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0. Introduction

Let C be a compact Riemann surface of genus g > 2. The order of the holomor-
phic automorphism group Aut(C) takes the value 84(g—1), 48(g—1),40(g —1), 36(g —
1),30(g — 1) or less by Hurwitz’ theorem ([5, Chap. 6] or [1, Chap. 5]). A homo-
geneous polynomial f € Clx,y,z] with n = deg f > 1 defines an algebraic curve
C(f) in the projective plane P> over the complex number field C. As is well known
C(f) is a compact Riemann surface of genus (n — 1)(n —2)/2 if C(f) is non-singular.
Particularly a non-singular plane quartic(resp. sextic) has genus g = 3(resp. g = 10).
Let Aut(f) be the subgroup of the projectivities PGL(3, C) of P? consisting of all
projectivities (A) defined by A € GL(3,C) such that f4 is proportional to f. Here
falx,y,2) = f(x,y,2)( A~)) by definition. Clearly Aut(f) coincides with the pro-
jective automorphism group of C(f), if f is irreducible. It is also known that a holo-
morphic automorphism of a non-singular curve C(f) of degree n > 4 is induced by a
projectivity (A) € PGL(3,C) [9, Theorem 5.3.17(3)]. Therefore Aut(C(f))=Aut(f) if
C(f) is non-singular of degree n > 4. By abuse of terminology we say that a homo-
geneous polynomial f is non-singular or singular accoding as C(f) is.

As is well known, the Klein quartic f; = x>y + y3z + z3x is the most symmetric
in the sense that |Aut(fy)| = 84 x (3 — 1). It is also known that if |Aut(f)| = 168 for
a non-singular plane quartic f, then f is projectively equivalent to f4. A.Wiman has
shown that for the following non-singular sextic

fe = 2728 — 135z%xy — 45722x2y? +92(x° + y°) + 10x3y?,

Aut(fs) is isomorphic to the simple group Ag =~ PSL(2,3%)[11], as a result
|Aut(fg)| = 40(g — 1) = 360. We call fs the Wiman sextic. He has also shown that
the group Aut(fg) acts transitively on the set of 72 flexes of C(fs). We can show even
that no three flexes are collinear [6]. Our main results are

Theorem. Let f be a non-singular plane sextic defined over C. Then
(1) JAut(f)| =< 360.
2) |Aut(f)| =360 if and only if f is projectively equivalent to the Wiman sextic fg.



668 H. Doi, K. IDEl AND H. KANETA

(1) will be proved in §1 according to [4], while (2) will be shown in §2. We can
show that the most symmetric non-singular plane curve of degree 3, 5 or 7 is projec-
tively equivalent to the Fermat curve [7].

We recall a well known fact: Let R4:Clx,y,z] — C[x, y,z] be a mapping
defined by Raf = fa for A € GL3,C) and f € C[x,y,z]. Then Ry is a
ring-automorphim of the polynomial ring C[x, y, z]. Since (f4)p = fpa for A, B €
GL(3,C), the assignment A —> R, is a group homomorphims of GL(3,C) into
Aut(C[x, y, z]).

We write a ~ b when two quantities a and b such as polynomials or matrices are
proportional. E3 stands for the 3 x 3 unite matrix, and e; for the i-th column vector
of E5(1 <i <3).

1. The maximum order of the automorphism group of non-singular plane
sextics

Let f be a non-singular plane sextic. In this section we will show that the order
of the projective automorphism group Aut(f) can take the value neither 84 x 9 nor
48 x 9 (Theorem (1)). Otherwise, for some f Aut(f) has a subgroup of order 33 by
Sylow’s theorem. Thus it suffices to show the following theorem.

Theorem 1.1. Let f be a non-singular plane sextic. If 27||Aut(f)|, then
|Aut(f)| < 360.

Our approach is elementary, but involves much computation. There exist eactly
five groups of order 27 up to group isomorphism [3, 4.4]. They are three abelian
groups and two non-abelian groups: (1) Zy; (2) Zo x Z3 (3) Z3 x Z3 x Z3 (4) a° = 1,
bBP=1,blab=a* 5)a’*=1,b3=1, =1, ab = bac, ca = ac, cb = bc. The group
(5) is isomorphic to the matrix group

lay
EG)={ M@ B,y)=|018 |; a, B, yeF
001

We find projective representaions of these groups in the projective plane P? defined
over C, and find a non-singular invariant sextic f, if any. We can manage to estimate
the order of the projective automorphism group Aut(f).

Lemma 1.2. Let ¢ be a primitive 9-th root of 1 € C. If Gy is a subgroup of
PGL(3,C), isomorphic to Zy, then Gg is conjugate to one of the following three
groups in PGL(3, C):

(1) ((diag[1, &, 1)) (2) ((diag[l, ¢, £*]) (3) ((diag[1, €, £*])).
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Proof. By our assumption Gg is generated by a projective transformation (A),
where A € GL(3, C) satifies A’ = E; and ord((A)) = 9, namely Go = ((A)).
Therefore it is conjugate to ((diag[l,ei,ef])) for some 0 < i < j < 8 with
@, j) # (0,0), (0, 3),(0,6),(3,3),(3,6),(6,6). If (Z,j) = (0,j) with j £ 0 mod 3
or i = j % 0 mod 3, then Gy is conjugate to (1). If 1 < i < j < 8 with
(i,j) # (0,0) mod 3, then Gy is conjugate to (2) or (3) according as (i, j) €
{(1,2), (1,5), (1,8), (2,4), (2, 7), (4,5), (4,8), (5,7), (7, 8)} or (i, j) €{(1,3), (1,4),
(1,6), (1,7), (2,3), (2,5), (2,6), (2,8), 3,4), (3,5), 3,7), (3,8), 4,6), 4,7), (5,6),
(5, 8), (6,7), (6, 8)}. ]

Lemma 1.3. Let A; € C(1 < j < n) be mutually distinct, and let f; o =X, f; for
some A€ GL(3,C) and f; € Clx,y,z] . If f= fi+---+ fu #0 satisfies fa =M\f for
some A € C, then A = A; for some i, and f; =0 for j #1i.

Proof. We have A*f = A% fi +--- + 1,5 f, for 0 < k < n . Multiplying the
inverse of the Vandermonde matrix, we get f; = ¢; f(1 < j < n) for some c; € C.
Thus ¢;(A; — A)f = 0. Since f is assumed not to be the zero polynomial, the lemma
follows. O

Proposition 1.4. Let f be a plane sextic. If Aut(f) has a subgroup Gg isomor-
phic to Zy, then C(f) has a singular point.

Proof. Let A, = diag[l,e,¢e]l, A, = diag[l, s, €%] and A; = diag[1, ¢, £’]. By
Lemma 1.2 we may assume that f, - = A; f for some A; € C(1 < j < 3). Since
A} = Es, it follows that A;° = 1. In addition any monomial m satisfies m, -1 = &'m
for some i. Suppose that a homogeneous polynomial f’(x, y, z) of degree d > 2. Then
(1,0,0) is a singular point of C(f”) if and only if f’ contains none of three monomi-
als x4, x4='y and x?~'z. In the following table we summarize the values i such that
my -1 = e'm for each j =1,2,3 and for special 9 monomials. The proposition is im-
mediate from the table.

X0 Xy Xz [y yx yz|z® x 2y
(H 1| 0 1 1 6 5 6 6 5 6
2| 0 1 2 6 5 7 3 1 2
3|0 1 3 6 5 8 0 6 7 0

Proposition 1.5. No subgroup of PGL(3, C) is isomorphic to Zz x Z3 x Zs.

