EXISTENCE OF PENCILS WITH PRESCRIBED SCROLLAR INVARIANTS OF SOME GENERAL TYPE

MARC COPPENS

(Received January 12, 1998)

0. Introduction

Let C be an irreducible smooth projective non-hyperelliptic curve of genus g defined over the field C of complex numbers. Let g_k^1 be a complete base-point free special linear system on C. The scrollar invariants of g_k^1 are defined as follows. Let C be canonically embedded in P^{g-1} and let X be the union of the linear spans $\langle D \rangle$ with $D \in g_k^1$. This defines a set of integers $e_1 \ge \ldots \ge e_{k-1} \ge 0$ such that X is the image of the projective bundle $P(e_1; \ldots; e_{k-1}) = P(O_{P^1}(e_1) \oplus \ldots \oplus O_{P^1}(e_{k-1}))$ using the tautological bundle (see e.g. [2]; [7]). Those integers $e_1; e_2; \ldots; e_{k-1}$ are called the scrollar invariants of g_k^1 .

Those scrollar invariants determine (and are determined by) the complete linear systems associated to multiples of the linear system g_k^1 . For $1 \le i \le k-1$ the invariant e_i is one less than the number of non-negative integers j satisfying $\dim(|K_C - jg_k^1|) - \dim(|K_C - (j+1)g_k^1|) \ge i$. Here K_C denotes a canonical divisor on C. Let $m = e_{k-1}+2$. Then m is defined by the following conditions: $\dim(|(m-1)g_k^1|) = m-1$ and $\dim(|mg_k^1|) > m$. In case $|mg_k^1|$ is birationally very ample then the scrollar invariants satisfy the inequalities $e_i \le e_{i+1} + m$ for $1 \le i \le k-2$ (see [3]). In case k = 3 this number $m = e_2$ determines also the other scrollar invariant e_1 . It is the starting point for so-called Maroni-theory for linear systems on trigonal curves (see [4]; [5]). Scrollar invariants for 4-gonal curves are intensively studied in [1]; [3] and for 5-gonal curves in [6].

For $(j-1)m-1 < x \leq jm-1$ with $j \leq k-1$ the inequalities between the scrollar invariants imply $\dim(|xg_k^1|) \geq \frac{j(j-1)}{2}m-1+(x-(j-1)m+1)j$. Equality (if not in conflict with the Riemann-Roch Theorem) can be expected being the most general case for a fixed value of m. The inequalities also imply $\dim(|(k-1)mg_k^1|) = \dim(|((k-1)m-1)g_k^1|) + k$. This implies that $|((k-1)m-1)g_k^1|$ is not special. Using the dimension bound one obtains $g \leq [(k^2-k)m-2k+2]/2$. (This easy but interesting consequence from the inequalities is not mentioned by Kato and Ohbuchi.) In this paper we prove the following theorem.

Theorem. For all nonnegative integers k; m and g satisfying $k \ge 3$; $m \ge 2$ and $k-1 \le g \le [(k^2-k)m-2k+2]/2$ there exists a smooth curve C of genus g possessing

M. COPPENS

a complete base point free linear system g_k^1 satisfying the following property. For each nonnegative integer x with $x \leq (k-1)m-1$ define the nonnegative integer j such that $(j-1)m-1 < x \le jm-1$. Then $\dim(|xg_k^1|) = max \left(\left\{ \frac{j(j-1)}{2}m - 1 + (x - (j-1)m + max) \right\} \right)$ 1)j; kx - g). Also $|mg_k^1|$ is birationally very ample.

The curves C are obtained using special plane curves degenerating to special types of rational curves. First we construct those rational curves Γ_0 using some linear system g_k^1 on P^1 . In order to prove the theorem we study canonical adjoint curves of Γ_0 containing all points belonging to a given number of divisors from g_k^1 .

SOME NOTATIONS. On a smooth surface X; if Γ_1 and Γ_2 are two effective divisors intersecting at $x \in X$ (no common component containing x) then we write $i(\Gamma_1,\Gamma_2;x)$ for the intersection multiplicity of Γ_1 and Γ_2 at x. We write (Γ_1,Γ_2) for the intersection number of Γ_1 and Γ_2 . We also write K_X for a canonical divisor on X.

1. Construction of the plane rational curve

Choose a general linear system g_k^1 on \mathbf{P}^1 and a general divisor $F \in g_k^1$. Choose a general effective divisor E of degree mk on \mathbf{P}^1 . Consider the linear system g_{mk}^2 containing $(m-1)F + g_k^1$ and E.

 g_{mk}^2 is a simple base point free linear system on P^1 . Claim 1.1.

