Nagase, M. and Yoshida, M. Osaka J. Math. **36** (1999), 919-933

COMMUTATOR ESTIMATES AND A SHARP FORM OF GÅRDING'S INEQUALITY

MICHIHIRO NAGASE AND MANABU YOSHIDA

(Received November 28, 1997)

0. Introduction

In the present paper we show a commutator estimate of pseudo-differential operators in the framework of $L^2(\mathbb{R}^n)$. As an application we give a sharp form of Gårding's inequality for sesqui-linear forms with coefficiencients in \mathcal{B}^2 . There has been similar kinds of commutator estimates. In [5], Kumano-go and Nagase obtain a result on commutator estimates and used it to show a sharp form of Gårding's inequality for sesqui-linear form defined by elliptic differential operators of the form

$$B[u,v] = \sum_{|lpha| \le m, |eta| \le m} (a_{lphaeta}(x) D_x^{lpha} u, D_x^{eta} v)$$

where the coefficients $a_{\alpha\beta}(x)$ are $\mathcal{B}^2(\mathbb{R}^n)$ functions.

In [3], Koshiba shows a sharp form of Gårding's inequality for the form

$$B[u,v] = (p(X, D_x)u, v)$$

where the symbol $p(x, \xi)$ of the operator $p(X, D_x)$ is \mathcal{B}^2 smooth in space variable x and homogeneous in covariable ξ , and used the sharp form of Gårding's inequality to the study of the stability of difference schemes for hyperbolic initial problems. On the other hand in [2], N. Jacob shows Gårding's inequality for the form

$$B[u,v] = \sum_{i,j=1}^{m} \int_{\mathbb{R}^n} \overline{a_{i,j}(x)Q_j(D)u(x)}P_i(D)v(x)dx$$

where $P_i(D)$ and $Q_j(D)$ are pseudo-differential operators, and $a_{i,j}(x)$ are non-smooth functions. The symbol class of the present paper is similar to the one in [2].

In section 1, as a preliminary we give definitions and fundamental facts of pseudodifferential operators. In section 2 we treat commutator estimates and give the main theorem relative to the commutator estimate. Finally in section 3 we give the sharp form of Gårding's inequalities for our class of operators.

1. Preliminaries

Let $\alpha = (\alpha_1, ..., \alpha_n)$ and $\beta = (\beta_1, ..., \beta_n)$ be multi-integers. We denote

$$|\alpha| = \alpha_1 + \ldots + \alpha_n$$

We denote n-dimensional partial differential operators by

$$\partial_{\xi}=(\frac{\partial}{\partial\xi_1},...,\frac{\partial}{\partial\xi_n}) \quad \text{and} \quad D_x=\frac{1}{i}\partial_x=\frac{1}{i}(\frac{\partial}{\partial x_1},...,\frac{\partial}{\partial x_n})$$

Then for a function $f(x, \xi)$, we denote

$$\partial_{\xi}^{\alpha} D_x^{\beta} f(x,\xi) = f_{(\beta)}^{(\alpha)}(x,\xi)$$

and

$$\partial^{lpha}_{\xi} D_{x^{\prime}}{}^{eta} D_{x^{\prime}}{}^{eta^{\prime}} f(x,\xi,x^{\prime}) = f^{(lpha)}_{(eta,eta^{\prime})}(x,\xi,x^{\prime})$$

for a function $f(x,\xi,x')$. We denote by $\mathcal{B}^k = \mathcal{B}^k(\mathbb{R}^n)$ the set of k-times continuously differentiable functions on \mathbb{R}^n which are bounded with all upto k-th derivatives. We denote by $C_0^{\infty}(\mathbb{R}^n)$ the set of C^{∞} -smooth functions with compact support. Moreover S denotes the Schwartz space of rapidly decreasing functions on \mathbb{R}^n . Let λ be a real valued smooth function on \mathbb{R}^n satisfying

(i)
$$\lambda(\xi) \ge 1$$

(ii) $|\lambda^{(\alpha)}(\xi)| \le C_{\alpha}\lambda(\xi)^{1-|\alpha|}$

for any α . Then we say that the function $\lambda(\xi)$ is a basic weight function(see [5]).

Let $\lambda(\xi)$ be a basic weight function. Then we say that a function $p(x,\xi,x')$ on $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n$ belongs to $S^m_{\rho,\delta,\lambda}$ if

$$|p_{(\beta,\beta')}^{(\alpha)}(x,\xi,x')| \le C_{\alpha,\beta,\beta'}\lambda(\xi)^{m-\rho|\alpha|+\delta|\beta+\beta'|}$$

for any multi-integers α , β and β' . For any $p(x, \xi, x')$ in $S^m_{\rho, \delta, \lambda}$, we define the pseudodifferential operator $p(X, D_x, X')$ by

$$p(X, D_x, X')u(x) = \frac{1}{(2\pi)^n} \iint e^{i(x-x')\cdot\xi} p(x, \xi, x')u(x')dx'd\xi$$

