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0. Introduction

Let C be an irreducible smooth projective non-hyperelliptic curve of genus g de-
fined over the field C' of complex numbers. Let g; be a complete base-point free
special linear system on C. The scrollar invariants of gi are defined as follows. Let C
be canonically embedded in P?~* and let X be the union of the linear spans (D) with
De g,ﬁ . This defines a set of integers e; > ... > ex—1 > 0 such that X is the image
of the projective bundle P(ey;... ;ex—1) = P(Opi(e1) ®...® Op1(ex—1)) using the
tautological bundle (see e.g. [2]; [7]). Those integers ej;es;. .. ;ex—_1 are called the
scrollar invariants of g}.

Those scrollar invariants determine (and are determined by) the complete linear
systems associated to multiples of the linear system gi. For 1 <4 < k—1 the invariant
e; is one less than the number of non-negative integers j satisfying dim(|K¢ — jgi|) —
dim(|Kc — (j + 1)gi]) > i. Here K¢ denotes a canonical divisor on C. Let m =
ex—1+2. Then m is defined by the following conditions: dim(|(m—1)gi|) = m—1 and
dim(|mg}|) > m. In case |mgj| is birationally very ample then the scrollar invariants
satisfy the inequalities e; < e;41 +m for 1 <1 < k — 2 (see [3]). In case k = 3 this
number m = e, determines also the other scrollar invariant e;. It is the starting point
for so-called Maroni-theory for linear systems on trigonal curves (see [4]; [5]). Scrollar
invariants for 4-gonal curves are intensively studied in [1]; [3] and for 5-gonal curves
in [6].

For (j —1)m —1 < z < jm — 1 with j < k — 1 the inequalities between the
scrollar invariants imply dim(|zgt|) > j(%ﬁm -1+ (z - (j —1)m+ 1)j. Equality
(if not in conflict with the Riemann-Roch Theorem) can be expected being the most
general case for a fixed value of m. The inequalities also imply dim(|(k — 1)mg}|) =
dim(|((k — 1)m — 1)g}|) + k. This implies that |((k — 1)m — 1)gi| is not special.
Using the dimension bound one obtains g < [(k? — k)m — 2k + 2]/2. (This easy but
interesting consequence from the inequalities is not mentioned by Kato and Ohbuchi.)
In this paper we prove the following theorem.

Theorem. For all nonnegative integers k; m and g satisfying k > 3; m > 2 and
k—1< g < [(k*—k)m—2k+2]/2 there exists a smooth curve C of genus g possessing
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a complete base point free linear system g;. satisfying the following property. For each
nonnegative integer x with x < (k—1)m —1 define the nonnegative integer j such that

(j—1m—-1<z<jm—1. Then dim(|xg,ﬁ|)=maz({ﬂj2_—l)m —1+(z-@G-1)m+
1)j;kx — g}) Also |mgj| is birationally very ample.

The curves C are obtained using special plane curves degenerating to special types
of rational curves. First we construct those rational curves I'y using some linear sys-
tem g; on P!, In order to prove the theorem we study canonical adjoint curves of T
containing all points belonging to a given number of divisors from g;.

SOME NOTATIONS. On a smooth surface X; if I'; and I'y; are two effective
divisors intersecting at x € X (no common component containing x) then we write
i(I'1.T'p; z) for the intersection multiplicity of I'; and 'y at z. We write (I'1.I'z) for
the intersection number of I'; and I'y. We also write K x for a canonical divisor on X.

1. Construction of the plane rational curve

Choose a general linear system gi on P! and a general divisor F' € g}. Choose
a general effective divisor £ of degree mk on P!, Consider the linear system 92
containing (m — 1)F + g} and E.

Claim 1.1.  ¢2,, is a simple base point free linear system on P

Proof. The linear system g2,, has no base points: mF € (m — 1)F + gi C g2,
and ENF = 0. For P € E and Dp € g} containing P one has E N Dp = {P} (the
intersection as schemes is reduced), therefore also EN((m—1)F + Dp) = {P}. Since
(m —1)F + Dp € g2, this implies that g2,, is simple. O

Claim 1.2.  The space parametrizing such linear systems g2, on P! is irre-
ducible of dimension mk + 2k — 3.

