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1. Introduction

Let KO, KU and KC denote the real, the complex and the self-conjugate K-
spectrum, respectively. Given CW-spectra X, Y we say that X is quasi K O,equivalent
to Y if KOAX is isomorphic to KOAY as a KO-module spectrum, in other words, if
there exists a map h: Y — KO A X inducing an isomorphism A, : KO,Y — KO, X.
Note that if X is quasi KO,-equivalent to Y, then KU,X is isomorphic to KU.Y
as a (Z/2-graded) abelian group with involution wal, in this case we say that X has
the same C-type as Y. We are interested in the determination of the quasi KO,-type
of any CW-spectrum X using the information of its KU-homology group KU, X =
KUy X ® KU, X with the conjugation ¢

Let 7 : ¥1 — %0 be the stable Hopf map of order 2 and C(n') denote the cofiber
of the map n' : ©! — 0. The sphere spectrum S = X° and the cofibers C(n') (I =
1,2) are typical examples of spectra X with KU, X free. In [1, Theorem 3.2] Bousfield
has completely determined the quasi KO,-type of a CW-spectrum X with KU, X
free.

Bousfield’s Theorem . Let X be a CW -spectrum such that KU, X = KUy X &
KU, X is free. Then it has the same quasi KO,-type as a certain wedge sum of copies
of B0 < i < 7),89C(n)(0 < 5 < 1) and T*C(n?)(0 < k < 3). (Cf. [6, Theorem
2.4)).

Let SZ/2™ denote the Moore spectrum of type Z/2™. In [4] and [5] we intro-
duced some 3-cells spectra X,, and X, constructed as the cofibers of certain maps
f:%— 8Z/2™ and f' : £715Z/2™ — X0 and some 4-cells spectra XY,,, XY,
and Y'X,, obtained as the cofibers of their mixed maps. In [5, Theorems 3.3, 4.2
and 4.4] by using these small spectra we have also determined the quasi KO.-type
of a CW-spectrum X such that KUpX = F & Z/2™ with F free and KU; X = 0.
The purpose of this note is to determine completely the quasi KO,-type of a CW-
spectrum X such that KU, X & F @ Z/2™ with F free and finitely generated, without
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the restriction that KU1 X =

Notice that the self-conjugate K-spectrum K C may be regarded as the fiber of the
map 1 — 95" : KU — KU. For any map f : Y — KU A X with (yg' A1) f = f we
can choose amap g: Y — KC A X with ((Al)g = f in which ¢ : KC — KU is the
complexification map. In §2 we show that under a certain assumption such a map g is
chosen to satisfy a nice property that g. : KC;Y — KC;X (i = 0,2) are nearly the
canonical inclusions if f, : KU,Y — KU,X is the canonical inclusion in the category
C of abelian groups with involution ;'. In §3 we give the most refined direct sum
decomposition of KU, X in the category C when KU, X is free (Proposition 3.2), and -
then prove Bousfield’s Theorem (Theorem 3.3) along the line adopted in [4, 5]. Our
new proof is very simple, and it is applicable to prove our main results (Theorems 5.1,
5.2 and 5.3). In order to distinguish CW-spectra X such that KU, X = F®Z/2™ with
F free and finitely generated we divide them into ten kinds of C-types (Proposition 4.1).
In §4 we give the most refined direct sum decomposition of KU, X in the category C
when the C-type of X is known (Proposition 4.3), and in §5 we prove our main results
(Theorems 5.1, 5.2 and 5.3) by applying our method developed in [4, 5].

2. K-spectra KO,KU and KC

Let KO, KU and KC denote the real, the complex and the self-conjugate K-
spectrum, respectively. As relations among these K-spectra we have the following
cofiber sequence:

@.1)
i) Sik0 ™Y KO % KU 2%, s2K0
ii) 22KO TN ko <o ko P2 s3KO
i) ke S ku L0, sepy 2, sage
v) ZKC M KOV KO S0Py, gy <020fu’y sopq
v s2gy (Sl po\ sugo Ve, o TR sy

where Gy : $2KU — KU and B¢ : S*KC — KC are the periodicity maps satisfying
(Bc = B¢, By = vBE and Y5' By = —Buts'. The maps involved in (2.1) satisfy
the following equalities:

-1
Cec = €U, Ty = €0,€0€u = 2,€yeo = 1 + g,

(22)
Tec =nAland vBy{ =nA1l.

For any CW-spectrum Y its K-homology and K-cohomology groups are related
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Lemma 2.2. For any homomorphisms a; : H] — H;,d; : T} — T;,b; : H] — T;
and c; : H;y — T (i = 0,1) there exists amap f : Y — KU A X so that f :
KUY - KU;X and Df, : KU;DX — KU;DY (i = 0,1) are represented by the

, a; O a} 0 .
matrices and . |, respectively.

bi ds G Gip

Proof. Choose amap f’ : Y — KUAX such that f, : KU,Y - KU; X(i =0,1)

is represented by the matrix (Z' 3) Then Df, : KU;DX — KU;DY (i = 0,1) is
i O
a;

. . 0 . . .
represented by a certain matrix ( a ) Use a geometric resolution of Y given
i+1

in (2.5). The difference ¢; — x; : H; — Tj,,(i = 0,1) has a coextension y; : H; —
KU; 1DV satisfying Dé,y; = ¢; — ;. Choose a map h : Y1V — KU A X such that
Dh, : KU;DX — KU;1DV (i = 0,1) coincides with y;. Setting f = f'+ hd: Y —
KU A X it satisfies the desired property. OJ

Let C be the category of abelian groups with involution 1/151, modelled on KU-
homology groups KU,X. Given CW-spectra X,Y we say that they have the same
C-type if KU,X and KU,Y are isomorphic in the category C.

Proposition 2.3. Let X and Y be finite CW -spectra with KU, X and KU Y
free. If X and DX have the same C-types as Y and DY, respectively, then there
exists amap f:Y — KU A X with (Y5' A1) f = f such that f. : KUY — KU, X
and Df, : KU,DX — KU,DY are isomorphisms in the category C.

