(ka(p),Z/ p). If the kernel of the product
of the above maps HG(p),Z/p) — lesz(ka(p),Z/ p) is non-trivial, then we call
Gk(p) has an unknown relation.

When the relation rank oG(p) is greater than 0, there is no general theory to
describe forms of relations. The results of Frohlich [1] atwth [8], [9] (Chapter 11)
are the case where all relations are local relation. Alsomé#isu [10] found a real
quadratic field such thabg(p) has an unknown relation. Looking at these results, one
will have a question, that is, what happens wHelis an imaginary quadratic field?
In this article, we will studyGg(p) when diny, H?(Gk(p), Z/p) is at most one. Our
results in this article are as follows:

e (Theorem 4.1) Giving a characterization in terms of the liddass groups such
that G¢(p) is a free prop group.

e (Theorem 5.1) Describing a form of relations &(p) modulo a closed nor-
mal subgroup of infinite index of a free py-group of rank 3 in two cases where
dimg,, H?(Gk(p), Z/p) = 1. In particular, we will give the explicit structure ofethmax-
imal prop class 2 quotient ofGy(p) in these cases. Besides, we will discuss that
Gk(p) has an unknown relation or not.

For the first result, we must recall here that a charactéoizaif the relation rank
of Gk(p) had already been obtained in terms of arithmetic invasiafik. However, for
small prime number, the author thinks that our characterization is convenemen
though we have to treat the ideal class groups of other fiekis. the second result,
our method is based on the Kummer theory over the cyclotdfijiextension which
was studied by lwasawa [7]. Komatsu [10] had studi&dp) by using the cyclotomic
Z,-extension to obtain a form of relations &(p) modulo [Gk(p), [Gk(p), Gk(P)]l,
and more general result on totally real fields is obtained gyy¢n Quang Do [15].

The contents of this article are as follows. In Section 2 weemieine the Galois
module structure of thep-unit group of the cyclotomi&,-extension of certain abelian
fields. This argument is a keystone of Kummer theory overatgohic Z ,-extensions.

In Section 3 we give a brief guide of lwasawa’s work [7] on thenkimer pairing over
the cyclotomicZp-extension. In Section 4 we prove Theorem 4.1. In Section 5 we
show Theorem 5.1 by using an idea from groF-operator groups. Besides, we will
discuss that wheiGy(p) has an unkown relation. In Section 6 we will give examples
of Theorem 5.1.
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2. The Galois module structure of thep-unit group

Throughout this article, we shall denote ky andk, the cyclotomicZ p-extension
and then-th layer of k,,/k, namely, unique subextension kf,/k with [k, : k] = p",
of a number fieldk.

Let K be an abelian field such thd contains the group op-th roots of unity
wp and that the exponent of the Galois gronp= Gal(K/Q) is p — 1, for example,
K =Q(up) or K =Q(y/m, ) for some integem. Let D, be the decomposition group
in A at p. Let K, be the cyclotomicZ,-extension ofK. In this caseK, is the field
K(up~) obtained by adjoining alp-power-th roots of unityup-. Put I'h = Gal(Kn/K)
for n > 0. From the condition orK, we have the canonical decomposition

Gal(Kn/Q) = A x 'y

of Gal(Kn/Q). Let Ei be the p-unit group of K. In this section, we describe the
structure ofE;(n ® Q as aQ[A x I:H]-module in terms ofA, D, and I:n. Let A =
A/{J), whereJ is the complex conjugation. For a finite grolip, let Ny =3, ., he
Z[H] be the norm operator oH.

Proposition 2.1. There is an isomorphism
Ex, ® Q = Q['n]/(NF,) ® QT x A]/(N5) & Q[A/Dy]
of Q[A x I'h]-modules

Proof. Letv, be the normalizeg-adic valuation of a finite primg. Also, let

Vo Bk, = [[2 x> @090),
pIp

be the product of the valuation maps of the primes lying abpveNote that]'[]glp Z
is @ Z[A x T'n]-module with the A x I'h-action defined byg - (xp), = (Xg-1), for
ge Gx Iy and &), € [[,,Z, and the above mapping isZ{A x I';]-homomorphism.
Furthermore,Hplp Z is isomorphic toZ[A/D,] as Z[A x I'n]-modules since the de-
composition group ap is Dy x I'h. Let h, be a positive integer such thatr = (a,)
for each primep dividing p and an integew,, of K,. By the choice ofh,, we find that

[]hez c imagevy) c [ ] 2.

plp plp

whence #CokeV, is finite. Therefore), induces a surjective mapping

Vo®1: Ei, ® Q- Q[A/Dy]
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of Q[A x I:n]—modules. Note that the kernel df, is the unit groupEg, of K,. The
existence of Minkowski units implies that there is an isonmisp

Ek, ® Q = Q[A x ['n]/(Nzx7,)
of Q[A x I'y]-modules.

