EXISTENCE OF PENCILS WITH PRESCRIBED SCROLLAR INVARIANTS OF SOME GENERAL TYPE

MARC COPPENS

(Received January 12, 1998)

0. Introduction

Let C be an irreducible smooth projective non-hyperelliptic curve of genus g defined over the field C of complex numbers. Let g_{k}^{1} be a complete base-point free special linear system on C. The scrollar invariants of g_{k}^{1} are defined as follows. Let C be canonically embedded in P^{g-1} and let X be the union of the linear spans $\langle D\rangle$ with $D \in g_{k}^{1}$. This defines a set of integers $e_{1} \geq \ldots \geq e_{k-1} \geq 0$ such that X is the image of the projective bundle $\boldsymbol{P}\left(e_{1} ; \ldots ; e_{k-1}\right)=\boldsymbol{P}\left(O_{P^{1}}\left(e_{1}\right) \oplus \ldots \oplus O_{P^{1}}\left(e_{k-1}\right)\right)$ using the tautological bundle (see e.g. [2]; [7]). Those integers $e_{1} ; e_{2} ; \ldots ; e_{k-1}$ are called the scrollar invariants of g_{k}^{1}.

Those scrollar invariants determine (and are determined by) the complete linear systems associated to multiples of the linear system g_{k}^{1}. For $1 \leq i \leq k-1$ the invariant e_{i} is one less than the number of non-negative integers j satisfying $\operatorname{dim}\left(\left|K_{C}-j g_{k}^{1}\right|\right)-$ $\operatorname{dim}\left(\left|K_{C}-(j+1) g_{k}^{1}\right|\right) \geq i$. Here K_{C} denotes a canonical divisor on C. Let $m=$ $e_{k-1}+2$. Then m is defined by the following conditions: $\operatorname{dim}\left(\left|(m-1) g_{k}^{1}\right|\right)=m-1$ and $\operatorname{dim}\left(\left|m g_{k}^{1}\right|\right)>m$. In case $\left|m g_{k}^{1}\right|$ is birationally very ample then the scrollar invariants satisfy the inequalities $e_{i} \leq e_{i+1}+m$ for $1 \leq i \leq k-2$ (see [3]). In case $k=3$ this number $m=e_{2}$ determines also the other scrollar invariant e_{1}. It is the starting point for so-called Maroni-theory for linear systems on trigonal curves (see [4]; [5]). Scrollar invariants for 4 -gonal curves are intensively studied in [1]; [3] and for 5-gonal curves in [6].

For $(j-1) m-1<x \leq j m-1$ with $j \leq k-1$ the inequalities between the scrollar invariants imply $\operatorname{dim}\left(\left|x g_{k}^{1}\right|\right) \geq \frac{j(j-1)}{2} m-1+(x-(j-1) m+1) j$. Equality (if not in conflict with the Riemann-Roch Theorem) can be expected being the most general case for a fixed value of m. The inequalities also imply $\operatorname{dim}\left(\left|(k-1) m g_{k}^{1}\right|\right)=$ $\operatorname{dim}\left(\left|((k-1) m-1) g_{k}^{1}\right|\right)+k$. This implies that $\left|((k-1) m-1) g_{k}^{1}\right|$ is not special. Using the dimension bound one obtains $g \leq\left[\left(k^{2}-k\right) m-2 k+2\right] / 2$. (This easy but interesting consequence from the inequalities is not mentioned by Kato and Ohbuchi.) In this paper we prove the following theorem.

Theorem. For all nonnegative integers k; m and g satisfying $k \geq 3 ; m \geq 2$ and $k-1 \leq g \leq\left[\left(k^{2}-k\right) m-2 k+2\right] / 2$ there exists a smooth curve C of genus g possessing
a complete base point free linear system g_{k}^{1} satisfying the following property. For each nonnegative integer x with $x \leq(k-1) m-1$ define the nonnegative integer j such that $(j-1) m-1<x \leq j m-1$. Then $\operatorname{dim}\left(\left|x g_{k}^{1}\right|\right)=\max \left(\left\{\frac{j(j-1)}{2} m-1+(x-(j-1) m+\right.\right.$ $1) j ; k x-g\})$. Also $\left|m g_{k}^{1}\right|$ is birationally very ample.

The curves C are obtained using special plane curves degenerating to special types of rational curves. First we construct those rational curves Γ_{0} using some linear system g_{k}^{1} on \boldsymbol{P}^{1}. In order to prove the theorem we study canonical adjoint curves of Γ_{0} containing all points belonging to a given number of divisors from g_{k}^{1}.

Some notations. On a smooth surface X; if Γ_{1} and Γ_{2} are two effective divisors intersecting at $x \in X$ (no common component containing x) then we write $i\left(\Gamma_{1} \cdot \Gamma_{2} ; x\right)$ for the intersection multiplicity of Γ_{1} and Γ_{2} at x. We write ($\Gamma_{1} \cdot \Gamma_{2}$) for the intersection number of Γ_{1} and Γ_{2}. We also write K_{X} for a canonical divisor on X.

1. Construction of the plane rational curve

Choose a general linear system g_{k}^{1} on \boldsymbol{P}^{1} and a general divisor $F \in g_{k}^{1}$. Choose a general effective divisor E of degree mk on \boldsymbol{P}^{1}. Consider the linear system $g_{m k}^{2}$ containing $(m-1) F+g_{k}^{1}$ and E.