Proof. Identify KU,X and KU,DX with KU,Y and KU,DY in the category
C, respectively. By means of Lemma 2.2 we can choose a map f:Y — KU A X such
that f, : KU,Y - KU, X and Df, : KU,.DX — KU,DY are both the identity. By
virtue of Lemma 2.1 such a map f satisfies the desired equality. O

For a CW-spectrum X with KU, X free we have direct sum decompositions
2.7 KUyX=2AeBo(C®C, KU X=ZD®E®F®F

in the category C, where A, B,C,D,E and F are free and 1/151 = 1lon Aor D,

:1 (1)) on C®C or F@ F. Using the
cofiber sequence (2.1.iii) we can easily compute its K C-homology groups KC; X (i =

0,1,2,3) as follows:

walz—lonBorEandzp51=<

KCh)X=2AeCe®DoE,®F, KO, X=2A0BeCo®DOF

2.8
@8 KC:;X=2BoCo Dy, dE®F, KO3 X=ZA0B,®COEDF
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by the following universal coefficient sequences:

i) 0 — Ext(KO3.;Y, Z) & KO'Y — Hom(KO41;Y, Z) =0
@3) i) 0 — Ext(KUsy;Y, Z) — KU'Y — Hom(KUsy:Y, Z) =0
iii) 0 — Ext(KCs4:Y, Z) = KCY — Hom(KCriY, Z) — 0.

When CW-spectra X and Y are finite, we have a duality isomorphism
24 D:[Y, KANX]2[DX, KADY]

for K = KU,KO or KC where DX and DY denote the S-duals of X and Y.
Therefore K'Y may be replaced by K_; DY whenever Y is finite.
For any CW-spectrum Y there exists a geometric resolution

2.5) Vahw Sy Sty

so that 0 - KU,V —- KUW — KU.,Y — 0 is a short exact sequence with KU,V
and KU,W free. Using its geometric resolution we have the following universal coef-
ficient sequence

(2.6) 0— Ext(KU._.Y, KU.X)— [Y, KU A X] - Hom(KU.,Y, KU,X) =0
for any CW-spectrum X.

Lemma 2.1. Let X and Y be finite CW -spectra with KU1 X and KUY free.
Then a map f : Y — KU A X is trivial if f, : KU,Y - KU,X and Df, :
KU.DX — KU,DY are both trivial.

Proof. Use a geometric resolution of Y given in (2.5). Since f. : KUY —
KU, X is trivial, the composition map fo : W — KU A X is trivial. In other words,
the composition map (1 A Dp)Df : DX — KU A DW is trivial. The S-dual map
Dy : DY — DW induces a split monomorphism Dy, : KUyDY — KUy DW under
the assumption that KU,Y is free. Therefore (Dy,)* : Ext(KU;DX, KUyDY) —
Ext(KU1DX, KUyDW) is a monomorphism. Hence the triviality of Df, : KU, DX
— KU, DY implies that the dual map Df : DX — KU A DY is in fact trivial.  []

Given finite CW-spectra X,Y we set KU; X = H;®T; and KU;Y = H[®T/(i =
0,1) where H;, H, are free and T;, T are torsion. When H = H;,H and T = T;, T}
are identified with H* = Hom(H, Z) and T* = Ext(T, Z), respectively, we have
isomorphisms KU;DX = H; @ T;y, and KU;DY = H; ® T/ ,(i = 0,1) where
T, =T, and T, = Tj.
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where G stands for the Z/2-module G ® Z/2.

Let Y and X be C'W-spectra having direct sum decompositions KUpyY = A9 B
CoCod®M and KU1 X 2 D@ E®F & F in the category C where A, B,C, D, E and
F are free objects on which 1/)51 behaves as stated in (2.7). Thus KU; X is assumed
to be free. Note that A ® C and B & C are direct summands of KCpY and KC,Y,
respectively. For any map f : ¥ — KU A X with (1/}51 A1)f = f we can choose
homomorphisms

a()ZA@C—)KCOX, ar: B®C = KCy X
such that (,ag = fu(|A® C and (a2 = f.(|BDC.

Lemma 2.4. Assume that KU1 X is free. For any map f : Y — KU A X with
(W5' A1)f = f there exists amap g: Y — KC A X with (( A1)g = f so that gy :
KC;Y = KC; X (1 = 0,2) satisfy g«|A = aglA, g«|B = az2|B, (g« —0)(C) C E2® F
and (g« — 02)(C) C D2 @ F .

Proof. Choose a map ¢’ : Y — KC A X satisfying (( A 1)¢’ = f, and then set
ay =ag—g.|A® C and o, = az — g,|B & C. The homomorphisms o : A® C —
KCoX and o, : B@® C — K(C3X are factorized through D & E; @ F C KCpX and
D;®E®F C KCyX. Exchange them for the modified ones af and af with ag(C) C
D@ F and a4(C) C E @ F, respectively. Choose homomorphisms 3; : KU;Y —
KU; 11X (i = 0,2) such that 7,80¢«|A D C = af, 7+528«|B®C = o and 3;|M = 0.
Then we getamap h: Y — S~ KUAX such that h, : KU,Y — KU, X coincides
with By + 02 : KUY — KU X. Setting g =g’ + (yA1)h: Y — KC A X, it satisfies
the desired property. ]

Assume that the short exact sequences
2.9) 0= v (KUit1X) » KC:X = ((KC; X) -0 (:=0,2)
are splittable, whose splitting homomorphisms are denoted by
0; G(KC;X) = KC; X, pi:KCiX — v (KU;j+1X).

Now we may take as ag and ap in Lemma 2.4 the restricted homomorphisms o f, (.| A®
C and 02f.(«|B @ C, respectively.

Corollary 2.5. Assume that KU1 X is free and the short exact sequences (2.9)
are split. For any map f :' Y — KU A X with (wal A1)f = f there exists a map
g:Y = KCAX with ((A1)g = f so that g, : KC;Y — KC;X(i = 0,2) satisfy
Pog*|A = 0’ P29*|B = 07 PO!J*(C) - E2 @ F and ,029*(0) - D2 ®F.