Lemma 2.1. Let G; and G; be finite groups Then

Q[G1 x G2]/(Ng,xG,) = Q[G1]/(Ng,) ® Q[G1 x G2]/(Ng,)
=~ Q[G2]/(Ng,) ® Q[G1 x G2]/(Ng,)

as Q[G1 x Gy]-modules

Proof. The second isomorphism follows if we show the first.obet ¢: Q[G; x
Gy] = Q[G1]/(Ng,) be a mapping defined by

> AL W%t~ Y, adL g)e mod Ne,).

01026G1x G2 01026G1x G2

Then we have a natural mapping

¢: Q[G1 x G3] = Q[G1]/(Ng,) ® Q[G1 x G2]/(Ng,),  ¢(x) = (¥(x), x mod (Ne,))

of Q[G1 x Gy]-modules. Suppose that= Zglgzeelez X(01, 92)0102 is in Kerg. Then

X = Ng,y for somey € Q[G1 x Gy]. Puty = ZglgzeGlez V(91, §2)0102. Thusx =
Ng,Y = Ng, ZglgzeGlez y(01, 92)g1. On the other hand, we have

> X(0L %) =H#G, D Y(01 %) = Ne,Z

01926G1xG2 01926G1xG2

for somez € Q. Hence

z
> Yo 9o = #EN&'

0192€G1xG2

Therefore we obtain

Z Z
X = NGz Z y(gl, gZ)gl = ENGl NGz = E NG1><(321
01926G1xG2 2 2



PRO-p EXTENSION UNRAMIFIED OUTSIDE p 45

so that Ketp C (Ng,xc,)- The converse inclusion is clear. Hence we obtain an inect
mapping

¢: Q[G1 x G2]/(Ng,x6,) = Q[G1]/(Ng,) ® Q[G1 x G3]/(Ng,).
Since

dimg Q[G1 x G2]/(Ng,xa,) = #G1#G> — 1,
dimg Q[G1]/(Ng,) = #G1 — 1,
dimg Q[G1 x G2]/(Ng,) = (#G2 — L#Gy,

we have B1#HG, — 1 = HG1#G, —#G +#G1 — 1 = #G1(#G, — 1) +#G; — 1, and hence
the mappingy must be an isomorphism. ]

By Lemma 2.1, we obtain an isomorphism
Ex, ® Q = Q[A x T]/(Nzx7,) = Q[Ta]/(NF,) @ QLA x Tn]/(N5)
of Q[A x I:n]-modules. SinceEk, ® Q is the kernel of),, we have
Ek, ® Q= QITn]/(N7,) © Q[A x Tn]/(N3) © Q[A/ Dy
as Q[A x T'y]-modules. O

3. lwasawa’s theorem on the Kummer pairing for abelian fields

In this section, we shall give a brief guide to the Kummer ipgirover cyclotomic
Zp-extensions, which was obtained by Iwasawa (see Sectiorrsahd 8 of [7]). For
reference, see also Chapter 11 of [14].

Let I be the Galois group of the cyclotomi€,-extension of a number field. Fix
an isomorphisniZ[[T']] := IiﬂZp[F/F P~ A= Zpl[T]], the ring of formal power se-
ries of one variable with coefficients i, by sending a fixed topological generater
of I" to 14T (see Section 7 of [18]). Since a ppI-moduleM is a Zp[[T']]-module,
we regardM a A-module viayom = (1 + T)m for m € M. For A-modulesM and
N, the I'-action on Hom (M, N) is given by o f)(m) = yof(yo_lm) for me M.
Let x: I' > Z5 be the cyclotomic character. L&t(1) = mupn be the Tate mod-
ule and letT(—1) = Homy, (T (1), Zp). ThenT(1) and T(—1) are'-modules with the
I'-actions yot1 = k(yo)t1 and yot_1 = k(po) Lty for t; € T(1) andt_, € T(=1). For
a A-module M, we then define the Tate twistdl(1) and M(—1) of M by M(%1) =
M ®z, T(£1), so thatM(1) and M(—1) are A-modules by the diagonal actions. One
sees thaM (1) =~ M as abelian groups, but thtt(+1) are equipped with thE-action
different from M. Also, let M° be the A-module with the new -actionygom= yo‘lm
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for m e M°. Then we define the lwasawa involutiovi® of a A-module M by M* =
M(=1)° = M°(1). Note that the operatot®* works as an involution om\-modules,
nemely, M*)* = (M°(1))(=1)° = (M°)° = M. Finally, remark that iff: M; —» M; is a
A-homomorphism, then the mappin®f: M} — M3, which is induced byf, is also
a A-homomorphism.

Let C be a compactA-module, D a discreteA-module and let

(1 ):CXD_>H"J°°1

be a non-degenerate pairing with the propefc, d) = (yoc, yod) for ce C andd € D.
Then we have an isomorphism

C ~ Homy, (D, ppx)
of A-modules. Then we also have a non-degenerate pairing
(,):C(-1)x D> Qp/Zp

with (yec, d) = (c, y0‘1d>. In particular, the pairing{ , ) induces an isomorphism
C(-1) = Homy (D, Qp/Zp) of A-modules. Note that the pairing, ) induces the
pairing

(,):C*x D Qp/Z,

with the property(yoc, d) = (c, yod) (see Section 8.1 of [7]).

