THE QUASI KO-TYPES OF WEIGHTED MOD 4 LENS SPACES

Dedicated to Professor Fuichi Uchida on his sixtieth birthday

Yasuzo NISHIMURA and Zen-ichi YOSIMURA

(Received July 4, 1996)

0. Introduction

Let $K U$ and $K O$ be the complex and the real K-spectrum, respectively. For any $C W$-spectrum X its $K U$-homology group $K U_{*} X$ is regarded as a ($Z / 2$-graded) abelian group with involution because $K U$ possesses the conjugation ψ_{C}^{-1}. Given $C W$-spectra X and Y we say that X is quasi $K O_{*}$-equivalent to Y if there exists an equivalence $f: K O \wedge X \rightarrow K O \wedge Y$ of $K O$-module spectra (see [8]). If X is quasi $K O_{*}$-equivalent to Y, then $K O_{*} X$ is isomorphic to $K O_{*} Y$ as a $K O_{*}$-module, and in addition $K U_{*} X$ is isomorphic to $K U_{*} Y$ as an abelian group with involution. In the latter case we say that X has the same \mathcal{C}-type as Y (cf. [2]). In [10] and [11] we have determined the quasi $K O_{*}$-types of the real projective space $R P^{k}$ and its stunted projective space $R P^{k} / R P^{l}$. Moreover in [12] we have determined the quasi $K O_{*}$-types of the mod 4 lens space L_{4}^{k} and its stunted lens space L_{4}^{k} / L_{4}^{l} where we simply denote by $L_{4}^{2 n+1}$ the usual $(2 n+1)$-dimensional $\bmod 4$ lens space $L^{n}(4)$ and by $L_{4}^{2 n}$ its $2 n$-skeleton $L_{0}^{n}(4)$. In this note we shall generally determine the quasi $K O_{*}$-types of a weighted mod 4 lens space $L^{n}\left(4 ; q_{0}, \cdots, q_{n}\right)$ and its $2 n$-skeleton $L_{0}^{n}\left(4 ; q_{0}, \cdots, q_{n}\right)$ along the line of [12].

The weighted mod 4 lens space $L^{n}\left(4 ; q_{0}, \cdots, q_{n}\right)$ is obtained as the fiber of the canonical inclusion $i: P^{n}\left(q_{0}, \cdots, q_{n}\right) \rightarrow P^{n+1}\left(4, q_{0}, \cdots, q_{n}\right)$ of weighted projective spaces (see [3]). Using the result of Amrani [1, Theorem 3.1] we can calculate the $K U$-cohomology group $K U^{*} L^{n}\left(4 ; q_{0}, \cdots, q_{n}\right)$ and the behavior of the conjugation ψ_{C}^{-1} on it. Our calculation asserts that $\Sigma^{1} L_{0}^{n}\left(4 ; q_{0}, \cdots, q_{n}\right)$ has the same \mathcal{C} type as one of the small spectra $\Sigma^{2} S Z / 2^{r} \vee P_{s, t}^{\prime}, S Z / 2^{r} \vee P_{s, t}^{\prime \prime}$ and $P P_{r, s, t}^{\prime}$, and $\Sigma^{1} L^{n}\left(4 ; q_{0}, \cdots, q_{n}\right)$ has the same \mathcal{C}-type as one of the small spectra $\Sigma^{2} M_{r} \vee P_{s, t}^{\prime}$, $M_{r} \vee P_{s, t}^{\prime \prime}, M P P_{r, s, t}^{\prime}$ and $\Sigma^{2 m} \vee \Sigma^{1} L_{0}^{n}\left(4 ; q_{0}, \cdots, q_{n}\right)$ (see Proposition 3.2). Here $S Z / 2^{r}$ is the Moore spectrum of type $Z / 2^{r}$ and $M_{r}, P_{s, t}^{\prime}, P_{s, t}^{\prime \prime}, P P_{r, s, t}^{\prime}$ and $M P P_{r, s, t}^{\prime}$ are the small spectra constructed as the cofibers of the maps $i \eta: \Sigma^{1} \rightarrow S Z / 2^{r}$, $i \bar{\eta}: \Sigma^{1} S Z / 2^{t} \rightarrow S Z / 2^{s}, i \bar{\eta}+\tilde{\eta} j: \Sigma^{1} S Z / 2^{t} \rightarrow S Z / 2^{s},(\tilde{\eta} j, i \bar{\eta}): \Sigma^{1} S Z / 2^{t} \rightarrow$ $S Z / 2^{r} \vee S Z / 2^{s}$ and $\left(i_{M} \tilde{\eta} j, i \bar{\eta}\right): \Sigma^{1} S Z / 2^{t} \rightarrow M_{r} \vee S Z / 2^{s}$, respectively, in which $i: \Sigma^{0} \rightarrow S Z / 2^{r}$ and $j: S Z / 2^{r} \rightarrow \Sigma^{1}$ are the bottom cell inclusion and the top cell
projection, $i_{M}: S Z / 2^{r} \rightarrow M_{r}$ is the canonical inclusion, $\eta: \Sigma^{1} \rightarrow \Sigma^{0}$ is the stable Hopf map, and $\bar{\eta}: \Sigma^{1} S Z / 2^{r} \rightarrow \Sigma^{0}$ and $\tilde{\eta}: \Sigma^{2} \rightarrow S Z / 2^{r}$ are its extension and coextension satisfying $\bar{\eta} i=\eta$ and $j \tilde{\eta}=\eta$.