752 Z. YOSIMURA

Let X be a finite C'W-spectrum having a direct sum decomposition
(2.10) KU DX=2DoE®GF®FON

in the category C where D, E and F are free objects on which 1/)51 behaves as stated in
(2.7). In this case we may assume that 15" behaves as 1@ (—1) on the free part of N
itself. Note that v, KU_1DX 2 DO E,®FON_ and v, KU1 DX = DsGE@F O N,
in which N4 denotes the cokernel of 1 &+ ¢51 on N. If KU, X is free, then it follows
that

Tor KCoX =2 Es @ Tor N_, Tor KC2X = Dy & Tor N4

because Tor KC; X = Tor KC¢_;DX by use of (2.3.iii) where Tor G stands for the
torsion part of G.
Let X and Y be finite CW -spectra having direct sum decompositions

KU DX>2DOE®F®F®N and KU ,DY~D oE oF &F &N

in the category C as given in (2.10). When KU; X and KUY are free, the restricted
homomorphisms g, : KC;Y — KC;X(: = 0,2) to the torsion parts are given by
10(g9) : E5 @® Tor N — E5 @ Tor N_ and 72(g) : Dy @ Tor N\ — Dy @ Tor N for
anymap g:Y - KC N X.

Lemma 2.6. Let f : Y — KU A X be a map with (Y5' A1)f = f such that
Df.: KU_1DX — KU_,DY satisfies Df.(D® FE) C D' ® E' and Df.(N) C N'.
Assume that KU1 X and KU,Y are free. For any map g : Y — KC A X with
(C A 1)g = f the restricted homomorphisms 7;(g)(i = 0,2) are expressed as the direct
sum f. ® (Dfi)*.

Proof. The restricted homomorphisms Dg, : KC¢_;DX — KCs_;DY (i = 0,2)
to the torsion parts are induced by only D f.. Hence our result is immediately shown
by duality. J

Let X and Y be finite CW-spectra such that KU_; DX and KU_; DY are de-
composed as previously and KUY is decomposed to a direct sum A ® B & M in the
category C where A and B are free objects on which 1/}51 behaves as stated in (2.7),
and 5! behaves as 1 ® (—1) on the free part H = H+ @ H~ of M itself. Assume
that KU, X is free, and D ® E; @ F C KCypX and D, ® E @ F C KCyX are direct
summands whose splitting epimorphisms are denoted by

poKCoX—)D@Ez@F and szCQX——)Dz@E@F
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Lemma 2.7. Let f: Y — KUAX be a map with (' A1) f = f such that Df, :
KU_1DX — KU_1DY satisfies Df. (DO ES®FOF)C D'OE & F & F'. Assume
that KU1 X and KUY are free. Then there exists amap g : Y — KC A X with
((A1l)g = f such that g, : KC;Y — KC;X (i = 0,2) satisfy pog«|A = 0, p29«|B =
0, p09«(H*) C E3 and pyg.(H™) C Ds.

Proof. Take as op and a2 in Lemma 2.4 the restricted homomorphisms
00D (/D@ F and 04D f.(|E @ F , respectively, where of, : D' ® F' - KC_,;DY
and ¢ : E' @ F' — KC1DY are splitting monomorphisms. Then we can choose a
map Dg : DX — KC A DY with (( A1)Dg = Df such that pyDg.|D ® F = 0 and
p2Dg.|E & F = 0 where pj, : KC_1DY - A® H* and p, : KC;DY - B® H™
are the canonical projections. Evidently g. : KC;Y — KC;X(i = 0,2) satisfy
poge(A® HT) C Es and p2g«(B ® H™) C D for the dual map g of Dg. Such
a map g is chosen to satisfy pog«|A = 0 and p2g.|B = 0 by means of Lemma 2.4. []

Let h: V — W be a map such that h* : [W, S'KU A X]| — [V, Z1KU A X] is
trivial, and f : Y — KU A X be a map with (1/)51 A1)f = f where Y denotes the
cofiber of h. Assume that the composition map (eo8;* A1) fiy : W — Z2KOA X is
trivial where iy : W — Y is the canonical inclusion. Then there exists amap k: Y —
Y!KUAX such that (185" Al)giy = (eoBy* Al)kiy foreachmap g: Y — KCAX
with ((A1l)g = f. Such a map & is chosen to satisfy that the restricted homomorphism
k. : KUiy1Y — KUX to KU,V is trivial if KU,1Y =2 KU, W & KU,V.
Replacing the map g by g + (y8u A 1)k we can observe that

(2.11) the composition map (785" A 1)giy : W — Z3KO A X is trivial (cf. [3,
Lemmal.1)).

3. CW-spectra X such that KU, X is free

In this section we deal with a CW-spectrum X such that KU, X = KUyX &
KU X is free. For such a CW-spectrum X the KU-homology groups KU; X (i =
0, 1) have direct sum decompositions in the category C as given in (2.7) and the KC-
homology groups KC; X (i = 0,1,2,3) are computed as obtained in (2.8). Consider
the induced homomorphisms

vi = (eceofyt)s : KUiy2X — KC;X and ¢} = (ey7B5" )« : KCiX = KU;_3X.

Using the equalities Cuipi = (1 + %5 )85 ) @4(¥80)x = (1 + 65185 "), elpi =
0, 0ipi s = 0 and (Y8v)«p; = pi—2(. we can easily verify that the induced homo-
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morphisms ¢ and @9 are represented by the following matrices:

Iy 0 O
To=(0 -1 2]:(A®B)®Co®C—(A®dDOE)®COF
3.1) 0 0 O
' ) Ty 0 0
;=0 1 0|:(AeB)eCa®C— (B&®D,®E)®CoF
0 0 O
2 0 0 2
inwhichT'y =z 0|:A®B—>A®dD®E;andIy, = |z 2| :A®&B—
Yy w 0 w

B ® Dy @ E for some z,y,z and w. Here the direct sum decompositions KCyX =
(A®C)® (D@ E;®dF) and KC2X = (B C) & (D2 ® E @ F) might be modified
suitably if necessary.

