
Coppens, M.
Osaka J. Math.
36(1999), 1049-1057

EXISTENCE OF PENCILS WITH PRESCRIBED SCROLLAR
INVARIANTS OF SOME GENERAL TYPE

MARC COPPENS

(Received January 12, 1998)

0. Introduction

Let C be an irreducible smooth projective non-hyperelliptic curve of genus g de-
fined over the field C of complex numbers. Let g\ be a complete base-point free
special linear system on C. The scrollar invariants of g\ are defined as follows. Let C
be canonically embedded in P9~l and let X be the union of the linear spans (D) with
D e g\ . This defines a set of integers e\ > ... > ek-i > 0 such that X is the image
of the projective bundle P(e\\... e^-i) = P(OPι (ei) Θ . . . Θ OPι (βk-i)) using the
tautological bundle (see e.g. [2]; [7]). Those integers e ι ;e 2 ; . . . e^-i are called the
scrollar invariants of g\.

Those scrollar invariants determine (and are determined by) the complete linear
systems associated to multiples of the linear system g\. For 1 < i < k — 1 the invariant
βi is one less than the number of non-negative integers j satisfying dim(\Kc — jg\\) —
άim.(\Kc — (j + l)#fc|) > i Here KC denotes a canonical divisor on C. Let m =
βfc-ι+2. Then m is defined by the following conditions: dim(|(ra—l)p£|) — m—1 and
dim(|ra<7jj.|) > ra. In case \mg\\ is birationally very ample then the scrollar invariants
satisfy the inequalities e* < e +i +mforl<i<k — 2 (see [3]). In case k = 3 this
number m = 62 determines also the other scrollar invariant e\. It is the starting point
for so-called Maroni-theory for linear systems on trigonal curves (see [4]; [5]). Scrollar
invariants for 4-gonal curves are intensively studied in [1]; [3] and for 5-gonal curves
in [6].

For (j — l)m - 1 < x < jm — 1 with j < k — 1 the inequalities between the

scrollar invariants imply dim(|x^|) > y'^'~1^m - 1 -f (x — (j — l)m + l) j . Equality

(if not in conflict with the Riemann-Roch Theorem) can be expected being the most

general case for a fixed value of m. The inequalities also imply dim(|(λ; — l)mg\.\) =

dim(|((fc — l)ra - 1)^ | ) 4- k. This implies that \((k — l)m - l)g\\ is not special.

Using the dimension bound one obtains g < [(k2 - k)m - 2k + 2]/2. (This easy but

interesting consequence from the inequalities is not mentioned by Kato and Ohbuchi.)

In this paper we prove the following theorem.

Theorem. For all nonnegative integers k; m and g satisfying k > 3; m > 2 and

k-1 < g < [(k2 — k)m — 2/c+2]/2 there exists a smooth curve C of genus g possessing



1050 M. COPPENS

a complete base point free linear system g\ satisfying the following property. For each

nonnegative integer x with x < (k — l )m — 1 define the nonnegative integer j such that

(j - l)m - 1 <x < jm - 1. Then άim(\xgl\) = max((3-^^-m - I + (x - (j - l)m +

l ) j ; kx — g > J. Also \mg\\ is birationally very ample.

The curves C are obtained using special plane curves degenerating to special types

of rational curves. First we construct those rational curves ΓQ using some linear sys-

tem g\, on P 1 . In order to prove the theorem we study canonical adjoint curves of ΓQ

containing all points belonging to a given number of divisors from g],.

SOME NOTATIONS. On a smooth surface X\ if Γi and Γ 2 are two effective

divisors intersecting at x G X (no common component containing x) then we write

i(Γι.Γ2]x) for the intersection multiplicity of Γi and Γ 2 at x. We write (Γι.Γ2) for

the intersection number of Γi and Γ 2. We also write KX for a canonical divisor on X.