Claim 1.1. $g_{m k}^{2}$ is a simple base point free linear system on \boldsymbol{P}^{1}.
Proof. The linear system $g_{m k}^{2}$ has no base points: $m F \in(m-1) F+g_{k}^{1} \subset g_{m k}^{2}$ and $E \cap F=\emptyset$. For $P \in E$ and $D_{P} \in g_{k}^{1}$ containing P one has $E \cap D_{P}=\{P\}$ (the intersection as schemes is reduced), therefore also $E \cap\left((m-1) F+D_{P}\right)=\{P\}$. Since ($m-1$) $F+D_{P} \in g_{m k}^{2}$ this implies that $g_{m k}^{2}$ is simple.

Claim 1.2. The space parametrizing such linear systems $g_{m k}^{2}$ on \boldsymbol{P}^{1} is irreducible of dimension $m k+2 k-3$.

Proof. Effective divisors of degree d on \boldsymbol{P}^{1} are parametrized by a projective space \boldsymbol{P}^{d}. Linear systems g_{k}^{1} (resp. $g_{m k}^{2}$) on \boldsymbol{P}^{1} are parametrized by a grassmannian $G(1 ; k)$ of lines in \boldsymbol{P}^{k} (resp. $G(2 ; m k)$ of planes in $\boldsymbol{P}^{m k}$). On $G(1 ; k) \times \boldsymbol{P}^{k}$ we have the incidence subvariety I defined as $\left(g_{k}^{1} ; F\right) \in I$ if and only if $F \in g_{k}^{1}$. Clearly I is irreducible of dimension $\operatorname{dim}(G(1 ; k))+1=2 k-1$. The linear systems $g_{m k}^{2}$ on \boldsymbol{P}^{1} constructed above belong to the image of the rational map $\tau: I \times \boldsymbol{P}^{m k} \rightarrow G(2 ; m k)$ defined by $\tau\left(\left(g_{k}^{1} ; F\right) ; E\right)=\left\langle(m-1) F+g_{k}^{1} ; E\right\rangle$.

Suppose for $\left(\left(g_{k}^{1} ; F\right) ; E\right) \in I \times \boldsymbol{P}^{m k}$ general, there exists another element $\left(\left(h_{k}^{1} ; G\right) ;\right.$ $\left.E^{\prime}\right) \in I \times \boldsymbol{P}^{m k}$ with $\tau\left(\left(g_{k}^{1} ; F\right) ; E\right)=\tau\left(\left(h_{k}^{1} ; G\right) ; E^{\prime}\right)$ but $\left(g_{k}^{1} ; F\right) \neq\left(h_{k}^{1} ; G\right)$. Because
$(m-1) F+g_{k}^{1}$ and $(m-1) G+h_{k}^{1}$ are both lines in $g_{m k}^{2}$, one has $\left[(m-1) F+g_{k}^{1}\right] \cap$ $\left[(m-1) G+h_{k}^{1}\right] \neq \emptyset$. Assume $(m-1) F+g_{k}^{1}=(m-1) G+h_{k}^{1}$. Because g_{k}^{1} has no fixed points, this implies $F=G$ and so $g_{k}^{1}=h_{k}^{1}$; a contradiction. Choose $D \in h_{k}^{1}$ with $(m-1) G+D \notin(m-1) F+g_{k}^{1}$. Then $g_{m k}^{2}=\left\langle(m-1) F+g_{k}^{1} ;(m-1) G+D\right\rangle$. Because $g_{m k}^{2}$ is base point free (Claim 1.1) we find $F \cap G=\emptyset$. But then $[(m-1) F+$ $\left.g_{k}^{1}\right] \cap\left[(m-1) G+h_{k}^{1}\right] \neq \emptyset$ implies $m=2 ; F \in h_{k}^{1} ; G \in g_{k}^{1}$ and so $g_{k}^{1}=h_{k}^{1}=\langle F ; G\rangle$. For $D \in g_{k}^{1}$ one finds $F+D ; G+D \in g_{2 k}^{2}$ so $g_{k}^{1}+D \subset g_{2 k}^{2}$. It follows that $g_{2 k}^{2}=\left\{D_{1}+D_{2}: D_{1} ; D_{2} \in g_{k}^{1}\right\}$. This contradicts $g_{2 k}^{2}$ being simple (Claim 1.1). So we find for a general $\left(\left(g_{k}^{1} ; F\right) ; E\right) \in I \times \boldsymbol{P}^{m k}$ one has $\tau\left(\left(g_{k}^{1} ; F\right) ; E\right)=\tau\left(\left(h_{k}^{1} ; G\right) ; E^{\prime}\right)$ if and only if $\left(g_{k}^{1} ; F\right)=\left(h_{k}^{1} ; G\right)$ and $E^{\prime} \in\left\langle(m-1) F+g_{k}^{1} ; E\right\rangle$. Therefore the general non-empty fiber of τ has dimension 2 . So, the image of τ has dimension $m k+2 k-3$.

Associated to $g_{m k}^{2}$ there exist morphisms $\phi: \boldsymbol{P}^{1} \rightarrow \boldsymbol{P}^{2}$. Fix such a morphism and let Γ be the image.

Claim 1.3. $\quad \Gamma$ is a plane curve of degree $m k$. The divisor F induces a singular point s on Γ of multiplicity $(m-1) k$. The other singular points of Γ are ordinary nodes.

Proof. Since $g_{m k}^{2}$ is simple and base point free (Claim 1.1) the plane curve Γ has degree $m k$. There is a 1 -dimensional subsystem of $g_{m k}^{2}$ containing $(m-1) F$. This 1-dimensional subsystem corresponds to a pencil of lines on \boldsymbol{P}^{2} containing some fixed point s. For a general line L containing s there are k intersections each one of multiplicity 1 with Γ outside s. This implies $i(\Gamma . L ; s)=(m-1) k$, hence Γ has multiplicity $(m-1) k$ at s. Assume s' is another singular point of Γ.