for any u in S. In the present paper the integrations $\int are taken on \mathbb{R}^n$. In particular if $p(x,\xi,x') \in S^m_{\rho,\delta,\lambda}$ is independent in x', that is, $p(x,\xi) \in S^m_{\rho,\delta,\lambda}$, the operator $p(X,D_x)$ is defined, as usual, by

$$p(X,D_x)u(x) = rac{1}{(2\pi)^n}\int e^{ix\cdot\xi}p(x,\xi)\hat{u}(\xi)d\xi$$

where $\hat{u}(\xi)$ denotes the Fourier transform of u(x), that is,

$$\hat{u}(\xi) = \int e^{-ix'\cdot\xi} u(x')dx'$$

For any functions f(x) and g(x) on \mathbb{R}^n , we define the inner product of $L^2(\mathbb{R}^n)$ by

$$(f,g) = \int f(x)\overline{g(x)}dx$$

and denote the usual L^2 norm of function f(x) by

$$||f|| = \{\int |f(x)|^2 dx\}^{\frac{1}{2}}$$

For any real number s and $u \in S$, we define the norm $||u||_{s,\lambda}$ by

$$\begin{split} ||u||_{s,\lambda} &= \{\int |\lambda(D_x)^s u(x)|^2 dx\}^{\frac{1}{2}} \\ &= \{\frac{1}{(2\pi)^n} \int |\lambda(\xi)^s \hat{u}(\xi)|^2 d\xi\}^{\frac{1}{2}} \end{split}$$

In particular if s = 0, the norm $|| \cdot ||_{s,\lambda}$ coincides with usual L^2 norm $|| \cdot ||$.

The space $H_{s,\lambda}$ is defined by the completion of the space S by the norm $|| \cdot ||_{s,\lambda}$. It is not difficult to see that the space $H_{s,\lambda}$ is a Hilbert space.

Let s and m be real numbers. For a symbol $p(x, \xi, x')$ in $S^m_{a, \delta, \lambda}$, we have

$$||p(X, D_x, X')u||_{s,\lambda} \le C||u||_{s+m,\lambda}$$

for any u in S (see [5]).

2. Estimates of commutators

Let us consider commutators of pseudo-differential operators in $L^2(\mathbb{R}^n)$. The estimates is essential for the proof of sharp Gårding's inequality. However the estimates itself are interesting subject.

Let $0 \le \delta < 1$ and $\lambda(\xi)$ be a basic weight function and $\phi(x)$ be an even function in $C_0^{\infty}(\mathbb{R}^n)$ satisfying $\int \phi(x) dx = 1$. For a function b(x) on \mathbb{R}^n , we define

$$ilde{b}(x,\xi) = \int \phi(z) b(x-\lambda(\xi)^{-\delta}z) dz$$

Then in [5], the following approximation theorem is shown.

Lemma 2.1. If b(x) is a bounded function, then $\tilde{b}(x,\xi)$ belongs to $S^0_{1,\delta,\lambda}$. (i) If b(x) is a function in \mathcal{B}^1 , then $\tilde{b}_{(\alpha)}(x,\xi)$ belongs to $S^0_{1,\delta,\lambda}$ for $|\alpha| \leq 1$ and we have

$$||\{b(X) - b(X, D_x)\}u|| \le C||u||_{-\delta, \lambda}$$

for any u in S.

(ii) If b(x) is a function in \mathcal{B}^2 , then $\tilde{b}_{(\alpha)}(x,\xi)$ belongs to $S^0_{1,\delta,\lambda}$ for $|\alpha| \leq 2$ and we have

$$||\{b(X) - \widetilde{b}(X, D_x)\}u|| \leq C||u||_{-2\delta,\lambda}$$

for any u in S.

From Lemma 2.1 we can prove the following lemma 2.2.

Lemma 2.2. (i) If b(x) is in \mathcal{B}^1 , then we have

$$||\{b(X) - \hat{b}(X, D_x)\}u||_{\delta, \lambda} \le C||u||$$

for any u in S.

(ii) If b(x) is a \mathcal{B}^2 , then we have

$$||\{b(X) - \tilde{b}(X, D_x)\}u||_{2\delta, \lambda} \le C||u||$$

for any u in S.

Proof. We prove (i), and (ii) can be shown in a similar way. For any u and v in S, we have

$$(\{b(X) - \tilde{b}(X, D_x)\}u, v) = (u, \{\bar{b}(X) - \bar{b}(D_x, X')\}v)$$

where $\bar{b}(\xi, x') = \overline{\tilde{b}(x', \xi)}$. Then by using the asymptotic expansion formula of pseudodifferential operators (see, for example [4]), we have

$$\bar{b}(D_x, X') = \tilde{b}(X, D_x) + b_1(X, D_x)$$

where

$$b_1(x,\xi) = \sum_{j=1}^N \sum_{|\alpha|=j} \frac{1}{\alpha!} \tilde{b}_{(\alpha)}^{(\alpha)}(x,\xi) + R_N(x,\xi) \quad \text{and} \ R_N(x,\xi) \in S_{1,\delta,\lambda}^{-N(1-\delta)}$$