Proof. Assume that a subgroup G of PGL(3, C) is isomorphic to Z3 x Z3 x Zs.
Then there exist Aj, A,, Az € GL(3,C) such that A = A3 = A3 = E3, AiA; ~ AjA;
forany 1 <i < j <3, and G = ((A}), (A3), (A3)). Let w be a primitive 3rd root of
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1. We may assume that G contains (W) of the form (diag[1, 1, »]) or (diag[l, w, ®?]).
We will show that the first case implies the second case. Since WA; ~ A;W, the
(3,1), (3,2), (1,3) and (2,3) components of A;(j = 1,2, 3) vanish. So we can assume
that A; = diaglo™, ®", w] for some 0 < m,n < 3, If n = m, then n # 1, and
Ay = diaglw™, ", w] with n’ # m’. Thus (diag[l, w, w?]) € G. We will show that
the assumption (A) = (diag[1, v, ®?]) € G leads to a contradiction. Let P, = (1,0, 0),
P, =(0,1,0), and P; = (0,0, 1). Then G fixes 3-point set K = {P;, P,, P3}, because
(A) and (A;) commute. Since some Aj; is not diagonal, the homomorphism ¢ from G
to the permutaion group of K cannot be trivial. Since |G| = 27, it cannot be surjective.
Thus |¢(G)| = 3, and |Kerp| = 9. In other words evry projectivety (diag[l, ', w/])
belongs to G. Since G is commutative, any element of G is induced by a diagonal
matrix of order 3. This implies that |G| =9, a desired contradiction. O

We turn to the group E(3%). See the paragraph just below Theorem 1.1 for the
definition of the group and its element M(«x, B, y).

Lemma 1.6. (1) Let

010 100 100
Bi=1001]|, B,=|1010], B3=|0w O
100 00w 00 o

The map ¢ defined by ¢(M(a, B, y)) = (Bf’BfB;_aﬂ) is an isomorphism of E(3%) into
PGL(@3,C).
(2) If G is a subgroup of PGL(3, C) and isomorphic to E(3°), then G is conjugate
to $(E(33)).

Proof. (1) Let My = M(1,0,0), M = M(0,1,0), M3 = M(0,0,1). Then
M, B,y)= Mf‘Mf M3 ~*_ First we will prove that ¢ is a homomorphism by show-
ing p(M;M(c, B,y)) = p(M;)p(M(e, B, y)). Clearly

MIM(avﬂ’ V) = M(a+1’18’y+.3)
MZM(QHB’ V) = M(avﬂ+1’ y)
M3M(a, B, y) = M(, B,y + 1).

On the other hand , Bj3 = E;3, BiB, = BB B3, B3By = B1B3, and B3B; = B,B3. So ¢
is a homomorphism. Since B, and B are diagonal, it is easy to see that ¢ is injective.
Note that ¢(E(3%)) does not depend on the choice of w, a primitive 3rd root of 1.

(2) Let ¢’ be an isomorphim of E(3?) into PGL(3, C), and ¢'(M;) = (B}). We may
assume Bj = B3 or By = B;. The latter case is impossible. Since B;B| ~ B{Bj; and
B;B} ~ B;Bj, we may assume B| = diag[w;, 3, 1], and (1,3), (2,3), (3,1) and (3,2)
components of Bj are equal to zero. It is not difficult to see that B|B) ~ B;B|Bj; is
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imposssible. So let B; = B3 and let ¢; denote the i-th unit column vector so that E3 =
[e1, e2, €3]. A matrix B € GL(3, C) satisfies BB; ~ B3 B if and only if either B is di-
agonal or takes the form either [es, e3, e]diag[a, b, c] or [es, e}, ez]diag|a, b, c]. First
assume that B} = diaglw;, ws, w3]. We may assume 1 = w; = w; # w3 (if necessary,
we replace w by w?). Furthermore, we may assume ws = w(if necessary, we replace
by @?) so that B} = B,. Since (Bj) and (Bj) do not commute, B{ cannot be diagonal.
It turns out B| = [e3, ey, e;]diag[a, b, c]. By use of a diagonal matrix, we may assume
that a = b = ¢, namely B; = B;. Secondly assume that B; = diaglw:, v, w3]. We
note that the map sending M(«, 8,y) to M(B,a, y) is an anti-isomorphism. There-
fore ¢’ gives an isomorphism ¢”(M(a, B8,y)) = ¢'(M(B,a, y)™"). ¢” is an isomor-
phism whose type we have discussed. Namely, ¢'(E(3%))= ¢"(E(3?)) is conjugate to
#(E(3%)). Thirdly and finally assume that neither B| nor Bj is diagonal. Let B) =
[e2, €3, e1](without loss of generality we may take a = b = ¢ = 1). Then we can show
that if B| takes the form either [e;, e3, e;]diag[a, b, c] or [e3, ey, e;]diag[a, b, ¢] with
l{a, b,c}| = 2, ac = b*>w and a* = bcw?, then ¢'(M(a, B, y)) = (B{aBéﬂBgy_aB) is

an isomorphism(if |{a, b,c}| = 1 or 3, this ¢’ cannot be an isomorphism). Clearly
¢'(E(3%) = ¢(E(3*)). The case B, = [es, i, e;] can be reduced to the case B, =
[e2, e3, 1] by use of the matrix [ey, e3, e;3]. O

Let f € C[xj, x2, x3] be a homogeneous polynomial and let 2 be its Hessian
Hess(f) = det[ fjx], where fj = (3%/0x,;0x;)f.

Lemma 1.7. Let A=[aji] € GL(3,C), and let f be a homogeneous polynomial
in C[x1, X3, x3] such that fs- = Af. Then hs- = A3(det A~")?h, where h = Hess(f).

Proof. Let y; = ZLI ajixi. By our assumption Af(xy,x2,x3) = f(y1, Y2, y3)-
Hence

Afj(x1, X2, x3) = Z feyi, y2, y3)agj
¢

Afik(xy, x2, x3) = Z Z Jee (Y1, y2, y3)apiae; .

(2

The second equality yields A3h(xy, X2, x3) = ha-1(x1, X2, x3)(det A)%. O

Lemma 1.8. Let the marices B; be as in Lemma 1.6. A non-singular sextic f
is invariant under all (B;) if and only if

f~ x®+ yoa? + 0 + k(x*y? + y3Pa? + X)),

where o = 1 with (k? — 4a?) (k> — 3ax? +4) #£0.
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Proof. First we will show that a non-singular sextic f invariant under all (B;)
takes the form as in the lemma. Note that fB;' = o/ f and f32-1 = o*f for some
Jj.k € {0,1,2}. One can easily see that unless (j,k) = (0,0), f is singular. So f
takes the form f = a;x% +a,y® + a3z% + asx3y3 + asy3z® + aez3x>. Since fo = asx® +
ar1y® + az% + agxy? + a4y3z® + asz3x® must be equal to Af, where A* = 1(note that
Bl3 = E3), we get (a,, az, a3) = AM(as, ay, az), and (a4, as, ag) = A(ag, as, as). Therefore
a, = hay, az = Aa;, as=\ay, ag = A’as. We note that a; # 0, because, otherwise, f
is singular.

Let f = x®+ y%a? + 2%a + k(x3y3 + y323a? + 23x3a), where o® = 1. Obviously f
is invariant under all (B;). We will discuss when C(f) has a singular point. Simple
computation yields

fo = 3x2@x3 + 1y +ka’)
fi= 3y2(kx + 202y + o’k )

f. = 32%(akx® + o’k y’ + 2a2d).

If (a,b,c) is a common zero of the three linear forms in x3, y3, z3 above, then the
determinant of the coefficient matrix vanishes, namely «3 — 3ax? + 4 = 0. Conversely,
if this determinant vanishes, then C(f) has clearly a singular point. If the determinant
does not vanish and C(f) has a singular point (a, b, c), then one of a, b, ¢ is equal to
zero and 4a® — k2 = 0. It is clear that C(f) has a singular point if 4a?> —k? = 0. Thus
C(f) has a singular point if and only if (k3 — 3ak? +4)(4a® — k?) = 0. O

Lemma 1.9. |Aut(f)] < 360, where f is a non-singular sextic given in
Lemma 1.8.