Proof. The linear system g_{mk}^2 has no base points: $mF \in (m-1)F + g_k^1 \subset g_{mk}^2$ and $E \cap F = \emptyset$. For $P \in E$ and $D_P \in g_k^1$ containing P one has $E \cap D_P = \{P\}$ (the intersection as schemes is reduced), therefore also $E \cap ((m-1)F + D_P) = \{P\}$. Since $(m-1)F + D_P \in g_{mk}^2$ this implies that g_{mk}^2 is simple.

The space parametrizing such linear systems g_{mk}^2 on P^1 is irre-**Claim 1.2.** ducible of dimension mk + 2k - 3.

Effective divisors of degree d on P^1 are parametrized by a projective Proof. space P^d . Linear systems g_k^1 (resp. g_{mk}^2) on P^1 are parametrized by a grassmannian G(1;k) of lines in \mathbf{P}^k (resp. G(2;mk) of planes in \mathbf{P}^{mk}). On $G(1;k) \times \mathbf{P}^k$ we have the incidence subvariety I defined as $(g_k^1; F) \in I$ if and only if $F \in g_k^1$. Clearly I is irreducible of dimension dim(G(1;k)) + 1 = 2k - 1. The linear systems g_{mk}^2 on \mathbf{P}^1 constructed above belong to the image of the rational map $\tau: I \times \mathbf{P}^{mk} \to G(2; mk)$ defined by $\tau((g_k^1; F); E) = \langle (m-1)F + g_k^1; E \rangle$. Suppose for $((g_k^1; F); E) \in I \times P^{mk}$ general, there exists another element $((h_k^1; G); E) \in I \times P^{mk}$

 $E' \in I \times \mathbf{P}^{mk}$ with $\tau((g_k^1; F); E) = \tau((h_k^1; G); E')$ but $(g_k^1; F) \neq (h_k^1; G)$. Because

 $\begin{array}{l} (m-1)F+g_k^1 \mbox{ and } (m-1)G+h_k^1 \mbox{ are both lines in } g_{mk}^2, \mbox{ one has } [(m-1)F+g_k^1]\cap [(m-1)G+h_k^1]\neq \emptyset. \mbox{ Assume } (m-1)F+g_k^1=(m-1)G+h_k^1. \mbox{ Because } g_k^1 \mbox{ has no fixed points, this implies } F=G \mbox{ and so } g_k^1=h_k^1 \ ; \mbox{ a contradiction. Choose } D\in h_k^1 \mbox{ with } (m-1)G+D\notin (m-1)F+g_k^1. \mbox{ Then } g_{mk}^2=\langle (m-1)F+g_k^1; (m-1)G+D\rangle. \mbox{ Because } g_{mk}^2 \ is \mbox{ base point free (Claim 1.1) we find } F\cap G=\emptyset. \mbox{ But then } [(m-1)F+g_k^1]\cap [(m-1)G+h_k^1]\neq \emptyset \ implies \ m=2; \ F\in h_k^1; \ G\in g_k^1 \ \mbox{ and so } g_k^1=h_k^1=\langle F;G\rangle. \mbox{ For } D\in g_k^1 \ \mbox{ one finds } F+D; \ G+D\in g_{2k}^2 \ \mbox{ so } g_k^1+D\subset g_{2k}^2. \ \mbox{ It follows that } g_{2k}^2=\left\{D_1+D_2: D_1; D_2\in g_k^1\right\}. \ \mbox{ This contradicts } g_{2k}^2 \ \mbox{ being simple (Claim 1.1). So we find for a general } ((g_k^1;F);E)\in I\times {\bf P}^{mk} \ \mbox{ one has } \tau((g_k^1;F);E)=\tau((h_k^1;G);E') \ \mbox{ if and only if } (g_k^1;F)=(h_k^1;G) \ \mbox{ and } E'\in \langle (m-1)F+g_k^1;E\rangle. \ \mbox{ Therefore the general non-empty fiber of } \tau \ \mbox{ has dimension } 2. \ \mbox{ So, the image of } \tau \ \mbox{ has dimension } mk+2k-3. \ \end{tabular}$

Associated to g_{mk}^2 there exist morphisms $\phi : \mathbf{P}^1 \to \mathbf{P}^2$. Fix such a morphism and let Γ be the image.