1. Construction of the plane rational curve

Choose a general linear system g\ on P1 and a general divisor F G g\. Choose

a general effective divisor E of degree mk on P 1 . Consider the linear system g^k

containing (ra — 1)F -f </£ and E.

Claim 1.1. g^k is a simple base point free linear system on P 1 .

Proof. The linear system g^nk has no base points: mF G (ra — 1)F + g\. C g^nk

and E Π F = 0. For P G E and DP G #£ containing P one has EnDP = {P} (the

intersection as schemes is reduced), therefore also EΓ\((m— ϊ)F + Dp) = {P}. Since

(ra - l)F -f Dp G #^ f c this implies that g^k is simple. Π

Claim 1.2. 77z£ spαc^ parametrizing such linear systems g^nk on P1 is irre-

ducible of dimension mk + Ik — 3.

Proof. Effective divisors of degree d on P 1 are parametrized by a projective

space Pd. Linear systems gk (resp. g^) on P 1 are parametrized by a grassmannian

G(l; fe) of lines in Pk (resp. G(2; mfc) of planes in P m f c ) . On G(l; fc) x Pk we have

the incidence subvariety I defined as (gl F) G / if and only if F G g\. Clearly I is

irreducible of dimension dim(G(l; k)) + 1 = 2k — 1. The linear systems g^ on P 1

constructed above belong to the image of the rational map r : I x pmk — > G(2; mk)

defined by r ( ( f l j ; F ) ; E) = {(m - 1)F + ^ £ ) .

Suppose for ( ( ^ F) E)eIx Pmk general, there exists another element ((/4; G);

E') e .J x P m f c with τ((ffi;F);£7) = τ((Λj; G); S') but (gi F) φ (h\;G\ Because
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(ra - l)F + gl

k and (ra - 1)G + h\ are both lines in g 2 ^, one has [(m - l)F + gk] Π

[(m - ΐ)G + /4] ^ 0 Assume (m - 1)F + #£ = (ra - 1)G H- h\ . Because gl

k has

no fixed points, this implies F — G and so gk = h\ a contradiction. Choose D £ h\

with ( m - l ) G + D £ ( m _ 1 ) ^ + 3! . Then g^k = {(ra - l ) F - h ^ ; (ra - 1)G +£>).

Because ^ f c is base point free (Claim 1.1) we find F Π G = 0. But then [(m - l)F +

9k\ n i(m ~ 1ΪG + hk\ ί 0 implies ra = 2; F G h\ G G ̂  and so ^ = hl

k = {F; G).

For D G flfj one finds F + £>; G + D G ^ so g\ + £> C #2

f c

 I I follows that

#lfc — \P^ + ^2 : DI', DZ G #£} . This contradicts g\k being simple (Claim 1.1). So

we find for a general ((#*; F ) ; E) G / x P m / c one has τ((p£; F ) ; F) = τ((/ι£; G); F 7 )

if and only if (gl

k; F) = (ft£; G) and F 7 G {(m - 1)F + gfc E). Therefore the general

non-empty fiber of r has dimension 2. So, the image of r has dimension ra/c -f 2/c — 3.

Associated to ^ f c there exist morphisms φ : P 1 —» P 2 . Fix such a moφhism and

let Γ be the image.

Claim 1.3. Γ is a plane curve of degree mk. The divisor F induces a singular

point s on Γ of multiplicity (m — l)k. The other singular points of Γ are ordinary

nodes.

Proof. Since g2

mk is simple and base point free (Claim 1.1) the plane curve Γ

has degree mk. There is a 1-dimensional subsystem of g^nk containing (ra — 1)F.

This 1-dimensional subsystem corresponds to a pencil of lines on P 2 containing some

fixed point s. For a general line L containing s there are k intersections each one

of multiplicity 1 with Γ outside s. This implies i(Γ.L s) — (ra — l)/c, hence Γ has

multiplicity (ra - l)fc at 5. Assume s' is another singular point of Γ.