Proof.  Effective divisors of degree d on P! are parametrized by a projective
space P?. Linear systems gi (resp. g2,) on P! are parametrized by a grassmannian
G(1;k) of lines in P* (resp. G(2;mk) of planes in P™F). On G(1;k) x P* we have
the incidence subvariety I defined as (gi; F) € I if and only if F € g;. Clearly I is
irreducible of dimension dim(G(1;k)) + 1 = 2k — 1. The linear systems g2,, on P'
constructed above belong to the image of the rational map 7 : I x P™ — G(2;mk)
defined by 7((g;; F); E) = ((m — 1)F + g}; E).

Suppose for ((g}; F); E) € I x P™ general, there exists another element ((h}; G);
E') € I x P™ with 7((g}; F); E) = 7((h}; G); E') but (g}; F) # (hL;G). Because
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(m —1)F + g} and (m — 1)G + h}, are both lines in g2, one has [(m — 1)F + gi] N
[((m—1)G + hi] # 0. Assume (m — 1)F + gi = (m — 1)G + h} . Because g}, has
no fixed points, this implies ¥ = G and so g} = hj}, ; a contradiction. Choose D € h}
with (m—1)G+D ¢ (m—1)F +gi . Then g2,, = ((m — 1)F + gi; (m — 1)G + D).
Because g2, is base point free (Claim 1.1) we find F NG = (. But then [(m — 1)F +
gi]N[(m—1)G+h}] # 0 implies m = 2; F € h}. ; G € g} and so g} = hi = (F;G).
For D € g} one finds F + D; G+ D € g2, so g} + D C g3, . It follows that
g2, = {D1+ Dy : Dy;Ds € g1} . This contradicts g3, being simple (Claim 1.1). So
we find for a general ((g}; F); E) € I x P™ one has 7((g}; F); E) = 7((h}; G); E')
if and only if (gi; F) = (h};G) and E’ € ((m — 1)F + gi; E). Therefore the general
non-empty fiber of 7 has dimension 2. So, the image of 7 has dimension mk + 2k — 3.

Associated to g2, there exist morphisms ¢ : P! — P2, Fix such a morphism and
let I' be the image. '

Claim 1.3. T is a plane curve of degree mk. The divisor F induces a singular
point s on T of multiplicity (m — 1)k. The other singular points of I are ordinary
nodes.

Proof. Since g2, is simple and base point free (Claim 1.1) the plane curve T’
has degree mk. There is a 1-dimensional subsystem of g2, containing (m — 1)F.
This 1-dimensional subsystem corresponds to a pencil of lines on P? containing some
fixed point s. For a general line L containing s there are k intersections each one
of multiplicity 1 with I" outside s. This implies ¢(I".L;s) = (m — 1)k, hence T has
multiplicity (m — 1)k at s. Assume s’ is another singular point of T'.

First assume s’ has multiplicity p > 3. The pencil of lines on P? containing s’
induces a linear subsystem F’+g} , , C g2, From s # s it follows that FNF' # .
The line (ss’) on P? gives rise to (m—1)F+D € g2, with D € gi. We find D = F'+
D’ for some effective divisor D’. Let E’ be the divisor corresponding to a general line
through s°, then E' = F'4E" for some E” € g, ;. Since g2, = ((m—1)F+g;; E')
we find that g2, belongs to the image of the morphism 7¢: I’ x P™FE  G(2; mk)
defined by 7((gi; F; F'); E") = (m — 1)F + gi; F' + E") with I' C I x P* defined
by (gi; F; F') € I if and only if D > F’ for some D € gj (here I is as in the proof of
Claim 1.2). The choice of E” implies that 7¢ has non-empty fibers of dimension at least
1. Since dim(I’ x P™~#) = 2k +mk — pu we obtain 2k — 1 +mk —p < (m+2)k—3.
This contradicts p > 3. It follows that s’ has multiplicity 2.

Using the same notations we have y = 2; deg(F’) = 2. Assume F’ = 2P,. Then
Py is a ramification point of gj.