Here, we shall set the notations. Denote By the Galois group of the maximal
pro-p abelian extensioﬂ\/lfb/k of a number fieldk which is unramified outside all
primes lying abovep. The Galois groupXy is also defined to be the maximal ppo-
abelian quotienty = Gy(p)2° of G(p). Let K be an abelian field of Section 2. Recall
the definitions ofK., and K, (see introduction of Section 2). P, = Gal(K../Kp)
and recallA = Gal(K /Q). For aZp[A]-module M and aZ,-valued characteg of A,
we have thex-eigen-submodulev* of M asM* ={x € M | §m = x(§)m for all § €
A}. Further, we get a decomposition bf such thatM = @X M. We then know that
Gal(K,/Q) = A x I' acts onXg_ via o(X) =oxo ! for x e X¢_ since MQZ/Q is a
Galois extension, where e_GaI(Mﬁi/Q) denotes a lift ofo. In particular, we get
a decompositiorXyx = @X x),gx of Xk, as aA[A]-module. Letw: Gal@Q(up)/Q)
(= (Z/pZ)*) = pp-1 (S Zj) be the Teichmiller character of modufg namely, it
satisfies the congruence(a) = amod p. We will use these notations also in later
sections.

By Kummer’s duality, there is a subgrolpC KX ® Q,/Z, and a non-degenerate
pairing

Xk, x S ppx, (X, s® (1/p") = x(V/5)/ V5.
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Note that this pairing satisfies the propest{x, s® (1/p")) = (o (x), o (s) ® (1/p")) for
any o € Gal(K/Q). For aZp-valued charactey of A, we then also have a non-
degenerate pairing

2 XE xS ppe.

Let B} = Unso Ek,- LetN = KOO(Pm/ Ekw) be the algebraic extension €., ob-

tained by adjoining allp-power-th roots ofp-units Ej  of Ko and ' = Gal(N/K)
its Galois group. Put = Ey  ® Qp/Zp. Then we have a non-degenerate pairing

3) XXX EX 5 e,

whenceX* ~ Homzp(é"wx’l, Up~) @s A-modules. We shall analyze this pairing. Put
En =By ®Qp/Zp. Let A be thep-primary part of thep-ideal class group oK, and
put A = h_r)n Ay, Where the inductive limit is taken with respect to the lifaps of
ideals. LetXj = hﬁ Ay, the projective limit is taken with respect to the norm maps.
Let X} be the maximal finiteA-submodule ofXj_; Remark thatX} is determined
as the kernel of a pseudo-isomorphism frofy to an elementaryA-module. By
Theorem 12 and the arguments in p.270 of [7], we know the viollg properties on
& and &y

e For all pairs of non-negative integens, n with m > n, the natural mapping, —

Em is injective. In particular, the injectivity is also true @i — £ for all n > 0.

e There are isomorphisms

4 EM/Ey = HY(Tn, By ) = Ker(Ay, — Ay ) =~ X|

of A-modules for all sufficiently large.
Recall the Kummer pairing (3)

-1
XX X wa e d /Lpoo.
Then we have a non-degenerate pairing
1

(, ) X (=1) x E* — Qp/Zy,

from which the pairing¥® x £2x7" — Qp/Zp is induced. Put, = (1+T)P" —1e A.

Let XX* be the annihilator £ . Note thatwX*® is the annihilator of g,
Thus

1wyt °
(5) XX® Jon X1® Homzp(xf . @p/zp)
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by isomorphism (4) for all sufficiently larga. Sinceé’r‘{”(fl is a p-divisible group of
finite Zp-corank, X**/X{* is a finitely generated fre&,-module of the same rank.
We want to know itsZp-rank.

Lemma 3.1. Let d, =0 or 1 according asy is even or not and

_[1 if ox X (Dp) =1, x o,
Px=10 otherwise

Then we have
rankg, X**/X1* =d, p" + py,
for all n > 0.

Proof. It follows from Proposition 2.1 that
dimg, (Ex, ® Qp)** " = dimg, (Qp[Tnl /(N7 )™

+dimg, (Qp[A x Tn]/(NF))“*
+dimg, Qp[A/Dp]** .

1

1

Since
. — _ -1 pn -1 if X =,
wx -
dimg, (Qp[I"]/(NF,)) [o otherwise,
_ - worl_ | P"if xis odd, x #®
wy =
dlme(@p[A X 1—‘n]/(NA)) [0 Otherwise'
and
_ - 1 if oy XDy =1
ox~t = X p J
dimg, Qp[A/Dy] [o otherwise,
the assertion follows. .