First assume s' has multiplicity $\mu \geq 3$. The pencil of lines on P^{2} containing s' induces a linear subsystem $F^{\prime}+g_{m k-\mu}^{1} \subset g_{m k}^{2}$. From $s \neq s^{\prime}$ it follows that $F \cap F^{\prime} \neq \emptyset$. The line $\left\langle s s^{\prime}\right\rangle$ on \boldsymbol{P}^{2} gives rise to $(m-1) F+D \in g_{m k}^{2}$ with $D \in g_{k}^{1}$. We find $D=F^{\prime}+$ D^{\prime} for some effective divisor D^{\prime}. Let E^{\prime} be the divisor corresponding to a general line through s', then $E^{\prime}=F^{\prime}+E^{\prime \prime}$ for some $E^{\prime \prime} \in g_{m k-\mu}^{1}$. Since $g_{m k}^{2}=\left\langle(m-1) F+g_{k}^{1} ; E^{\prime}\right\rangle$ we find that $g_{m k}^{2}$ belongs to the image of the morphism $\tau^{\prime}: I^{\prime} \times \boldsymbol{P}^{m k-\mu} \rightarrow G(2 ; m k)$ defined by $\tau^{\iota}\left(\left(g_{k}^{1} ; F ; F^{\prime}\right) ; E^{\prime \prime}\right)=\left\langle(m-1) F+g_{k}^{1} ; F^{\prime}+E^{\prime \prime}\right\rangle$ with $I^{\prime} \subset I \times \boldsymbol{P}^{\mu}$ defined by $\left(g_{k}^{1} ; F ; F^{\prime}\right) \in I^{\prime}$ if and only if $D \geq F^{\prime}$ for some $D \in g_{k}^{1}$ (here I is as in the proof of Claim 1.2). The choice of $E^{\prime \prime}$ implies that τ^{ι} has non-empty fibers of dimension at least 1. Since $\operatorname{dim}\left(I^{\prime} \times \boldsymbol{P}^{m k-\mu}\right)=2 k+m k-\mu$ we obtain $2 k-1+m k-\mu \leq(m+2) k-3$. This contradicts $\mu \geq 3$. It follows that s' has multiplicity 2 .

Using the same notations we have $\mu=2 ; \operatorname{deg}\left(F^{\prime}\right)=2$. Assume $F^{\prime}=2 P_{0}$. Then P_{0} is a ramification point of g_{k}^{1}.

This implies that $g_{m k}^{2}$ belongs to the image of the morphism $\tau^{"}: I^{\prime \prime} \times \boldsymbol{P}^{m k-2} \rightarrow$ $G(2 ; m k)$ defined by $\tau^{\prime \prime}\left(\left(g_{k}^{1} ; F ; P_{0}\right) ; E^{\prime \prime}\right)=\left\langle(m-1) F+g_{k}^{1} ; 2 P_{0}+E^{\prime \prime}\right\rangle$, with $I^{\prime \prime} \subset$ $I \times \boldsymbol{P}^{1}$ defined by $\left(g_{k}^{1} ; F ; P_{0}\right) \in I^{\prime \prime}$ if and only if P_{0} is a ramification point of g_{k}^{1}. Again, the non-empty fibers have dimension at least 1 . Since $\operatorname{dim}\left(I^{\prime \prime} \times \boldsymbol{P}^{m k-2}\right)=$ $2 k-1+m k-2$, we find a contradiction to $\operatorname{dim}(i m \tau)=(m+2) k-3$.

We obtain $F^{\prime}=P_{0}+Q_{0}$ with $P_{0} \neq Q_{0}$. Assume L_{0} is a line through s' such that L_{0} induces $2\left(P_{0}+Q_{0}\right)+E^{\prime \prime \prime}$ for some effective divisor $E^{\prime \prime \prime}$ of degree $m k-4$. Hence, we assume that s^{\prime} is a tacnode. This implies $g_{m k}^{2}$ belongs to the image of the rational map $\tau^{\prime \prime \prime}: I^{\prime \prime \prime} \times \boldsymbol{P}^{m k-4} \rightarrow G(2 ; m k)$ defined by $\tau^{\prime \prime \prime}\left(\left(g_{k}^{1} ; F ; F^{\prime}\right) ; E^{\prime \prime \prime}\right)=$ $\left\langle(m-1) F+g_{k}^{1} ; 2 F^{\prime}+E^{\prime \prime \prime}\right\rangle$ with $I^{\prime \prime \prime} \subset I \times \boldsymbol{P}^{2}$ defined by $\left(g_{k}^{1} ; F ; F^{\prime}\right) \in I^{\prime \prime \prime}$ if and only if $D \geq F^{\prime}$ for some $D \in g_{k}^{1}$. Because $\operatorname{dim}\left(I^{\prime \prime \prime} \times \boldsymbol{P}^{m k-4}\right)=(m+2) k-4<(m+2) k-3$, once more we obtain a contradiction. This implies that s' is an ordinary node.

Because $m F \in g_{m k}^{2}$ there exists a line T on \boldsymbol{P}^{2} through s inducing $m F$. This line T intersects Γ only at s, hence $i(T, \Gamma ; s)=m k$. We can consider the singularity of Γ at s as follows. It consists of exactly k locally irreducible branches (we use $F \in \boldsymbol{P}^{k}$ is general), each one having multiplicity $m-1$ at s and having T as "tangent line" intersecting the branch with multiplicity m at s . From now on we fix s and T.

Claim 1.4. We obtain a family of plane curves of dimension $(m+2) k-1$.
Proof. This follows from Claim 1.2 taking into account that $\operatorname{dim}\left(\operatorname{Aut}\left(\boldsymbol{P}^{1}\right)\right)=3$; $\operatorname{dim}\left(\operatorname{Aut}\left(\boldsymbol{P}^{2}\right)\right)=8$ and fixing s and T imposes 3 independent conditions on Γ.