This implies that g2, belongs to the image of the morphism 7 : I” x P™~2
G(2;mk) defined by 7%((g5; F; Po); E") = ((m — 1)F + g},;2P, + E"), with I" C
I x P' defined by (g}; F; Py) € I" if and only if Py is a ramification point of gj.
Again, the non-empty fibers have dimension at least 1. Since dim(I” x pPmF2) =
2k — 14+ mk — 2, we find a contradiction to dim(im7) = (m + 2)k — 3.
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We obtain F/ = Py + Q¢ with Py # Q. Assume Lg is a line through s’ such
that Ly induces 2(Py + Qo) + E"’ for some effective divisor E"’ of degree mk-4.
Hence, we assume that s” is a tacnode. This implies g2,, belongs to the image of
the rational map 7 : I"" x P™ =% 5 G(2;mk) defined by 7“((g}; F; F'); E") =
((m=1)F+4gL; 2F'+E"") with I'"" C I x P? defined by (gi; F; F') € I" if and only if
D > F' for some D € gi. Because dim(I"" x P™ %) = (m+2)k—4 < (m+2)k—3,
once more we obtain a contradiction. This implies that s’ is an ordinary node.

Because mmF € g2,, there exists a line 7' on P? through s inducing mF. This line
T intersects T" only at s, hence (T, T'; s) = mk. We can consider the singularity of I’
at s as follows. It consists of exactly k locally irreducible branches (we use F' € p*
is general), each one having multiplicity m — 1 at s and having 7" as “tangent line”
intersecting the branch with multiplicity m at s. From now on we fix s and T'. O

Claim 1.4. We obtain a family of plane curves of dimension (m + 2)k — 1.

Proof. This follows from Claim 1.2 taking into account that dim(Aut(P")) = 3;
dim(Aut(P?)) = 8 and fixing s and T imposes 3 independent conditions on . []

2. Blowing_up the projective plane

Let 71 : X; — P? be the blowing-up of P? at s; let F; be the exceptional
divisor. Let T; (resp. I';) be the strict transform of T' (resp. I') on X;. Let L be the
inverse image of a line on P2. Then T} € |L — E;|; Ty € |[kmL — k(m — 1)E;|. Let
s1 = E1NT;.

The linear system |L — E;| induces gi on P' and T} induces F'. Since the images
of points of F' under the morphism P! — T'; are contained in E1, it follows that i(Ty,
T'y;81) = k. Hence the k different points of F' correspond to k different irreducible
branches of I'; at s;. Hence I'y has a singular point of multiplicity k at s;. Also
E1NT'; = {s1} and since (E;.I'1) = k(m—1) it follows that i(E;,T'1;s1) = (m—1)k.
Because T} + E; induces mF on P!, it follows that E; intersects each branch of I';
at s; with multiplicity m — 1 at s;.

Let mp : X9 — X, be the blowing-up of X; at s;. Let E» be the exceptional
divisor. We continue to write L for the inverse image of a general line on P2. Let E,
(resp. T3;T'3) be the strict transforms of F; (resp. T;I") on X5. We also write E; to
denote the inverse image of E; on Xo. Then E12 € |E; — Es| ; Ty € |[L — Ey — Es| ;
I'y € |kmL — k(m — 1)E; — kEs| . Let s5 = E> N Ej5. One has (75.I'2) = 0 hence
T NIy = 0. In case m = 2 we find (['3.E12) = 0 hence ['; N E12 = 0.

Assume m > 2. From (I'.E;) = k it follows that each branch of I'; correspond-
ing to a point of F' is smooth and intersects E> transversally at one point. Because
E; + Ei2 induces (m — 1)F on P! it follows that those points of F' map to s, and
E, intersects each branch with multiplicity m — 2 at s5. It follows that I's has multi-
plicity k at so.
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We continue to make blowings-up. For each ¢ < m we obtain the blowing-up
m; + X; — X;_1 with exceptional divisor E;. On X; we continue to write L to
denote the inverse image of a general line on P2. We write I (resp. Ei_1, T3)
to denote the strict transform of I' (resp. E;_1; T) on X;. Also, for j < i — 2 we
write Ej;; for the strict transform of E;;_ 1. Let s; = E;NFE;_1;. Incase ¢ < m
the multiplicity of ['; at s; is k. At s; the curve I'; has k smooth locally irreducible
branches. Also E ; intersects each branch with multiplicity m — ¢ at s;. On X,,, we
also write F; for the inverse image of E; on X; (for ¢ < m). We obtain I;,, € P :=
|kmL—k(m—1)E1—kEy—...—kE,|, Tm € |L—E1—Fs|, E1pm € |E1—Ey—.. . —Ep,
and E;,, € |E; — Ei1q| for2<i<m-—1.

