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1. Introduction

It is known that manifolds of smooth families of probability distributions admit
dualistic structures. S. Amari proposed Information Geometry, whose keywords are du-
alistic connections [1]. Among them the case of dual connections being flat is inter-
esting. Many important families of probability distributions, e.g. exponential families
admit flar dual connections.

The notion of flat dual connections is the same with Hessian structures which
have being developed from a different view point [9]-[12].

In this paper, for a linear mapping p of a domain 2 into the space of positive
definite symmetric matrices we construct an exponential family of probability distribu-
tions {p(x;6, w)} on R" parametrized by 0 € R", w € 2, and study a Hessian structure
on R” x © given by the exponential family. Such families contain n-dimensional nor-
mal distributions (Example 1) and a family of constant negative curvature (Example
2).

In case of a Lie group acting on 2, p is assumed to be equivariant. O.S. Rothaus
and I. Satake studied such a linear mapping p for homogeneous convex cones [7][8].
Using p we introduce a Hessian structure on a vector bundle over a compact hyper-
bolic affine manifold and prove a certain vanishing theorem (Theorem 2).

2. Hessian structures

We first review some fundamental facts on Hessian structures needed in this paper
(1t}

Let U be an n-dimensional real vector space with canonical flat connection D.
Let 2 be a domain in U with a convex function ¥, i.e. the Hessian Ddyr is posi-
tive definte on 2. Then the metric g = Ddv is called a Hessian metric and the pair

(D, g) a Hessian structure on . Let {u;,---,u,} and {u*!, ..., u*"} be dual basis
of U and U* (the dual vector space of U) respectively. We denote by {x!,---,x"}
(resp. {x{,---,x;}) the linear coordinate system with respect to {uy,---,u,} (resp.
{u*!, ... ,u*"}). Let « : Q —> U* be a mapping given by

x¥ol1= —%

! axi’
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which will be called the gradient mapping. We define a falt affine connection D’ on
2 by

(DY) = D (Y),

where the right hand side is the covariant differentiation along ¢ induced by the flat
affine connection D* on U*. Then we have

D' =2V -D,
Xg(Y,Z)=g(DxY, Z) +g(¥, D 2),

where V is the Levi-Civita connection of g. Putting x; = —(3y/3x’) we have an affine
coordinate system {xi, - - -, x,} with respect to D’. A function ¥, on 2 defined by

¢L=—inlxi—-l//

is called the Legendre transform of . Then we have
g=D'dy.

The Hessian structure (D', g = D'dy) is said to be the dual Hessian structure of
(D, g = DAdyr). The divergence D for the Hessian structure (D, g = Ddv) is defined
by

D(p,q) =¥ (p)+¥L(@) — Y _x'(p)x{(q) (p.q € Q).

3. Probability distributions and Hessian structures induced by p

Let 2 be a domain in a real vector space V™ of dimension m. Let p be an injec-
tive linear mapping of V™ into the space &, of n X n symmetric matrices such that

(A1) p(w)e PDG, for we L,

where PDG, is the set of positive definite matrices in &,. For column vectors x, u €
R” and w € 2 we define a density function of x € R” by

1
0)) p(x; p, ) = (2m) """ (det p(w))'/? exp [—5 ‘(x — wp(w)(x — u)} .

The family {p(x;u,w) | u € R", w € Q} parametrized by u, w is called the probability
distributions induced by p.

Proposition 1. The probability distributions induced by p is an exponential fam-
ily parametrized by (6, w) € R" x Q where 0 = p(w)u. The Fisher information metric
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coincides with the Hessian metric g = Ddy where D is the canonical flat connection
on R" x V™ and

Y0, ) = 3(9p@)0 ~ log det p(@)}.

Proof. For x =[x'],u =[u'] € R" and w = )", w,v* € Q where {v!,---,v™} is
a basis of V™, we set

1
F%>x) = ) % p(v¥)x,

0 = p(w)u.

Then we have
. n
U, W) = 10, w) = ex O;ix) + F¥x)— ¥ (@, w) — =log?2
p(x; i, ) = p(x; 0, ) pIij, ;wa () = ¥ (0, ) - > log2n

This implies that the family {p(x;6, )} of probability distributions parametrized by
0, w) € R" x Q is an exponential family, and the Fisher information metric coincides
with the Hessian metric g = Ddvr. O

A straightforward calculation shows

@) g—Z = ¢'p()7'6,
0 _ L ey
@ E __E{ Bp(w)™" p(v*)p(w)™ 6 + Trp(w) ™' p(v*)},
%y B
© [aeiaej] =p@)y
92 )
(6) 8981/:) - — 'e’ p(a))—lp(va)p(w)_le’
%ty . o s |
@ dwadwp Op(@) ™' p(v)p(w) ™ p(vP)p(w) 16

1
+ 5Trp(w)"‘p(v")p(w)*'p(vﬂ»

where € is the vector in R” whose j-th component is 8"/ (Kronecker’s delta). The Leg-
endre transform ¥, of ¥ is