2. Blowing_up the projective plane

Let $\pi_{1}: X_{1} \rightarrow \boldsymbol{P}^{2}$ be the blowing-up of \boldsymbol{P}^{2} at s; let E_{1} be the exceptional divisor. Let T_{1} (resp. Γ_{1}) be the strict transform of T (resp. Γ) on X_{1}. Let L be the inverse image of a line on \boldsymbol{P}^{2}. Then $T_{1} \in\left|L-E_{1}\right| ; \Gamma_{1} \in\left|k m L-k(m-1) E_{1}\right|$. Let $s_{1}=E_{1} \cap T_{1}$.

The linear system $\left|L-E_{1}\right|$ induces g_{k}^{1} on \boldsymbol{P}^{1} and T_{1} induces F. Since the images of points of F under the morphism $\boldsymbol{P}^{1} \rightarrow \Gamma_{1}$ are contained in E_{1}, it follows that $i\left(T_{1}\right.$, $\left.\Gamma_{1} ; s_{1}\right)=k$. Hence the k different points of F correspond to k different irreducible branches of Γ_{1} at s_{1}. Hence Γ_{1} has a singular point of multiplicity k at s_{1}. Also $E_{1} \cap \Gamma_{1}=\left\{s_{1}\right\}$ and since $\left(E_{1} \cdot \Gamma_{1}\right)=k(m-1)$ it follows that $i\left(E_{1}, \Gamma_{1} ; s_{1}\right)=(m-1) k$. Because $T_{1}+E_{1}$ induces $m F$ on \boldsymbol{P}^{1}, it follows that E_{1} intersects each branch of Γ_{1} at s_{1} with multiplicity $m-1$ at s_{1}.

Let $\pi_{2}: X_{2} \rightarrow X_{1}$ be the blowing-up of X_{1} at s_{1}. Let E_{2} be the exceptional divisor. We continue to write L for the inverse image of a general line on \boldsymbol{P}^{2}. Let E_{12} (resp. $T_{2} ; \Gamma_{2}$) be the strict transforms of E_{1} (resp. $T ; \Gamma$) on X_{2}. We also write E_{1} to denote the inverse image of E_{1} on X_{2}. Then $E_{12} \in\left|E_{1}-E_{2}\right| ; T_{2} \in\left|L-E_{1}-E_{2}\right|$; $\Gamma_{2} \in\left|k m L-k(m-1) E_{1}-k E_{2}\right|$. Let $s_{2}=E_{2} \cap E_{12}$. One has $\left(T_{2} \cdot \Gamma_{2}\right)=0$ hence $T_{2} \cap \Gamma_{2}=\emptyset$. In case $m=2$ we find $\left(\Gamma_{2} \cdot E_{12}\right)=0$ hence $\Gamma_{2} \cap E_{12}=\emptyset$.

Assume $m>2$. From $\left(\Gamma_{2} . E_{2}\right)=k$ it follows that each branch of Γ_{2} corresponding to a point of F is smooth and intersects E_{2} transversally at one point. Because $E_{2}+E_{12}$ induces $(m-1) F$ on \boldsymbol{P}^{1} it follows that those points of F map to s_{2} and E_{12} intersects each branch with multiplicity $m-2$ at s_{2}. It follows that Γ_{2} has multiplicity k at s_{2}.

We continue to make blowings-up. For each $i \leq m$ we obtain the blowing-up $\pi_{i}: X_{i} \rightarrow X_{i-1}$ with exceptional divisor E_{i}. On X_{i} we continue to write L to denote the inverse image of a general line on \boldsymbol{P}^{2}. We write Γ_{i} (resp. $E_{i-1, i} ; T_{i}$) to denote the strict transform of Γ (resp. $E_{i-1} ; T$) on X_{i}. Also, for $j \leq i-2$ we write $E_{j, i}$ for the strict transform of $E_{j, i-1}$. Let $s_{i}=E_{i} \cap E_{i-1, i}$. In case $i<m$ the multiplicity of Γ_{i} at s_{i} is k. At s_{i} the curve Γ_{i} has k smooth locally irreducible branches. Also $E_{1, i}$ intersects each branch with multiplicity $m-i$ at s_{i}. On X_{m} we also write E_{i} for the inverse image of E_{i} on $X_{i}($ for $i<m)$. We obtain $\Gamma_{m} \in \boldsymbol{P}:=$ $\left|k m L-k(m-1) E_{1}-k E_{2}-\ldots-k E_{m}\right|, T_{m} \in\left|L-E_{1}-E_{2}\right|, E_{1 m} \in\left|E_{1}-E_{2}-\ldots-E_{m}\right|$ and $E_{i m} \in\left|E_{i}-E_{i+1}\right|$ for $2 \leq i \leq m-1$.

Claim 2.1. $\quad \Gamma_{m}$ has ordinary nodes as its only singularities. The intersection points of Γ_{m} and E_{m} are smooth points on Γ_{m}.