Claim 2.1. T, has ordinary nodes as its only singularities. The intersection
points of 'y, and E,,, are smooth points on T'y,.

Proof. Because of Claim 1.3 it is enough to prove that the intersection points of
I',, and E,, are smooth points on I';,. The inverse image on P! of the intersection
as schemes of I',, and E,, is the divisor F', hence a general divisor of degree k£ on
P!, If that intersection would not be smooth then 2 different points in F would have
the same image on I',,,. Because of monodromy on P, in that case all k points on
F need to have the same image on I',,,, hence I',,, N F,, is a single multiple point s,,
of I'y,. Since (I'y,.E1) = 0 and (T'y,.Epp—1,m) = 0 it follows that s,, ¢ {E1., N
En;En_1m N ER}. Let g1 @ Ximy1 — Xon be the blowing-up of X, at s,,. Let
E,.+1 be the exceptional divisor of 7,1 and let ', ; be the strict transform of I',,.
We find I'yq1 € Pipg1 := |kmL —k(m — 1)Ey —kEy — ... — kEqq1| . If Dppyq is
not smooth at each point of I';, 1 N E,, 11 then as before we find s,,,41 € ', such
that I',;,+1 has multiplicity k£ at s,,4+1. In that case we blow-up I',, 41 at s;,4+1 and so
on.

For some m’ > 1 we obtain X, ' and Uy, 1 EP oy == |kmL—k(m—1)E;—
kEs—...—kE | such that 'y, .- has ordinary nodes as its only singularities. The
arithmetic genus of Ty, . is equal to [(km—1)(km—2)—(k(m—1)—1)k(m—1)—(m+
m'—1)(k—1)k]/2. This has to be at least 0, hence (m—m’)k%*+(m'—m)k—2k+2) > 0.
This condition implies m’ < m.

In P, we find that the locus of irreducible rational nodal curves has a compo-
nent of dimension at least mk + 2k — 1 —m/. (This follows from Claim 1.4 taking into
account the choice of s,,4; on Ep,4; for 0<i<m'.) The number of nodes of I, .,
is equal to the arithmetic genus of T, being & = [(m — m/) (k% — k) — 2k + 2]/2.
Because m’ < m we find (Kx,, , Tmym)=-3km+k(m—1)+k(m+m'-1)=
(m' —m —2)k < 0. From Lemma 2.2 in [8] it follows that dim(P,4m/)>mk +
2k — 1 —m' + 4. Also from the end of the proof of Lemma 2.2 in [8] we also obtain
dim(Pym') = 6 = (Kx, ., Tmim) =1 = 6§ + (m +2 —m')k — 1. This would
imply (m+2—m/)k—1 > mk+2k—1—m/, hence m" > m'k. Since m’ > 1;k > 2
this is a contradiction. This completes the proof of the claim. ]
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3. Canonically adjoint curves

In order to study canonically adjoint curves for curves belonging to P we consider
the linear system Py = [(km—3)L—(k(m—1)—1)Ey— (k—1)E2—...— (k—1)Ep,|.

Claim 3.1. t = Po+(fixed components) with Py = |(km —2—m)L — (k(m—
1) = m)Ey — (k — 2)Es — ... — (k — 2)En| -

Proof. From T,,.P}, = —1 it follows that T}, is a fixed component of P(,. Delet-

ing T,,, from P, we obtain |(km —4)L — (k(m —1)—2)E; — (k—2)E; — (k—1)E3 —
..— (k—=1)E,,|. In case m = 2 this finishes the proof of the claim.

Assume m > 2. The intersection number with Fs,, is —1, hence Ej,, is a fixed

component. Deleting F2,, we obtain |(km — 4)L — (k(m — 1) — 2)E; — (k — 1)E; —

(k—2)E3 — (k—1)Ey—...— (k—1)E,,| . Continuing in this way one finds fixed
components Fs,, ..., Ey_1.m. Deleting them, one obtains |(km —4)L — (k(m —1) —
2)Ey—(k—1)Ey—...—(k—1)Ep—1 — (k—2)E,,| . Now T, is a fixed component.