1

It follows from the isomorphismY*(—1) ~ Homy (£°*", Qu/Zp) that X** has
no Zp-torsion element. Further, sinc&**/w,X'** is a finitely generated.,-module
by (5) and Lemma 3.1X** is a finitely generated\-module by Nakayama’s lemma.
By the structure theorem of-modules, there are a finitdé-module M, and the exact
sequence

0> &*>E—-> M, >0

of A-modules, whereE = A®% @ @, A/(f”) is an elementarys-module andf” a
power of an irreducible distinguished polynomial.
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Proposition 3.1 (corresponding to Theorem 15 of [7])We have ¢ =d,, s, =
py and ¥ =T, namely the following sequence

0 X% 5 A% @ (A/(T)* > M, -0
is exact asA-modules In particular, Tory X'** is isomorphic ta A /(T))?x as A-modules

Proof. This follows from isomorphism (5) and Lemma 3.1. ®irfor, X** is
imbedded into £ /(T))?« with finite index, the second assertion follows. ]

Remark that there is an exact sequence

0->&—S— A —0.

(See Lemma 10 of [7]) Since GANZ" /N) (=~ Homy (A} , pp<)) is a A-torsion
A-module (see Theorem 16 of [7]), we see tBat_/Tory, Xk, = X'/Tor, X.

Proposition 3.2 (corresponding to Lemma 12 of [7])We have the exact sequence
0 Tora X§_ — Xk — A% > Homzp(x/fa’x_l, upx) -0
of A-modules The sequence
0 — Homy, (A%, jup) = Tory X = Tory X% > 0
is also exact

Proof. For the proof of first assertion, see Lemma 12 of Iwaspf} The second

oy

assertion is trivial since Hom(AKOC g upm) is a torsionA-module. O

4. Characterization of imaginary quadratic fields k with Gy(p) being a free
pro-p group

In this section, we shall prove the following.

Theorem 4.1. Let k= Q(/—m) be an imaginary quadratic field with a square-
free positive integer m and put Kk(u.p). Letx be the Dirichlet character corresponding
to k. Then Gk(p) is a free pro-p group of rank if and only if one of the following
three conditions holds
(1) p=3and m=3.

(2) p=3, m=# 3 mod 9and A&(m):o.
(3) p>5and A*=0.
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Proof. For an abelian grou@, put Alp] = {a e A| pa=0} and A/p=A/pA
As we deomposé&k by the action ofA, we then haveXy ~ (Xk)caik k) = Xj & Xq.
Also, since GalQ(up-)/Q) = Zj, we haveXgy = Zp. Sincek is an imaginary qua-
dratic field, by the Euler-Poincaré characteristic (1), we that ding, HY(Gk(p),Z/p) =
dimg, H*(Gk(p), Z/p) + 2. Note that

dimg, H'(Gk(p), Z/p) — 1 = dime, Hom(X¥, 1)

since ¥y = X @ Xg and Xg =~ Z,. HenceGy(p) is a free prop group if and only if
dimg, Hom(xk, up) = 1.

By Kummer’s theory, there is a subgrodpof K* /(K *)P with the non-degenerate
pairing

%K/pXT—)/},p.

Thus dimy, Hom(Xk, wp) = dimg, T** (x~1 = x). Also, since there is an exact se-
guence

0> Ex/p—> T — Aclp] = 0,

we have din@pHom(xX s ip) = dimg (Ej /p)** +dimp, Al [p]“*. It follows from Propo-
sition 2.1 that dim,_(Ej /p)** =1+p,. Itis also easy to see that, =1 if and only if

p=3and 3#m=3mod 9, and thal\,* = Ay am [T p=3. Since dim, A [p]** =

dimg,, A% /p, combining the above, we have

©) dims, Hom@h, jpy =1 e Aaam/3 TP =3, S7m=3mods,
1 +dimg, AX*/p otherwise.

This implies Theorem 4.1. 0

Let Lx/k be the maximal unramified abelignextension. Assume that # 3 mod 9
when p = 3. Letk be the composite of alt.,-extensions ofk. Then Minardi [13]
(Section A, Proposition 6.B and its Corollary of Chapter 8pwed thatL, C k if
and only if A’,;“X =0 by the same method. Under the assumptionmrone can easily
check thatL C k if and only if G¢(p) is a free prop group. Hence we must mention
here that Theorem 4.1 had been essentially obtained by Minard

5. The explicit structure of Gy(p)/[Gk.(P), [Ck.(P), Gk, (P)]]

Let k =Q(+/—m) and K be fields of the previous section amtdthe Galois group
of the cyclotomicZ,-extensionk,, of k. Let 1—- R— F — Gy(p) — 1 be a minimal
presentation ofGy(p) by a free prop group F and H the kernel of the composition
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of the mapsF — Gi(p) — I'. Then the following diagram

flf,

_—

r—1

lid

1 — G . (p) — Gi(p) =T —1

7 !

— <X

is exact-commutative. In this section, we will analyze tb#ofving exact sequence:
(8) 15> R—> H - G (p)— 1

We shall discuss the properties of the grddphere. Lety (e F) be an inverse image
of a topological generatop, of I'. ThenT acts onH via yo(h) = yhy =1 for h € H.
Remark that this action is non-canonical. If we jgt(e G(p)) the image ofy, then

" also acts orGy_(p) via yo(9) = ylgyl_l for g € Gy_(p). This asserts that the groups
H and Gy_(p) can be considered as pmw{-operator groups, and the sequence (8) is
exact as prgp I'-operator groups (see Section | of [19]). Since the topalmigcom-
mutator group ¢, &] of a pro-p I'-operator group® is a characteristic subgroug,
also acts on®?, so that®2® becomes aA-module.