Proof. Because of Claim 1.3 it is enough to prove that the intersection points of Γ_{m} and E_{m} are smooth points on Γ_{m}. The inverse image on \boldsymbol{P}^{1} of the intersection as schemes of Γ_{m} and E_{m} is the divisor F, hence a general divisor of degree k on \boldsymbol{P}^{1}. If that intersection would not be smooth then 2 different points in F would have the same image on Γ_{m}. Because of monodromy on \boldsymbol{P}^{1}, in that case all k points on F need to have the same image on Γ_{m}, hence $\Gamma_{m} \cap E_{m}$ is a single multiple point s_{m} of Γ_{m}. Since $\left(\Gamma_{m} \cdot E_{1 m}\right)=0$ and $\left(\Gamma_{m} \cdot E_{m-1, m}\right)=0$ it follows that $s_{m} \notin\left\{E_{1, m} \cap\right.$ $\left.E_{m} ; E_{m-1, m} \cap E_{m}\right\}$. Let $\pi_{m+1}: X_{m+1} \rightarrow X_{m}$ be the blowing-up of X_{m} at s_{m}. Let E_{m+1} be the exceptional divisor of π_{m+1} and let Γ_{m+1} be the strict transform of Γ_{m}. We find $\Gamma_{m+1} \in \boldsymbol{P}_{m+1}:=\left|k m L-k(m-1) E_{1}-k E_{2}-\ldots-k E_{m+1}\right|$. If Γ_{m+1} is not smooth at each point of $\Gamma_{m+1} \cap E_{m+1}$ then as before we find $s_{m+1} \in \Gamma_{m+1}$ such that Γ_{m+1} has multiplicity k at s_{m+1}. In that case we blow-up Γ_{m+1} at s_{m+1} and so on.

For some $m^{\prime} \geq 1$ we obtain $X_{m+m^{\prime}}$ and $\Gamma_{m+m^{\prime}} \in \boldsymbol{P}_{m+m^{\prime}}:=\mid k m L-k(m-1) E_{1}-$ $k E_{2}-\ldots-k E_{m+m^{\prime}} \mid$ such that $\Gamma_{m+m^{\prime}}$ has ordinary nodes as its only singularities. The arithmetic genus of $\Gamma_{m+m^{\prime}}$ is equal to $[(k m-1)(k m-2)-(k(m-1)-1) k(m-1)-(m+$ $\left.\left.m^{\prime}-1\right)(k-1) k\right] / 2$. This has to be at least 0 , hence $\left.\left(m-m^{\prime}\right) k^{2}+\left(m^{\prime}-m\right) k-2 k+2\right) \geq 0$. This condition implies $m^{\prime} \leq m$.

In $\boldsymbol{P}_{m+m^{\prime}}$ we find that the locus of irreducible rational nodal curves has a component of dimension at least $m k+2 k-1-m^{\prime}$. (This follows from Claim 1.4 taking into account the choice of s_{m+i} on E_{m+i} for $0 \leq i \leq m^{\prime}$.) The number of nodes of $\Gamma_{m+m^{\prime}}$ is equal to the arithmetic genus of $\Gamma_{m+m^{\prime}}$ being $\delta=\left[\left(m-m^{\prime}\right)\left(k^{2}-k\right)-2 k+2\right] / 2$. Because $m^{\prime} \leq m$ we find $\left(K_{X_{m+m^{\prime}}} \cdot \Gamma_{m+m^{\prime}}\right)=-3 k m+k(m-1)+k\left(m+m^{\prime}-1\right)=$ $\left(m^{\prime}-m-2\right) k<0$. From Lemma 2.2 in [8] it follows that $\operatorname{dim}\left(\boldsymbol{P}_{m+m^{\prime}}\right) \geq m k+$ $2 k-1-m^{\prime}+\delta$. Also from the end of the proof of Lemma 2.2 in [8] we also obtain $\operatorname{dim}\left(\boldsymbol{P}_{m+m^{\prime}}\right)=\delta-\left(K_{X_{m+m^{\prime}}} \cdot \Gamma_{m+m^{\prime}}\right)-1=\delta+\left(m+2-m^{\prime}\right) k-1$. This would imply $\left(m+2-m^{\prime}\right) k-1 \geq m k+2 k-1-m^{\prime}$, hence $m^{\prime} \geq m^{\prime} k$. Since $m^{\prime} \geq 1 ; k \geq 2$ this is a contradiction. This completes the proof of the claim.

3. Canonically adjoint curves

In order to study canonically adjoint curves for curves belonging to \boldsymbol{P} we consider the linear system $\boldsymbol{P}_{0}^{\prime}=\left|(k m-3) L-(k(m-1)-1) E_{1}-(k-1) E_{2}-\ldots-(k-1) E_{m}\right|$.

Claim 3.1. $\quad \boldsymbol{P}_{0}^{\prime}=\boldsymbol{P}_{0}+($ fixed components $)$ with $\boldsymbol{P}_{0}=\mid(k m-2-m) L-(k(m-$ 1) $-m) E_{1}-(k-2) E_{2}-\ldots-(k-2) E_{m} \mid$.

Proof. From $T_{m} . \boldsymbol{P}_{0}^{\prime}=-1$ it follows that T_{m} is a fixed component of $\boldsymbol{P}_{0}^{\prime}$. Deleting T_{m} from \boldsymbol{P}_{0} we obtain $\mid(k m-4) L-(k(m-1)-2) E_{1}-(k-2) E_{2}-(k-1) E_{3}-$ $\ldots-(k-1) E_{m} \mid$. In case $m=2$ this finishes the proof of the claim.

Assume $m>2$. The intersection number with $E_{2 m}$ is -1 , hence $E_{2 m}$ is a fixed component. Deleting $E_{2 m}$ we obtain $\mid(k m-4) L-(k(m-1)-2) E_{1}-(k-1) E_{2}-$ $(k-2) E_{3}-(k-1) E_{4}-\ldots-(k-1) E_{m} \mid$. Continuing in this way one finds fixed components $E_{3 m}, \ldots, E_{m-1, m}$. Deleting them, one obtains $\mid(k m-4) L-(k(m-1)-$ 2) $E_{1}-(k-1) E_{2}-\ldots-(k-1) E_{m-1}-(k-2) E_{m} \mid$. Now T_{m} is a fixed component. Deleting T_{m} one obtains $\mid(k m-5) L-(k(m-1)-3) E_{1}-(k-2) E_{2}-(k-1) E_{3}-$ $\ldots-(k-1) E_{m-1}-(k-2) E_{m} \mid$. In case $m=3$ this proves the claim. In case $m>3$ one has $E_{2 m}, \ldots E_{m-2, m}, T_{m}$ again as fixed components. Deleting them this proves the claim for $m=4$; in case $m>4$ one continues.