First assume s' has multiplicity μ > 3. The pencil of lines on P 2 containing s'

induces a linear subsystem F' +g]nk_μ C g^k- From 5 / s' it follows that F Π F 7 / 0.

The line (ssf) on P 2 gives rise to (m-l)F+D G g^k with D G gk. We find D = F 7 +

D' for some effective divisor D1. Let E1 be the divisor corresponding to a general line

through s', then F 7 = F 7 + F 7 7 for some F 7 7 G g^k_μ. Since g^k = { ( ra- l)F+#£; F 7)

we find that g^ belongs to the image of the moφhism r ' : Γ x pmk~v _>. G(2; mk)

defined by r ' ( ( ^ ; F; F 7 ); F7 7) = {(ra - 1)F + ^ F 7 + F77} with Γ C / x Pμ defined

by (gk-,F',Ff) G Γ if and only if D > F' for some D G g\ (here I is as in the proof of

Claim 1.2). The choice of F 7 7 implies that r ' has non-empty fibers of dimension at least

1. Since dim(/7 x pmk~») = 2k + mk - μ we obtain 2k - 1 + mk - μ < (ra + 2)fc - 3.

This contradicts μ > 3. It follows that s' has multiplicity 2.

Using the same notations we have μ = 2; deg(F7) = 2. Assume F 7 — 2P 0 Then

PO is a ramification point of gk.

This implies that g^nk belongs to the image of the moφhism r " : I" x P m ~ 2 —>•

G(2;raA;) defined by τ " ( ( ^ ; F; P 0 ); F7 7) = {(ra - 1)F + <^;2P0 + F77}, with / " C

I x P1 defined by (g£;F;P 0 ) £ ί" if and only if P 0 is a ramification point of gk.

Again, the non-empty fibers have dimension at least 1. Since dim(/77 x P m ~ ) =

2/c - 1 -h mk - 2, we find a contradiction to dim(iraτ) = (m + 2)k — 3.
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We obtain F' = P 0 + Qo with P 0 7̂  Qo Assume I/0 is a line through s' such

that LO induces 2(P 0 + Qo) + F ' " for some effective divisor E'" of degree mk-4.

Hence, we assume that s' is a tacnode. This implies g^ belongs to the image of

the rational map τuί : Γ" x P m f c ~ 4 -> G(2;ra/c) defined by τ ' " ( ( ^ ; F ; F ' ) ; £ ' " ) =

{(ra- l)F+0£; 2 F ' + E " ' ) with / '" C / x P 2 defined by ($£; F; F') G /"' if and only if

D>F' for some L> E gl

k. Because dim(/'" x P m f c ~ 4 ) = (™ + 2)fc-4 < (ra + 2)fc-3,

once more we obtain a contradiction. This implies that s' is an ordinary node.

Because mF G g^nk there exists a line Γ on P 2 through s inducing mF. This line

T intersects Γ only at s, hence z(T,Γ;s) = ra/c. We can consider the singularity of Γ

at s as follows. It consists of exactly k locally irreducible branches (we use F G Pk

is general), each one having multiplicity m — 1 at s and having T as "tangent line"

intersecting the branch with multiplicity m at s. From now on we fix s and T. Π

Claim 1.4. We obtain a family of plane curves of dimension (m + 2)k — 1.

Proof. This follows from Claim 1.2 taking into account that άim(Aut(P1}) = 3;

dim(Aut(P2)) = 8 and fixing s and T imposes 3 independent conditions on Γ. Π

2. Blowing_up the projective plane

Let τrι : X\ -> P 2 be the blowing-up of P 2 at s; let EI be the exceptional

divisor. Let T I (resp. F I ) be the strict transform of T (resp. Γ) on Xι. Let L be the

inverse image of a line on P 2 . Then T I G \L — F I | ; F I G \krnL — k(m - l ) F ι | . Let

The linear system L — Eι\ induces g\ on P 1 and T I induces F. Since the images

of points of F under the morphism P 1 —> F I are contained in EI, it follows that z(Tι,

F I SI) = k. Hence the k different points of F correspond to k different irreducible

branches of F I at si. Hence F I has a singular point of multiplicity k at si. Also

jEiΠΓi = {51} and since (EΊ.Γi) = fc(ra-l) it follows that i(£?ι,Γι;sι) = (m-l)fc.