Claim 1.3. Γ is a plane curve of degree mk. The divisor F induces a singular point s on Γ of multiplicity (m - 1)k. The other singular points of Γ are ordinary nodes.

Proof. Since g_{mk}^2 is simple and base point free (Claim 1.1) the plane curve Γ has degree mk. There is a 1-dimensional subsystem of g_{mk}^2 containing (m-1)F. This 1-dimensional subsystem corresponds to a pencil of lines on P^2 containing some fixed point s. For a general line L containing s there are k intersections each one of multiplicity 1 with Γ outside s. This implies $i(\Gamma L; s) = (m-1)k$, hence Γ has multiplicity (m-1)k at s. Assume s' is another singular point of Γ .

First assume s' has multiplicity $\mu \geq 3$. The pencil of lines on P^2 containing s' induces a linear subsystem $F' + g_{mk-\mu}^1 \subset g_{mk}^2$. From $s \neq s'$ it follows that $F \cap F' \neq \emptyset$. The line $\langle ss' \rangle$ on P^2 gives rise to $(m-1)F+D \in g_{mk}^2$ with $D \in g_k^1$. We find D = F' + D' for some effective divisor D'. Let E' be the divisor corresponding to a general line through s', then E' = F' + E'' for some $E'' \in g_{mk-\mu}^1$. Since $g_{mk}^2 = \langle (m-1)F + g_k^1; E' \rangle$ we find that g_{mk}^2 belongs to the image of the morphism $\tau': I' \times \mathbf{P}^{mk-\mu} \to G(2; mk)$ defined by $\tau'((g_k^1; F; F'); E'') = \langle (m-1)F + g_k^1; F' + E'' \rangle$ with $I' \subset I \times \mathbf{P}^{\mu}$ defined by $(g_k^1; F; F') \in I'$ if and only if $D \geq F'$ for some $D \in g_k^1$ (here I is as in the proof of Claim 1.2). The choice of E'' implies that τ' has non-empty fibers of dimension at least 1. Since $\dim(I' \times \mathbf{P}^{mk-\mu}) = 2k + mk - \mu$ we obtain $2k - 1 + mk - \mu \leq (m+2)k - 3$. This contradicts $\mu \geq 3$. It follows that s' has multiplicity 2.

Using the same notations we have $\mu = 2$; deg(F') = 2. Assume $F' = 2P_0$. Then P_0 is a ramification point of g_k^1 .

This implies that g_{mk}^2 belongs to the image of the morphism $\tau^*: I'' \times \mathbf{P}^{mk-2} \to G(2;mk)$ defined by $\tau^*((g_k^1;F;P_0);E'') = \langle (m-1)F + g_k^1; 2P_0 + E'' \rangle$, with $I'' \subset I \times \mathbf{P}^1$ defined by $(g_k^1;F;P_0) \in I''$ if and only if P_0 is a ramification point of g_k^1 . Again, the non-empty fibers have dimension at least 1. Since dim $(I'' \times \mathbf{P}^{mk-2}) = 2k - 1 + mk - 2$, we find a contradiction to dim $(im\tau) = (m+2)k - 3$.

M. COPPENS

We obtain $F' = P_0 + Q_0$ with $P_0 \neq Q_0$. Assume L_0 is a line through s' such that L_0 induces $2(P_0 + Q_0) + E'''$ for some effective divisor E''' of degree mk-4. Hence, we assume that s' is a tacnode. This implies g_{mk}^2 belongs to the image of the rational map $\tau''' : I''' \times \mathbf{P}^{mk-4} \to G(2;mk)$ defined by $\tau'''((g_k^1;F;F');E''') = \langle (m-1)F + g_k^1; 2F' + E''' \rangle$ with $I''' \subset I \times \mathbf{P}^2$ defined by $(g_k^1;F;F') \in I'''$ if and only if $D \geq F'$ for some $D \in g_k^1$. Because dim $(I''' \times \mathbf{P}^{mk-4}) = (m+2)k-4 < (m+2)k-3$, once more we obtain a contradiction. This implies that s' is an ordinary node.

Because $mF \in g_{mk}^2$ there exists a line T on P^2 through s inducing mF. This line T intersects Γ only at s, hence $i(T, \Gamma; s) = mk$. We can consider the singularity of Γ at s as follows. It consists of exactly k locally irreducible branches (we use $F \in P^k$ is general), each one having multiplicity m - 1 at s and having T as "tangent line" intersecting the branch with multiplicity m at s. From now on we fix s and T.