Proof. The Hessian h = Hess(f) takes the form 54hh,, where h; = xyz and

hy, = 2OaK2(x9 + y9 + 29) + (—504/(3 +200%k? + 100/()()(6)13 + y6z3 + zéx3)
+(~50{2K3 +20k2 + 100(3(/()()c3y6 + y3z6 + z3x6) + (35/(3 — 75aK? + 500)x3y3z3.

We consider a set of lines L = {¢; € is a line such that £|h}. By Lemma 1.7 Aut(f)
acts on L as (A)¢ = {(A)P; P € ¢}. Denoting the line x = 0 by ¢,, let G, = {(A) €
Aut(f); (A)l, = £,}. Obviously |Aut(f)¢,| < |L| < 12. By the way we remark that
IL| =12 for f'=x%+y%+2z°—10(x3y? +y323 + 22x%)(Indeed, the 3 x 3 matrix B whose
row vectors are [1,1,1], [1, w, ®?] and [1, 02, ®], @ being a primitive the third root
of 1, satisfies f_, = —27f'). Assume (A) € G,. Without loss of generality A takes
the form

1 00
A=|a b ¢ | e GL3,0).
ab
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Putting ¥ =by+cz and Z =b'y + 'z, we get fa1 = pox®+x°pi(Y, Z) + x*pr(Y, Z) +
X3p3(Y, Z)+x2py(Y, Z)+xps(Y, Z)+ pe(Y, Z). Since this polynomial is proportional to
f, ps(Y, Z) = 6aa®Y> +3ka?(a'Y> Z*+aY?Z*)+6a'a Z° must vanish, namely a = a’ = 0.
Now fa-1 = x0+kx3(Y3+Z3a)+ Ya? +kY3Z3a2 + Z%a. Assuming first k # 0, we will
show that |G, | = 18 to the effect that |Aut(f)| < 18 x 12 = 216. By simple computaion
Y3+ Z3a = y3(b? + bPa) + 3y2z(bPc + b*c'a) + 3yz2(bc? + b cPa) + 23( + Pa).

Since this must be equal to the polynomial y3+z3«, it follows that b’c+bc’a = 0,
and bc? +b'c?a = 0. Multiplying ¢ and b to each equality and then by subtraction, we
get b'c/(cb’ — bc’) = 0, namely b'¢’ = 0, because A is non-singular. If 4" = 0, then
c=0, b* =1, ¢ = 1. It can be immediately seen that with these values (A) really
belongs to Gy. If ¢/ = 0, then b = 0, b = &?, ¢ = a. It can be also verified that
with these values (A) belongs to G,. Thus, if ¥ #0, then |G,| =2 x 9. If « =0, then
h = constx*y*z*, in particular, L = {x, y, z}. One can see easily that G, consisits of
2 x 62 points. Since Aut(f) acts transitively on L, we have |Aut(f)| = |L| x |G| =216
(see [10, p. 171] or [8] for the automorphism group of the Fermat curves). O

2. Uniqueness of sextics with |Aut(f)|=360

In the previous section we have shown that |Aut(f)| < 360 for a non-singular
plane sextic f. It is, therefore, reasonable to call a non-singular plane sextic f satis-
fying |Aut(f)| = 360, the most symmetric. The Wiman sextic

fo = 2728 — 135z%xy — 452°x%y% + 9z(x> + y°) + 10x>y?
is known to be the most symmetric [11]. The aim of this section is to prove the

Theorem 2.1. The most symmetric sextics are projectively equivalent to the
Wiman sextic.

As a byproduct another proof of |Aut(fs)] = 360 will be given (see Proposition
2.22).

There are five groups of order 8 up to isomorhism ([3, chap. 4]):
1) Zg
2) Zpyx1y
3) Z2 X Zz X Zz
4)  Qg, which is generated by a and b satisfying a* = 1, b* =a?, and ba =a~'b
5)  Dg, which is generated by a and b satisfying a* =1, b>=1, and ba = a~'b.

In a series of lemmas we will show that if f is the most symmetric sextic, then
the Sylow 2-subgroup of Aut(f) is isomorphic to Ds.

Lemma 2.2. A subgroup Gg of PGL(3, C) is isomorphic to Zg, if and only if
Gsg is conjugate to one of the following groups:
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() ((diag[1, 1, D)) (2) {(diag[l, &, £°]))
(3) ((diag[l, &, €°])) (4) ((diag[1, &, £*])).

Proof. Suppose that Gg and Zg are isomorphic. Then there exists an A €
GL(3,C) such that Gg = ((A)). Since (A) is of finite order, A is diagonalizable;
T'AT ~ diag[1, &', &/](0 <i < j <), where ¢ is a primitive 8-th root of 1. Clearly
@i, j) € {0,2), (0,4), (0,6), (2,4), (2,6), (4,6)}. If i = 0, then Gg is conjugate to
). If @, j) € {(1,2), (1,7), (2,5), (3,5), (3,6), (6,7)}, then Gg is conjugate to (2).
If (4, j) € {(1,3), (1,6), (2,3), (2,7), (5,6), (5,7)}, then Gg is conjugate to (3). Fi-
nally if (i, j) € {(1,4), (1,5), 3,4), (3,7), (4,5), (4, 7)}, then Gg is conjugate to (4).

O

Lemma 2.3. The projective automorphism group Aut(f) of a non-singular sextic
f has a subgroup isomorphic to Zs, if and only if f is projectively equivalent to a
sextic of the form f'=x%+ Bx?y?7? + y 7+ yz> with B3 +27 #0.

Proof. Assume that Aut(f) has a subgroup isomorphic to Zg. Let A denote one
of the follwoing four matrices; diag[1, 1, &], diag[l, ¢, £2], diag[1, ¢, %], diag[1, ¢, &*],
where ¢ is a primitive 8-th root of 1. By Lemma 2.2 f is projectively equivalent to
a sextic f’ such that f,_, = gl f' for some 0 < j < 8. One can easily see that
such an f’ is singular except for the case (A, j) = (diag[l, ¢, £°], 0)(see the proof
of Proposition 1.4). In this exceptional case f’ is a linear combination of monomi-
als x® x2y2z2, y3z, yz>. Since f’ is assumed to be non-singular, it takes the form
x% + Bx?y?z2 + (y°z + yz°) up to projective equivalence. Suppose that C(f’) has a
singular point (a, b, ¢). It is immediate that abc # 0. It is a common zero of f; =
3x* + By?z%, f, = 2Bx?’yz + 5y* + z* and f3 = 2Bx*yz + y* + 5z*. Being on C(f2)
and C(f3), (a, b, ¢) satisfies Ba’c +3b®> =0 and Ba’b +3c> = 0, hence B2%a* = 9b*c.
Since B2 fi(a,b,c) =0, we get (27 + B*)b*c* = 0, namely B>+ 27 = 0. Conversely, if
B?+27=0, then (v/=3/B, 1, 1) is a singular point of C(f’). O

We cite two theorems concerning a flex of a plane curve.

Theorem 2.4 ([2, p. 70]). A point P on an irreducible plane curve C(f) is a
simple point if and only if the local ring Op(f) is a discrete valuation ring. In this
case, if L =ax + by +cz is a line through P different from the tangent to C(f) at P,
then the image £ of L in Op(f) is a uniformizing parameter for Op(f).

Theorem 2.5 ([2, p. 116]). Let h be the Hessian of an irreducible f.
(1) P lies both on C(h) and C(f), if and only if P is a flex or a multiple point of
f.
(2)  The intersection number I(P, hNf) is equal to 1 if and only if P is an ordinary
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flex. (Note that if P is a simple point of C(f) and C(£) is the tangent at P to
C(f), then I(P,hN f) =ord{,(h) [2, p. 81], which is equal to I(P,£N f)—2=
ord},(£) — 2 [2, Proof on p. 116].)