In [12, Proposition 3.1 and Theorem 3.3] we have already characterized the quasi $K O_{*}$-types of spectra having the same \mathcal{C}-type as $S Z / 2^{r} \vee P_{s, t}^{\prime \prime}, M_{r} \vee P_{s, t}^{\prime \prime}, P P_{r, s, t}^{\prime}$ or $M P P_{r, s, t}^{\prime}$ (see Theorems 1.2 and 1.3). In $\S 1$ we introduce some new small spectra X having the same \mathcal{C}-type as $S Z / 2^{r} \vee P_{s, t}^{\prime}$ or $M_{r} \vee P_{s, t}^{\prime}$, and calculate their $K O$ homology groups $K O_{*} X$ (Propositions 1.5 and 1.7). In $\S 2$ we shall characterize the quasi $K O_{*}$-types of spectra having the same \mathcal{C}-type as $S Z / 2^{r} \vee P_{s, t}^{\prime}$ or $M_{r} \vee P_{s, t}^{\prime}$ (Theorems 2.3 and 2.4) by using the small spectra introduced in $\S 1$. Our discussion developed in $\S 2$ is quite similar to the one done in $[6, \S 4]$ in order to characterize the quasi $K O_{*}$-types of spectra having the same \mathcal{C}-type as $S Z / 2^{r} \vee S Z / 2^{s}$ (see [6, Theorem 5.3]). In $\S 3$ we first calculate the $K U$-cohomology group $K U^{0} L^{n}\left(4 ; q_{0}, \cdots, q_{n}\right)$, and then investigate the behavior of the conjugation ψ_{C}^{-1} on it (Proposition 3.1). Dualizing this result we study the \mathcal{C}-types of $L=L^{n}\left(4 ; q_{0}, \cdots, q_{n}\right)$ and $L_{0}^{n}\left(4 ; q_{0}, \cdots, q_{n}\right)$ as is stated above (Proposition 3.2), and moreover calculate the sets $S(L)=\left\{2 i ; K O_{2 i} L=\right.$ $0(0 \leq i \leq 3)\}$ (Lemma 3.3). Since $P_{s, t}^{\prime}$ and $\Sigma^{2} P_{t-1, s+1}^{\prime}$ have the same \mathcal{C}-type we can apply Theorems $1.2,1.3,2.3$ and 2.4 with the aid of Proposition 3.2 and Lemma 3.3 to determine the quasi $K O_{*}$-types of the weighted mod 4 lens spaces $L^{n}\left(4 ; q_{0}, \cdots, q_{n}\right)$ and $L_{0}^{n}\left(4 ; q_{0}, \cdots, q_{n}\right)$ as our main results (Theorems 3.5 and 3.6).

1. Small spectra having the same \mathcal{C}-type as $S Z / 2^{r} \vee P_{s, t}^{\prime}$ or $M_{r} \vee P_{s, t}^{\prime}$