Claim 1.4. We obtain a family of plane curves of dimension (m+2)k - 1.

Proof. This follows from Claim 1.2 taking into account that $\dim(Aut(\mathbf{P}^1)) = 3$; $\dim(Aut(\mathbf{P}^2)) = 8$ and fixing s and T imposes 3 independent conditions on Γ .

2. Blowing_up the projective plane

Let $\pi_1 : X_1 \to \mathbf{P}^2$ be the blowing-up of \mathbf{P}^2 at s; let E_1 be the exceptional divisor. Let T_1 (resp. Γ_1) be the strict transform of T (resp. Γ) on X_1 . Let L be the inverse image of a line on \mathbf{P}^2 . Then $T_1 \in |L - E_1|$; $\Gamma_1 \in |kmL - k(m-1)E_1|$. Let $s_1 = E_1 \cap T_1$.

The linear system $|L - E_1|$ induces g_k^1 on \mathbf{P}^1 and T_1 induces F. Since the images of points of F under the morphism $\mathbf{P}^1 \to \Gamma_1$ are contained in E_1 , it follows that $i(T_1, \Gamma_1; s_1) = k$. Hence the k different points of F correspond to k different irreducible branches of Γ_1 at s_1 . Hence Γ_1 has a singular point of multiplicity k at s_1 . Also $E_1 \cap \Gamma_1 = \{s_1\}$ and since $(E_1.\Gamma_1) = k(m-1)$ it follows that $i(E_1,\Gamma_1; s_1) = (m-1)k$. Because $T_1 + E_1$ induces mF on \mathbf{P}^1 , it follows that E_1 intersects each branch of Γ_1 at s_1 with multiplicity m - 1 at s_1 .

Let $\pi_2 : X_2 \to X_1$ be the blowing-up of X_1 at s_1 . Let E_2 be the exceptional divisor. We continue to write L for the inverse image of a general line on P^2 . Let E_{12} (resp. $T_2; \Gamma_2$) be the strict transforms of E_1 (resp. $T; \Gamma$) on X_2 . We also write E_1 to denote the inverse image of E_1 on X_2 . Then $E_{12} \in |E_1 - E_2|$; $T_2 \in |L - E_1 - E_2|$; $\Gamma_2 \in |kmL - k(m-1)E_1 - kE_2|$. Let $s_2 = E_2 \cap E_{12}$. One has $(T_2,\Gamma_2) = 0$ hence $T_2 \cap \Gamma_2 = \emptyset$. In case m = 2 we find $(\Gamma_2.E_{12}) = 0$ hence $\Gamma_2 \cap E_{12} = \emptyset$.

Assume m > 2. From $(\Gamma_2.E_2) = k$ it follows that each branch of Γ_2 corresponding to a point of F is smooth and intersects E_2 transversally at one point. Because $E_2 + E_{12}$ induces (m-1)F on P^1 it follows that those points of F map to s_2 and E_{12} intersects each branch with multiplicity m-2 at s_2 . It follows that Γ_2 has multiplicity k at s_2 .

1052

We continue to make blowings-up. For each $i \leq m$ we obtain the blowing-up $\pi_i : X_i \to X_{i-1}$ with exceptional divisor E_i . On X_i we continue to write L to denote the inverse image of a general line on \mathbf{P}^2 . We write Γ_i (resp. $E_{i-1,i}$; T_i) to denote the strict transform of Γ (resp. E_{i-1} ; T) on X_i . Also, for $j \leq i-2$ we write $E_{j,i}$ for the strict transform of $E_{j,i-1}$. Let $s_i = E_i \cap E_{i-1,i}$. In case i < m the multiplicity of Γ_i at s_i is k. At s_i the curve Γ_i has k smooth locally irreducible branches. Also $E_{1,i}$ intersects each branch with multiplicity m - i at s_i . On X_m we also write E_i for the inverse image of E_i on X_i (for i < m). We obtain $\Gamma_m \in \mathbf{P} := |kmL-k(m-1)E_1-kE_2-\ldots-kE_m|$, $T_m \in |L-E_1-E_2|$, $E_{1m} \in |E_1-E_2-\ldots-E_m|$ and $E_{im} \in |E_i - E_{i+1}|$ for $2 \leq i \leq m - 1$.

Claim 2.1. Γ_m has ordinary nodes as its only singularities. The intersection points of Γ_m and E_m are smooth points on Γ_m .

