ON THE EULER CHARACTERISTIC OF THE ORBIT SPACE OF A PROPER Γ -COMPLEX

Dedicated to Professor Fuichi Uchida on his 60th birthday

TOSHIYUKI AKITA *

(Received November 17, 1997)

1. Introduction

Let Γ be a discrete groups. A Γ -CW-complex X is said to be Γ -finite if it satisfies the following two conditions:

- 1. For each cell σ of X, the isotropy subgroup Γ_{σ} of σ is of finite order.
- 2. The orbit space X/Γ is a finite complex.

In other words, X is Γ -finite if the action of Γ on X is *proper* and *cocompact*. For a Γ -finite Γ -CW-complex X, define the *equivariant Euler characteristic* $e(\Gamma, X)$ by

$$e(\Gamma, X) = \sum_{\sigma \in \mathcal{E}} (-1)^{\dim \sigma} \frac{1}{|\Gamma_{\sigma}|} \in \mathbb{Q},$$

where \mathcal{E} is a set of representatives of Γ -orbits of cells of X and $|\Gamma_{\sigma}|$ is the order of Γ_{σ} . We agree $e(\Gamma,X)=0$ when $X=\emptyset$. The equivariant Euler characteristic and its variants appear in various contexts of mathematics. See [3, 4, 9, 11] for instance. In particular, when X is a manifold, the orbit space X/Γ can be regarded as an orbifold and $e(\Gamma,X)$ is the *orbifold Euler characteristic* of X/Γ in the sense of [11].

In this paper, we prove the formula expressing the Euler characteristic of the orbit space of a Γ -finite Γ -CW-complex in terms of equivariant Euler characteristics. More precisely, let X be a Γ -finite Γ -CW-complex. For each $\gamma \in \Gamma$, the centralizer $C_{\Gamma}(\gamma)$ acts on the fixed point set X^{γ} . In this way X^{γ} is naturally a $C_{\Gamma}(\gamma)$ -finite $C_{\Gamma}(\gamma)$ -CW-complex and hence $e(C_{\Gamma}(\gamma), X^{\gamma})$ is defined for each $\gamma \in \Gamma$. Our result is:

Theorem 1. Let Γ be a discrete group, and X a Γ -finite Γ -CW-complex. Then

(1)
$$\chi(X/\Gamma) = \sum_{\gamma \in \mathcal{F}(\Gamma)} e(C_{\Gamma}(\gamma), X^{\gamma}),$$

^{*}The author is supported by Grand-in-Aid for Encouragement of Young Scientists (No. 09740072), the Ministry of Education, Science, Sports and Culture.

where $\mathcal{F}(\Gamma)$ is a set of representatives of conjugacy classes of elements of finite order in Γ .

Note that there are finitely many γ 's in $\mathcal{F}(\Gamma)$ with $X^{\gamma} \neq \emptyset$ and hence the summation in (1) makes sense.

In case a Γ -finite Γ -CW-complex X is a smooth Γ -manifold, then X^{γ} is a submanifold of X for each $\gamma \in \Gamma$ of finite order, so that the terms $e(C_{\Gamma}(\gamma), X^{\gamma})$ in (1) can be regarded as orbifold Euler characteristics of orbifolds $X^{\gamma}/C_{\Gamma}(\gamma)$. Thus Theorem 1 gives the expression of the Euler characteristic of X/Γ in terms of orbifold Euler characteristics of $X^{\gamma}/C_{\Gamma}(\gamma)$.

When Γ is a finite group, a Γ -finite Γ -CW-complex is simply a finite Γ -CW-complex, and Theorem 1 implies

(2)
$$\chi(X/\Gamma) = \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} \chi(X^{\gamma}).$$

Thus Theorem 1 is a generalization of the well-known equation (2) for finite group actions. For the direct proof of the equation (2), see [6, p. 225].