Because T I + EI induces mF on P 1 , it follows that EI intersects each branch of F I

at si with multiplicity m — 1 at si.

Let π 2 : X2 —> -XΊ be the blowing-up of Xι at si. Let E2 be the exceptional

divisor. We continue to write L for the inverse image of a general line on P 2 . Let E\2

(resp. T 2 ;Γ 2 ) be the strict transforms of EI (resp. T; Γ) on X2. We also write EI to

denote the inverse image of EI on X2. Then Eι2 6 \Eι - E2\ T2 G |L - EΊ — E2\

Γ 2 G \kmL - k(m - l)Eι - kE2\ . Let s2 = E2 Π Eι2. One has (T2.Γ2) = 0 hence

T2 Π Γ 2 = 0. In case m = 2 we find (Γ 2 .Fι 2 ) = 0 hence Γ 2 Π Eι2 = 0.

Assume m > 2. From (T2.E2) = k it follows that each branch of Γ 2 correspond-

ing to a point of F is smooth and intersects E2 transversally at one point. Because

E2 + EM induces (m - l)F on P 1 it follows that those points of F map to s2 and

Eι2 intersects each branch with multiplicity m — 2 at s2. It follows that Γ 2 has multi-

plicity k at s2.
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We continue to make blowings-up. For each ί < m we obtain the blowing-up

TΓi : Xi -> Xi-ι with exceptional divisor Ei. On Xi we continue to write L to

denote the inverse image of a general line on P 2 . We write Γ; (resp. Ei-\^\ TI)

to denote the strict transform of Γ (resp. ^ _ ι ; T) on Xi. Also, for j < i — 2 we

write EJJ for the strict transform of EJ^-I. Let ŝ  = Ei Π E^_i^. In case i < m

the multiplicity of Γ; at s; is fc. At Si the curve Γ; has k smooth locally irreducible

branches. Also E\^ intersects each branch with multiplicity m - i at s;. On JΓm we

also write Ei for the inverse image of Ei on Xi (for i < rri). We obtain Γ m G P :=

|/cmL-/c(ra-l)Eι-/cE2-. - *-kEm\ , ^m e | L - £ ι - £ 2 | , Elrn e | E ι - £ 7 2 - - --J5 m |

and E ί m 6 | £ ; - Ei+ι\ for 2 < i < m - 1.

Claim 2.1. Γ m to ordinary nodes as its only singularities. The intersection

points of Γ m and Em are smooth points on Γ m .

Proof. Because of Claim 1.3 it is enough to prove that the intersection points of

Γ m and Em are smooth points on Γ m . The inverse image on P 1 of the intersection

as schemes of Γ m and Em is the divisor F, hence a general divisor of degree k on

P 1 . If that intersection would not be smooth then 2 different points in F would have

the same image on Γ m . Because of monodromy on P 1 , in that case all k points on

F need to have the same image on Γ m , hence Γ m Π Em is a single multiple point s m

of Γ m . Since ( Γ m . £ l m ) - 0 and ( Γ m . £ m _ ι , m ) - 0 it follows that sm i {£71>m Π

E m ; E m _ ι , m Π Em}. Let ττm +ι : Xm+ι -> X™ be the blowing-up of Xm at sm. Let

E m + ι be the exceptional divisor of τr m + ι and let Γ m + ι be the strict transform of Γ m .

We find Γ m + ι G P m + ι := \krnL - k(m - l)Eι - kE2 - . . . - kEm+ι\ . If Γ m + ι is

not smooth at each point of Γ m + ι Π J5 m + ι then as before we find s m + ι G Γ m + i such

that Γ m + ι has multiplicity k at s m + ι . In that case we blow-up Γ m + ι at s m + ι and so

on.