The following lemma shows that a Sylow 2-subgroup of Aut(f) of the most sym-
metric sextic f cannot be isomorphic to Zs.

Lemma 2.6. If f' =x%+ Bx?y?72% +y 72+ yz° with B> +27 #0, then |Aut(f')| <
360.

Proof. Since f'(x,1,z) = x® + Bx?22+z+2°, P = (0,1,0) is a flex of C(f").
The tangent to C(f’) at P is C(z). Since ord{: is a discrete valuation of the local
ring Op(f’), and x is a uniformizing parameter of the ring, namely ord{,/(x) =1, we
get ordg(z) = 6. Simple calculation yields the Hessian 4’ = Hess(f’), which takes the
form ——36032x8y2z2 — 750x*{y® + z% + (10500 + 4OB3)y4z4} —1600%x2(y723 + y327) —
50B(y'922 + y?z10) + 700By5z°. So I(P,h' N f’) = ord) (h') = 4. This value can be
obtained as ord{,/(z) — 2 by Theorem 2.5 (2). Let Gp = {(A) € Aut(f');(A)P = P}.
Since (A) € Gp fixes P as well as the tangent C(z), we may assume that :

a 0 c
A=]d b ¢
001

The condition f,_, ~ f " implies that a’ = ¢/ = 0, because 5(b'y)*(a’ +¢'z)z must vanish
in f/;,,. Such an (A) belongs to Gp if and only if p*=1, a%=b', and Ba®b' = B.
Thus |Gp| is equal to 8 or 24 according as B # 0 or B = 0. In the case B # 0, we
evaluate the order of the group Aut(f’) as follows:

IAut(f’)I) o (IAut(f’)I> o
4| —LZ ) =I(P,h — I1(Q,h =12 x 6.
( o w0 (g2 s}Q: (Q.h' N f)=12 x

Thus |Aut(f')| < 144.

Suppose B = 0. In this case h’ = —750x*(y® — 14y*z* + 2%), and A’ contains 9
linear factors; x with multiplicity four, and v/—1'(7 + 4+/3)y — z(0 < j < 3) with
multiplicity one. Let G, = {(A) € Aut(f’');(A)¢, = £,}, where £, stands for the line
C(x). By Lemma 1.7 G, = Aut(f’). We shall show that |G, | = 144. Assume that (A) €
G,. (A) fixes both C(f) and C(x). Note that each tangent to C(f) at the intersection
€ C(f)NC(x) passes through (1,0, 0). So (A) fixes (1, 0,0) as well. Thus A takes the
form

100
A=|10b ¢
0b ¢
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up to constant multiplication. Putting Y = by + ¢z, Z = b’y + 'z, we write f' .1 as
Y3Z+Y Z3+x®. Now (A) belongs to G, if and only if y>z+yz> = Y>Z+Y Z>. The right-
hand side takes the form yS(b%b'+bb")+- - -+75(c3¢' +¢c’). Therefore bb'(b*+b'*) = 0,
and cc'(c* +¢*) = 0. If b = 0, then it follows immediately that ¢’ = 0, and ¢’b' =
¢b'’> = 1. The number of such an (A) is equal to 24. Similarly the case b = 0 gives
another 24 elements of G,. The case ¢¢’ = 0 does not give new (A) € G,. We turn
to the case bb'cc’ # 0. In this case b* + b = ¢* + ¢* = 0. Since the coefficient of
y*z2 vanishes, b2c + b’2¢’* = 0. Under these conditions the coefficients of y2z*, y3z3
vanish. The coefficients of y°z and yz® yield the condition 1 = —4b*(bc’ — b'c) and
1 = 4c*(bc’ — b'c) respectively. In particular ¢* = —b*. Therefore if bb'cc’ # 0, then
(A) € G, if and only if b*+ b =0, ¢+ =0, b* +¢* =0, b2 +b*¢” = 0, and
4b*(—bc’ +b'c) = 1. Thus b’ = V=T (1 + V=Db/V2, ¢’ = /—T'(1 + v/=T)c/~/2 with
0<jk<3and j+k=0mod 2, ¢ =+/—T (1 —+/=1)b/+/2 with 0 < ¢ < 3 such
that 4b6(«/——lj — «/—_lk)\/———llZ = 1. It is easy to see that each j gives one admissible
value of k, that £ can be arbitrary, and that b can take six values for an addmissible
(j, k, £). Consequently there exist 4 x 4 x 6 (A) € G, such that bb'cc’ # 0. Hence
|G| =24 +24 +96 = 144. This completes the proof of Lemma 2.6. |

Lemma 2.7. A subgroup Gg of PGL(3, C) is isomorphic to Z; x s, if and only
if Gg is conjugate to one of the following two groups:
(1) ((diag[—1, 1,17, (diag[1, v=T, v=1])
@ ((diagl~1,1,1]), (diag(l, v=T, v=T]).

Proof. Assume that Gg is isomorphic to Z; x Z4. Then there exist commut-
ing (A), and (B) in PGL(3,C) of order 2 and 4 respectively. We may assume that
A? = E3 and B takes the form either diag[1, 1, v/—1] or diag[l, ~/—1, J=T1°]. First
suppose that B = diag[l, 1, v/—1]. Since AB ~ BA, (1,3),(2,3),(3,1) and (3,2) com-
ponents of A vanish. We may assume that (3,3) component of A is equal to 1. Since
A is diagonalizable, we may assume that A = diag[—1, 1, 1]. Secondly assume that
B = diag[1, V/—1, \/——_12]. Since AB ~ BA, and A is involutive, it follows that A is
diagonal; A = diag[a, b, 1]. If a = b, then a = —1. There exists a T € GL(3, C) such
that T~'AT ~ diag[—1,1,1] and T~'BT ~ diag[l, V=T, J—_lz], hence T~ 'B3T ~
diag[1, v/—1, \/—_12]. The case a # b can be dealt with similarly. Ol

Lemma 2.8. If a plane sextic is invariant under the group (1) or (2) in Lemma
2.7, then it is singular.

Proof. Let A = diag[—1, 1, 1], B, = diag[l, 1, v/—1], B, = diag[1, ~/—1, J=1,
and let B denote either By or B,. As in the proof of Proposition 1.4 we can show
easily that a sextic f satisfying fz-1 ~ f and fs-1 ~ f is singular. Indeed, if f con-
tains x%, then fg1 = f, hence three monomials z°, z°x, z°y or three monomials y°,
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y°x, ¥’z do not appear in f according as B = B or B = B,. Suppose the monomial
x% does not appear in f. If f contains x°y, then f41 = —f and fz1 ~ f so that
three monomials z%, z°x, z°y do not appear in f, namely (0,0, 1) is a singular point
of C(f). If f contains x°z, then f41 = —f and fz1 ~ f so that three monomials z°,
2°x, 2°y do not appear in f. Finally if f contains none of three monomials x®, x°y,
and x°z, then (1,0, 0) is a singualr point of C(f). O

Lemma 2.9. No subgroup of PGL(3, C) is isomorphic to Z, x Ly x Z,.

Proof. Let (A) and (B) be mutually distinct commuting involutions. We may as-
sume that A = diag[—1, 1, 1], and B = diag[1, —1, 1]. Assume that an involution (C)
commutes with both of them. Then C is diagonal, hence (C) € ((A), (B)). Namely,
mutually distinct three commuting involutions in PGL(3, C) generate a subgroup of
order 4. O

Lemma 2.10. A subgroup Gg of PGL(3, C) is isomorphic to Qs, if and only if
Gy is conjugate to ((diag[l, ~/—1, «/—13]), ([ey, e3, exldiag[1, /=1, «/—11)), where e;

is the i-th column vector of the unit matrix Es.