If Γ is virtually torsion-free and X is a Γ -finite Γ -CW-complex such that X^{γ} is nonempty and \mathbb{Q} -acyclic for every element $\gamma \in \Gamma$ of finite order, then $e(C_{\Gamma}(\gamma), X^{\gamma})$ coincides with the Euler characteristic $\chi(C_{\Gamma}(\gamma))$ of the group $C_{\Gamma}(\gamma)$ for every $\gamma \in \Gamma$ of finite order, and Theorem 1 reduces to the following formula due to K. S. Brown (cf. [5, p. 261]):

$$\sum_{i} (-1)^{i} \dim_{\mathbb{Q}} H_{i}(\Gamma, \mathbb{Q}) = \sum_{\gamma \in \mathcal{F}(\Gamma)} \chi(C_{\Gamma}(\gamma)).$$

The rest of this paper is organized as follows. In $\S 2$, we introduce Hattori-Stallings ranks of finitely generated projective $\mathbb{Q}\Gamma$ -modules, where $\mathbb{Q}\Gamma$ denotes the rational group algebra of Γ .

When X is a Γ -finite Γ -CW-complex, its cellular chain groups $C_i(X,\mathbb{Q})$ are finitely generated projective $\mathbb{Q}\Gamma$ -modules. In §3, we will see that $e(C_{\Gamma}(\gamma), X^{\gamma})$ can be expressed in terms of Hattori-Stallings ranks of cellular chain groups.

In §4, we will prove Theorem 1. The proof is done by the spectral sequence which converges to the homology of Γ with coefficients in the cellular chain complex $C_*(X,\mathbb{Q})$, together with properties of Hattori-Stallings ranks which will be discussed in §2 and §3.

In the final section §5, we will consider the two special cases where (i) Γ is a finite group or (ii) Γ is virtually torsion-free, and X^{γ} is nonempty and \mathbb{Q} -acyclic for every $\gamma \in \Gamma$ of finite order, both of which are mentioned above.

Throughout this paper, we emply the following conventions unless otherwise stated: Γ is a discrete group and $\mathbb{Q}\Gamma$ is its rational group algebra. A module over $\mathbb{Q}\Gamma$ is understood to be a left $\mathbb{Q}\Gamma$ -module.

2. The Hattori-Stallings rank

The Hattori-Stallings rank was introduced by A. Hattori [8] and J. Stallings [10] and was studied by H. Bass in detail [1]. The reader should refer to [2] and [5, Chapter IX] for further detail of the Hattori-Stallings rank.

Let $\mathbb{Q}\Gamma$ be the rational group algebra of Γ . Define $[\mathbb{Q}\Gamma, \mathbb{Q}\Gamma]$ be the additive subgroup of $\mathbb{Q}\Gamma$ generated by $\alpha\beta - \beta\alpha$ $(\alpha, \beta \in \mathbb{Q}\Gamma)$. Set $T(\mathbb{Q}\Gamma) = \mathbb{Q}\Gamma/[\mathbb{Q}\Gamma, \mathbb{Q}\Gamma]$. It is easy to see that $T(\mathbb{Q}\Gamma)$ is isomorphic to the \mathbb{Q} -linear space spaned by the set of conjugacy classes of elements of Γ , i.e.,

(3)
$$T(\mathbb{Q}\Gamma) \cong \bigoplus_{\gamma \in \mathcal{C}(\Gamma)} \mathbb{Q} \cdot (\gamma),$$

where $\mathcal{C}(\Gamma)$ is a set of representatives of conjugacy classes of elements of Γ and (γ) is the conjugacy class of γ .

Let $\pi: \mathbb{Q}\Gamma \to T(\mathbb{Q}\Gamma)$ be the natural projection. Under the identification (3), π assigns $1 \cdot (\gamma) \in T(\mathbb{Q}\Gamma)$ to $\gamma \in \mathbb{Q}\Gamma$.

Let P be a finitely generated projective $\mathbb{Q}\Gamma$ -module. Then P is a direct summand of a finitely generated free $\mathbb{Q}\Gamma$ -module F. Choose such F and let $p:F\to P$ be the natural projection and $i:P\hookrightarrow F$ the inclusion. By fixing a basis of F, the composite $i\circ p$ can be identified with a square matrix M over $\mathbb{Q}\Gamma$.

DEFINITION. Under these assumptions, the *Hattori-Stallings rank* $r_{\Gamma}(P)$ of a finitely generated projective $\mathbb{Q}\Gamma$ -module P is defined by

$$r_{\Gamma}(P) = \pi(\operatorname{tr} M) \in T(\mathbb{Q}\Gamma),$$

where trM is the trace of M.