Let D; denote the cokernel of z : A — D,. Then we have direct sum de-
compositions A & A’ & G and D & D' @ G' so that x : A — D, is given by
0dq: A ® G — D, GY where q is the mod 2 reduction. As is easily observed, the

20
. 2 . .10 2 , ,
homomorphism (x) :A— A® D is expressed as the matrix 0 ol® AeG —
01
A DG @D &G, although the direct sum decomposition A & D might be modified
if necessary. Therefore its cokernel coincides with A, @ D' @ G’, and the canonical

epimorphism py : A’ © G & D' & G — A, ® D' @ G' is represented by the matrix

1 0 00
A=1]0 0 1 0]. Since the torsion subgroup of KO1X @& KOsX is a Z/2-
0 -1 0 2

module, the cokernel of 'y : A® B — A® D @ E; coincides with A, & D & E)
in which E} is the cokernel of w : B — FE,. Moreover the canonical epimorphism
po:(ASG &D &G)d Ey - (A, ® D' & G') @ Ej is represented by the matrix

A 0
Ay_<0 0 0 mye 7r>

where y» = y|G’ and 7 : E2 — FE} is the canonical projection.
We obtain a similar result for 'y : A B> B® Dy, ®E.

Lemma 3.1. The cokernels of (eceoBy")s : KUip2X — KC; X (i = 0,2) coin-
cide with Ay ® D @ E; @ F and B, ® E @ Dy @ F, respectively, and the canonical
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epimorphisms

po:(ADG D G BE)OCDF » (Ao D @G OE)OF
p2: (B®G"®@E ©G"®D)dCdF — (BbOE ©G'®D,) O F

are represented by the matrices Ay = (1};’ 8 (1)) and A, = (%z g ?) respec-
tively, where A2 A oG, DD G ,B2B ®G" and E = E' & G" for some

Gl, el
There exist two monomorphisms

bo: Ay®DBE,®F - KO, X ® KOs X

so that (—7,78¢c)« : KC; X = KO;j1+1X ® KO;15X (i = 0,2) are factorized as 6;p;.
Consider the restricted homomorphism 6y : A, ® Ef — KO1 X & KOsX. Then we
can choose a basis {a;,b;} of A5 such that 6y(a;) = (x;,0) for 1 <i < m + p and
6o(b;) = (0,y;) for 1 < j < n + g, although the direct sum decomposition A5 & Ej
might be modified if necessary. We next choose a basis {c;,d;} of 65 (KO, X ®{0}U
{0} ® KO5X) N Ej such that Oy(c;) = (2,0) for 1 < i <7 and 6y(d;) = (0, w;) for
1 < j < s, and moreover extend it to a basis {c¢;,d;,ex, fi} of 00_1(KOIX ® Ly U
L, ® KOsX) N Ey where Ly = Z/2{x1,...,Tm+4p} and Ly =2 Z/2{y1,...,Yn+q}
Here we may take as 6y(ex) = (Tmik,vk) for 1 < k < p and 0o(f1) = (ui,Yn+1)
for 1 <1 < g by relabelling {z;,y;}. As is easily observed, the set {c;,d;, ek, fi}
forms a basis of the whole Ej. However the elements given in the forms of {f;} can
be removed by setting a4 p+i = bnyi + fi, Tmapt = Ui epyr = fi and Vpyy = Yny.
Thus there exist a basis {a;,b;} of A} and a basis {c;,d;,er} of Ej such that

6o(ai) = (z;,0) for 1<i<m+p, 6(bj)=(0,y;) for 1<j<n
(3.2) Oo(ci) = (2i,0) for 1<i<r, 6(d;)=(0,w;) for 1<j<s
90(61;) = (xm+k,vk) for 1<k<p.

Similarly we can choose bases of B} and D) using the restricted homomorphism 65 :
B, D), - KO3 X & KO-X.

Proposition 3.2. Let X be a CW-spectrum with KU, X free. Then there are
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direct sum decompositions
A2 A0 A*9G°®G, E~E*0E oG aG"
B~B’¢B°¢G*aG", D=D'eD°®G*aG’
Tor KO, X = AS®EI ©GS, TorKOsX = A3 ® E3 & G
Tor KO3X = BZ® Dy ®G%, TorKO;X = B§ @ D & G3

so that 0p|A ® A3} ® E3 @ E and 0,|B2 ® BS ® D} ® D3 behave identically, and
60|GS © GS and 05|G3 ® G2 behave as the automorphism represented by the matrix

11
0 1)
Given CW -spectra X,Y we say that they have the same quasi KO,-type if KO A

Y is isomorphic to KO A X as a KO-module spectrum. The following result shown
in [4, Proposition 1.1] is very useful in proving our main theorems.

(3.3) CW-spectra X and Y have the same quasi KO,-type if and only if there exists
amap h:Y — KO A X inducing an isomorphism ((ey A 1)h). : KUY — KU, X.

Applying Corollary 2.5, Lemma 3.1 and Proposition 3.2 we can show

Theorem 3.3. Let X be a CW-spectrum with KU, X free. Then there exist free
abelian groups A'(0 < i < 7),C7(0 < j < 1) and G*(0 < k < 3) so that X has
the same quasi KO,-type as the wedge sum Y = (VEISAY) Vv (VEIC(n) A SCI) v

i j

(\I{ZkC’(n2) A SG*) where SH denotes the Moore spectrum of type H and C(n')

denotes the cofiber of the map n' : ©' — ¥9(1 = 1,2). (Cf. [1, Theorem 3.2] and [6,
Theorem 2.4)).