Proof. Gg is isomorphic to Qg, if and only if it is generated by some (A) of
order 4 and (B) such that (B)?> = (A)? and (B)A) = (A)"'(B). Suppose that Gg is
isomorphic to Qg. Since (A) has order 4, we may assume that A takes the form either
diag[1, 1, /=] or diag[l, v—1, /=1 1, for subgroups ((diag[l, v/—1", V=T'D)(0 <
j < k < 4) are mutually conjugate. If A = diag[1, 1, v/—1], we can show easily that
no B € GL(3, C) satisfies ABA ~ B. If A =diag[1, v/—1, J—_13], then, up to constant
multiplication, B = [e}, e3, es]diag[1, b, c] with bc = —1 alone satisfies B> ~ A? and
ABA ~ B. Transforming B by a diagonal matrix we get the lemma. O

Lemma 2.11. Any Qg-invariant sextic is singular.

Proof. Let A = diag[l, v/—1, «/—_13] and B = [e}, e3, e;]diag[1, v/—1, +/—1], and
f is a sextic. Suppose fs-1 = +/—1’f for some 0 < j < 3. f is a linear combination
of monomials m in x, y, z satisfying ma-1 = v/—1'm. If j = 2, then f contains none
of x%, x3y, and x3z so that (1,0, 0) is a singular point of C(f). If j € {1, 3}, then
x divides f. Finally if j = 0, then f is a linear combination of eight monomials:
x8, x2y*, x2y%z%, x2z%, x*yz, 2z, y323, yz°. Since we also require that fz1 ~ f, f is
either a linear combination of the leading four monomials or a linear combination of
the remaining four monomials. In either case f is reducible. U

We have so far shown that a Sylow 2-subgroup of Aut(f) of the most symmetric
sextic f is isomorphic to Dg. We turn to the study of a Sylow S5-subgroup of Aut(f)
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of the most symmetric sextic f.

Lemma 2.12. A subgroup Gs of PGL(3, C) is isomorphic to Zs if and only if
Gs is conjugate to either Gs; = ((diag[1, 1, ¢]) or Gs, = ((diag[1, ¢, €2)), where ¢ is
a primitive 5-th root of 1.

Proof. We can argue as in the proof of Lemma 2.2. u

Proposition 2.13. Let f be a non-singular sextic. If Aut(f) contains a subgroup
conjugate to Gs,; in Lemma 2.12, then |Aut(f)| < 360.

Proof. Let a sextic f satisfy f4—1 = &/ f, where A = diag[l, 1, ¢]. It turns out that
unless j =0, f is singular. In the case j =0, f is a linear combination of monomials
x67kyk (0 < k < 6), xz° and yz°. By change of variables x’ = ax+by and y' = cx+dy,
we may assume that

f= Cox8 + C1x%y + Cox*y? + Cax3y? + C4x2y4 +Csxy® + Cey® +x2°,

where C¢ = 1, because if C¢ = 0, then f is reducible. So P = (0,0, 1) is a flex
of C(f), C(x) is the tangent there to C(f), y is a uniformizing parameter of Op(f),
and ord),(x) = 6. Let h = Hess(f). By Theorem 2.5 (2) I(P, h N f) = ord}(x) — 2 = 4.
Using Bezout’s theorem we get 4|Aut(f)P| < ZQ I1(Q,hN f)=T2. Let Gp ={(B) €
Aut(f); (B)P = P}. If |Gp| < 20, then |Aut(f)| = |Aut(f)P||Gp| < 360. We will try
to show that |Gp| < 20. Let (B) € Gp. Then the first, the second and the third row of
B takes the form [a, 0, 0], [b, 1,0], and [d/, ¥, c]. Since fg-1 ~ f, a’ =b =0. Now
fp-1 is of the following form:

fa1 = x8(Coa® + C1a°b + Cra*b? + C3a®b> + C4a’b* + Csab® + Ceb®)
+X°9(C1a° + 2Cra*b + 3C3a°b* + 4C4a®b® + 5Csab* + 6b°)
+x*y2(Cra®* + 3C3a’b + 6C4a*b* + 10Csab’ + 15b%)
+x3y3(C3a® + 4C4a®b + 10Csab® + 20b%)
+x2y*(C4a® + 5Csab + 15b%)

+xy5(C5a + 6b) + y6 +xzac’.

This polynomial is proportional to f, hence, equal to f. Therefore ac® = 1, and
b = Cs(1 — a)/6. Substituting b in the coefficients of x2y*, we get (a®> — 1)(C4 —
5C52/12) = 0. If C4 # 5Cs%/12, then a? = 1, hence |Gp| < 10. Suppose C4 = 5Cs?/12.
Comparing the coefficients of x°y3, we get (a® — 1)(C3 — 5Cs>/54) = 0. Suppose
C3 = 5Cs3 /54(otherwise, |G p| < 15). Now

6 6 5 4
C C C
f= (x%+y> +x6 (1 — 6—56> +x5y <C1 - é—) +x4y2 (CZ - 2'563) +.XZS.
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By change of variables x" = x, y = xCs/6 + y, and 7/ = z, we get a projectively
equivalent sextic, which will be denoted by f again: f = Dyx® + D;x°y + Dyx*y? +
y% +x2°. If (B) € Gp, then B = diag[a, 1, c], where

D0a6 = Dy, D](l5 = Dy, D2a4 =D;, and ac® =1.

If D\D, # 0, then a = 1, hence |Gp| = 5. If D; = 0 and D, # 0, then Dy # O,
hence a? = 1 so that |Gp| = 10. Finally suppose that D; # 0, D, = 0 and that f is
non-singular, namely 66D3 £5° Df. Then the line C(z) intersects C(f) at distinct six
points. Besides & = Hess(f) = 250z°h’, where h’ = —3y*z> + 24(3Dox + 2D, y)x*y* —
2D,%x°. Note that A’ has no linear factors. Indeed, none of linear factors z —ax — By,
x—ay, and y—Bx divides h'. Let G, = {(B) € Aut(f); (B) fixes the line C(z)}. Since
Aut(f) C Aut(h) by Lemma 1.7, (B) € Aut(f) fixes a line C(z) and hence the point
P (see the proof of Lemma 2.6). In particular G, = Aut(f) = Gp, and B takes the
form diag[a, 1, c], where @®> = 1 and ac® = 1. In particular |Aut(f)| = |Gp| < 5 x 5.

O

Lemma 2.14. Let f be a non-singular sextic. The automorphism group of f
contains a subgroup conjugate to Gs,, if and only if f is projectively equivalent to
one of the following forms:

() x5+ C1x3y12 + Gyt + C3x2y3z +x(y’+2°)
(2) 2%+ Bz*xy + Cz%x%y? + Dz(x° + y°) + Ex?y3
If f is the sextic (1), then |Aut(f)| < 360.

Proof. Let A = diag[l, ¢, €%]. Then each of the two sextics (1) and (2), say f,
satisfies f4-1 ~ f. Assume that (A) € Aut(f) for a sextic f, namely f4-1 =&/ f(j =
0,1,2,3,4). If j =3 or j =4, f is singular. According as j € {0,2} or j =1, f
takes the form (1) or (2) up to projective equivalence. Assuming that f takes the form
(1), we shall show that |Aut(f)| < 360. P = (0,1,0) is a flex of f, and C(x) is the
tangent there. So z is a uniformizing parameter of Op(f). Since ordlfu(x) > 4, we can
estimate the intersection number: I(P,hNf) = 0rd{,(x)—2 > 2, where h is the Hessian
of f. Let Gp = {(B) € Aut(f); (B)P = P}. If (B) € Gp, then the first, the second and
the third row of B takes the form [1, 0, 0], [a, b, c], and [a’, 0, ¢] repectively, because
(B) fixes the line C(x)@.e. [1,0,0]B ~ [1,0,0]) and (B)P = P. Since fp-1 ~ f and
C, #0, we get c =0, a=0, a =0, b =1and ¢ = b% Thus |Gp| = 5. By
Bezout’s theorem 2|Aut(f)|/|Gp| = 2|Aut(f)P| < ZQ I(Q,h N f) < 72, that is,
|Aut(f)| < 180. O

By Lemma 2.14 the most symmetric sextic is projectively equivalent to the fol-
lowing sextic :

f =2+ Bz*xy + C%x%*y?* + Dz(x> + y°) + Ex’y>.
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Let I = [e,, €1, e3], where E3 = [e], e, e3] is the unit matrix. Clearly f; = f. If f is
the most symmetric sextic, then any Sylow 2-subgroup of Aut(f) is isomorphic to the
group Dg. By Sylow’s theorem the involution (/) belongs to a Sylow 2-subgroup of

Aut(f).