Note that $r_{\Gamma}(P)$ is well-defined, i.e., it is independent of various choices made. Under the identification (3), denote by $r_{\Gamma}(P)(\gamma)$ the coefficient of (γ) in $r_{\Gamma}(P)$.

We recall some properties of the Hattori-Stallings rank, which will be used later.

Proposition 2 (cf. [1, $\S 2$ (2.5)]). If P_1 and P_2 are finitely generated projective $\mathbb{Q}\Gamma$ -modules, then

$$r_{\Gamma}(P_1 \oplus P_2) = r_{\Gamma}(P_1) + r_{\Gamma}(P_2).$$

Proposition 3 (cf. [1, §6 (6.3)]). Let Γ' be a subgroup of finite index of Γ , P a finitely generated projective $\mathbb{Q}\Gamma$ -module. Regarding P as a finitely generated projective $\mathbb{Q}\Gamma'$ -modules by the restriction of scalars, one has

$$r_{\Gamma'}(P)(\gamma) = (C_{\Gamma}(\gamma), C_{\Gamma'}(\gamma)) \cdot r_{\Gamma}(P)(\gamma)$$

for all $\gamma \in \Gamma'$, where $(C_{\Gamma}(\gamma), C_{\Gamma'}(\gamma))$ is the index of $C_{\Gamma'}(\gamma)$ in $C_{\Gamma}(\gamma)$.

Let $f: \Gamma_1 \to \Gamma_2$ be a group homomorphism. Let P be a finitely generated projective $\mathbb{Q}\Gamma_1$ -module. Then $\mathbb{Q}\Gamma_2 \otimes_{\mathbb{Q}\Gamma_1} P$ is a finitely generated projective $\mathbb{Q}\Gamma_2$ -modules, where $\mathbb{Q}\Gamma_2$ is regarded as a right $\mathbb{Q}\Gamma_1$ -module via f. Let $T(f): T(\mathbb{Q}\Gamma_1) \to T(\mathbb{Q}\Gamma_2)$ be the homomorphism induced by f.

Proposition 4 (cf. [1, §2 (2.9)]). Under these assumptions, one has

$$r_{\Gamma_2}(\mathbb{Q}\Gamma_2 \otimes_{\mathbb{Q}\Gamma_1} P) = T(f)(r_{\Gamma_1}(P)).$$

In case Γ is a finite group, Hattori-Stallings ranks can be determined by the character:

Proposition 5 (cf. [1, §5 (5.8)]). Let Γ be a finite group. Let V be a $\mathbb{Q}\Gamma$ -module which is finite dimensional over \mathbb{Q} . Then V is finitely generated and projective, and one has

$$r_{\Gamma}(V)(\gamma) = \frac{\chi(\gamma^{-1})}{|C_{\Gamma}(\gamma)|},$$

where $\chi:\Gamma\to\mathbb{Q}$ is the character of V.

3. Hattori-Stallings ranks and equivariant Euler characteristics

Now we consider the equivariant Euler characteristic $e(\Gamma, X)$. First we invoke the following elementary lemma, which may be well-known.

Lemma 6. Let X be a Γ -finite Γ -CW-complex. Then its cellular chain group $C_i(X,\mathbb{Q})$ is a finitely generated projective $\mathbb{Q}\Gamma$ -module.

Proof. $C_i(X, \mathbb{Q})$ has a direct sum decomposition as a $\mathbb{Q}\Gamma$ -module:

(4)
$$C_i(X, \mathbb{Q}) \cong \bigoplus_{\sigma} \mathbb{Q}\Gamma \otimes_{\mathbb{Q}\Gamma_{\sigma}} \mathbb{Q},$$

where σ ranges representatives of Γ -orbits of i-cells of X, Γ_{σ} is the isotropy subgroup of σ , $\mathbb Q$ is regarded as a left $\mathbb Q\Gamma_{\sigma}$ -module with the trivial action of Γ_{σ} , and $\mathbb Q\Gamma$ is regarded naturally as a right $\mathbb Q\Gamma_{\sigma}$ -module. Since X is Γ -finite, each Γ_{σ} is a finite subgroup of Γ , which implies that $\mathbb Q$ is always finitely generated projective $\mathbb Q\Gamma_{\sigma}$ -module (cf. Proposition 5). Thus $\mathbb Q\Gamma\otimes_{\mathbb Q\Gamma_{\sigma}}\mathbb Q$ is a finitely generated projective $\mathbb Q\Gamma$ -module. As the number of Γ -orbits of cells of X is finite, so is the number of direct summands in (4), which yields the lemma.