Proof. Because of Claim 1.3 it is enough to prove that the intersection points of Γ_m and E_m are smooth points on Γ_m . The inverse image on \mathbf{P}^1 of the intersection as schemes of Γ_m and E_m is the divisor F, hence a general divisor of degree k on \mathbf{P}^1 . If that intersection would not be smooth then 2 different points in F would have the same image on Γ_m . Because of monodromy on \mathbf{P}^1 , in that case all k points on F need to have the same image on Γ_m , hence $\Gamma_m \cap E_m$ is a single multiple point s_m of Γ_m . Since $(\Gamma_m \cdot E_{1m}) = 0$ and $(\Gamma_m \cdot E_{m-1,m}) = 0$ it follows that $s_m \notin \{E_{1,m} \cap E_m; E_{m-1,m} \cap E_m\}$. Let $\pi_{m+1} : X_{m+1} \to X_m$ be the blowing-up of X_m at s_m . Let E_{m+1} be the exceptional divisor of π_{m+1} and let Γ_{m+1} be the strict transform of Γ_m . We find $\Gamma_{m+1} \in \mathbf{P}_{m+1} := |kmL - k(m-1)E_1 - kE_2 - \ldots - kE_{m+1}|$. If Γ_{m+1} is not smooth at each point of $\Gamma_{m+1} \cap E_{m+1}$ then as before we find $s_{m+1} \in \Gamma_{m+1}$ such that Γ_{m+1} has multiplicity k at s_{m+1} . In that case we blow-up Γ_{m+1} at s_{m+1} and so on.

For some $m' \ge 1$ we obtain $X_{m+m'}$ and $\Gamma_{m+m'} \in \mathbf{P}_{m+m'} := |kmL-k(m-1)E_1 - kE_2 - \ldots - kE_{m+m'}|$ such that $\Gamma_{m+m'}$ has ordinary nodes as its only singularities. The arithmetic genus of $\Gamma_{m+m'}$ is equal to [(km-1)(km-2)-(k(m-1)-1)k(m-1)-(m+m'-1)(k-1)k]/2. This has to be at least 0, hence $(m-m')k^2+(m'-m)k-2k+2) \ge 0$. This condition implies $m' \le m$.

In $\mathbf{P}_{m+m'}$ we find that the locus of irreducible rational nodal curves has a component of dimension at least mk + 2k - 1 - m'. (This follows from Claim 1.4 taking into account the choice of s_{m+i} on E_{m+i} for $0 \le i \le m'$.) The number of nodes of $\Gamma_{m+m'}$ is equal to the arithmetic genus of $\Gamma_{m+m'}$ being $\delta = [(m - m')(k^2 - k) - 2k + 2]/2$. Because $m' \le m$ we find $(K_{X_{m+m'}}, \Gamma_{m+m'}) = -3km + k(m-1) + k(m+m'-1) =$ (m' - m - 2)k < 0. From Lemma 2.2 in [8] it follows that $\dim(\mathbf{P}_{m+m'}) \ge mk +$ $2k - 1 - m' + \delta$. Also from the end of the proof of Lemma 2.2 in [8] we also obtain $\dim(\mathbf{P}_{m+m'}) = \delta - (K_{X_{m+m'}}, \Gamma_{m+m'}) - 1 = \delta + (m + 2 - m')k - 1$. This would imply $(m + 2 - m')k - 1 \ge mk + 2k - 1 - m'$, hence $m' \ge m'k$. Since $m' \ge 1; k \ge 2$ this is a contradiction. This completes the proof of the claim.

3. Canonically adjoint curves

In order to study canonically adjoint curves for curves belonging to P we consider the linear system $P'_0 = |(km-3)L - (k(m-1)-1)E_1 - (k-1)E_2 - ... - (k-1)E_m|$.

Claim 3.1. $P'_0 = P_0 + (fixed \ components)$ with $P_0 = |(km-2-m)L - (k(m-1)-m)E_1 - (k-2)E_2 - \dots - (k-2)E_m|$.

Proof. From $T_m \cdot P'_0 = -1$ it follows that T_m is a fixed component of P'_0 . Deleting T_m from P_0 we obtain $|(km-4)L - (k(m-1)-2)E_1 - (k-2)E_2 - (k-1)E_3 - \dots - (k-1)E_m|$. In case m = 2 this finishes the proof of the claim.