Proposition 5.1. Let d = dimg, HY(G(p), Z/p). Then H®~ A®I-1,

Proof. SinceF — G(p) is a minimal presentation, we see that ﬁgrﬁl(F,Z/ p) =
d. By the (dual of the) five term sequence, the sequence

0— (H*®/p)r > F*%/p (= (2/p)*) > I'/p (= Z/p) > O

is exact sincel’ is a free prop group. By the topological version of Nakayama’s
lemma, H? is generated byl — 1 elements oven\. Let

0> Z— A®-1 5 H 4 0

be a minimal presentation ofl?®®. Since H (C F) is a free prop group, H2 is
Zp-torsion-free, whence the sequence

0> Z/p— (A/p)® 1> H®p—>0

is also exact. By taking the homology sequence, one obtaeddlowing exact se-
guence;

0— Hy(I, H®/p) = (Z/p)r — (Z/p)®** > (H*/p)r — 0.
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Note that H(I", H2/p) is the dual of K(I", HY(H, Z/p)). From the Hochschild-Serre
spectral sequence, there is an exact sequeri¢g,i/p) — HYT, HY(H, Z/p)) —
H?(T", HO(H, Z/p)) (see Section 2.1 and Exercise 5 of Section 2.1 in [14]). dden
HY(T, HY(H, Z/p)) = 0 since H(F, Z/p) = HXT, H°(H, Z/p)) = 0. This shows that
(Z/p)r =0, and thereforeZz = 0 by Nakayama’s lemma. Finally, we remark thdtis
a free prop I'-operator group, see Proposition 1.7 of [19]. ]

By the exact sequence (8), Theorem 10.3.22 or Theorem 50d.P14], there is
an exact sequence

(9) 0— R/[R, H] » H® (= A% 5 %, -0

of A-modules. As the same to the prooftef®/ p~(Z/p)®?~*, we have dim_ (Xx.)r/p=
d — 1. Therefore (9) is a minimal presentation &k _ as a A-module by Proposi-
tion 5.1, andR/[R, H] is generated by the relations Gi(p) over A since R/[R, H])r =
R/[R, F]. By using (9), we show the following.

Theorem 5.1. Let F = (y, X1, X2) be a free pro-p group of ranlB and H =
(X1, X2)g the closed normal subgroup of F enerated byand %. In general de-
note by(ay, ..., as)r the closed normal subgroup of F generated hy.a., as. For
a pro-p group®, denote by ®) the i-th lower central series o®, eg. C1(®) = &,
Cy(8) = [6, &] and G(®) = [8, Cx(®)]. Suppose that one of the following two state-
ments holds

() p=3,3#m=3mod9and A - =0.

(I o # X;?:: ~ 7Z/p°. When p= 3 we further assume n# 3 mod 9.
Thendimg, HY(G(p), Z/p) = 3 and

F/(rxy =% 8y ey ") Ca(H) (0,

Gk(p)/c3(GK>o(p)) = [F/(xlpcszy_1X2_2(3+l)yX2)/_1Xfc)FC3(H) (Fae pz) (Il

as pro-p groups

It is conjectured thab(“K’fc is always finite [3], and no counter examples have been
found yet. There are many examples of real quadratic fieldsravithis conjecture
holds whenp = 3, see Ichimura-Sumida [5], [6] and Kraft-Schoof [11]. Tinéegera
is determined by the action df on Xi”*.

Proof. By the natural isomorphism GHKl{,/K) =~ Galk./k) = ", we identify
these groups. Leyp € T' be the topological generator such tha(¢) = ¢*P for all
¢ € pup=. We shall give two remarks here. Since G&l(p~)/Q) = Zy, one sees that
Xq, =0. It follows from the fact thaty_ is isomorphic toXy @ Xq, by seeing the
action of A on Xk, that Xi = Xi,. Also, recall that ifp = 3, then the fixed field
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of Kerwy is Q(+/3m), which is the totally real subfield ok =k(u3z). First, we show
that diny, HY(G(p), Z/p) = 3 in both cases (I) and (lI).

Suppose thap=3, 3Zm=3 mod 9 andA:@(\/ﬁ)1 =0. SinceQ(~/3m)1/Q(+/3m)
is totally ramified at all primes lying above 3, the norm mAB(\/?mM - A@(d?m) is

o i P g _
surjective by class field theory. Heno!lé(@(\/%)1 =0 implies thatAQ(m) =0. By the

equation (6), we obtain that dimH(Gk(3), Z/3) = 3.