Since $b(x) \in \mathcal{B}^1$, we can see by Lemma 2.1 (i) that

$$ilde{b}^{(lpha)}_{(lpha)}(x,\xi)\in S^{-(1-\delta)|lpha|-\delta}_{1,\delta,\lambda} \quad ext{for } |lpha|
eq 0$$

Hence taking N sufficiently large we can see

$$b_1(x,\xi)\in S^{-1}_{1,\delta,\lambda}$$

Using Lemma 2.1 (i) and the boundedness of pseudo-differential operators we have

$$||\{\bar{b}(X) - \bar{b}(D_x, X')\}v|| \le C||\{b(X) - \bar{b}(X, D_x)\}v|| + ||b_1(X, D_x)v|| \le C||v||_{-\delta,\lambda}$$

Therefore by Schwarz inequality and duality argument of the spaces $H_{s,\lambda}$, we have the estimate.

In order to show the main estimate in this section, the following theorem plays an essential role.

Theorem 2.3. Let b(x) be a function in \mathcal{B}^2 , and let $0 \le \delta < 1$. For a basic weight function $\lambda(\xi)$ we define a symbol $\tilde{b}(x,\xi)$ by

$$\tilde{b}(x,\xi) = \int \phi(z)b(x-\lambda(\xi)^{-\delta}z)dz$$

where $\phi(x)$ is an even function in S with $\int \phi(x) dx = 1$. Then for any $s \in [0, 2\delta]$ we have

$$||\{b(X) - \tilde{b}(X, D_x)\}u||_{s,\lambda} \le C||u||_{s-2\delta,\lambda}$$

for any u in S.

Proof. For the proof, we use the three line theorem in complex analysis. Let u and v be functions in S and we consider the complex function

$$f(z) = (\lambda(D_x)^{2\delta(1-z)} \{ b(X) - \tilde{b}(X, D_x)\lambda(D_x)^{2\delta z} u, v)$$

Since u and v are in S and $\lambda(\xi) \ge 1$, it is clear that the function f(z) is holomorphic in the complex $z = \sigma + i\tau$ -plane \mathbb{C} . Since the symbol $\lambda(\xi)^z$ is in $S_{1,0,\lambda}^{\text{Re}z}$, independent of x and $|\lambda(\xi)^{i\tau}| = 1$, we can see from the Lemma 2.1 and 2.2 that

$$\begin{aligned} |f(i\tau)| &\leq ||\lambda(D_x)^{2\delta} \{b(X) - b(X, D_x)\}\lambda(D_x)^{2i\delta\tau} u|| \; ||v|| \leq C||u|| \; ||v|| \\ |f(1+i\tau)| &\leq ||\{b(X) - \tilde{b}(X, D_x)\}\lambda(D_x)^{2\delta(1+i\tau)} u|| \; ||v|| \leq C||u|| \; ||v|| \end{aligned}$$

~ . .

Hence from the three line theorem (see [7]), we have

$$|f(\sigma)| \le C ||u|| ||v||$$

for $0 < \sigma < 1$. Taking $\sigma = 1 - \frac{s}{2\delta}$, we have

$$|(\lambda(D_x)^s \{b(X) - \tilde{b}(X, D_x)\}\lambda(D_x)^{-s+2\delta}u, v)| \le C||u|| ||v||$$

for any u and v in S. Hence using the usual duality argument, we can get the inequality.

Theorem 2.3 implies the following estimate.

Theorem 2.4. Let b(x) be a function in \mathcal{B}^2 and let $a(\xi)$ in $S^s_{1,0,\lambda}$ with 0 < s < 1. Then we have

(2.1)
$$||[a(D_x), b(X)]u||_{0,\lambda} \le C||u||_{s-1,\lambda}$$

for any u in S.

Proof. We take an even function $\phi(x)$ in $C_0^{\infty}(\mathbb{R}^n)$ such that $\int \phi(x) dx = 1$. For b(x) we define a symbol $\tilde{b}(x,\xi)$ by

$$ilde{b}(x,\xi) = \int \phi(z) b(x-\lambda(\xi)^{-\delta}z) dz$$

for $s < \delta = \frac{1+s}{2} (< 1)$. We write

$$\begin{split} [a(D_x), b(X)] u &= a(D_x) \{ b(X) - \tilde{b}(X, D_x) \} u(x) \\ &+ a(D_x) \tilde{b}(X, D_x) u(x) - \tilde{b}(X, D_x) a(D_x) u(x) \\ &+ \{ b(X) - \tilde{b}(X, D_x) \} a(D_x) u(x) \end{split}$$

Since $a(\xi) \in S^s_{1,0,\lambda}$, we can see that the first term can be estimated by

$$||a(D_x)\{b(X) - \tilde{b}(X, D_x)\}u(x)||_{0,\lambda} \le C||\lambda(D_x)^s\{b(X) - \tilde{b}(X, D_x)\}u(x)||_{0,\lambda} \le C||\lambda(D_x)^s \||_{0,\lambda} \le C||\lambda(D$$

and therefore by Theorem 2.3 we have

(2.2)
$$||a(D_x)\{b(X) - \tilde{b}(X, D_x)\}u(x)||_{0,\lambda} \le C||u||_{s-2\delta,\lambda} \le C||u||_{s-1,\lambda}$$