For curves Γ^{6} of \boldsymbol{P} we need to investigate canonical adjoint curves containing intersections of $\Gamma^{‘}$ with elements from $\left|L-E_{1}\right|$ (in terms of linear systems : containing a sum of divisors from g_{k}^{1}). For a general element R of $\left|L-E_{1}\right|$ the intersection of R with an element Γ_{m} of \boldsymbol{P} not containing $E_{1 m}$ are k different points. The intersection multiplicity with an element of \boldsymbol{P}_{0} is $k-2<k$. Therefore an element of \boldsymbol{P}_{0} containing this intersection of Γ_{m} and R contains R as a component. Taking x general elements R_{1}, \ldots, R_{x} in $\left|L-E_{1}\right|$, the elements of \boldsymbol{P}_{0} containing $\left(R_{1} \cup \ldots \cup R_{x}\right) \cap \Gamma_{m}$ have R_{1}, \ldots, R_{x} as components. Deleting R_{1}, \ldots, R_{x} we obtain $\boldsymbol{P}_{x}^{\prime}=\mid(k m-2-m-$ $x) L-(k(m-1)-m-x) E_{1}-(k-2) E_{2}-\ldots-(k-2) E_{m} \mid$.

Claim 3.2. Write $x=l m+y$ with $-1 \leq y \leq m-2$. Then $\boldsymbol{P}_{x}^{\prime}=\boldsymbol{P}_{x}+($ fixed components) with $\boldsymbol{P}_{x}=\mid(k m-(l+1) m-y-2) L-(k(m-1)-(l+1) m+l-$ y) $E_{1}-(k-l-2) E_{2}-\ldots-(k-l-2) E_{m} \mid$. (We do not claim that \boldsymbol{P}_{x} has no more fixed components.)

Proof. First, take $0 \leq x \leq m-2$, hence $x=y$ and $l=0$. Then $\boldsymbol{P}_{x}^{\prime}=\boldsymbol{P}_{x}$ and there is nothing to prove.

Next, take $x=m-1$, hence $l=1 ; y=-1$. Then $\left(E_{1 m} . \boldsymbol{P}_{m-1}^{\prime}\right)=-1$ (the intersection number of $E_{1 m}$ with elements of $\boldsymbol{P}_{m-1}^{\prime}$), therefore $E_{1 m}$ is a fixed component of $\boldsymbol{P}_{m-1}^{\prime}$. Deleting $E_{1 m}$ we obtain \boldsymbol{P}_{m-1}.

More general, for any $x \geq m$ the curve $E_{1 m}$ is a fixed component of $\boldsymbol{P}_{x}^{\prime}$. Deleting $E_{1 m}$ we obtain $\mid(k m-2-m-x) L-(k(m-1)-m-x+1) E_{1}-(k-3) E_{2}-$ $\ldots-(k-3) E_{m} \mid$. In case $m \leq x<2 m-1$ this is \boldsymbol{P}_{x}. For $x=2 m-1$ (hence $l=2$; $y=-1$) the intersection number of $E_{1 m}$ with that linear system is -1 , hence $E_{1 m}$ is a fixed component. Deleting $E_{1 m}$ one obtains $\boldsymbol{P}_{2 m-1}$. Continuing in this way one proves the claim.

REMARK 3.3. Taking $x=(k-2) m+m-2$ (hence $l=k-2 ; y=m-2$) one finds $\boldsymbol{P}_{(k-2) m+m-2}=0$. For $x \geq(k-2) m+m-1$ one finds $\boldsymbol{P}_{x}=\emptyset$.

Given $0 \leq x \leq(k-2) m+m-2$ define the integer j by means of the inequalities $(j-1) m-1<x \leq j m-1$ with $j \leq k-1$.

Claim 3.4. $\operatorname{dim}\left(\boldsymbol{P}_{x}\right)=\frac{j(j-1)}{2} m-1+(x-(j-1) m+1) j-k x+\frac{(k-1) m k-2 k+2}{2}-1$.
Proof. In case $x=(k-1) m-2$ we have to prove $\operatorname{dim}\left(\boldsymbol{P}_{(k-1) m-2}\right)=0$. This follows from Remark 3.3.