Suppose that & X/,é";‘ ~ 7Z/p°¢ as abelian groups, and further assume thag
3 mod 9 if p=3. We then havep, = 0. Applying the dual of the five term sequence
to 1— Gy (p) = Gk(p) > T — 1, we obtain 0~ (Xx_/p)r » Xk/p—> T'/p— 0.
Hence

dimg, HY(Gk(p), Z/p) = dimz, Xi/p = 1 + dimg, (X /P)r-

We shall show that dig (X, /p)r = 2. SinceXy” is finite, one sees thati* =0
by (4). It follows from Proposition 3.1, Proposition 3.2 apgd = 0 that Top X, =0
and that 0— X, & A — Homyg (X7, up=) — 0 is exact. Since is cyclic, we
have the following exact sequence;

1wy

(10) 0— Homy, (X%, wpe)" = (X )r = Zp — Homy, (X%, ppe)r — O.

Hence @ )r = Zp & Homy (X%, up=)" as Zp-modules. SinceX” = X" ~
Z/p°® by our assumption, we then have obtained i« /p)r = 2, so that
dimg, HY(Gk(p), Z/p) = 3.

Next, we will determine the explicit structure & as aA-module. Suppose the
condition of (). SinceQ(+~/3M)../Q(+/3m) is totally ramified at all primes lying above

1 / -— 1 1 / -— ox _

3, the cond|t|0nAQ(\/%)l =0 implies thatXQ(m)x = Xk. =0 by [2]. It follows from
Proposition 3.2 that the sequence

0— Tora Xk, — Xk, = A — Homg, (XT*, ua<) (=0),

is exact, so thatXy =~ Tor, X, @& A as A-modules. AIso,Xﬁ"j = 0 implies that
Aﬁ’;‘ =0, whence we have TrX, =~ Tor, X* by Proposition 3.2. Since TQIY*® ~
A/(T) by Proposition 3.1, we see that Fok'* ~ A/((L+3)(1+T)1—=1)=A/(T —3)
as A-modules. Therefore, there is an isomorphism

(11) X ~ AT —3)@ A
of A-modules.
Suppose the condition of (II). Recall thay =0, X = X{’* ~ Z/p° and AL* =

0. By Proposition 3.2, we have the exact sequence

(12) 0— X, > A > Homy, (X%, o) = 0
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of A-modules. Note thaZ,/p° ~ X7* ~ Homy, (X7*, upy=) as abelian groups.

Lemma 5.1. Let M be aA-module such that Mz Z/p® as abelian groupsThen
there is an integer & pZ such that M~ A/(p®, T —a) as A-modules

Proof. Letm be a generator oM, so thatM = Am. Put| = Ker(A — M).
Then there isa € pZ such that (1A )m=(1+a)m. This shows thal —a e |. Since
A/(T —a) = Z, as abelian groups, it follows that= (T —a, p®). This completes the
proof of Lemma 5.1. ]

By the above lemma, there is an integee pZ such that Hor@p(x’f“’x, Ppe) =
A/(T — a, p%) as A-modules. It follows from the exact sequence (12) that ~
(T —a, p°) as A-modules.

Let A®2 — X ~ (T —a, p° be a minimal presentation o€, _ with the corre-
spondence (1,0 T —a, (0,1)~ —p°, so that f(T),g(T)) mapsto T —a)f(T)—
pcg(T). Let L be the kernel ofA®? — (T —a, p°). Doing the same as (10), we have
an exact sequence

0 L/TL— Z% — (T —a, p°)/(T(T —a), p°T) - 0.

(Remark that 1 +T acts asyp.) Since p° mod (T(T — a), p°T) is Z,-free, L/TL
hasZp-rank at most one. Henck is a cyclic A-module by Nakayama’'s lemma, say
L=A((T),s(T)). Now we show thal. = A(p®, T —a). It follows from (T —a)r(T)—
p°s(T) = 0 that p® divides r(T) and thatT — a divides s(T) since A is an UFD.
Let r’(T) and §'(T) be elements ofA with r(T) = p%’(T) and s(T) = (T — a)s'(T).
Since %, T —a) € L, there is a power serie§(T) in A such thatp® = f(T)r(T) =
ptf(T)y'(T) and T —a= f(T)s(T) = (T —a)f(T)s'(T). It follows that f(T) is an
unit power series and that(T) =r/(T)"! =s/(T)~%. Thus

L = A(r(T), s(T))
= A(F(M)7H(p%), £(T) (T —a))
= A(pS, T —a).

Therefore
(13) X, = A®?/A(P°, T —a)

as A-modules.

Now, we discuss actions gf]) = Galk/Q) ~ Z/2 on Gk(p) and Gi_(p). Since
the p-cohomological dimensions of G&|(Q) and Galk,,/Q) are 0 and 1, we can con-
sider (non-canonical) actions @f and Galk./Q) on Gk(p) and Gy_(p), respectively
(see Section 3.5 of [14]).
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Proposition 5.2. There exist topological generatosg, wi, w, of Gk(p) such that
J(r) =y and Jwi) = w;* fori =1, 2.