Deleting T, one obtains |(km — 5)L — (k(m —1) —3)E; — (k—2)E; — (k—1)E3 —
...—(k=1)E;—1— (k—2)E,,| . In case m = 3 this proves the claim. In case m > 3
one has Ea,, ... Ep_2 m, Ty again as fixed components. Deleting them this proves
the claim for m = 4; in case m > 4 one continues.

For curves I'Y of P we need to investigate canonical adjoint curves containing
intersections of I'* with elements from |L — E}| (in terms of linear systems : containing
a sum of divisors from g; ). For a general element R of |L — E;| the intersection of R
with an element I';,, of P not containing F},, are k different points. The intersection
multiplicity with an element of Py is k —2<k. Therefore an element of P, containing
this intersection of I';;, and R contains R as a component. Taking x general elements
Ry,... ,R; in |L — E| , the elements of P, containing (R;U...UR;)N[,, have
Ri,...,R; as components. Deleting R;,... ,R, we obtain P, = [(km —2 —m —
z)L—(k(m—-1)-m—z)E, — (k—2)E; — ... — (k—2)E,]| . O

Claim 3.2. Write x = lm +y with —1 < y < m — 2. Then P!, = P,+(fixed
components) with P, = |(km — (l+1)m —y—2)L — (k(m - 1) = (I + 1)m + 1 —
YE, —(k—1—-2)Ey—...— (k—1—2)Ey,| . (We do not claim that P, has no more
fixed components.)

Proof. First, take 0 < z < m — 2, hence ¢ = y and | = 0. Then P, = P, and
there is nothing to prove.

Next, take z =m — 1, hence [ = 1; y = —1. Then (Elm.P;n_l) = —1 (the inter-
section number of F,,, with elements of P'm_l), therefore F,, is a fixed component
of P;n_l. Deleting E;,, we obtain P, ;.
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More general, for any z > m the curve Ej,, is a fixed component of P’,. Deleting
Eym we obtain [(km —2—-m —2)L — (k(m—1)—m —z+ 1)E; — (k- 3)Es —
...—(k—3)En,| . In case m < z<2m — 1 this is P,. For x = 2m — 1 (hence [ = 2;

y = —1) the intersection number of Ej,, with that linear system is —1, hence FEj,,
is a fixed component. Deleting E;,, one obtains Ps,,_;. Continuing in this way one
proves the claim. O

REMARK 3.3. Taking z = (k—2)m+m — 2 (hence | =k — 2; y = m — 2) one
finds P(x_2ym4+m—2 = 0. For > (k —2)m +m — 1 one finds P, = 0.

Given 0 < z < (k —2)m +m — 2 define the integer j by means of the inequalities
G-1ym-1<z<jm—-1withj<k-1.

Claim 34. dim(P,) = {0 m_14(z—(j—1)m+1)j—ka EUmk=2kt2_q

Proof. In case z = (k — 1)m — 2 we have to prove dim(P (x_1)m—2) = 0. This
follows from Remark 3.3.

Now, fix some z<(k—1)m—2 and assume the claim is proved for z+1 instead of
z. Writing z = Im+y with —1 <y < m—2, from the description in Claim 3.2 we find
dim(P,)>[(km—(I+1)m—y+1))(km—(I+1)m—-y—2)]/2—[(k(m—1)—(I+1)m+
I—y+1)(k(m-1)-(+1)m+l-y)]/2—[(m—1)(k—1—1)(k—1—2)]/2. A computation
shows us that we need to prove equality. Assume for  we have strict inequality. For
R € |L—E;| we have (R.P;) = k—1—2, hence R imposes at most k—!—1 conditions
on P,. This implies dim(|P,— (L — E;)|) > dim(P;)—(k—[—1). In case y = m—2
one finds ((P; — (L— E1)).E1m)<0, hence dim(|Py — (L — E)) — E1pm|)>dim(P) —
(k—1-1). But |P, — (L — Ey) — E1;n| = Pyy1. One more computation shows that
dim(Py41) > dim(P,) — (k — 1 — 1) gives a contradiction to the assumption that the
claim holds for P,;. In case y<m — 2 then |P, — (L — E1)| = P,4; and again, a
computation shows a contradiction.