Now, fix some $x<(k-1) m-2$ and assume the claim is proved for $x+1$ instead of x. Writing $x=l m+y$ with $-1 \leq y \leq m-2$, from the description in Claim 3.2 we find $\left.\operatorname{dim}\left(\boldsymbol{P}_{x}\right) \geq[(k m-(l+1) m-y+1))(k m-(l+1) m-y-2)\right] / 2-[(k(m-1)-(l+1) m+$ $l-y+1)(k(m-1)-(l+1) m+l-y)] / 2-[(m-1)(k-l-1)(k-l-2)] / 2$. A computation shows us that we need to prove equality. Assume for x we have strict inequality. For $R \in\left|L-E_{1}\right|$ we have $\left(R . \boldsymbol{P}_{x}\right)=k-l-2$, hence R imposes at most $k-l-1$ conditions on \boldsymbol{P}_{x}. This implies $\operatorname{dim}\left(\left|\boldsymbol{P}_{x}-\left(L-E_{1}\right)\right|\right) \geq \operatorname{dim}\left(\boldsymbol{P}_{x}\right)-(k-l-1)$. In case $y=m-2$ one finds $\left(\left(\boldsymbol{P}_{x}-\left(L-E_{1}\right)\right) . E_{1 m}\right)<0$, hence $\operatorname{dim}\left(\left|\boldsymbol{P}_{x}-\left(L-E_{1}\right)-E_{1 m}\right|\right) \geq \operatorname{dim}\left(\boldsymbol{P}_{x}\right)-$ $(k-l-1)$. But $\left|\boldsymbol{P}_{x}-\left(L-E_{1}\right)-E_{1 m}\right|=\boldsymbol{P}_{x+1}$. One more computation shows that $\operatorname{dim}\left(\boldsymbol{P}_{x+1}\right) \geq \operatorname{dim}\left(\boldsymbol{P}_{x}\right)-(k-l-1)$ gives a contradiction to the assumption that the claim holds for \boldsymbol{P}_{x+1}. In case $y<m-2$ then $\left|\boldsymbol{P}_{x}-\left(L-E_{1}\right)\right|=\boldsymbol{P}_{x+1}$ and again, a computation shows a contradiction.

On X_{m} we constructed the rational irreducible curve Γ_{m} belonging to \boldsymbol{P}. From Claim 2.1 we know that Γ_{m} is a nodal curve, so it has $g_{0}:=\left[\left(k^{2}-k\right) m-2 k+2\right] / 2$ ordinary nodes. We write s to denote a node of Γ_{m}.

Claim 3.5. We can arrange the nodes $s_{1} ; \ldots ; s_{g 0}$ is such a way that the following property holds. First we introduce some notation: for $0 \leq \delta \leq g_{0}$ let $\boldsymbol{P}_{x}\left(s_{1} ; \ldots ; s_{\delta}\right)=$ $\left\{\Gamma \in \boldsymbol{P}_{x}: s_{i} \in \Gamma\right.$ for $\left.1 \leq i \leq \delta\right\}$. Then $\boldsymbol{P}_{x}\left(s_{1} ; \ldots ; s_{\delta}\right)=\emptyset$ for $\delta>\operatorname{dim}\left(\boldsymbol{P}_{x}\right)$ and $\operatorname{dim}\left(\boldsymbol{P}_{x}\left(s_{1} ; \ldots ; s_{\delta}\right)\right)=\operatorname{dim}\left(\boldsymbol{P}_{x}\right)-\delta$ if $\delta \leq \operatorname{dim}\left(\boldsymbol{P}_{x}\right)$.

Proof. For $\delta=0$ there is nothing to prove.
Fix $\delta>0$ and assume the claim holds for $\delta-1$ instead of δ. So, we assume a suited arrangement $s_{1} ; \ldots ; s_{\delta-1}$ for a suitable part of the set of the nodes. We have to prove that the set of the remaining nodes of Γ_{m} contains a suited one to be numbered s_{δ}.

Numbers x satisfying $\delta-1>\operatorname{dim}\left(\boldsymbol{P}_{x}\right)$ impose no conditions on s_{δ}. Let x_{0} be the minimal number such that $\delta-1 \leq \operatorname{dim}\left(\boldsymbol{P}_{x}\right)$. We know that $\operatorname{dim}\left(\boldsymbol{P}_{x_{0}}\left(s_{1} ; \ldots ; s_{\delta-1}\right)\right)=$ $\operatorname{dim}\left(\boldsymbol{P}_{x_{0}}\right)-(\delta-1) \geq 0$. If each element of $\boldsymbol{P}_{x_{0}}\left(s_{1} ; \ldots ; s_{\delta-1}\right)$ would contain all the nodes of Γ_{m} then Γ_{m} possesses a canonically adjoint curve. Since Γ_{m} is a rational curve this is impossible. Hence, there exists a node s_{0} such that $\operatorname{dim}\left(\boldsymbol{P}_{x_{0}}\left(s_{1} ; \ldots ; s_{\delta-1} ; s_{0}\right)\right)=$ $\operatorname{dim}\left(\boldsymbol{P}_{x_{0}}\right)-\delta\left(\right.$ with $\boldsymbol{P}_{x_{0}}\left(s_{1} ; \ldots ; s_{\delta-1} ; s_{0}\right)=\emptyset$ if $\left.\delta-1=\operatorname{dim}\left(\boldsymbol{P}_{x_{0}}\right)\right)$. In case for all $x \leq x_{0}$ we find $\operatorname{dim}\left(\boldsymbol{P}_{x}\left(s_{1} ; \ldots ; s_{\delta-1} ; s_{0}\right)\right)=\operatorname{dim}\left(\boldsymbol{P}_{x}\right)-\delta$ then we can take $s_{0}=s_{\delta}$.

Assume $x^{\prime}<x_{0}$ such that $\operatorname{dim}\left(\boldsymbol{P}_{x^{\prime}}\left(s_{1} ; \ldots ; s_{\delta-1} ; s_{0}\right)\right)=\operatorname{dim}\left(\boldsymbol{P}_{x^{\prime}}\right)-\delta+1$ while $\operatorname{dim}\left(\boldsymbol{P}_{x^{\prime}+1}\left(s_{1} ; \ldots ; s_{\delta-1} ; s_{0}\right)\right)=\operatorname{dim}\left(\boldsymbol{P}_{x^{\prime}+1}\right)-\delta$. Using a general $R \in\left|L-E_{1}\right|$ and using the arguments from the proof of Claim 3.4 one finds a contradiction.