1
®) YL = 5 log det p(w).
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Proposition 2. The divergence D of the probability distributions {p(x;u, w) |

ueR, we Q} is given by

1
D(p,q) = 5{ (w(p) — w(@)p(@(P))((p) — (@) + Tr(p(w(p))p(w(g) ™)
— log det(p(w(p))p(w(g))~") — n}.

Proof. Using (3), (4) we have

n a m a
D(p.) = D (6(@) — 6P @) + )_(@a(q) — walpP) 5-(4)
L a=1 (*1

i=1
— (p(q) — ¢(p))
= {0(q)p(w(g))"'8(q) — B(P)p((q))'8(9)}

- %[ 0(q)p((q)) ™" p(w(@))p((q)) ' 0(g) + Tr p(w(g)) ™' p(e(q))
— 0(@)n((9))™" p(ax(P))p(@())~'0(q) — Tr p(w(@)) ™' p(@(p))}
~ 5 (8(@)p((g))™0(g) ~ log det p(@(9))
— '0(p)p(w(p))~'6(p) + log det p(w(p))}

= %{ (u(p) — w(@)p(@(P))(1(p) — 1(q)) + Tr(p(w(p))p(w(g)™")
— log det(p(w(p))p(w(g)) ") — n).

a

ExampLE 1. Let Q be the set of positive definite matrices in S,, and let p :
S, — G, be the identity mapping. Then {p(x; u, ®)} is the family of n-dimensional

normal distributions. Then we have
1.
Y= 5( fw™ "0 — logdetw),

for 8 =[6;]1 € R", w = [w;;] € Q. Setting

1% . .
'=——=—’el _19, V=— =
" 39, @ g aw,'j 2

where [w”/] = [w;;]”!, we obtain

1. 17! 1. !
0=_ Uy _ _nlnl = Uy _ _nitnl .
[S znn] n, [E znn]
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The image of the gradient mapping is the set of (n, §) € R” x G, satisfying
1 t
§— Snn> 0.
This domain is an affine analogy of Siegel domains. Such domains have been treated

in [2][14] in the course of the realization of homogeneous convex domains. The Leg-
endre transform v of ¥ is

1 1,
Yi(n, §) = —Elogdet (& = 5" n).

ExampLE 2. Let R* be the set of positive numbers and let p be a linear mapping
of R into &, given by p(w) = wE, where E, is the unit matrix. Then

1(1,
I// 5 ;Oe—nlogw R

il W 6, 61//_1"96+n

T=7% "o °" e 2\ Tae)
n 1 -1 n 1 -

0=—_ __, 9 == __t .
20(5 2nn> ® 2(& 2rm)

The image of the gradient mapping is a domain lying above a paraboloid;

1
{(é,n)ERXR"E—E'rm>O}.

The Legendre transform v, of ¢ is
¥ " & L +nlo r
=—— - = nlog —.
L ) og 2 nn g3

By [12] the Hessian sectional curvature of the Hessian structure (D', g = D'dy) is
2/n. This implies that the space of probability distributions on R" defined by

POy ) = (%)"/2 exp {2 (x - wx - w}

where 1 € R", w € R* is the space of constant curvature —1/(2n) with respect to the
Fisher information metric.
In case of a Lie subgroup G of GL(V™) acting on 2 we assume further that G

admits a matrix representation f such that

(A2) pGsw)= fs)pw)'f(s) forse G, we V™.
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Then G acts on R” x Q by s(8, w) = (f(s5)8, sw). Since Y(f(s)0, sw)— ¥ (0, w) is
a constant, the Hesian metric g = Ddy is G-invariant.

0O.S. Rothaus studied the case of 2 being a homogeneous convex cone and p
satisfying (A.1), (A.2). He showed that the set (§,6,w) € R x R" x Q fulfilling
£ — '9p(w)~'6 > 0 is a homogeneous convex cone, and that all homogeneous convex
cones are obtained from lower dimensional ones in this manner [7].

ExampLE 3. Let M(n, R) be the set of all n x n matrices, and let p be a linear
mapping of &, into the space End(M(n, R)) of endomorphisms of M(n, R) given by

p(w)x = wx + xw

for v € G,, x € M(n,R). Then p(w) is symmetric with respect to the inner product
(x,y) = Tr 'xy, and positive definite for positive definite matrix w. Let f be a repre-
sentation of O(n) on M(n, R) defined by

fls)x =sx’s.
Then 'f(s)x = sxs and
p(f($)w) = f(s)p(w)f(s).
Setting A, = {x € M(n,R) | 'x = —x}, we have M(n,R) = S, + 2,, and
p(0)S, C 6y, p(0)U, C Ay

Hence p induces an equivariant linear mapping p* and p~ of &, into End(&,) and
End(,,) respectively. The Hessian structure on 2, x PDG, induced by p~ is related
to the theory of stable state feedback systems [4][5].