By Lemma 6, the Hattori-Stallings rank of $C_i(X,\mathbb{Q})$ can be defined.

Lemma 7. Let X be a Γ -CW-complex. Then

$$r_{\Gamma}(C_i(X,\mathbb{Q}))(1) = \sum_{\sigma} \frac{1}{|\Gamma_{\sigma}|},$$

where σ ranges representatives of Γ -orbits of i-cells of X.

Proof. We have

$$\begin{split} r_{\Gamma}(C_i(X,\mathbb{Q}))(1) &= r_{\Gamma}\left(\bigoplus_{\sigma} \mathbb{Q}\Gamma \otimes_{\mathbb{Q}\Gamma_{\sigma}} \mathbb{Q}\right)(1) \quad \text{by (4)} \\ &= \sum_{\sigma} r_{\Gamma}(\mathbb{Q}\Gamma \otimes_{\mathbb{Q}\Gamma_{\sigma}} \mathbb{Q})(1) \qquad \text{by Proposition 2} \\ &= \sum_{\sigma} T(i)(r_{\Gamma_{\sigma}}(\mathbb{Q}))(1) \qquad \text{by Proposition 4,} \end{split}$$

where σ ranges representatives of Γ -orbits of i-cells of X and $T(i): T(\mathbb{Q}\Gamma_{\sigma}) \to T(\mathbb{Q}\Gamma)$ is the map induced by the inclusion $i: \Gamma_{\sigma} \hookrightarrow \Gamma$. From Proposition 5 we conclude

$$T(i)(r_{\Gamma_{\sigma}}(\mathbb{Q}))(1) = r_{\Gamma_{\sigma}}(\mathbb{Q})(1) = \frac{1}{|\Gamma_{\sigma}|},$$

proving the lemma.

By virtue of Lemma 7, we have

(5)
$$e(\Gamma, X) = \sum_{i} (-1)^{i} r_{\Gamma}(C_{i}(X, \mathbb{Q}))(1).$$

Together with the result of K. S. Brown [4], we obtain the relation between the Hattori-Stallings rank of $C_i(X, \mathbb{Q})$ and $e(C_{\Gamma}(\gamma), X^{\gamma})$ as follows:

Proposition 8. Let X be a Γ -finite Γ -CW-complex. Then

(6)
$$e(C_{\Gamma}(\gamma), X^{\gamma}) = \sum_{i} (-1)^{i} r_{\Gamma}(C_{i}(X, \mathbb{Q}))(\gamma)$$

for every $\gamma \in \Gamma$.

Proof. A direct consequence of the equality (5) and [4, Theorem 3.1 (iii)].

4. Proof of Theorem 1

Let X be a Γ -finite Γ -CW-complex. Let $H_*(\Gamma, C_*(X, \mathbb{Q}))$ be the homology of Γ with coefficients in the cellular chain complex $C_*(X, \mathbb{Q})$, which is isomorphic to the Borel homology (equivariant homology) $H_*^{\Gamma}(X, \mathbb{Q})$ (cf. [5, Chapter VII]). Since the isotropy subgroup of every cell of X is finite, the Borel homology of X is isomorphic to the rational homology of the orbit space:

(7)
$$H_*(\Gamma, C_*(X, \mathbb{Q})) \cong H_*^{\Gamma}(X, \mathbb{Q}) \cong H_*(X/\Gamma, \mathbb{Q}).$$

Lemma 9. Let X be a Γ -finite Γ -CW-complex. Then

$$\sum_{i} (-1)^{i} \dim_{\mathbb{Q}} H_{i}(\Gamma, C_{*}(X, \mathbb{Q})) = \sum_{i} (-1)^{i} \dim_{\mathbb{Q}} \mathbb{Q} \otimes_{\mathbb{Q}\Gamma} C_{i}(X, \mathbb{Q}).$$