Lemma 2.15. (1) If g is an involution of Ds, then there exists an involution
g' € Dg )\ {g} such gg'=g'g.
(2) Let g and g’ be mutually distinct commuting involutions of Dg. Then one of the
following cases takes place.
1)  There exists an element c € Dg of order 4 such that ¢*> =g, g'cg’ =c™\.
2)  There exists an element ¢ € Dy of order 4 such that ¢* = g', gcg=c™'.
|

3)  There exists an element ¢ € Dg of order 4 such that ¢* = gg', gcg =c .

Proof. Let a, b be generators of Dg such that a* =1, b>=1 and ba =a~'b. So
a generates a cyclic group H of order 4, and Dg = H +bH. An element g € Dg is an
involution if and only if g € {a*} UbH. (1) If g = a?, then we can take g’ = ba>. If
g = ba’, we can take g’ = ba’*?. (2) If g = a?, then g’ € bH. So we can take ¢ = a.
If g’ = a?, then we can take ¢ = a. Finally if g, g’ € bH, then gg’ = a*>. So we can
take ¢ =a. O

Lemma 2.16. Assume that f = 2%+ Bz*xy+Cz?x2y?+ Dz(x* +y°)+ Ex3y? is non-
singular. If there exists an involution (A) € Aut(f) \ {(I)} such that (A)(I) = (1)(A),
then A takes the form

apy
Bay |, where a+8+1=0, afp+1=0, yA=2,
Al

and

(%) y?B=12—-9yD, y*C=48+y°D, y°E =64 —2y°D.

Conversely, if (x) holds for some y # 0, then the above matrix A gives an involution
(A) € Aut(f) \ {(1)} such that (A)(I) = (I)(A).

Proof. Suppose that Aut(f) contains an involution (A) # (/) commuting with (7).
Let A = [a,b,c], where a = [a;], b = [b;] and ¢ = [c;] are column vectors. We
claim that ¢3 # 0. Otherwise the condition Al ~ [A yields by = a;, by = da,
b3 = 8az, and c; = 8c;. Since A2 ~ E3, we get 8§ =1, a; +a, =0, and cja3 = 2a,>.
However, (A) ¢ Aut(f), because fs-1 =Y z/C; with C; = 10a;’a3D(x + y)(x — y)* #
D(x> + y°). Note that D # 0 because of non-singularity of f. Thus we may assume
that ¢; = 1. The condition Al ~ IA implies that a = by, a; = by, a3 = b3 and
¢y = c¢1. We claim that ¢; # 0. If ¢; = 0, then the condition (A) € Aut(f) yields
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a3 = 0 and a;b; = 0. Besides, by the condition A% ~ E5, we get A~ Ezor A~ 1.
Similarly as # 0. For the sake of simplicity of notation we put « =a;, 8 =by, y =c,
and A = a3. Since A2 ~ E3, a+B+1 =0, 2a8+yr =0, and yAr ¢ {0, —1/2}.
Under these conditions A2 = (2yA + 1)E;. Let W = diag[1,1,1/y], A’ = W™ 1AW,
and fy- = y°f". (A) € Aut(f"), because f', = (fw-Da = faw- = fw-a =
(fa)w-1 = (constf)y-1 = constfy-1 = constf’. By the next lemma (A’) € Aut(f’)
implies (). Conversely suppose (x) holds. Let fy-1 = y°f’. By the next lemma there
exists an involution (A’) € Aut(f’) \ {(I)} such that (A")(I) = (I)(A"). Since fy, ~ f,
A=WA'W™! gives an involution (A) € Aut(f) \ {(1)}. ]

Lemma 2.17. Let f be as in Lemma 2.16, and let

abl 1
A=|bal |, where a+b+1=0, 2ab+d=0, d(;Z{O,——}.
ddl 2

Then fa-1 ~ f if and only if
d=2, B=12-D, C=48+D, E=64-2D.

Proof. We note that coefficents of f4-1 can be written without using a and b. In
fact we get the following formula.

fa-r = 22(x + y){6d + B4d — 1)+ C(2d — 2) + D(2d — 5) + E(—3)}
+24(x% + y){15d* + B(=9/2 + 6d)d + C(1 — 5d + d*) + D(10 + 5d)
+EG - (3/2)d)}
+22(x% + y){20d> + B(—8d?* + 4d*) + C(3d — 4d?) + D(—10 — 5d + 10d?)
+ E(—1+3d)}
+22(x%y + xy*){60d> + B(4d — 16d* + 12d°) + C(—=2 + 9d — 4d?)
+ D(25d — 10d?) + E(—9 — 3d)}
+22(x* + yH{15d% + B(=7d% + dY) + C(B + (1/4)d? — d°)
+D(5 — (25/2)d?) + E((=3/2)d + (3/4)d?)}
+22(x3y + xy*){60d* + B(6d* — 16d> + 4d*) + C(—5d + 5d%)
+ D(—20d — 10d*) + E(3 — 3d — 3d%)}
+z(x*y + xyM{(30d° + B(4d> — 7d*) + C(—4d* — (1/2)d%)
+ D((15/2)d + (15/4)d* — (15/2)d*) + E(3d + (9/4)d?)}
+z(x3y? + x2yH{60d° + B(12d> — 6d*) + C(2d — 4d* — d%)
+ D(=25/2)d? + 5d°) + E(—3 — 3d — (3/2)d?)}
+(x® + yO){d® + B(—(1/2)d%) + C((1/4)d*)
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+D(—1—=(5/2)d — (5/4)d>d + E(—(1/8)d*)}
+(x°y + xy°){6d° + B(d* — d°) + C(—=d® — (1/2)d*)
+ D(—d +(5/2)d%) + E((3/4)d* + (3/4)d*}
+(x*y? + x2yH{15d5 + B4d* + (1/2)d%) + C(d* — (1/4)d*)
+ D((5/2)d* + (5/4)d>) + E(—(3/2)d — 3d* — (15/8)d>)}
+°{1+ B+C+2D+E)
+2*xy{30d% + B(1 — 7d + 12d%) + C(4 — 6d + 2d*) + D(—=30d) + E(9 + 3d)}
+22x%y2{90d* + B(12d* — 184> + 6d*) + C(1 — 6d + (15/2)d* + 2d°)
+ D(45d*) + E(9+9d + (9/2)d?)}
+2(x° + y){6d° + B(=3d*) + C(3/2)d>
+ D(—1+(5/2)d + (35/4)d* + (5/2)d>) + E(=3/4)d*}
+x3y3{20d® + B(6d* + 2d°) + C(2d? + 2d> + d*)
+ D(=5d%) + E(1 +3d + (9/2)d* + (5/2)d°}.

Since z3x does not appear in f, we have 3E = 6d + B(4d — 1)+ C(2d —2)+ D(2d —5).
Since the coefficients of z%x2, z3x3, z3x2y vanish, and d # —1/2, we get a system
of linear equations on B, C, and D as follows:

B(-2d+1)+C(1)+ D (%d -—5) =6d,

2 4 50
B <4d2 —6d + 5) +C (—2d + 5) +D (12d - ?> = -20d? +4d,
B(12d* — 26d + 6) + C(—6d + 8) + D(—12d + 30) = —60d> + 36d.