The third term is estimated by Lemma 2.1(ii) and we have

(2.3)
$$\begin{aligned} ||\{b(X) - \tilde{b}(X, D_x)\}a(D_x)u(x)|| &\leq C||a(D_x)u||_{-2\delta,\lambda} \\ &\leq C||a(D_x)u||_{s-1,\lambda} \end{aligned}$$

The second term is estimated by the usual asymptotic expansion formula for pseudodifferential operators (see [4]), that is, we have

$$a(D_x)b(X, D_x) = b_L(X, D_x)$$

and

$$b_L(x,\xi) \sim \tilde{b}(x,\xi)a(\xi) + \sum_{j=1}^{\infty} b_j(x,\xi)$$

 $b_j(x,\xi) = \sum_{|lpha|=j} rac{1}{a!} \tilde{b}_{(lpha)}(x,\xi)a^{(lpha)}(\xi)$

Since the symbols $\tilde{b}_{(\alpha)}(x,\xi)$ belong to $S^0_{1,\delta,\lambda}$ for $|\alpha| \leq 2$, we can see that $b_1(x,\xi) \in S^{s-1}_{1,\delta,\lambda}$ and $b_j(x,\xi) \in S^{s-j+(j-2)\delta}_{1,\delta,\lambda}$ for $j \geq 2$. Hence we can write

$$a(D_x)\tilde{b}(X,D_x)u - \tilde{b}(X,D_x)a(D_x)u = B_1(X,D_x)u$$

where $B_1(x,\xi)$ belongs to $S_{1,\delta,\lambda}^{s-1}$ Therefore we have

(2.4)
$$\begin{aligned} ||[a(D_x)\tilde{b}(X,D_x) - \tilde{b}(X,D_x)a(D_x)]u(x)|| &\leq ||B_1(X,D_x)u|| \\ &\leq C||u(x)||_{s-1,\lambda} \end{aligned}$$

From the estimates (2.2), (2.3) and (2.4), we have the estimate (2.1).

In particular we have

Corollary 2.5. Let b(x) be a function in \mathcal{B}^2 and let $a(\xi)$ be in $S_{1,0,\lambda}^{\frac{1}{2}}$. Then we have

$$|[a(D_x), b(X)]u||_{0,\lambda} \le C||u||_{-\frac{1}{2},\lambda}$$

for any u in S.

REMARK 1. We note that if the basic weight function $\lambda(\xi) = \langle \xi \rangle = (1 + |\xi|^2)^{\frac{1}{2}}$, we can get more general results for $L^p(\mathbb{R}^n)$ (1 than the ones in this section. $Because in case of <math>\langle \xi \rangle$, we can use the kernel representations of the operators(see [5]). We can see sharper results in [1] than in [5] in the case $\lambda(\xi) = \langle \xi \rangle$.

3. A sharp form of Gårding's inequality

Let us begin with the following inequality, which we can say a sharp form of Gårding's inequality.

Theorem 3.1. Let $\delta < 1$. We assume that a symbol $p(x, \xi)$ in $S^m_{1,\delta,\lambda}$ satisfies that $p_{(\beta)}(x,\xi)$ are in $S^m_{1,\delta,\lambda}$ for $|\beta| \leq 2$ and

Re
$$p(x,\xi) \ge 0$$

for some constant c_0 . Then we have

$$\operatorname{Re}\left(p(X, D_x)u, \ u\right) \geq -C||u||_{\frac{m-1}{2}, \lambda}^2$$

for any u in S.

For the proof of this theorem 3.1 we use the following lemma

Lemma 3.2. (see [5]) Let τ be a real number. Let $\psi(x)$ be a infinitely smooth function on \mathbb{R}^n , and let $\lambda(\xi)$ be abasic weight function. Then for any α we have

$$\partial_{\xi}^{\alpha}\{\psi(\lambda(\xi)^{\tau}x)\} = \sum_{|\alpha'| \leq |\alpha|} \phi_{\alpha',\alpha}(\xi)\{\lambda(\xi)^{\tau}x\}^{\alpha'}\psi^{(\alpha')}(\lambda(\xi)^{\tau}x)$$

where $\phi_{\alpha',\alpha}(\xi)$ belong to $S_{\lambda,1,0}^{-|\alpha|}$ for all α' with $|a'| \leq |\alpha|$.