Proof. Consider the spectral sequence

$$E_{i,j}^1 = H_i(\Gamma, C_i(X, \mathbb{Q})) \Rightarrow H_{i+j}(\Gamma, C_*(X, \mathbb{Q}))$$

(cf. [5, \S VII.5 and \S VII.7]). Since $C_i(X,\mathbb{Q})$ is a projective $\mathbb{Q}\Gamma$ -module for all i, we have

$$E_{i,j}^1 \cong egin{cases} \mathbb{Q} \otimes_{\mathbb{Q}\Gamma} C_i(X,\mathbb{Q}) & j=0 \ 0 & j
eq 0. \end{cases}$$

As $\dim_{\mathbb{Q}} \mathbb{Q} \otimes_{\mathbb{Q}\Gamma} C_i(X,\mathbb{Q}) < \infty$ for all i, we obtain the desired equation.

Now we prove Theorem 1. By Proposition 4 (take Γ_2 to be the trivial subgroup),

(8)
$$\dim_{\mathbb{Q}}(\mathbb{Q} \otimes_{\mathbb{Q}\Gamma} C_i(X, \mathbb{Q})) = \sum_{\gamma \in \mathcal{C}(\Gamma)} r_{\Gamma}(C_i(X, \mathbb{Q}))(\gamma).$$

Hence

$$\chi(X/\Gamma) = \sum_{i} (-1)^{i} \dim_{\mathbb{Q}} H_{i}(\Gamma, C_{*}(X, \mathbb{Q}))$$
 by (7)
$$= \sum_{i} (-1)^{i} \dim_{\mathbb{Q}} \mathbb{Q} \otimes_{\mathbb{Q}\Gamma} C_{i}(X, \mathbb{Q})$$
 by Lemma 9
$$= \sum_{i} (-1)^{i} \left(\sum_{\gamma \in \mathcal{C}(\Gamma)} r_{\Gamma}(C_{i}(X, \mathbb{Q}))(\gamma) \right)$$
 by (8)

$$\begin{split} &= \sum_{\gamma \in \mathcal{C}(\Gamma)} \left(\sum_i (-1)^i r_\Gamma(C_i(X,\mathbb{Q}))(\gamma) \right) \\ &= \sum_{\gamma \in \mathcal{C}(\Gamma)} e(C_\Gamma(\gamma), X^\gamma) & \text{by Proposition 8.} \end{split}$$

For an element γ of infinite order, we have $X^{\gamma} = \emptyset$ and hence $e(C_{\Gamma}(\gamma), X^{\gamma}) = 0$, which proves Theorem 1.

5. Remarks

5.1. Finite group actions

Suppose that Γ is a finite group. Let X be a finite Γ -complex. By Proposition 5, we have

$$e(C_{\Gamma}(\gamma), X^{\gamma}) = \sum_{i} (-1)^{i} r_{C_{\Gamma}(\gamma)}(C_{i}(X^{\gamma}, \mathbb{Q}))(1) = \frac{\chi(X^{\gamma})}{|C_{\Gamma}(\gamma)|}.$$

By Theorem 1, we have

$$\chi(X/\Gamma) = \sum_{\gamma \in \mathcal{C}(\Gamma)} \frac{\chi(X^\gamma)}{|C_\Gamma(\gamma)|} = \frac{1}{|\Gamma|} \sum_{\gamma \in \mathcal{C}(\Gamma)} \frac{|\Gamma|}{|C_\Gamma(\gamma)|} \chi(X^\gamma).$$

Since $|\Gamma|/|C_{\Gamma}(\gamma)|$ is the cardinality of the conjugacy class (γ) , we obtain

$$\chi(X/\Gamma) = \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} \chi(X^{\gamma}).$$

Hence Theorem 1 implies the well-known equality for finite group actions.

5.2. Euler characteristics of groups

Suppose that Γ is a group of finite homological type, then one can define its Euler characteristic $\chi(\Gamma)$ in the sense of C. T. C. Wall [12]. See [5, Chapter IX] for relevant definitons. Suppose in addition the centralizer $C_{\Gamma}(\gamma)$ is of finite homological type for every $\gamma \in \Gamma$ of finite order. Under these assumptions, K. S. Brown obtained the following formula:

(9)
$$\tilde{\chi}(\Gamma) = \sum_{\gamma \in \mathcal{F}(\Gamma)} \chi(C_{\Gamma}(\gamma)),$$

where $\tilde{\chi}(\Gamma)$ is the *naive Euler characteristic* of Γ defined by $\tilde{\chi}(\Gamma) = \sum_i (-1)^i \dim_{\mathbb{Q}} H_i(\Gamma, \mathbb{Q})$ (cf. [5, p. 261]). This formula was used by J. Harer and D. Zagier in the computation of the Euler characteristic of the moduli space of curves [7].