The determinant of the coefficient matirx is equal to 50(4d + 2)(—d +2)/3. We claim
that d = 2. Assume the contrary. Cramer’s formula yields B = 6d, C = 12d?, and
D = 0. On the other hand D # 0, because f is assumed to be non-singular. Thus d =
2. The above system of linear equations on B, C, and D, together with the equality
3E =6d+B(4d — 1)+ C(2d —2)+ D(2d — 5) yields equalities B=12— D, C =48+ D,
and E = 64 — 2D. By easy computaion we get fs-1 = 125f. O

Suppose f is the most symmetric sextic. By Lemma 2.14 we may assume that f
takes the form given in Lemma 2.16. By Lemma 2.16, we may further assume that
B=12—-D, C=48+D, E=64—-2D.

Lemma 2.18. Let f be a sextic of the form 76+ Bz*xy + Cz*x%*y*+ Dz(x’ +y°) +
Ex3y? with B=12—- D, C =48+ D, E = 64 —2D. Let M = diag[1, 1, m](m # 0).
Then fy-1 is the Wiman sextic

fo =277% — 135z2%xy — 4522x%y? + 92(x° + y°) + 10x3y?,
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if and only if [D, 1/m] = [(9 £ 15v/15+/=1)/2, (=3 £ V/15+/=1)/12). In particular if

D? —9D +864 =0, then f is projectively equivalent to the Wiman sextic.

Proof. It is evident that f satisfies the condition if and only if the following 4
equalities hold:
(1) (12— D)/m?=—135/27
(2) (48+ D)/m* = —45/27
3) D/m’=9/27
(4) (64 —2D)/m% =10/27.
The equalities (2) and (3) imply (48 + D)m/D = —5, while (3) and (4) yield (64 —
2D)/Dm = 10/9. Thus (48 + D)(64 — 2D) + 50D?/9 = 0, namely D* — 9D + 864 = 0.
ml=—(48 + D)/(5D) gives the value of m~L. Conversely, since
m2=—(14/154/=1)/24, m™* = (=7 £ V/15+/—1)/288,
12— D = 15(1 FV/15+/=1)/2, and 48 + D = 15(7 £ V/15+/—1)/2,
(1) and (2) hold, hence (3) and (4) as well. O

Lemma 2.19. Let f be as in Lemma 2.18, and let

abl

A=|bal]|, wherea+b+1=0, and ab+1=0,
221

B = diag[$, 8, 1], where § is a primitive 5-th root of 1.

Then (AB?) € Aut(f) and ord((AB?)) = 3.

Proof. Let G be the subgroup of Aut(f) generated by (A), (/) and (B). Let
Py =(1,0,0). It is a flex of C(f). We can show that the orbit G P, consists of 2+5+5
points, hence |G| =12 x 5. So it is no wonder that there is an (M) € G of oder 3. By
Lemma 2.17 (A) € Aut(f). Clearly (B) € Aut(f). We will show that ¢, cow, cw? are
the characteristic roots of AB? for some constant c. Let +/5 be a solution to x2 = 5(we
do not assume +/5 > 0). To get a solution to x* +x3+x2+x+1=0, put y=x+x"".
Then y2+y—1=0. So y=(—1%+/5)/2, and x> — yx +1=0. Let a = (—1 ++/5)/2,
and b = (—1 — «/3)/2. Let 8§ be a solution of x2 —ax + 1 = 0. Then 8% = aé — 1,
3 =—ad—a, *=a—35, and 8°> = 1. AB? now takes the form

a’s—a §+1 1
AB? = —§—b —ad*G+1 1
2@8—1) —2a(+1) 1

By careful computation we get det(AB2 ++/5u) = 5¢/5(u® — 1). As is well known, if
AB%vj = —/50/v; and v; # 0, then V = [vg, v1, v,] diagonalizes AB%; V~'AB?V =
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—+/5diag[1, w, w?]. For example we may take

B+V35)8—1-4/5 B = VSws +2w++/5 -1
v = —(3++/5) o= (=348 +2(5— Dw++/5—1
2 4
Substituting w? for w in vy, we get v,. O

Lemma 2.20. Let f be the sextic in Lemma 2.18, and let V = [vg, vy, v2] €
GL(3, C) be as in the proof of Lemma 2.19. Set U =2V. Then

fu-1 = 10240[x(—170 — 76+/5)(—=27 + D) + (y° + z°)(100 — 40v/5)D
+33(y> + 22)(—200 — 100v/3)D + y*2°(20 — 8+/5)(864 — 17D)
+x(y*z + yz2)(=75 + 75v/5)D + x*yz(75 + 33+/5)(108 + D)
+x2y222(5 + +/5)(1296 — 63D)).

Proof. Let A =24. Then A2 —(=1++/5)1+4=0. So the coefficients of fy-1 are
Z-linear combinations of v/5’ w AL, Using computer, we get the reslut. U

ReMARK. Let f' = fy-1. The involution (B~'IB) € Aut(f) gives rise to an in-
volution (J) = (U~'B~'IBU) € Aut(f’), where E3 = [e}, €2, e3], I = [es, e}, €3] and
J =ley, e3, €2].

The next lemma completes the proof of Theorem 2.1.

Lemma 2.21. Let f be the most symmetric sextic of the form in Lemma 2.18.
Then D* — 9D + 864 = 0.

Proof. A Sylow 3-subgroup of Aut(f) cannot be isomorphic to Zg by Proposi-
tion 1.4. Therefore any Sylow 3-subgroup of Aut(f) is isomorphic to Zz x Z3 [3].
By Sylow’s theorem there exists a Sylow 3-subgroup which contains (X) = (AB?) in
Lemma 2.19. So there exists a (Y) € Aut(f)\ {{(X))} of order 3 such (X)(Y) = (Y)(X).
Let fy-1 = 102401, (X') = (U™'XU) (see Lemma 2.20 for the definition of U). We
may assume that X' = diag[l, w, w?]. Then there exists a (Y’) € Aut(f’)\ {((X"))} such
that X'Y’ ~ Y'X’, and Y"* ~ E3. So without loss of generality T = Y’ takes the form
either diag[1, 1, ] or [ey, e3, e;]diag[a, b, 1]. The former case is impossible, because
f'r=1 ~ f' implies f'r-1 = f’ despite the fact that f';-1 # f’(note that D # 0, for
f must be non-singular). Assume the second case for 7. According as the monomial
x2y?z? appears in f’ or not, we proceed as follows. [x/y%k¢] denotes the coefficient
of x'y/z% in f'. If [x?y%2%] = 0, i.e. D = 144/7, then f’ does not have an automor-
phism of the form (7'). Indeed, the assumption f’;- = constf’ leads to a contradiciton
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as follows. Since ([x®]x®)7-1 = const[z°]z°, const = [x°]/[z%] = (161 + 724/5)/32. By
the two equalties a*b[xy*z] = const[x*yz], and ab[x*yz] = const[xyz*], we get a® =
[x*yz]lx*yz]/([xyz*1[xy*z]) = 5(161 + 72+/5)/4%. On the other hand a®[y®] = const[x°]
gives a® = const[x®]/[y®] = (161 + 72+/5)2/322. Hence a® # (a®).

Suppose that [x?y?z?] #0. Then f;_, = a*b* f'. Equivalently following nine equal-
ities hold:

a2b2[x6] - [y6]a6’ a2b2[x3y3] - [y3z3]a3b3, azb2[x4yz] — [y4zx]a4b
a2b2[y6] - [Zﬁ]bé, a2b2[y3z3] - [z3x3]b3, a2b2[xy4z] — [yz4x]ab4
P’ =[x, PP =[Yled, @PPlxyzt] = [yzxtlab.