Proof of Theorem 3.1. First we note that we can assume that the symbol $p(x,\xi)$ be real-valued. In fact, if a real-valued symbol $r(x,\xi) \in S^m_{1,\delta,\lambda}$ satisfies the same assumption of $p(x,\xi)$ in Theorem 3.1, then we have

$$\operatorname{Re}(ir(X, D_x)u, \ u) = \frac{1}{2} \operatorname{Im}(\{r(X, D_x) - r^*(X, D_x)\}u, \ u)$$

Since the symbol $r(x,\xi)$ is real-valued, by using the expansion formula for the symbol of the formal adjoint operator $r^*(X, D_x)$ we have

$$r^*(x,\xi) \sim r(x,\xi) + \sum_{j=1}^{\infty} \sum_{|\alpha|=j} \frac{1}{\alpha!} r^{(\alpha)}_{(\alpha)}(x,\xi)$$

Therefore using the assumption we have

$$r(x,\xi) - r^*(x,\xi) = R(x,\xi) \in S^{m-1}_{1,\delta,\lambda}$$

From this relation we have

$$\begin{aligned} |\operatorname{Re}(ir(X, D_x)u, u)| &= \frac{1}{2} |\operatorname{Im}(\{r(X, D_x) - r^*(X, D_x)\}u, u)| \\ &= \frac{1}{2} |(R(X, D_x)u, u)| \\ &\leq C ||u||_{\frac{m-1}{2}, \lambda}^2 \end{aligned}$$

Now we assume that the symbol $p(x,\xi)$ is real and non-negative. We take an even and real-valued function $\psi(x)$ in S such that $\int \psi(x)^2 dx = 1$ and we put

$$p_G(x,\xi,x') = \int \psi(\lambda(\xi)^{\frac{1}{2}}(x-z))\psi(\lambda(\xi)^{\frac{1}{2}}(x'-z))p(z,\xi)dz\lambda(\xi)^{\frac{n}{2}}$$

Then using the lemma 3.2 we can see that $p_G(x,\xi,x')$ is in $S^m_{1,\frac{1}{2},\lambda}$ and changing the order of integrations we have

$$\operatorname{Re}(p_G(X, D_x, X')w, w) \ge 0$$

for any $w \in S$ (see [6]). Moreover by using the formula of simplified symbols in [4] for the operator with double symbols we can see that the operator $p_G(X, D_x, X')$ can be written asymptotically as

$$p_G(X, D_x, X') \sim \sum_{j=0}^{\infty} p_j(X, D_x)$$

where $p_j(x,\xi)$ is in $S_{1,\frac{1}{2},\lambda}^{m-\frac{j}{2}}$ for any j and has the form

$$p_j(x,\xi) = \sum_{|\alpha|=j} \frac{1}{\alpha!} p_{G,(\alpha)}^{(\alpha)}(x,\xi,x)$$

In particular, $p_0(x,\xi)$ can be written as

$$p_0(x,\xi) = p_G(x,\xi,x)$$

$$= \lambda(\xi)^{\frac{n}{2}} \int \psi(\lambda(\xi)^{\frac{1}{2}}(x-z))^2 p(z,\xi) dz$$

$$= \lambda(\xi)^{\frac{n}{2}} \int \psi(\lambda(\xi)^{\frac{1}{2}}z)^2 p(x-z,\xi) dz$$

$$= \int \psi(z)^2 p(x-\lambda(\xi)^{-\frac{1}{2}}z,\xi) dz$$

By using the Taylor expansion for the second expression, we have

$$p(x - z, \xi) = p(x, \xi) + \sum_{|\beta|=1} i p_{(\beta)}(x, \xi) z^{\beta} + R_2(z, x, \xi)$$

where the remainder term $R_2(z, x, \xi)$ is

$$R_2(z, x, \xi) = \sum_{|\beta|=2} \frac{-2}{\beta!} \int_0^1 (1-t) z^\beta p_{(\beta)}(x-tz, \xi) dt$$

Since $\psi(z)$ is an even function we see that

$$\int \psi(\lambda(\xi)^{\frac{1}{2}}z)^2 z^\beta dz = 0$$

for $|\beta| = 1$. Therefore we have

$$p_{0}(x,\xi) = \lambda(\xi)^{\frac{n}{2}} \int \psi(\lambda(\xi)^{\frac{1}{2}}z)^{2}p(x,\xi)dz + \lambda(\xi)^{\frac{n}{2}} \int \psi(\lambda(\xi)^{\frac{1}{2}}z)^{2}R_{2}(z,x,\xi) dz$$
$$= p(x,\xi) + \lambda(\xi)^{\frac{n}{2}} \sum_{|\beta|=2} \frac{-2}{\beta!} \int_{0}^{1} (1-t) \int z^{\beta}\psi(\lambda(\xi)^{\frac{1}{2}}z)^{2}p_{(\beta)}(x-tz,\xi) dz$$
$$= p(x,\xi) + r_{2}(x,\xi)$$