Assume m > 2. The intersection number with E_{2m} is -1, hence E_{2m} is a fixed component. Deleting E_{2m} we obtain $|(km-4)L - (k(m-1)-2)E_1 - (k-1)E_2 - (k-2)E_3 - (k-1)E_4 - \ldots - (k-1)E_m|$. Continuing in this way one finds fixed components $E_{3m}, \ldots, E_{m-1,m}$. Deleting them, one obtains $|(km-4)L - (k(m-1) - 2)E_1 - (k-1)E_2 - \ldots - (k-1)E_{m-1} - (k-2)E_m|$. Now T_m is a fixed component. Deleting T_m one obtains $|(km-5)L - (k(m-1) - 3)E_1 - (k-2)E_2 - (k-1)E_3 - \ldots - (k-1)E_{m-1} - (k-2)E_m|$. In case m = 3 this proves the claim. In case m > 3 one has $E_{2m}, \ldots E_{m-2,m}, T_m$ again as fixed components. Deleting them this proves the claim for m = 4; in case m > 4 one continues.

For curves Γ' of P we need to investigate canonical adjoint curves containing intersections of Γ' with elements from $|L - E_1|$ (in terms of linear systems : containing a sum of divisors from g_k^1). For a general element R of $|L - E_1|$ the intersection of Rwith an element Γ_m of P not containing E_{1m} are k different points. The intersection multiplicity with an element of P_0 is k - 2 < k. Therefore an element of P_0 containing this intersection of Γ_m and R contains R as a component. Taking x general elements R_1, \ldots, R_x in $|L - E_1|$, the elements of P_0 containing $(R_1 \cup \ldots \cup R_x) \cap \Gamma_m$ have R_1, \ldots, R_x as components. Deleting R_1, \ldots, R_x we obtain $P'_x = |(km - 2 - m - x)L - (k(m-1) - m - x)E_1 - (k - 2)E_2 - \ldots - (k - 2)E_m|$.

Claim 3.2. Write x = lm + y with $-1 \le y \le m - 2$. Then $P'_x = P_x + (fixed components)$ with $P_x = |(km - (l+1)m - y - 2)L - (k(m-1) - (l+1)m + l - y)E_1 - (k - l - 2)E_2 - \ldots - (k - l - 2)E_m|$. (We do not claim that P_x has no more fixed components.)

Proof. First, take $0 \le x \le m-2$, hence x = y and l = 0. Then $P'_x = P_x$ and there is nothing to prove.

Next, take x = m - 1, hence l = 1; y = -1. Then $(E_{1m} \cdot P'_{m-1}) = -1$ (the intersection number of E_{1m} with elements of P'_{m-1}), therefore E_{1m} is a fixed component of P'_{m-1} . Deleting E_{1m} we obtain P_{m-1} .

1054

More general, for any $x \ge m$ the curve E_{1m} is a fixed component of P'_x . Deleting E_{1m} we obtain $|(km-2-m-x)L - (k(m-1)-m-x+1)E_1 - (k-3)E_2 - ... - (k-3)E_m|$. In case $m \le x < 2m - 1$ this is P_x . For x = 2m - 1 (hence l = 2; y = -1) the intersection number of E_{1m} with that linear system is -1, hence E_{1m} is a fixed component. Deleting E_{1m} one obtains P_{2m-1} . Continuing in this way one proves the claim.

REMARK 3.3. Taking x = (k-2)m + m - 2 (hence l = k - 2; y = m - 2) one finds $P_{(k-2)m+m-2} = 0$. For $x \ge (k-2)m + m - 1$ one finds $P_x = \emptyset$.

Given $0 \le x \le (k-2)m + m - 2$ define the integer j by means of the inequalities $(j-1)m - 1 < x \le jm - 1$ with $j \le k - 1$.

Claim 3.4. dim
$$(\mathbf{P}_x) = \frac{j(j-1)}{2}m - 1 + (x - (j-1)m + 1)j - kx + \frac{(k-1)mk - 2k+2}{2} - 1.$$

Proof. In case x = (k-1)m - 2 we have to prove $\dim(\mathbf{P}_{(k-1)m-2}) = 0$. This follows from Remark 3.3.