The second and the ninth equalities imply
0 =[xy’ 1lxyz*] — [y*2*1lx*yz] = —6480(3 + v/5)(D* — 9D + 864).

For the sake of completeness we will determine the values of @ and b in the case
D?> — 9D + 864 = 0. By the second equality above we get ab = [x3y3]/[y3z’]. The
eighth equality above yields a = b%. So b® = [x3y3]/[y*2%] = {—1002 + +/3)D}/{(20 —
8+/3)(864 — 17D)}. Conversely if a = b? and b3 = {—100(2+~/5)D}/{(20 — 8+/5)(864 —
17D)} with D?>—9D+864 = 0, then above nine equalties hold. Clearly the sencond and
the ninth equalities hold. Because a® = b® = ([x3y*/[y323)? = [x6]/[y6] = [x6]/[z6],
the first and the seventh equalities hold. The third and the fifth ones hold too, because
ab = b* = [x*y*)/[y’2’] = [x*yz]/[y*zx] = [°x%]/[y*2’]. Since [y®] = [2f], [xy%z] =
[yz*x], and [x3y3] = [z3x3], the fourth, the sixth and the eighth ones hold. ]

For the sake of completeness we will show the following proposition, which, to-
gether with Lemma 2.18, assures us that |Aut( fg)| = 360.

Proposition 2.22. Let f be a sextic of the form 7%+ Bz*xy + Cz°x%y?* + Dz(x> +
v+ Ex?y? with B=12—-D, C =48+ D, E =64 — 2D, where D* — 9D + 864 = 0.
Then |Aut(f)| = 360.

Proof. By Lemma 2.14 |Aut(f)| is a multiple of 5. By the proof of Lemma 2.21
|Aut(f)| is a multiple of 9. In view of Theorem (1) in the introduction it suffices to
show that Aut(f) contains a subgroup isomorphic to Dg. Let I = [e;, €1, e3] and A be
as in Lemma 2.19. Clearly (/) € Aut(f), and (A) € Aut(f) by Lemma 2.17. We will
show that there exists an (M) € Aut(f) such that (M)? = (1), and (AM)? = (E3)(see
Lemma 2.15 (2)). It is natural to diagonalize A and I. Taking a = (—1 ++/5)/2, and
b=(—1—+/5)/2, we define

110 1 0 0
U=|-110], V=10 1 -1,
001 0/5+1/5-1
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and W = UV. Then A” = W'AW = ./5diag[l,1,—1], and I” = W' IW =
diag[—1, 1, 1]. Put f’' = fy-1, and f” = f’'y-1. We look for an M” € GL(3, C) such
that M"> ~ 1", A"M"? ~ E; and (M") € Aut( f")(see Lemma 2.15(2)). Since M” and
I” commute due to the first condition, we may assume that the first, the second and
the third rows of M” take the form [+v/—1,0,0], [0, a, b], and [0, c, d] respectively.
Either a+d =0 ora+d #0, ¢ =d =0 due to the condition M"* ~ I". The second
case is impossible, because M” cannot be diagonal. Now the condition A”M"* ~ E;
yields a =d =0 and bc = 1. By careful computaion we get the explict form of f”:

f" =x%=E)

+x*[Y2(BE + 10(1 + /5)D + (6 + 2+/5)C} + yz{—6E — 20D + 8D}
+Z2(3E + 10(1 — /5)D + (6 — 2+/5)C}]

+x2[y*H{=3E +20(1 + v/5)D — 2(6 + 2+/5)C — (56 + 24+/5)B)
+y32{12E +20(—4 — 2+/5)D + 8(1 + v/5)C — 16(6 + 2+/5)B}
+y2z2{—18E + 120D + 0C — 96B}
+y°2{12E + 20(=4 + 2+/5)D + 8(1 — ~/5)C — 16(6 — 2+/5)B}
+Z4{=3E +20(1 — v/5)D — 2(6 — 24/5)C — (56 — 24~/5)B}]

+x°[Y{E +2(1 + V/5)D + (6 + 2+/5)C + (56 + 24+/5) B + 16(36 + 16+/5)}
+ Y Z{—6E — 2(6 +4+/5)D — 8(2 + /5)C — 16(1 + /5)B + 192(7 + 33/5)}
+y*Z2{15E + 103 + v/5)D + 10(1 + +/5)C — 40(1 + ~/5)B + 480(3 + v/5)}
+y32*{(—20E — 40D + 0C + 0B + 1280}
+y2ZH15E + 103 — v/5)D + 10(1 — v/5)C — 40(1 — +/5)B + 480(3 — v/5)}
+ Y2 {(—6E — 2(6 — 4v/5)D — 8(2 — v/5)C — 16(1 — +/5)B + 192(7 — 3+/5)}
+2%E +2(1 = V/5)D + (6 — 24/5)C + (56 — 24+/5)B + 16(36 — 167/5)}].

We will show that (M"”) € Aut(f”) for some b and c. The coeffients of x*yz, x2y3z,
x2yz3, ¥°z, yz°> and y3z3 in f” vanish. Note that E = 64— D #0, for D>?—9D+864 =
0. So such b and c exist if and only if f”,.,-1 = —f”. Let us denote by [x/y*z¢] the
coefficient of the monomial x/y*z¢ in f”. Then the following equalities hold:

(1) P x*y? = =[x*2?] Q) B*[x%y%] = [x%2*] (3) pODY°] = —[2°] (@) b’[y*s?] =
—[y%z4.

We can show that the equality (1) implies (2) through (4). To be more precise, as-
sume that b is a solution to (1) for given D. (1) gives b*[x*y?]?> = [x*2z2]?, which im-
plies (2), because [x*y?]?[x%z*] — [x*z%]?[x%y*] = 0. (1) and (2) give bO[x*y?][x%y*] =
—[x*22][x2z*], which implies (3). (4) is exactly the same condition as (1). This com-
pletes the proof of Proposition 2.22. U

ACKNOWLEDGEMENT.  We would like to thank Prof. S. Yoshiara at Osaka Kyoiku
University who kindly informed us the structure of finite groups. We owe many im-



THE MOST SYMMETRIC PLANE SEXTICS 687

provements in the representation to the referee, especially in the proof of Proposition

1.4.

(1]
(2]
(3]
(4]

[5]
(6]

(71
(8]
(9]

[10]
(11]

References

H.M. Farkas and I. Kra: Riemann Surfaces, 2nd ed., Springer, 1992.

W. Fulton: Algebraic Curves, Addison-Wesely, 1989.

M. Hall, Jr.: The Theory of Groups, Macmillan, New York, 1968.

K. Idei: The maximum order of the automorphism groups of non-singular plane sextics, MS
Thesis, Okayama Univ., 1998.

S. litaka: Algebraic Geometry II(in Japanese), Iwanami, 1977.

H. Kaneta, S. Marcugini and F. Pambianco: On arcs and curves with many automorphisms,
preprint.

H. Kaneta, S. Marcugini and F. Pambianco: The most symmetric non-singular cubics, quintics
and septics, preprint.

H. W. Leopoldt: Uber die Automorphismen Gruppe des Fermatkorpers, J. Number Theory, 56
(1996), 256-282.

M. Namba: Geometry of Projective Algebraic Curves, Marcel Dekker, 1984.

M. Namba: Geometry of Algebraic Curves(in Japanese), Gendai-suugaku-sha, 1991.

A. Wiman: Ubere eine einfache Gruppe von 360 ebenen Collineationen, Math. Annalen, bd. 47
(1896), 531-556.

H. Doi

Department of Mathematics
Faculty of Science
Okayama University
Okayama 700-8530, Japan

K. Idei

CIK CO., LTD

5-3 Kouji-machi
Chiyoda-ku

Tokyo 102-0083, Japan

H. Kaneta

Department of Mathematical Sciences
College of Engineering

Osaka Prefecture University

Sakai, Osaka 599-8531, Japan