Proof. Using the free abelian groups chosen in Proposition 3.2 we set At =
D1+i,A2+i — B2+i,A3+i — E3+i(i — 0, 4)’00 — C, Cl — F, Gl =G’ and G3 =Qq".
For each component Yy of the wedge sum Y there exists a unique map fy : Yug —
KU A X such that fg, : KU.Yy — KU, X is the z inclusion, where H is taken to be
A(0<i<T7),C’(0<j<1)or G*(0 <k < 3). Choose amap gy : Yy =+ KCAX
with (( A 1)gg = fm as given in Corollary 2.5. Applying our method developed in
[4, 5] we can easily find a map hy : Yy — KO A X with (eg A 1)hg = fg, by
means of Lemma 3.1 and Proposition 3.2. For example, in case of H = G' we get
amap hy : Z1SG' — KO A X satisfying hyi(1 A jo) = (185" A 1)gm because
(85" A D)gu(1 Adg)(n A1) = 0 where ig : £° — C(n?) and jg : C(n?) — X3
denote the bottom cell inclusion and collapsing. Here the map gy might be modified
slightly by means of (2.11), but still it satisfies the property as given in Corollary 2.5.
The map h, is factorized as (n A 1)k} for some h) because it has at most order 4.
Since the composition map (eoB;' A 1)fy becomes trivial, there exists a map hy
with (ey A 1)hg = fy as desired. Our result is now established by virtue of (3.3). []
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4. KU.X containing only one 2-torsion cyclic group Z/2™

In this section we deal with a CW-spectrum X such that KUpX & H @ Z/2™
and KU; X = K with H, K free and finitely generated. In this case we may assume
that 1,[)51 =1or 1+2™"! on Z/2™ itself because X is replaced by ¥2X if ¢5l =
—1 or =1+ 2m~! on Z/2™. Given such a CW-spectrum X we admit direct sum
decompositions

4.1 KUuyX=2AeoBoCoCoM, KU X=ZDOE®FO®F

in the category C , where A, B,C, D, E and F are free objects on which 1/)51 behaves
as stated in (2.7) and M is one of the objects given in the following forms:

4.2)
@ an (111 av) V)
M Zz/)2m Z&Z/2™ ZoZ/2™ ZeZe&Z/2m  Z/2™(m>3)
1 0 0
1 0 -1 0
Yo' 1 <m_1 ) <_ ) 0 -10 142m L,
2 1 11 om-1 1 1

According to Bousfield[1, Theorem 11.1] any CW-spectrum X has the same K-
local type as a certain finite CW-spectrum Y if KU, X is finitely generated. So we
may assume that a CW-spectrum X satisfying (4.1) is finite in our discussion. In
order to distinguish such a CW-spectrum X we define its C-type to be the pair (J, J’)
when the components M in KUy X and KU_; DX are given in forms of (J) and (J°),
respectively.

Proposition 4.1. Let X be a CW -spectrum satisfying (4.1). Then it has one of
the following ten C-types: (I, 1), (IL, II), (1L, III), (V, V), (4, ID), 1, IID), 1, IV), (1, D),
(10, I) and 1V, I).

Proof. It is sufficient to show that X never has the C-types (II, IIT), (II, IV), (I1I,
IV) and (IV, IV). Assume that the C-type of X is (I, III). Thus we have the following
direct sum decompositions KUy X = A@B®&CoCd(Z40Z/2™), KU X =% DOE®
FOF®ZF KU_DX = DOEQFeF®(Z80Z/2™), KUyDX = A®BaCaCo»Z4
in which Z4 =~ 7P =~ 7 ¢! = (2"}_1 (1’) on ZA@® Z/2™ and y5' = (:i 2)
on ZE @ Z/2™. By the aid of (2.1.iii) and (2.3.iii) we can easily calculate KCpX =
ADCODOE,OF®ZA® Z/2" and KO, X 2 BoCae@ D@ Ed Fa ZE.
Consider the induced homomorphisms o = (eceoﬂal)* : KUyX — KC3X and
¢h = (euBgt)s : KC2X — KU_1 X. Using the equalities (.2 = ((1+1%5")B5")
and @h(yBu). = (1 + wal)ﬂgl)* we can observe that mzphpa|Z# is non-trivial



758 Z. YOSIMURA

where 77 denotes the projection onto ZZ. This is a contradiction to @5y = 0. The
other cases are similarly shown. ]

Let X be a CW-spectrum whose C-type is one of the following seven types :
d 0, 4L, ), dI, 1), av, 1), di, 1), (I, II) and (V, V). Thus we admit direct sum
decompositions given in the following forms:

KUiyX=2AoBoCeoCoM, KL X=DOEOFOFOK

4.3
@3 KU DX=2D@eE@FeFoeN, KUDX=Z=A®dBeCaoCeoH

in the category C. Here A, B,C, D, E and F are free objects on which wal behaves
as stated in (2.7), and M =2 H ® Z/2™ and N = K @ Z/2™ are the objects in the
category C tabled below:

(9] (IL 1) (IIL, 1) v, n
M Z/oam™ Z®ZI2™ Z®Z2™ ZOZSZ/2™
1 0 0
@ ) ) (e
2™l 1 1
N Z/2m Z/2m Z/2m Z/2m
h 1 1 1 1

4.4)
(I1, II) (111, II) (VA%

M Zez/2m  Zez/2m  Z/2"
L 1 0 -1 0 m—1
w (e i) (1) e

N Zez/ ™ ZezZ/2m z/2m
o 1 0 -1 0 1
v (2m_1 1) (_1 1) 142m,

By the aid of (2.1.iii) and (2.3.iii) we can calculate the K C-homology groups
KC;X(i=0,1,2,3) as follows:

(4.5)
KCoX=2A®CoDOE,0FoM’, KC:X=2A,&B®CoDOF o M

KC;X~2BoCo®D,dE®FOM?, KCX2XA0B,oCoOE®F o M3

in which M*(i = 0,1,2, 3) are the abelian groups tabled below:

1)) a1, Ty (IIL, T v, 1

MYz Z@z/om z/2m  Z®Z/2m

4.6) M Z)2 () Z Z®7/2
M2 Z/2 Z/2 ZeZ/2 Z®Z/2

M3 z/m Zez/eml z/amtl Z g z/am
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(1L, 10 LI (V,V)
M ZeZeoz/amt  zjemtl  zjgm-l
M? (*)m ZeZ Z/2