4. Proof of the theorem

Now, we finish the proof of the theorem in the introduction. We start with the rational irreducible nodal curve Γ_{m} on X_{m}. We make an arrangement of the nodes as in Claim 3.5. The main result in Section 2 of [8] implies that there exists a $1-$ dimensional flat family $Y \rightarrow T$ of curves on X_{m} belonging to \boldsymbol{P} such that the fiber over a special point t_{0} of T is the curve Γ_{m} and a general fiber is a nodal curve Γ with exactly $g_{0}-g$ nodes such that those nodes specialize to the nodes $s_{1} ; \ldots ; s_{g_{0}-g}$ on Γ_{m}. Define $\boldsymbol{P}_{x, \Gamma}=\left\{D \in \boldsymbol{P}_{x}: D\right.$ contains the nodes of $\left.\Gamma\right\}$. Clearly $\operatorname{dim}\left(\boldsymbol{P}_{x, \Gamma}\right) \geq$ $\operatorname{dim}\left(\boldsymbol{P}_{x}\right)-\left(g_{0}-g\right)$. For the special fiber Γ_{m} we have $\boldsymbol{P}_{x}\left(s_{1} ; \ldots ; s_{g_{0}-g}\right)=\emptyset$ if $g_{0}-$ $g>\operatorname{dim}\left(\boldsymbol{P}_{x}\right)$ and $\operatorname{dim}\left(\boldsymbol{P}_{x}\left(s_{1} ; \ldots ; s_{g_{0}-g}\right)\right)=\operatorname{dim}\left(\boldsymbol{P}_{x}\right)-\left(g_{0}-g\right)$ if $g_{0}-g \leq \operatorname{dim}\left(\boldsymbol{P}_{x}\right)$. Semicontinuity implies $\boldsymbol{P}_{x, \Gamma}=\emptyset$ if $g_{0}-g>\operatorname{dim}\left(\boldsymbol{P}_{x}\right)$ and $\operatorname{dim}\left(\boldsymbol{P}_{x, \Gamma}\right)=\operatorname{dim}\left(\boldsymbol{P}_{x}\right)-$ $\left(g_{0}-g\right)$ if $g_{0}-g \leq \operatorname{dim}\left(\boldsymbol{P}_{x}\right)$. Let C be the normalization of Γ. It is a smooth curve of genus g . The linear system $\left|L-E_{1}\right|$ induces a linear system g_{k}^{1} on C without base points. Taking x general elements $R_{1} ; \ldots ; R_{x}$ in $\left|L-E_{1}\right|$ corresponds to taking x general divisors in g_{k}^{1}. From the description of \boldsymbol{P}_{x} in 3.2 we find that $\operatorname{dim}\left(\boldsymbol{P}_{x, \Gamma}\right)$ is equal to the dimension of canonically adjoint curves Γ containing the intersection of Γ with $R_{1} \cup \ldots \cup R_{x}$, hence it is equal to $\operatorname{dim}\left(\left|K_{C}-x g_{k}^{1}\right|\right)$. In particular, if $\boldsymbol{P}_{x, \Gamma}=\emptyset$ then $\left|K_{C}-x g_{k}^{1}\right|=\emptyset$. So, we find $\left|K_{C}-x g_{k}^{1}\right|=\emptyset$ if $g_{0}-g>\operatorname{dim}\left(\boldsymbol{P}_{x}\right) ; \operatorname{dim}\left(\left|K_{C}-x g_{k}^{1}\right|\right)=$ $\operatorname{dim}\left(\boldsymbol{P}_{x}\right)-\left(g_{0}-g\right)$ if $g_{0}-g \leq \operatorname{dim}\left(\boldsymbol{P}_{x}\right)$. Using 3.4 and the Riemann-Roch Theorem one finds $\operatorname{dim}\left(\left|x g_{k}^{1}\right|\right)=\max \left\{\frac{j(j-1)}{2} m-1+(x-(j-1) m+1) j ; k x-g\right\}$. In particular $\operatorname{dim}\left(\left|(m-1) g_{k}^{1}\right|\right)=m-1$ and $\operatorname{dim}\left(\left|m g_{k}^{1}\right|\right)=m+1$. Since Γ is obtained from C using a linear subsystem of $\left|m g_{k}^{1}\right|$, one also finds $\left|m g_{k}^{1}\right|$ is birationally very ample. This finishes the proof of the theorem.

References

[1] A. Del Centina and A. Gimigliano: Scrollar invariants and resolutions of certain k-gonal curves, Ann. Univ. Ferrara 39 (1993), 187-201.
[2] D. Eisenbud and J. Harris: On varieties of minimal degree (a centennial account), Proc. Symp. in Pure Math. 46 (1987), 3-13.
[3] T. Kato and A. Ohbuchi: Very ampliness of multiple of tetragonal linear systems, Comm. in Algebra 21 (1993), 4587-4597.
[4] A. Maroni: Le serie lineari speciali sulle curve trigonali, Ann. di Mat. 25 (1946), 341-354.
[5] G. Martens and F.-O. Schreyer: Line bundles and syzygies of trigonal curves, Abh. Math. Sem. Univ. Hamburg 56 (1986), 169-189.
[6] A. Ohbuchi: On the construction of a pentagonal curve which satisfies some numerical conditions.
[7] F.-O. Schreyer: Syzygies of canonical curves and special linear series, Math. Ann. 275 (1986), 105-137.
[8] A. Tannenbaum: Families of algebraic curves with nodes, Compos. Math. 41 (1980), 107-126.

Katholieke Hogeschool Kempen
Departement Industrieel Ingenieur en Biotechniek Campus H.I.Kempen
Kleinhoefstraat 4
B 2440 Geel Belgium
e-mail: marc.coppens@khk.be

The author is affiliated with the University of Leuven as a research fellow.