From the assumption of the symbol $p(x,\xi)$, the symbols $p_{(\beta)}(x-tz,\xi)$ belong to $S^m_{\lambda,1,\delta}$ for $|\beta| = 2$. Hence using Lemma 3.2, we can see that

$$r_2(x,\xi) = \lambda(\xi)^{\frac{n}{2}} \sum_{|\beta|=2} \frac{-2}{\beta!} \int_0^1 (1-t) \int z^\beta \psi(\lambda(\xi)^{\frac{1}{2}} z)^2 p_{(\beta)}(x-tz,\xi) \, dz$$

is in $S^{m-1}_{\lambda,1,\delta}$. Thus we can write

$$p_0(x,\xi) = p(x,\xi) + r_2(x,\xi)$$

with symbol $r_2(x,\xi)$ in $S^{m-1}_{\lambda,1,\delta}$. Similarly for $|\alpha| = 1$, since

$$p_{G,(\alpha)}^{(\alpha)}(x,\xi,x) = \partial_{\xi}^{\alpha} \{\lambda(\xi)^{\frac{n+1}{2}} \int \psi(\lambda(\xi)^{\frac{1}{2}}z)\psi^{(\alpha)}(\lambda(\xi)^{\frac{1}{2}}z)p(x-z,\xi)dz\}$$

we can see that

$$p_{G,(\alpha)}^{(\alpha)}(x,\xi,x) = \partial_{\xi}^{\alpha} \{\lambda(\xi)^{\frac{n+1}{2}} \int \psi(\lambda(\xi)^{\frac{1}{2}}z)\psi^{(\alpha)}(\lambda(\xi)^{\frac{1}{2}}z)\{p(x,\xi) + R_1(z,x,\xi)\}dz\}$$

where the remainder term $R_1(z, x, \xi)$ is

$$R_1(z, x, \xi) = \sum_{|\beta|=1} i \int_0^1 (1-t) z^\beta p_{(\beta)}(x-tz, \xi) dt$$

Since $\int \psi(z)\psi^{(\alpha)}(z)dz = 0 \text{ for } |\alpha| = 1, \text{ we can see that}$ $p_{G,(\alpha)}^{(\alpha)}(x,\xi,x) = \partial_{\xi}^{\alpha} \{\lambda(\xi)^{\frac{n+1}{2}} \int \psi(\lambda(\xi)^{\frac{1}{2}}z)\psi^{(\alpha)}(\lambda(\xi)^{\frac{1}{2}}z)R_{1}(z,x,\xi) dz\}$ $= \sum_{|\beta|=1} i \int_{0}^{1} (1-t)dt$ $\times \partial_{\xi}^{\alpha} \{\lambda(\xi)^{\frac{n+1}{2}} \int \psi(\lambda(\xi)^{\frac{1}{2}}z)\psi^{(\alpha)}(\lambda(\xi)^{\frac{1}{2}}z)z^{\beta}p_{(\beta)}(x-tz,\xi) dz\}$

for $|\alpha| = 1$. In a similar way to the estimate of $R_2(z, x, \xi)$, we can see from Lemma 3.2 and the assumption of the symbol $p(x, \xi)$ that $p_{1,\alpha}(x, \xi) = p_{G,(\alpha)}^{(\alpha)}(x, \xi, x)$ belongs to $S_{\lambda,1,\delta}^{m-1}$ for $|\alpha| = 1$. Therefore we can see that

$$p_1(x,\xi)\in S^{m-1}_{\lambda,1,\delta}$$

Thus we can write

$$p_G(X, D_x, X') = p(X, D_x) + R(X, D_x) + Q(X, D_x)$$

where $Q(x,\xi) \in S^{m-1}_{\lambda,1,\delta}$ and $R(x,\xi) \in S^{m-1}_{\lambda,1,\frac{1}{2}}$. Now from the L^2 -boundedness theorems and the algebra of pseudo-differential operators with symbols in $\cup_{m \in \mathbb{R}} S^m_{\lambda,1,\delta}$ for any δ with $0 \leq \delta < 1$, we can see that

$$\begin{aligned} |(Q(X, D_x)u, u)| &\leq ||Q(X, D_x)u||_{\frac{-m+1}{2}, \lambda} ||u||_{\frac{m-1}{2}, \lambda} \leq C ||u||_{\frac{m-1}{2}, \lambda}^{2} \\ |(R(X, D_x)u, u)| &\leq ||R(X, D_x)u||_{\frac{-m+1}{2}, \lambda} ||u||_{\frac{m-1}{2}, \lambda} \leq C ||u||_{\frac{m-1}{2}, \lambda}^{2} \end{aligned}$$

Therefore we have

$$\begin{aligned} \operatorname{Re}(p(X,D_x)u, \ u) \\ &= \operatorname{Re}(p_G(X,D_x,X')u, \ u) - \operatorname{Re}(R(X,D_x)u, \ u) - \operatorname{Re}(Q(X,D_x)u, \ u) \\ &\geq -|(Q(X,D_x)u, \ u)| - |(R(X,D_x)u, \ u)| \\ &\geq -C||u||_{\frac{m-1}{2},\lambda}^2 \end{aligned}$$

If a function $\lambda(\xi)$ is a basic weight function, then we can see that for $0 < \rho \le 1$ the fractional power $\lambda(\xi)^{\rho}$ is also a basic weight function. Using this fact and Theorem 3.1 we have

Corollary 3.3. Let $0 \leq \delta < \rho \leq 1$. We assume that a symbol $p(x,\xi)$ in $S^m_{\rho,\delta,\lambda}$ satisfies that $p_{(\beta)}(x,\xi)$ are in $S^m_{\rho,\delta,\lambda}$ for $|\beta| \leq 2$ and

$$\operatorname{Re} p(x,\xi) \geq 0$$

Then we have

$$\operatorname{Re}\left(p(X, D_x)u, \ u\right) \geq -C||u||_{\frac{m-\rho}{2}, \lambda}^2$$

for any u in S.