M3 Z®Z/2m"t  Z@z/2m zjamol

where (x); & Z/4 and (%), & Z/2® Z/2 if m > 2.
Similarly to (3.1) we can observe that the induced homomorphisms ¢; =
(eceoBy)s : KUi12X — KC; X (i = 0,2) are represented by the following matrices

(1[;0 3) :(AeBaCoC)oM - (A®DeE;0CaF)oM°
an 0"

I
(52 3) :(A®BaCo®C)oM -+ (B&D,d E®COF)d M>.
2 2

Here f‘i(i = 0,2) are the same matrices given in (3.1), 8y = 0 unless the C-type of X
is (III, 1), B2 = O unless the C-type of X is (II, II), and ~;(¢ = 0,2) are expressed as
the matrices tabled below:

Y : M = MO vy : M — M? M MO M?
@i 2 0 zZ/2m Z/am Z)2
aL 1 (2,,} ) g) (10) Zez/2m Z@z/2m z/2
(L ) ~12) ( ) Z® z/2m z/2m Z®2Z/2
1 010
4.8) av.Dn <2m L 2) 10 0) ZeZezZ/2m  Z&Z/2m Ze2Z/2
+12)

Z/4

Zez/2™ Z®ZeZ/2m !
®2/ ®zez {2/2@2/2

1 0 (
(11, IT) —om-1lg 1

0 1 €
(IIL II) (—1+2™e2) <(1) Z@Z/2™ z/2m+1 Z0Z
(VA% 1 1 Z/2‘m Z/2m—1 Z/2

= o
(=N=)

where € = 0 or 1.

Let us denote by Li(i = 0,2) the cokernel of v; : M — M. Note that L° = {0}
unless the C-type of X is (I, I), (I, I) or (II, 1), and L? = {0} unless the C-type
of X is (I, I), (I, I) or (III, IIT). In the non-zero cases the canonical epimorphisms
pi: M* — Li(i = 0,2) are represented by the rows tabled below:

po: M® — L° P M? — L2
(4.9) 1)) 1:Z/2™ — Z/2 18)) 1:2/2 - Z/2
(IL T) @ ') :Zez/2™ - Z/2 (LT (01):Z&®Z/2— Z/2
AL (2™ 110): Z@ZZ/2™ -Z WLI) (01):Z®Z—>Z
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Lemma 4.2. The cokernels of (eceoBy ")« : KUiy2 X — KCiX (i = 0,2) coin-
cide with A& DO E,®F & L° and By, ® E ® Dy ® F & L2, respectively, and the
canonical epimorphisms

po: (A DG dD @G ®E, dCOF)oM° - (A, D' oG OE, 0 F) o L°
pr:(BOG" OF ®G" ®D;0COF)®M? - (BboE ©G"©@Dyo F) o L?

are expressed as the direct sums py ® pjy and ps @ ph, respectively. Here p;(i = 0,2)
are the same epimorphisms as given in Lemma 3.1.

There exist two monomorphisms

: Ab®DOE, & F@ L’ - KO X ® KOs X
6,: By & E® Dy & F® L* - KOsX ® KO7 X

so that (—7,70¢c)« : KC;X = KO;11 X & KO, 15X (i = 0,2) are factorized as 6;p;.
Consider the restricted homomorphism 6 : A5® E{® L% - KO1 X ® KO3 X when the
C-type of X is (I, I) or (II, I). For the generator g of L° = Z/2 we set 0y(g9) = (x0, o)
in KO1X & KOs X. Then the pair (xg,yo) is divided into the three types:

i) zo#0, =0 i) zo=0, yo#0 iii) zo#0, yo#0.

Here we may assume that the set ;' (KO; X @ {yo}) N Ej is empty in case of ii) and
the set 8,1 (KO1X @ {yo} U {0} ® KOsX) N E} is empty in case of iii), although
the generator g might be changed by using a suitable transformation on E} @ L°. As
in (3.2) we can choose a basis {a;,b;} of A} and a basis {c;,d;,er} of Ej such that

Oo(a;) = (z;,0) for 1<i<m+p, 6o(b;)=(0,y;) for 1<j<n
(4.10) Oo(ci) = (2i,0) for 1<i<r, 6(d;)=(0,w;) for 1<j<s
Ooler) = (zk,vk) for e <k <p.

Here ¢ = 0 or 1 in case of i), € = 1 in cases of ii) and iii), and z¢ = xp41 in case
of iii). Similarly we can choose bases of L? = Z/2, B} and D), using the restricted
homomorphism 8, : By ® D)y & L? — KO3X & KO;X when the C-type of X is (I, I)
or (III, I).

Proposition 4.3. i) Let X be a CW -spectrum whose C-type is (I, I) or (I, I).
Then it admits one of four kinds of direct sum decompositions given in the following
forms:
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(A1) A2A'9A*0G'9G', ExXE*0E" GG
Tor KO1X 2 AJ@ E] ® Gy L°, Tor KOsX = A} ® ES @ GY
(A2) A2A’pA*0G'®G, EXFE*0E oG'dG"

TorKO1 X 2 AJ® E] ®GY, TorKOsX =AY E3 Gy L°
(A3) A2 A9 A9 Z G 0G, EXE0E oG aqG"
TorKO1 X 2 A} E; G L°, Tor KOsX 2 A0 E3 Gy L°
(A4) A2 A0 A'9G°eG, EXFE0E 0ZP0G'0G”
Tor KO, X 2 A E] Gy L°, TorKOsX 2 A0 ES @ GY® Z/2.

Here 0p| AS® ASD ESDET and 6o|GIDGY behave as in Proposition 3.2, 0o|L° behaves
identically, and 09| Z5 ® L° and 6y|ZF @ L° behave as the automorphisms represented

1 11
by the matrices <(1) 1) and ( ] O)’ respectively, in which Z4 = ZE ~ 7 and

Zp= 7P = [0=7/2

ii) Let X be a CW -spectrum whose C-type is (1, 1) or (I1l, I). Then it admits one
of four kinds of direct sum decompositions (B1), (B2), (B3) and (B4) given in similar
forms to (Al), (A2), (A3) and (A4).

iii) Let X be a CW -spectrum whose C-type is (IV, 1), (11, II), (111, III) or (V, V).
Then it admits only one kind of direct sum decompositions as given in Proposition 3.2.