On X,, we constructed the rational irreducible curve I';,, belonging to P. From
Claim 2.1 we know that I',,, is a nodal curve, so it has go := [(k? — k)m — 2k + 2]/2
ordinary nodes. We write s to denote a node of I'y,. O

Claim 3.5. We can arrange the nodes si;...;Sqo is such a way that the following
property holds. First we introduce some notation: for 0<6<go let P (s1;...;85) =
{TeP, : s;el for 1<i<d§}. Then P(s1;...;85) = 0 for 6>dim(P,) and
dim(Py(s1;... ; 85)) = dim(P,) — 8 if 6 < dim(Py).

Proof. For § = 0 there is nothing to prove.

Fix §>0 and assume the claim holds for § — 1 instead of §. So, we assume a suited
arrangement S;;... ; Ss—1 for a suitable part of the set of the nodes. We have to prove
that the set of the remaining nodes of I',, contains a suited one to be numbered s5.
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Numbers z satisfying § — 1> dim(P,) impose no conditions on ss. Let zo be the
minimal number such that §—1 < dim(P,). We know that dim(P,(s1;... ;S5-1)) =
dim(Py,)—(6—1)>0. If each element of Py (s1;... ;S5—1) would contain all the nodes
of I, then I}, possesses a canonically adjoint curve. Since I}, is a rational curve this
is impossible. Hence, there exists a node s such that dim(Py,(s1;... ;85—1;50)) =
dim(Py,) — & (with Pgo(s1;... ;85-1;80) =0 if § — 1 = dim(P5,)). In case for all
z < xo we find dim(P,(s1;. .. ;85-1;S0)) = dim(P,) — & then we can take sg = 8.

Assume z’'<zq such that dim(P, (s1;... ;S5—1;80)) = dim(P4) — § + 1 while
dim(Py4+1(s1;. . ;86-1;80)) = dim(Py41) — §. Using a general R € |L — E;| and
using the arguments from the proof of Claim 3.4 one finds a contradiction. O

4. Proof of the theorem

Now, we finish the proof of the theorem in the introduction. We start with the
rational irreducible nodal curve I',, on X,,. We make an arrangement of the nodes
as in Claim 3.5. The main result in Section 2 of [8] implies that there exists a 1-
dimensional flat family Y — T of curves on X, belonging to P such that the fiber
over a special point ¢y of T is the curve I',, and a general fiber is a nodal curve '
with exactly go — g nodes such that those nodes specialize to the nodes si;... ;5g,—g
on I'y,. Define P, = {D € P, : D contains the nodes of I'}. Clearly dim(P,r) >
dim(Py) — (go — g). For the special fiber I',;, we have P (s1;... ;Sgo—g) = 0 if go —
g>dim(P;) and dim(Pg(s1;. .. ;8g,—g)) = dim(Pz)—(go—g) if go—g < dim(Py).
Semicontinuity implies P, = @ if go — g> dim(P;) and dim(P, ) = dim(P;) —
(9o — g) if go — g < dim(P;). Let C be the normalization of I'. It is a smooth curve
of genus g. The linear system |L — E;| induces a linear system gi on C without base
points. Taking z general elements R;;...; R, in |L — E;| corresponds to taking z
general divisors in gj. From the description of P, in 3.2 we find that dim(P, ) is
equal to the dimension of canonically adjoint curves I" containing the intersection of "
with R;U...UR, hence it is equal to dim(| K¢ —zgj|). In particular, if P, = 0 then
|Kc —zgi| = 0. So, we find |[K¢ —zgi| = 0 if go — g> dim(P,); dim(|K¢ — zgi|) =
dim(Pg) — (go — 9) if go — g < dim(P;). Using 3.4 and the Riemann-Roch Theorem
one finds dim(|zgi|) = max{lﬁg—l)m —1+4(z—(j—1)m+1)j;kz— g}. In particular
dim(|(m — 1)gi|) = m — 1 and dim(|mg}|) = m + 1. Since T is obtained from C
using a linear subsystem of |mgi| , one also finds |mg}| is birationally very ample.
This finishes the proof of the theorem. ]
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