For some m' > 1 we obtain JΓ m + m / and Γ m + m / E P m + m / := \kmL-k(m—I)Eι —

kE2 —... - kEm+m> I such that Γ m + m / has ordinary nodes as its only singularities. The

arithmetic genus of Γ m + m / is equal to [(km—l)(km—2) —(fe(ra—1) — l)fc(m—l)-(m+

m/-l)(A:-l)A:]/2. This has to be at least 0, hence (m-rn')k2+(m'-m)k-2k+'2) > 0.

This condition implies m' < m.

In P m + m / we find that the locus of irreducible rational nodal curves has a compo-

nent of dimension at least mk + 2k — I — m'. (This follows from Claim 1.4 taking into

account the choice of s m + i on Em+i for 0<i<mf.) The number of nodes of Γ m + m /

is equal to the arithmetic genus of Γ m + m / being δ = [(m — m/)(fc2 — k) - 2k + 2]/2.

Because m' < m we find (KXγn+rn, .Γ m + m /) = —3km + k(m — 1) + k(m + m' — 1) =

(m1 - m - 2}k < 0. From Lemma 2.2 in [8] it follows that dim(P m + m /)>mA: +

2k — I — m' + δ. Also from the end of the proof of Lemma 2.2 in [8] we also obtain

d i m ( P m + m / ) - δ - (KXrn+m,.Ym+πι,) - 1 - 5 + ( m + 2 - m')k - 1. This would

imply (m -f 2 - m')k — 1 > mk -{-2k —1 — ra;, hence m' > m'k. Since m' > 1; k > 2

this is a contradiction. This completes the proof of the claim. Π
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3. Canonically adjoint curves

In order to study canonically adjoint curves for curves belonging to P we consider

the linear system P' 0 = \(km - 3)L - (k(m - 1) - l)Eι -(k- l)E2 -...-(k- l)Em\.

Claim 3.1. P'Q = Po+(fixed components) with P 0 — \ (km - 2 — m)L - (k(m —

- . . . - (k - 2)Em\ .

Proof. From Tm.PO = - 1 it follows that T m is a fixed component of P'Q. Delet-

ing T m from P O we obtain \(km - 4)L - (k(m - 1) - 2)£?ι - (Jb - 2 ) £ 2 ~(k- l)E3 -

. . . — (k — l)Em\. In case ra = 2 this finishes the proof of the claim.

Assume ra > 2. The intersection number with £"2™ is — 1, hence E"2rn is a fixed

component. Deleting E2rn we obtain |(fcm - 4)L - (fc(m - 1) - 2)£α — (k — l)E2 -

(k — 2)E3 — (k — 1)#4 — . . . - (k — l)Em\ . Continuing in this way one finds fixed

components E3rn, . . . , E"m-ι,m Deleting them, one obtains \(km — 4)L - (k(m — 1) —

2)Eι - (k - Ϊ)E2 -...-(k- l ) £ m _ ι - (fe - 2 ) E m | . Now T m is a fixed component.

Deleting T m one obtains \(km - 5)L - (fc(ra - 1) - 3)El - (k - 2)E2 - (k - 1)E3 -

. . . — (k — l)Em-ι — (k — 2)Em\ . In case ra = 3 this proves the claim. In case ra > 3

one has E2rn, . . . £ m _ 2 , m , T m again as fixed components. Deleting them this proves

the claim for ra — 4; in case ra > 4 one continues.