For a CW-spectrum X of C-type (I, I) we define its 0-type to be the pair (Ai, Bj)
if it admits direct sum decompositios given in (Ai) and (Bj). Similarly we define its
0-type (Ai) or (Bj) for a CW-spectrum X of C-type (II, I) or (I, I).

5. Main results

We now recall several small spectra constructed in [4] and [5]. Let SZ/2™ be the
Moore spectrum of type Z/2™ with the bottom cell inclusion ¢ and the top cell projec-
tion j. Denote by My, Ny, Qmy R, M}, N}, Qs Ry Vin and W, the cofibers of
the following maps:

in: 1 = §5z/2m, in?: 2 5 §7/2m, iin: 3 = §7/2m,
am?: 24— 8Z/2m, nj:8Z/2m — 20 n%j : L£18Z/2m — %0
nn: L28Z/2™ — 19, n’p: ¥38Z/2m — 20,

in:¥18Z/2 —» SZ/2™, if+7j:X1SZ/2 — SZ/2™,

respectively. Here 7 : 2 — SZ/2™ and 7 : £1SZ/2™ — X0 are a coextension
and an extension of  : ©! — X° Given two cofibers X,,,Y,, of any maps f :
Y~ S§Z/2™, g: ¥ — SZ/2™(i < j) we denote by XY, the cofiber of the map
fVvg:X'vYI — §Z/2™. Dually we denote by X'Y,, the cofiber of the map (f, g) :
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$187/2™ — %i=ivEO for two cofibers X/,, Y, of any maps f : £1SZ/2™ — X0, g:

$iS§Z/2m — 30(i < j). Moreover we denote by M'Mp,, N' My, N' N, Q' Qs
R'Q,, and R'R,, the cofibers of the following maps:

nl_cM : M, - X°, nQI_cM :2IM,, - X, nzl_cN (BN, = X0,
nkg : 22Qm — %, n?kg : 23Qn — X%  n?kr: TR, — X0,

respectively. Here the map ky; : My, — S, kn : Ny = Z1, kg : 2'Qm — X0
and kg : L'R,, — X0 satisfy kpins = knin = j and I_chQ = kgigp = 7 in which
ix : SZ/2™ — X,, denotes the canonical inclusion.

The small spectra SZ/2m,Vm,Nm,Rm,Z2N,’n,R§n,NRm,N’R;n,22N’Nm
and R'R,, have the C-type (I, I). As is easily observed (cf. [5, Lemma 3.2]), their
0-types are tabled as follows:

SZ/2™ Vi Ny, R 22N R,
(A1,Bl) (A2,B1) (A4,B1) (Al,B4) (A2,B3) (A3,B2)
NR, N'R, ¥2N'N,, R'Rnm
(A4,B4) (A3,B3) (A4,B3) (A3,B4)

(5.1)

The small spectra Q,, NQ.,, and R'Q,, have the C-type (II, I), and M,,, MR,, and
¥2N'M,, have the C-type (III, I). Their f-types are tabled as follows:

Qm NQw RQn M, MR, ¥*N'M,

O A1) (a9 (43 (Bl)  (B4) (B3)

The small spectra MQ, 2'Q'Qn, 23 M’ M, and W,, have the C-types (IV, I), (II,
II), (III, IIT) and (V, V), respectively.

Applying Lemma 4.2 and Proposition 4.3 we can show the following three main
results.

Theorem 5.1. Let X be a CW -spectrum whose C-type is (1, 1). Then there exist
free abelian groups A*(0 < i < 7),07(0 < j <1),G¥(0 < k < 3) and a certain small
spectrum Y so that X has the same quasi KO,-type as the wedge sum (VE'SAY) vV

(VEjC(n)/\SCj)V(\éZkC(UQ)/\SGk)\/Y. Here Y is taken to be one of the following
j

small spectra:
'SZ/2™ 2 WV, B Ny, S Ry, B2 N! 2'R!  NR,,,N'R. $2N'N,,, R'R,,

for 1 =0,4. (Cf. [5, Theorem 4.2]).
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Proof. Let Yj; denote the small spectrum of f-type (Ai, Bj) as listed in (5.1).
When the 6-type of X is (Ai, Bj), there exists a map f : Y;; - KU A X such that
f« : KU,Y;; — KU, X is the canonical inclusion in the category C. By virtue of
Proposition 2.3 such a map f is chosen to satisfy (/5' A1)f = f. Then we get a map
g9:Y; - KCAX with ((Al)g = f such that g, : KC;Y;; - KC;X(: = 0,2)
are the canonical inclusions because of Corollary 2.5 and Lemma 2.6. It is sufficient
to find a map h : Y;; - KO A X with (ey A 1)h = f for each 6-type (Ai, Bj) by
applying our method developed in [4, 5], the remaining cases being quite similarly
shown to Theorem 3.3. For example, in case of f-type (A3, B4) we get a map k; :
Y!R,, - KO A X such that kijrr r = (785" A 1)g for the bottom cell collapsing
jrRR : R'Rm — £*R,,. As is easily checked, the composition map (7 A 1)kiig :
$28Z/2™ — KO A X is trivial where ig : SZ/2™ — R,, is the canonical inclusion.
Therefore there exists a map h; : £ — KO A X such that hjjrp = (7'651 Al)g
for the top cell projection jrg : R'R,, — X° Here the map g might be modified
slightly by means of (2.11), but still it satisfies the property as given in Lemma 2.6.
Since the composition map h;7 is trivial, we can find a map h : R'R,, > KOA X
with (ey A 1)h = f as desired. The other cases are similarly established. O

Theorem 5.2. Let X be a CW-spectrum whose C-type is (I, I) or (I, 1). Then
there exist free abelian groups A*(0 < i < 7),C7(0 < j < 1),Gk(0 <k<3)anda
certain small spectrum Y so that X has the same quasi KQO,-type as the wedge sum
(\i/EiSAi) % (\]_/E]C(n) A SCI)V (\k/Z)kC(n?) ASG¥)VY. Here Y is taken to be one

of the following small spectra:

i) Qm, X*Qm, NQn, RQ.n incaseofC-type (L, 1);
i) M, ¥*M,., MR,, X2N'M,, in case of C-type (IIL, T) .