Proof. Since $\lambda(\xi)^{\rho}$ is a basic weight function, we see that

$$S^m_{
ho,\delta,\lambda} = S^{rac{m}{
ho}}_{1,rac{\delta}{
ho},\lambda^
ho}$$

Hence we can see that the symbol $p(x,\xi)$ in Corollary satisfies the assumptions of the one in Theorem 3.1 as the class of symbols in $S_{1,\frac{\delta}{\sigma},\lambda^{\rho}}^{\frac{m}{\rho}}$. Therefore we see that

$$\operatorname{Re} \left(p(X, D_x) u, \ u \right) \geq -C ||u||_{\left(\frac{m}{\rho} - 1\right)/2, \lambda^{\rho}}^{2}$$
$$= -C ||u||_{\frac{m-\rho}{2}, \lambda}^{2}$$

REMARK 2. Let $0 < \rho < 1$. Then we can show a similar sharp form of Garding's inequality to Theorem 3.1, under the assumption that the symbol $p(x,\xi)$ belongs to $S^m_{\rho,\rho,\lambda}$ and $p_{(\beta)}(x,\xi)$ belongs to $S^m_{\rho,\rho,\lambda}$ for any β with $|\beta| \leq 2$, by using the similar approximation $p_G(x,\xi,x')$ defined by

$$p_G(x,\xi,x') = \int \psi(\lambda(\xi)^{\frac{\rho}{2}}(x-z))\psi(\lambda(\xi)^{\frac{\rho}{2}}(x'-z))p(z,\xi)dz\lambda(\xi)^{\frac{n\rho}{2}}$$

and L^2 -boundedness theorem (Theorem of Calderon and Vaillancourt, see [4]) of operators with symbols in $S^0_{\rho,\rho,\lambda}$.

Now using the commutator estimates in section 2 we can show the following sharp form of Garding's inequality.

Theorem 3.4. Let $a_j(\xi)$ and $c_j(\xi)$ be in $S^m_{1,0,\lambda}$ and let $b_j(x)$ be \mathcal{B}^2 functions for j = 1, ..., N. We assume that

$$\operatorname{Re}\sum_{j=1}^{N}a_{j}(\xi)b_{j}(x)c_{j}(\xi)\geq 0$$

Then there exists a positive constant C such that

$$\operatorname{Re}\sum_{j=1}^{m} (b_j(X)a_j(D_x)u, \ c_j(D_x)u) \ge -C||u||_{m-\frac{1}{2},\lambda}^2$$

for any $u \in S$.

Proof. We set $\tilde{a}_j(\xi) = \lambda(\xi)^{-m+\frac{1}{2}}a_j(\xi)$ and $\tilde{c}_j(\xi) = \lambda(\xi)^{-m+\frac{1}{2}}c_j(\xi)$. From the assumption we see that $\tilde{a}_j(\xi)$ and $\tilde{c}_j(\xi)$ are in $S_{1,0,\lambda}^{\frac{1}{2}}$. So writing

$$\sum_{j=1}^{N} (b_j(X)a_j(D_x)u, \ c_j(D_x)u) = \sum_{j=1}^{N} (b_j(X)\tilde{a_j}(D_x)\lambda(D_x)^{m-\frac{1}{2}}u, \ \tilde{c_j}(D_x)\lambda(D_x)^{m-\frac{1}{2}}u)$$

we put

(3.1)
$$\sum_{j=1}^{N} (b_j(X)a_j(D_x)u, \ c_j(D_x)u) = \sum_{j=1}^{N} (b_j(X)\tilde{c_j}(D_x)\tilde{a_j}(D_x)v, \ v) + \sum_{j=1}^{N} ([\tilde{c_j}(D_x), b_j(X)]\tilde{a_j}(D_x)v, \ v) = I + II$$

where $v = \lambda(D_x)^{m-\frac{1}{2}}u$. Since $\tilde{a}_j(\xi)$ and $\tilde{c}_j(\xi)$ are in $S_{1,0,\lambda}^{\frac{1}{2}}$, using the commutator estimate in Corollary 2.5 we can see that

 $||[\tilde{c_j}(D_x), b_j(X)]\tilde{a_j}(D_x)v|| \le C||v|| = C||u||_{m-\frac{1}{2},\lambda}$

Hence the second term II of (3.1) can be estimated by

$$|II| \le \sum_{j=1}^{N} |([\tilde{c}_{j}(D_{x}), b_{j}(X)]\tilde{a}_{j}(D_{x})v, v)| \le C ||u||_{m-\frac{1}{2}, \lambda}^{2}$$