Proof. LetXyx/p = (Xk/p)* ® (Xk/p)~ be the decomposition with respect to the
action of J. Let M be the fixed field of ¥x/p)~. Then M/Q is an abelian exten-
sion. Further,M/Q is an abelianp-extension ofQ unramified outsidep, and hence
M = Qq. This shows thatXy/p)* ~ Z/p. Therefore, ¥x/p)~ = (Z/p)®?. It fol-
lows from Theorem 2.3 of [4] and di[mHl(Gk(p),Z/ p) = 3 that there exist topological

generatorsy;, wy, wp of Gy(p) such thatd(y;) =y and J(wi) =w;* fori =1,2. O

Let {y1, w1, wo} be a system of topological generators @f(p) with the prop-
erty of Proposition 5.2. Le§ = (w1, w2)g,(p) be the normal closed subgroup Gk(p)
generated byw; and wy. Here we prove thag = Gy_(p). Let K be the fixed field
of G. SinceJ acts on{)1G) trivially, we see thatk = k,, or k, for somen > 0. If
K = kn, thenG = Gal(My,/k,). But sinceJ acts onG? as the inverse, this contra-
dicts the fact thatk, has the cyclotomicZ,-extensionk,. HencelC = k,, and G =
Gk.(p). From this reason, we adopt a lify € Gk(p) of yo with yo(¢) = ¢1*P for
all ¢ € up~. Let y; and y> be elements ofG, (p) such thatX,_ is generated by
y1C2(Gi (P)), ¥2C2(Gi.. (P)) over A, namely, Xy = >'%; AYiCa(Gi (). By the ex-
act sequence & (Xx_/p)r —» X«x/p — I'/p — O (the dual of the five term sequence
with coefficients inZ/p), we see thalGy(p) = (1, Y1, Y2) by Burnside’s basis theo-
rem. If it is necessary we may assume tligt;) = yi‘1 for i =1, 2 by replacingy;
with y23(yi)"Y2 since yi = y?3(yi)"2 mod Cx(Gk._(p)) and J(y/?3(y)"Y?) =
I(y) 2y % = (yil/zJ(yi)‘l/z)_l. Hence these topological generatgss yi, y» satisfy
the condition of Proposition 5.2, so that’s are also obtained from this way.

We choose special elements Gf_(p). Fix an isomorphism

_|A/(T=3)® A inthe case (l),
(14) Fe = [(T —a, pY in the case (ll)

of A-modules. Letz;, z, € G¢_(p) be elements such that

(15) Az1Cx(Gy_(3)) = A/(T —3), AzCy(Gyk (3)) = A in the case (),
71C (G (P) > T —a, zCy(Gk (p) — p° in the case (ll).

If it is necessary, we may supposKz) = zi‘1 for i =1 and 2. Recall thaF =

{(y, X1, X2) is a free prop group of rank 3 andH = (x1, X2)g. Then we can define

the action ofJ on F via J(y) =y and J(X) = xi‘1 fori=1and 2. Let 1> R—

F — Gk(p) —» 1 be a minimal presentation @y(p) by sendingy — y1 andx; — z

fori =1 and 2, so thaF — Gg(p) is compatible to the action a¥. Further, we adopt

a lift y of yo. Then the morphisnH — Gy _(p) is also compatible to the actions of

J andT.
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From the exact sequence (9), the isomorphism (14) and thieeclod the genera-
tors z;, z, (15), there exists € H such that

[y, x1]x;® mod Cy(H) in the case (1),
r = o
xP [y, x2]%;® mod Cy(H) in the case (Il),

and thatGy_(p) ~ H/(r)r as prop T'-operator groups. Here we let,[y] = xyx ty—1
for x, y € F. Remark that 2%~ = Ha",

Lemma 5.2. Let N be a pro-p group with the action of. JIf (N&)~ = Na°,
then J acts on @N)/C3(N) trivially.

Proof. Consider the pairing
[, 1: N#x N® - Cy(N)/C3(N).

Letx,ye N. SinceJ([x, y])=[JI(x), IW)]=[x"1, y"1=[x,y], J acts onCo(N)/C3(N)
trivially. ]

SincerJ =rJ(r)~! is also a generator oR as a closed subgroup &, we may
assume that the following congruence holds true;
([y, xa]x7 %)+ mod Cy(H) in the case (1),
| (PIy, %212 mod Cy(H) i the case (II).

Letr’ € H be the element of right-hand-side in the above congruengeLeBhma 5.2,
one sees that

'l = J(rr’_l)
=3I

=r~r’ mod C3(H),

Thusr =r’ modC3(H). Then the above congruence may be replaced by

(16) _ [([V’ xa]x;°)'~? mod Cy(H) in the case (1),

(xPTy, x2]x%)™" mod Cs(H) in the case (Il).
The form of relationr of (16) shows that

F/(yxay %78y xay e Cs(H) in the case (1),

G Cs(G ~ c c
«(P)/Ca(Gr.(P)) {F/(xlp yXay x5 2@y xpy ~1x P )£Cs(H) in the case (1)

as prop groups. This completes the proof of Theorem 5.1. ]
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At the end of this section, we shall discuss whether theioglat is an unknown
relation or not.