Now, fix some x < (k-1)m-2 and assume the claim is proved for x+1 instead of x. Writing x = lm+y with $-1 \le y \le m-2$, from the description in Claim 3.2 we find $\dim(\mathbf{P}_x) \ge [(km-(l+1)m-y+1))(km-(l+1)m-y-2)]/2 - [(k(m-1)-(l+1)m+l-y+1)(k(m-1)-(l+1)m+l-y)]/2 - [(m-1)(k-l-1)(k-l-2)]/2$. A computation shows us that we need to prove equality. Assume for x we have strict inequality. For $R \in |L-E_1|$ we have $(R.\mathbf{P}_x) = k-l-2$, hence R imposes at most k-l-1 conditions on \mathbf{P}_x . This implies $\dim(|\mathbf{P}_x - (L-E_1)|) \ge \dim(\mathbf{P}_x) - (k-l-1)$. In case y = m-2 one finds $((\mathbf{P}_x - (L-E_1)).E_{1m}) < 0$, hence $\dim(|\mathbf{P}_x - (L-E_1) - E_{1m}|) \ge \dim(\mathbf{P}_x) - (k-l-1)$. But $|\mathbf{P}_x - (L-E_1) - E_{1m}| = \mathbf{P}_{x+1}$. One more computation shows that $\dim(\mathbf{P}_{x+1}) \ge \dim(\mathbf{P}_x) - (k-l-1)$ gives a contradiction to the assumption that the claim holds for \mathbf{P}_{x+1} . In case y < m-2 then $|\mathbf{P}_x - (L-E_1)| = \mathbf{P}_{x+1}$ and again, a computation shows a contradiction.

On X_m we constructed the rational irreducible curve Γ_m belonging to P. From Claim 2.1 we know that Γ_m is a nodal curve, so it has $g_0 := [(k^2 - k)m - 2k + 2]/2$ ordinary nodes. We write s to denote a node of Γ_m .

Claim 3.5. We can arrange the nodes $s_1;...;s_{g_0}$ is such a way that the following property holds. First we introduce some notation: for $0 \le \delta \le g_0$ let $\mathbf{P}_x(s_1;...;s_{\delta}) =$ $\{\Gamma \in \mathbf{P}_x : s_i \in \Gamma \text{ for } 1 \le i \le \delta\}$. Then $\mathbf{P}_x(s_1;...;s_{\delta}) = \emptyset$ for $\delta > \dim(\mathbf{P}_x)$ and $\dim(\mathbf{P}_x(s_1;...;s_{\delta})) = \dim(\mathbf{P}_x) - \delta$ if $\delta \le \dim(\mathbf{P}_x)$.

Proof. For $\delta = 0$ there is nothing to prove.

Fix $\delta > 0$ and assume the claim holds for $\delta - 1$ instead of δ . So, we assume a suited arrangement $s_1; \ldots; s_{\delta-1}$ for a suitable part of the set of the nodes. We have to prove that the set of the remaining nodes of Γ_m contains a suited one to be numbered s_{δ} .

M. COPPENS

Numbers x satisfying $\delta - 1 > \dim(\mathbf{P}_x)$ impose no conditions on s_{δ} . Let x_0 be the minimal number such that $\delta - 1 \leq \dim(\mathbf{P}_x)$. We know that $\dim(\mathbf{P}_{x_0}(s_1; \ldots; s_{\delta-1})) = \dim(\mathbf{P}_{x_0}) - (\delta - 1) \geq 0$. If each element of $\mathbf{P}_{x_0}(s_1; \ldots; s_{\delta-1})$ would contain all the nodes of Γ_m then Γ_m possesses a canonically adjoint curve. Since Γ_m is a rational curve this is impossible. Hence, there exists a node s_0 such that $\dim(\mathbf{P}_{x_0}(s_1; \ldots; s_{\delta-1}; s_0)) = \dim(\mathbf{P}_{x_0}) - \delta$ (with $\mathbf{P}_{x_0}(s_1; \ldots; s_{\delta-1}; s_0) = \emptyset$ if $\delta - 1 = \dim(\mathbf{P}_{x_0})$). In case for all $x \leq x_0$ we find $\dim(\mathbf{P}_x(s_1; \ldots; s_{\delta-1}; s_0)) = \dim(\mathbf{P}_x) - \delta$ then we can take $s_0 = s_{\delta}$.

Assume $x' < x_0$ such that $\dim(\mathbf{P}_{x'}(s_1; \ldots; s_{\delta-1}; s_0)) = \dim(\mathbf{P}_{x'}) - \delta + 1$ while $\dim(\mathbf{P}_{x'+1}(s_1; \ldots; s_{\delta-1}; s_0)) = \dim(\mathbf{P}_{x'+1}) - \delta$. Using a general $R \in |L - E_1|$ and using the arguments from the proof of Claim 3.4 one finds a contradiction.