Now we consider the operator

$$p(X, D_x) = \sum_{j=1}^{N} b_j(X) \tilde{c}_j(D_x) \tilde{a}_j(D_x)$$

with symbol

$$p(x,\xi) = \sum_{j=1}^{N} b_j(x)\tilde{c}_j(\xi)\tilde{a}_j(\xi)$$

M. NAGASE AND M. YOSHIDA

For the symbol $p(x,\xi)$ we define a new symbol $\tilde{p}(x,\xi)$ by

$$egin{aligned} ilde{p}(x,\xi) &= \int \phi(y) p(x-\lambda(\xi)^{-rac{1}{2}}y,\xi) dy \ &= \int \phi(\lambda(\xi)^{rac{1}{2}}(x-y)) p(y,\xi) dy \lambda(\xi)^{rac{n}{2}} \end{aligned}$$

where $\phi(x)$ is a non-negative function in $C_0^{\infty}(\mathbb{R}^n)$ with $\int \phi(x)dx = 1$. Then by Lemma 2.1 (ii) we can see that the symbol $\tilde{p}(x,\xi)$ belongs to $S_{1,\frac{1}{2},\lambda}^1$, $\tilde{p}_{(\beta)}(x,\xi)$ belongs to $S_{1,\frac{1}{2},\lambda}^1$ for any $|\beta| \leq 2$ and satisfies

$$||\{p(X, D_x)) - \tilde{p}(X, D_x)\}v|| \le \sum_{j=1}^{N} ||\{b_j(X) - \tilde{b_j}(X, D_x)\}\tilde{c_j}(D_x)\tilde{a_j}(D_x)v||$$

where

$$ilde{b_j}(x,\xi) = \int \phi(y) b_j(x-\lambda(\xi)^{-rac{1}{2}}y) dy$$

Then by Lemma 2.1 (ii) we have

$$||\{b_j(X) - \tilde{b_j}(X, D_x)\}w|| \le C||w||_{-1,\lambda}$$

for any $w \in \mathcal{S}$ and therefore we have

(3.2)
$$\begin{aligned} ||\{p(X,D_x)) - \tilde{p}(X,D_x)\}v|| &\leq C \sum_{j=1}^{N} ||\tilde{c}_j(D_x)\tilde{a}_j(D_x)v||_{-1,\lambda} \\ &\leq C||v|| \end{aligned}$$

Moreover $\tilde{p}(x,\xi)$ satisfies

$$\operatorname{Re} \tilde{p}(x,\xi) \geq 0$$

Thus the symbol $\tilde{p}(x,\xi)$ satisfies the assumption in the Theorem 3.1 with m = 1 and $\delta = \frac{1}{2}$. Therefore we have

$$\operatorname{Re}\left(\tilde{p}(X, D_x)v, \ v\right) \geq -C||u||_{\frac{1}{2}, \lambda}^{2}$$

From (3.1) we see

$$\begin{aligned} \operatorname{Re} \sum_{j=1}^{N} (b_{j}(X)a_{j}(D_{x})u, c_{j}(D_{x})u) &= \operatorname{Re}\{I + II\} \\ &= \operatorname{Re}(\tilde{p}(X, D_{x})v, v) + \operatorname{Re}(\{p(X, D_{x}) - \operatorname{Re}(\tilde{p}(X, D_{x})\}v, v) + II) \\ &\geq -||\{p(X, D_{x}) - \operatorname{Re}(\tilde{p}(X, D_{x})\}v|| \cdot ||v|| - |II| \\ &\geq -C||v||^{2} \end{aligned}$$

Hence we have the theorem.

 R. R. Coifman and Y. Meyer: Au delà des opérateurs pseudo-différentiels, Astérisque, Soc. Math. de France 57 (1978).

References

- [2] N.Jacob: A Gårding inequality for certain anisropic pseudo-differential operators with non-smooth symbols, Osaka J. Math. 26 (1989), 857–879.
- [3] Z. Koshiba: Algebras of pseudo-differential operators, J. Fac. Sci. Univ. Tokyo 17 (1970), 31-50.
- [4] H.Kumano-go: Pseudo-differential operators, MIT Press, Cambridge, 1981.
- [5] H.Kumano-go and M.Nagase: Pseudo-Differential Operators with Non-Regular Symbols and Applications, Funkcial. Ekvac. 21 (1978), 151–192.
- [6] M.Nagase: A New Proof of Sharp Gårding Inequality, Funkcial. Ekvac. 20 (1977) 259-271,
- [7] E.M.Stein and G.Weiss: Introduction to Fourier Analysis on Euclidian Space, Princeton University Press, Princeton, 1971.

M. Nagase

Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, 560, Japan e-mail: nagase@math.wani.osaka-u.ac.jp

M. Yoshida Isogo engineering center, Toshiba Co., Yokohama, Japan e-mail : manabu@rdec.iec.toshiba.co.jp 933