(Cf. [5, Theorem 4.4]).

Proof. Set Y} = Qm,Y2 = *Qn,Ys = R'Q,, and Yy = NQ,, if the C-type
of X is (IL, I), and Y; = M,,,Y; = ¥*M,,,Y3 = £2N'M,, and Yy = MR,, if the
C-type of X is (III, I). When the O-type of X is (Ak) or (Bk), there exists a map
f:Y, - KU A X such that f, : KU,Y;, — KU,X is the canonical inclusion in the
category C. Since such a map f is chosen to satisfy (1/;51 A1)f = f, we get a map
g:Yy = KCAX with ((Al)g = f such that g, : KC;Yy, — KC; X (i = 0,2) are
nearly the canonical inclusions because of Lemmas 2.6 and 2.7. It is sufficient to find
amap h:Y, > KOAX with (ey A1)h = f for each -type (Ak) or (Bk) by applying
our method developed in [4, 5]. For example, in case of f-type (A4) we get a map
k1 : 2'Q,n — KOAX such that kyjriq.o = (185" Al)g for the bottom cell collapsing
irQQ : R'Qm — £%Qy,. Since the composition map (n A 1)kiig : £25Z/2™ —
KO A X is trivial for the canonical inclusion ig : SZ/2™ — Qm, there exists a map
hy : % — KO A X such that hijrig = (785" A 1) where jrg : R'Qm — X2
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is the top cell projection. Here the map g might be modified slightly by means of
(2.11), but still it satisfies the property that pog«(H") C FE3 and p2g«(H™) C D,
given in Lemma 2.7. The map h; is factorized as h}n for some h because it has at
most order 4. Recall that R'Q,, is the cofiber of the map hgn : £7 — R!, where
the map hp, satisfies j}JzR = ) for the bottom cell collapsing j§ : R, — X£*SZ/2™.
Evidently the composition map h;7jrq becomes trivial. Consequently we can find a
map h: R'Q.,, & KOAX with (eg A1)h = f as desired. The other cases are similarly
established. ]

Theorem 5.3. Let X be a CW -spectrum whose C-type is (IV, 1), (11, II), (I11, III)
or (V, V). Then there exist free abelian groups A*(0 <i < 7),C7(0<j <1),G*(0 <
k < 3) and only a certain small spectrum Y so that X has the same quasi KQO.-type
as the wedge sum (\i/ZiSAi) % (\]/EjC(n) A SCI) vV (\k/EkC(n2) ASGF)VY. Here Y

is taken to be the following small spectrum corresponding to the C-type of X:

C-type = (IV,I) (ILII) (IILII) (V,V)
Y = MQn 3'QQm XM'M, Wp

(Cf. [5, Theorem 3.3]).

Proof. When the C-type of X is (I, II), there exists a map f : X'Q'Q,, —
KU A X such that f, : KU,_1Q'Q,, — KU,X is the canonical inclusion in the
category C. Since such a map f is chosen to satisfy (y5' A1)f = f, we get a map
9:32'Q'Qm — KCAX with ((Al)g = f such that g, : KC;_1Q'Qm, » KC; X (i =
0,2) are nearly the canonical inclusions because of Lemmas 2.6 and 2.7. More pre-

z y O

. , . . 1 00
cisely, g« : KC_1Q'Q.,, — KCpX is represented by the matrix ow 1 0l° Z®

w 0 1

ZoZ/2m ! 5 By®ZdZ@Z/2™ ! for some x,y,w and g, : KC1Q'Qm — KCoX
is given by the identity on (x),, & Z/4 or Z/2 @® Z/2 in essence. Evidently we get
amap ki : £'Qn — KO A X such that k1jorgo = (785" A 1)g for the bottom
cell collapsing jg'0.0 : @ @m — £3Qm. Here the map g might be modified slightly
by means of (2.11), but still it satisfies the property mentioned above. Note that the
composition map kiigi : £ — KO A X is factorized as k1igi = kjn for some k.
This implies that kiig = k17 + lj : £1SZ/2™ — KO A X for some . On the other
hand, it is easily checked that the composition map (1 A 1)k;iq is expressed as kjnij.
Hence there exists a map h; : £5 — KO A X such that hijgq = ('rﬂal A l)g
for the top cell projection jgig : Q' Qm — X7. Here the map g might be modified
again, but it still satisfies the property mentioned previously. Since the composition
map hyn? is trivial, we get a map A : £8 — KC A X with (785" A 1)A = hy. Such
a map X is chosen to be expressed as (o, 0, t, 0) in KCs X 2 (A CO®D S E, @
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FY®Z®Z® Z/2™! because of (4.5). Note that the element A = (a, 0, ¢, 0)
is carried to (A = (8, 0, —t)in KUsX ¥ (A®@B&®CodC)DZ P Z/2™ via
¢« : KCgX — KUgX. Replacing the map g by g — Ajg/g we can observe that
(18 A1l)g = 0 and ((C A 1)g)s : KU_1Q'Q,, — KUyX is represented by the

-8 0
matix { 1 0] : Z@ Z/2™ - (A®B®CdC)® Z ® Z/2™. Consequently
t 1

we can find a map h : 3'Q'Q,, — KO A X with (ey A 1)h = f although the map
f:32'Q'Q. — KU A X might be replaced suitably. Our result is now established by
virtue of (3.3).

The case of C-type (III, III) is established by a parallel discussion to the above
one. On the other hand, the case of C-type (IV, I) is similarly shown to Theorem 5.2.
The remaining case of C-type (V, V) is easy. O
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