For curves Γ' of P we need to investigate canonical adjoint curves containing

intersections of Γ' with elements from \L — Eι\ (in terms of linear systems : containing

a sum of divisors from g\ ). For a general element R of L — E\ \ the intersection of R

with an element Γ m of P not containing E\Ύn are k different points. The intersection

multiplicity with an element of P 0 is k-2<k. Therefore an element of P 0 containing

this intersection of Γ m and R contains R as a component. Taking x general elements

RI,... ,RX in \L — EI\ , the elements of P Q containing (fliU . . .(jRx)nΓm have

fli, . . . , Rx as components. Deleting Λ I , . . . , .Rx we obtain P'x = \(km - 2 - ra -

x)L - (fc(m - 1) - m - z ) # ι - (fc - 2)E2 - . . . - (k - 2)Em\ . Π

Claim 3.2. Write x = lm + y with -I < y < m - 2. Then P'x = Px+(faed

components) with Px = \(km — (I + l)m - y - 2)L — (k(m — !) — (/ + l)m + / -

y)Eι - (k - I - 2)E2 - . . . - (k - I - 2)Em\ . (We do not claim that Px has no more

fixed components.)

Proof. First, take 0 < x < m - 2, hence x = y and / = 0. Then P'x = Px and

there is nothing to prove.

Next, take x = m - 1, hence / = 1; y = -I. Then (Eim.P^^) = - 1 (the inter-

section number of E\πι with elements of P'm_ι), therefore E\m is a fixed component

of P'm_i. Deleting Eιm we obtain P m _ ι .
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More general, for any x > m the curve Eιm is a fixed component of P'x. Deleting

Eim we obtain \(km - 2 - m - x)L - (k(πι - 1) - m - x + l)Eι - (k - 3)E2 -

... - (k - 3)Eπι\ . In case m < x<2m - 1 this is Px. For x = 2m - 1 (hence / = 2;

y = — 1) the intersection number of £ Ί m with that linear system is —1, hence £ Ί m

is a fixed component. Deleting Eιm one obtains P 2 m - ι . Continuing in this way one

proves the claim. Π

REMARK 3.3. Taking x = (k - 2)m + ra - 2 (hence / = k - 2 ; y = ra - 2) one

finds P(fc_2)m+m_2 = O For x > (k — 2)m + ra — 1 one finds Px — 0.

Given 0 < x < (fc-2)ra + ra-2 define the integer j by means of the inequalities

(j - l)ra — 1 < x < jm — 1 with j < k — 1.

Claim 3.4. d im(P x ) -

Proof. In case x = (fc — l)m — 2 we have to prove dim(P( f c _ 1 ) m _ 2 ) = 0. This

follows from Remark 3.3.

Now, fix some x<(k — l)ra — 2 and assume the claim is proved for x + 1 instead of

x. Writing x — lm+y with —1 < y < ra — 2, from the description in Claim 3.2 we find

l-y+l)(k(m-l)-(l+l)m+l-y)]/2-[(m-l)(k-l-l)(k-l-2)]/2. A computation

shows us that we need to prove equality. Assume for x we have strict inequality. For

Re \L — EI\ we have (R.PX) = k — /-2, hence R imposes at most k — I -I conditions

o n P x . This implies d i m ( | P x - ( L - E ι ) | ) > d i m ( P x ) - ( / c - / - l ) . Incase?/ = m - 2

one finds ( ( P x - ( L - E ι ) ) . £ Ί m ) < 0 , hence d i m ( | P x - ( L - Eι)-Eιm\)>dim(Px) -

(k - I — 1). But | P X — (L — EI) — Eim\ = P X + I . One more computation shows that

dim(P x+ι) > dim(Px) - (k - I - I) gives a contradiction to the assumption that the

claim holds for P X + I . In case y<m - 2 then \PX — (L — EI)\ — P x + ι and again, a

computation shows a contradiction.

On Xm we constructed the rational irreducible curve Γ m belonging to P . From

Claim 2.1 we know that Γ m is a nodal curve, so it has gQ := [(/c2 — k)m — 2k + 2]/2

ordinary nodes. We write s to denote a node of Γ m . Π

Claim 3.5. We can arrange the nodes sι;...;sgo is such a way that the following

property holds. First we introduce some notation: for Q<δ<go let P X ( S I ; . . . ss) =

{ΓePx : Si^Γ for l<ί<δ}. Then PX(SI;... -,sδ) = 0 for 5 > d i m ( P x ) and

dim(Px(sι; . . . sδ)) = dim(Px) - δ if δ < dim(Px).