4. Proof of the theorem

Now, we finish the proof of the theorem in the introduction. We start with the rational irreducible nodal curve Γ_m on X_m . We make an arrangement of the nodes as in Claim 3.5. The main result in Section 2 of [8] implies that there exists a 1dimensional flat family $Y \to T$ of curves on X_m belonging to **P** such that the fiber over a special point t_0 of T is the curve Γ_m and a general fiber is a nodal curve Γ with exactly $g_0 - g$ nodes such that those nodes specialize to the nodes $s_1; \ldots; s_{g_0-g}$ on Γ_m . Define $P_{x,\Gamma} = \{ D \in P_x : D \text{ contains the nodes of } \Gamma \}$. Clearly dim $(P_{x,\Gamma}) \geq 1$ $dim(\mathbf{P}_x) - (g_0 - g)$. For the special fiber Γ_m we have $\mathbf{P}_x(s_1; \ldots; s_{g_0-g}) = \emptyset$ if $g_0 - g_0$ $g > \dim(\mathbf{P}_x)$ and $\dim(\mathbf{P}_x(s_1; \ldots; s_{g_0-g})) = \dim(\mathbf{P}_x) - (g_0-g)$ if $g_0 - g \le \dim(\mathbf{P}_x)$. Semicontinuity implies $P_{x,\Gamma} = \emptyset$ if $g_0 - g > \dim(P_x)$ and $\dim(P_{x,\Gamma}) = \dim(P_x) - \dim(P_x)$ $(g_0 - g)$ if $g_0 - g \leq \dim(\mathbf{P}_x)$. Let C be the normalization of Γ . It is a smooth curve of genus g. The linear system $|L - E_1|$ induces a linear system g_k^1 on C without base points. Taking x general elements $R_1;\ldots;R_x$ in $|L-E_1|$ corresponds to taking x general divisors in g_k^1 . From the description of P_x in 3.2 we find that dim $(P_{x,\Gamma})$ is equal to the dimension of canonically adjoint curves Γ containing the intersection of Γ with $R_1 \cup \ldots \cup R_x$, hence it is equal to dim $(|K_C - xg_k^1|)$. In particular, if $P_{x,\Gamma} = \emptyset$ then $|K_C - xg_k^1| = \emptyset$. So, we find $|K_C - xg_k^1| = \emptyset$ if $g_0 - g > \dim(P_x); \dim(|K_C - xg_k^1|) = \emptyset$ $\dim(\mathbf{P}_x) - (g_0 - g)$ if $g_0 - g \leq \dim(\mathbf{P}_x)$. Using 3.4 and the Riemann-Roch Theorem one finds $\dim(|xg_k^1|) = \max\{\frac{j(j-1)}{2}m - 1 + (x - (j-1)m + 1)j; kx - g\}$. In particular $\dim(|(m-1)g_k^1|) = m-1$ and $\dim(|mg_k^1|) = m+1$. Since Γ is obtained from C using a linear subsystem of $|mg_k^1|$, one also finds $|mg_k^1|$ is birationally very ample. This finishes the proof of the theorem.

References

1056

A. Del Centina and A. Gimigliano: Scrollar invariants and resolutions of certain k-gonal curves, Ann. Univ. Ferrara 39 (1993), 187–201.

- [2] D. Eisenbud and J. Harris: On varieties of minimal degree (a centennial account), Proc. Symp. in Pure Math. 46 (1987), 3–13.
- [3] T. Kato and A. Ohbuchi: Very ampliness of multiple of tetragonal linear systems, Comm. in Algebra 21 (1993), 4587–4597.
- [4] A. Maroni: Le serie lineari speciali sulle curve trigonali, Ann. di Mat. 25 (1946), 341-354.
- [5] G. Martens and F.-O. Schreyer: Line bundles and syzygies of trigonal curves, Abh. Math. Sem. Univ. Hamburg 56 (1986), 169–189.
- [6] A. Ohbuchi: On the construction of a pentagonal curve which satisfies some numerical conditions.
- [7] F.-O. Schreyer: Syzygies of canonical curves and special linear series, Math. Ann. 275 (1986), 105-137.
- [8] A. Tannenbaum: Families of algebraic curves with nodes, Compos. Math. 41 (1980), 107-126.

Katholieke Hogeschool Kempen Departement Industrieel Ingenieur en Biotechniek Campus H.I.Kempen Kleinhoefstraat 4 B 2440 Geel Belgium e-mail: marc.coppens@khk.be

The author is affiliated with the University of Leuven as a research fellow.