4. Vector bundles over compact hyperbolic affine manifolds

A flat affine manifold M is said to be hyperbolic if the universal covering of M is
affinely isomorphic to an open convex cone not containing full straight line [3]. Hence
a compact hyperbolic affine manifold is expressed by I'\€2 where 2 is an open convex
cone with vertex 0 in V™ not containing full straight line, and I' is a discrete subgroup
of GL(V™) acting properly discontinuously and freely on 2. Suppose that a compact
hyperbolic affine manifold I'\2 admits a linear mapping p of V" into S, satisfying
the conditions (A.1) and (A.2). We denote by ng : E(I'\L, p) —> I'\Q the vector
bundle over I'\2 associated with the universal covering 7 : 2 — I'\Q2 and p. Since
the Hessian structure (D, g = Ddy) on R" x Q is I'-invariant, it induces a Hessian
structure on the vector bundle E(I'\S2, p). The Hessian metric defines a fiber metric
on each fiber zrgl(n(w)) = {wl | 6 € R"} by

(w8, w0") = Bp(w)~'6’.
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Using this fiber metric we prove

Theorem 3. The p-th cohomology group of the complex of E(I'\S2, p)-valued
forms on T'\2 vanishes for p > 1.

Theorem 3 is generalized as the following Theorem 4.

Let mg : E —> M be a locally constant vector bundle over a compact hyperbolic
affine manifold M. Then there exists an open covering {U,} of M admitting
(i)  affine coordinate system {ujy,--- , Up,} on U,,

(i) local frames {s{, -+, 57} on U, whose transition functions are constants.

The universal covering of M being a convex cone, M admits a Hessian structure
(D, h) and a vector field H such that
1) DxH = X for all vector field X on M,

2) Lyh =0 where Ly is the Lie differentiation by H.

Let A?(M, E) denote the space of E-valued p-forms on M. E being locally con-
stant we can define the exterior differentiation d : AP(M, E) —> AP*Y(M, E). Let
H”(M, E) be the p-th cohomology group of the complex {AP(M, E), d}. The follow-
ing theorem is a generalization of Koszul’s theorem [3].

Theorem 4. Let ng : E —> M be a locally constant vector bundle over a com-
pact hyperbolic affine manifold M. Suppose that the vector bundle admits a fiber met-
ric satisfying the following property;

(C) there exists a constant ¢ #0 such that

H(s;;, s,{) = c(si, s){).
Then we have
H’(M,E)={0} (p=1).

Using the vector field H the proof is done under the same line as in [2], so it
will be omitted.

Let T (M) be the tensor bundle of type (r,s) over a compact hyperbolic affine
manifold M. Then the fiber metric induced by the Hessian metric h satisfies the con-
dition (C) in Theorem 4 where ¢ = 2(s — r). Hence we have

Corollary 5 ([3]). If r #s, then we have
HP(M, T;(M))={0} (p=1).

Proof of Theorem 3. For each (6, w) € R x Q we denote by w6 the image of
(6, w) by the projection R* x @ — E(I'\LQ, p). Then each w € Q defines a linear



516 H. SHiMA AND J.-H. Hao

isomorphism R" 5 § — wf € ng (7 (w)). Let {U,} be an open covering of '\
satisfying the local triviality on each U,, that is, there exists a diffeomorphism

Q77U 3 0 — (T(@), pr(@)) € Up x T
where ¢, is a mapping of 7 ~!(U,) into I' such that
Ay~ w) = @)y
for w € w~1(Uy), y € I'. Define
W, 7 (Uy) 3 w8 — (m(w), f(@r(@))P) € Uy x R™.

Then {W,} gives a local triviality for E(I'\S2, p). By (5) the Hessian metric g = Ddy
defines a fiber metric on each fiber w5 l(m(w)) = {wb | 6 € R"} by

(w8, w8') = p(w)~'0’.
Let si : Uy —> w7 (Uy) be a section given by si(u) = W '(u,e) where ¢ is a
vector in R” whose j-th component is 8"/, Then {s},--- s/} is a local frame field of
E(T'\2, p) over U,, and

(s}, 50) = "e(pooy)'e/,
where o) is a section on U, given by o;(u) = <I>;'(u,identity). Let {uyy, -, Urm}
be an affine local coordinate system on U, such that u, o m = w,. The vector field

H = Y, Wad/dwy is m-projectable and H = . (H) = Y o Urad/(duse) on U,. Since
3, wadp(@)~1/dwy = —p(w)~' we have

tei {Zum
o
= el Zw —a—p_l oo, e
- * dwy

= —‘e'(pooy) e

H(s,s))

) a2l
(poor)™ t €
Olrg

i
= —(s3, )

Thus the vector bundle E(I'\S2, p) admits a fiber metric satisfying the condition (C)
of Theorem 4, so the proof of Theorem 3 is completed. O
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