Proposition 5.3. Let k=Q(,/—m) be an imaginary quadratic field with a square-
free positive integer m and p an odd prime numb&hen G(p) does not have an
unknown relation namely the product of restriction maps

¢p: HA(Gk(p), Z/p) > | | H(Gx, (p). Z/ D)
plp

is injective if and only if G(p) is freg or p=3, 3#m = 3 mod 9and A&}( 0.

Jam)

Proof. We need the following.

Lemma 5.3 (Proposition 7.3.10 and Theorem 7.5.8 of [14]Let 7/Q, be a fi-
nite extension
(1) If F does not containup, then Gg(p) is a free pro-p group of rankF : Qp] + 1.
Otherwise G +(p) is a Demuskin group of rank? : Qp] + 2.

(2) H(Gx(p), Qp/Zp) = 0.

Let U, be the principal unit group ok, with p | p. Note that # is finite since
k is an imaginary quadratic field. By class field theory, we h#we following exact
sequence

05 Ec®Zp— [[Up - %
pIp

(See Section 13.1 of [18].) Hencﬁplp Up[p] — X[ p] is injective unlessp = 3 and
m = 3. It follows thatU,[p] =~ (k) ® Zp)[p] = ka(p)ab[ p] by class field theory and

that ka(p)ab[ p] is the dual of H(ka(p), Qp/Zp)/p. This implies that the restric-
tion map

HY(Gk(P), Qp/Zp)/p — [ H'(Gx, (P), Qo/Zp)/ P

plp

is surjective unlesp =3 andm = 3. Applying the long exact sequence of cohomology
groups to the exact sequenceDZ/p — Qp/Z, 5 Qp/Zp — 0, it follows that

HY(Gk(p), Qp/Zp)/p = HA(GK(P), Z/p), HY(Gx, (p), Qp/Zp)/p = H*(Gy, (p), Z/p)

since H(G(p), Qp/Zp) = H¥(Gy, (p), Qp/Zp) = 0 by Lemma 5.3. Therefore, we ob-
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tain the following commutative diagram;

H'(G(p), Qp/Z,)/ p ——————HX(Gi(p), Z/ p)

| ;

[Ty, H'(Gi, (), Qp/Zp)/ p —— T, B (G, (p). Z/ p),

where the vertical maps are the restriction maps. ThysSs surjective unlesp = 3
andm= 3.

Suppose thap > 5. Thenk, does not contain,, whenceGy, (p) is a free prop
group by Lemma 5.3. This implies that?(Gy, (p), Z/p) = 0, so thaty, is injective
if and only if H3(Gk(p), Z/p) = 0, which is equivalent to the freeness Gf(p).

Suppose thap = 3. One can easily see that the completignof k = Q(v/—m)
at a primep of k above 3 containgez if and only if m= 3 mod 9. Ifm = 3 mod 9,
thenk, does not containuz and henceGy, (3) is a free pro-3 group. This implies that
@3 is injective if and only if H(Gk(3), Z/3) =0 whenm = 3 mod 9.

Suppose thap =3 andm = 3 mod 9. Ifk = Q(u3), then G¢(3) is a free pro-3
group by Theorem 4.1. Ifn # 3, then we see thadt has only one primg above 3k,
containsps and thatps is surjective. By Lemma 5.3G, (3) is a Demuskin group, so
that H(Gy, (3),Z/3) = Z/3. Henceys is injective if and only if H(G(3),Z/3) ~ Z/3,
which is equivalent toA;@(m) =0 by (6). O

By Proposition 5.3, the relation of the case (I) of Theorerh &omes from the
relation of Demuskin groups. Actually, the form of relati¢kt) seems like the relation
of a Demuskin group. On the other hand, the relation of the ¢H¥ does not come
from the relations of the Galois groups of local fields, wheticis a global object.

6. Examples

Here we give examples of Theorem 5.1 fpr= 3. Letm = 21 or 129. Then

3#Zm=3mod?9 andAQw%)1 = 0. Thus the fieldk = Q(/—m) with m = 21 or

129 satisfy the assumption of Theorem 5.1 (1). A differentéhese fields is whether
the prime 3 divides the class numbley of k or not. If m= 21, then 3 hy, and if
m = 129, then 3 hy.

Next, we give examples of Theorem 5.1 (2). leet= 107, thenm = 8= 3 mod 9.
One can show that\Q(m), Agvamy, = Z/3, and this implies thaxj;”;f ~7/3 by [2].
Hencec =1 anda = 0. Here we give an example with # 0, which is obtained by
Kraft and Schoof [11]. Lem = 1583. Then we have Hozg(X’,?j, Q3/Z3) = A/(T —
3,27)~7/27. Thus Horm(Xﬁ”i,ugm) ~ Homs(xﬁ"j,Qng)(l) ~(A/(T =3,27))(1).
Sinceyp((1 mod (T —3,27))t1) =(1+T mod (T —3,27))yot1) = (4 mod [T —3,27))R
4, =16(1 mod T — 3, 27))® t;, we have Horﬁa(x’fg, us=) = (A/(T =3, 27))(1)=
A /(T — 15, 27). Thereforec =3 anda = 15.
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