We will give a relation between the equation (9) and Theorem 1. Let Γ be a discrete group and X a Γ -finite Γ -CW complex such that X^{γ} is nonempty and \mathbb{Q} -acyclic for every $\gamma \in \Gamma$ of finite order. If Γ is virtually torsion-free, then $C_{\Gamma}(\gamma)$ is of finite homological type for every $\gamma \in \Gamma$ of finite order (including $\gamma = 1$), and $\chi(C_{\Gamma}(\gamma))$ coincides with $e(C_{\Gamma}(\gamma), X^{\gamma})$ (cf. [4, pp. 111-112]). In this case the equation (1) in Theorem 1 reduces to the equation (9), since

$$H_*(\Gamma, \mathbb{Q}) \cong H_*^{\Gamma}(X, \mathbb{Q}) \cong H_*(X/\Gamma, \mathbb{Q}).$$

However, we claim the equation (9) for this special case can be deduced without the use of the spectral sequence appeared in the proof of Lemma 9. To see this, observe $\varepsilon:C_*(X,\mathbb{Q})\to\mathbb{Q}$ is a projective resolution of \mathbb{Q} over $\mathbb{Q}\Gamma$, where \mathbb{Q} is regarded as a $\mathbb{Q}\Gamma$ -module with the trivial Γ -action and ε is the augmentation. Hence

$$\tilde{\chi}(\Gamma) = \sum_{i} (-1)^{i} \dim_{\mathbb{Q}}(\mathbb{Q} \otimes_{\mathbb{Q}\Gamma} C_{i}(X, \mathbb{Q})).$$

Now the claim follows from this together with (8) and Proposition 8.

ACKNOWLEDGEMENT. The author wishes to express his gratitude to Professor Katsuo Kawakubo for his advices.

References

- [1] H. Bass: Euler characteristics and characters of discrete groups, Invent. Math. 35 (1976), 155-196
- [2] H. Bass: *Traces and Euler characteristics*, Homological group theory (C. T. C. Wall ed.), London Math. Soc. Lecture Notes 36, Cambridge University Press, Cambridge, 1979, 1–26.
- [3] K. S. Brown: Euler characteristics of discrete groups and G-spaces, Invent. Math. 27 (1974), 229-264.
- [4] K. S. Brown: Complete Euler characteristics and fixed-point theory, J. Pure Appl. Algebra 24 (1982), 103–121.
- [5] K. S. Brown: Cohomology of Groups, Graduate Texts in Mathematics 87, Springer-Verlag, New York-Heidelberg-Berlin, 1982.
- [6] T. tom Dieck: Transformation Groups, de Gruyter Studies in Mathematics 8, Walter de Gruyter, Berlin-New York, 1987.
- [7] J. Harer, D. Zagier: The Euler characteristic of the moduli space of curves, Invent. Math. 85 (1986), 457–485.
- [8] A. Hattori: Rank element of a projective module, Nagoya J. Math. 25 (1965), 113-120.
- [9] J.-P. Serre: Cohomologie de groupes discrets, Ann. of Math. Studies 70, Princeton University Press, Princeton, 1971, 77–169.
- [10] J. Stallings: Centerless groups—an algebraic formulation of Gottlieb's theorem, Topology 4 (1965), 129–134.

- [11] W. Thurston: The Geometry and Topology of Three-Manifolds, mimeograph notes, Princeton University, 1980
- [12] C. T. C. Wall: Rational Euler characteristics, Proc. Cambridge Philos. Soc. 57 (1961), 182–183.

Department of Applied Mathematics Fukuoka University Fukuoka 814-0180, Japan

Current address:
Division of Mathematics
Graduate School of Science
Hokkaido University
Sapporo 060-0810, Japan
e-mail:akita@math.sci.hokudai.ac.jp