Proof. For δ = 0 there is nothing to prove.

Fix 5>0 and assume the claim holds for δ — 1 instead of δ. So, we assume a suited

arrangement si; . . . ss~ι for a suitable part of the set of the nodes. We have to prove

that the set of the remaining nodes of Γ m contains a suited one to be numbered s&.
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Numbers x satisfying δ — 1> dim(P x ) impose no conditions on s<$. Let XQ be the
minimal number such that δ-1 < dim(P x ). We know that dim(P X o (s i ; . . . ss-ι)) =
dim(PX o )-(£-!) >0. If each element of P X O ( S I ; . . . sg-i) would contain all the nodes
of Γm then Γm possesses a canonically adjoint curve. Since Γm is a rational curve this
is impossible. Hence, there exists a node SQ such that cKra(PX o(sι;... s$_ι; s0)) =
dim(PX o) - 5 (with P X O ( S I ; . . . sj-i; s0) = 0 if ί - 1 = dim(PXQ)). In case for all
x < x0 we find dim(P x (s ι ; . . . sj-i; SQ)) = dim(P x ) - <S then we can take s0 = sg.

Assume X'<XQ such that dim(P x>(sι;... s<5_ι; SQ)) = dim(Px/) — 5 + 1 while
dim(P x /+ι(sι;. . . sj-iί «o)) = dim(Px/+ι) - δ. Using a general # G |L - £ Ί | and
using the arguments from the proof of Claim 3.4 one finds a contradiction. Π

4. Proof of the theorem

Now, we finish the proof of the theorem in the introduction. We start with the
rational irreducible nodal curve Γ m on Xm. We make an arrangement of the nodes
as in Claim 3.5. The main result in Section 2 of [8] implies that there exists a 1-
dimensional flat family Y -> T of curves on Xm belonging to P such that the fiber
over a special point t 0 of T is the curve Γ m and a general fiber is a nodal curve Γ
with exactly gG - g nodes such that those nodes specialize to the nodes s i ; . . . ',Sg0-g

on Γ m . Define P X ? Γ = {D G Px : D contains the nodes of Γ}. Clearly dim(P x ? Γ ) >
dim(Px) - (gQ - g). For the special fiber Γ m we have P X ( S I ; . . . sgo-g) = 0 if go -
#>dirn(P x ) and dim(P x (s ι ; . . . ;5^0_p)) = dim(Px)-(gQ-g) if gG-g < dim(P x ).
Semicontinuity implies P X > Γ — 0 if go - g>dim(Px) and dim(P x ? r) = dim(P x ) —
(go - g) if go - g < dim(P x ). Let C be the normalization of Γ. It is a smooth curve
of genus g. The linear system \L-E\\ induces a linear system g\ on C without base
points. Taking x general elements R\-,... ]RX in \L-E\\ corresponds to taking x
general divisors in #£. From the description of P x in 3.2 we find that dim(PX )r) is
equal to the dimension of canonically adjoint curves Γ containing the intersection of Γ
with Rι\J.. .\JRX, hence it is equal to ά\m(\Kc—xg\\). In particular, if P X ) r = 0 then
\Kc-x9k\ = 0- So, we find \Kc-xgl

k\ = Φ if go-g>dim(Px) άim(\Kc-xgl

k\) =
dim(P x) — (go — g) if gQ — g < dim(P x ). Using 3.4 and the Riemann-Roch Theorem
one finds dim(|x^|) = max{J ^ ' πi — 1 + (x — (j — l)ra + l) j ; kx — g}. In particular
dim(|(m — 1)^ |) = m — 1 and dim(|m^|) = m + 1. Since Γ is obtained from C
using a linear subsystem of \mg\.\ , one also finds \mg\\ is birationally very ample.
This finishes the proof of the theorem. Π
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