1.1. Let $S Z / 2^{m}(m \geq 1)$ be the Moore spectrum of type $Z / 2^{m}$, and $i: \Sigma^{0} \rightarrow$ $S Z / 2^{m}$ and $j: S Z / 2^{m} \rightarrow \Sigma^{1}$ be the bottom cell inclusion and the top cell projection, respectively. The stable Hopf map $\eta: \Sigma^{1} \rightarrow \Sigma^{0}$ of order 2 admits an extension $\bar{\eta}$: $\Sigma^{1} S Z / 2^{m} \rightarrow \Sigma^{0}$ and a coextension $\tilde{\eta}: \Sigma^{2} \rightarrow S Z / 2^{m}$ satisfying $\bar{\eta} i=\eta$ and $j \tilde{\eta}=\eta$. As in [13] (see [8]) we denote by $M_{m}, N_{m, n}, P_{m, n}, P_{m, n}^{\prime}, P_{m, n}^{\prime \prime}, R_{m, n}, R_{m, n}^{\prime}$ and $K_{m, n}$ the small spectra constructed as the cofibers of the following maps $i \eta: \Sigma^{1} \rightarrow$ $S Z / 2^{m}, i \eta^{2} j, \tilde{\eta} j, i \bar{\eta}, i \bar{\eta}+\tilde{\eta} j: \Sigma^{1} S Z / 2^{n} \rightarrow S Z / 2^{m}$ and $\tilde{\eta} \eta^{2} j, i \eta^{2} \bar{\eta}, \tilde{\eta} \tilde{\eta}: \Sigma^{3} S Z / 2^{n} \rightarrow$ $S Z / 2^{m}$, respectively. In particular, $P_{m-1,1}^{\prime}$ is simply written as V_{m}. The spectra V_{m} and M_{m} are exhibited in the following cofiber sequences:

$$
\Sigma^{0} \xrightarrow{2^{m-1} \bar{i}} C(\bar{\eta}) \xrightarrow{\bar{i}_{V}} V_{m} \xrightarrow{\bar{j}_{V}} \Sigma^{1}, \Sigma^{0} \xrightarrow{2^{m} i} C(\eta) \xrightarrow{h_{M}} M_{m} \xrightarrow{k_{M}} \Sigma^{1}
$$

where $C(\eta)$ and $C(\bar{\eta})$ are the cofibers of the maps $\eta: \Sigma^{1} \rightarrow \Sigma^{0}$ and $\bar{\eta}: \Sigma^{1} S Z / 2 \rightarrow$ Σ^{0}, and $i_{P}: \Sigma^{0} \rightarrow C(\eta)$ and $\bar{i}: \Sigma^{0} \rightarrow C(\bar{\eta})$ are the bottom cell inclusions. Note that $C(\bar{\eta})$ is quasi $K O_{*}$-equivalent to Σ^{4}.

Moreover we denote by ${ }_{V} P_{m, n}, P_{m, n}^{V},{ }_{V} R_{m, n}, R_{m, n}^{V}, V R_{m, n}, M P_{m, n}, P M_{m, n}$, $M R_{m, n}$ and $R M_{m, n}$ the small spectra constructed as the cofibers of the following maps:

$$
\begin{align*}
& i_{V} \tilde{\eta} j: \Sigma^{1} S Z / 2^{n} \rightarrow V_{m}, \tilde{\eta} \bar{j}_{V}: \Sigma^{1} V_{n} \rightarrow S Z / 2^{m}, \\
& i_{V} \tilde{\eta} \eta^{2} j: \Sigma^{3} S Z / 2^{n} \rightarrow V_{m}, \quad \tilde{\eta} \eta^{2} \bar{j}_{V}: \Sigma^{3} V_{n} \rightarrow S Z / 2^{m}, \\
& \xi_{V} \eta j: \Sigma^{5} S Z / 2^{n} \rightarrow V_{m}, \tag{1.1}\\
& i_{M} \tilde{\eta} j: \Sigma^{1} S Z / 2^{n} \rightarrow M_{m}, \quad \tilde{\eta} k_{M}: \Sigma^{1} M_{n} \rightarrow S Z / 2^{m}, \\
& i_{M} \tilde{\eta} \eta^{2} j: \Sigma^{3} S Z / 2^{n} \rightarrow M_{m}, \quad \tilde{\eta} \eta^{2} k_{M}: \Sigma^{3} M_{n} \rightarrow S Z / 2^{m},
\end{align*}
$$

respectively, where $i_{V}: S Z / 2^{m-1} \rightarrow V_{m}$ and $i_{M}: \Sigma^{0} \rightarrow M_{m}$ are the canonical inclusions, and $\xi_{V}: \Sigma^{5} \rightarrow V_{m}$ is the map satisfying $j_{V} \xi_{V}=\tilde{\eta} \eta$ for the canonical projection $j_{V}: V_{m} \rightarrow \Sigma^{2} S Z / 2$. Here we understand $i_{V} \tilde{\eta}=i: \Sigma^{0} \rightarrow S Z / 2$ and $\xi_{V}=\tilde{\eta} \eta$: $\Sigma^{3} \rightarrow S Z / 2$ when $m=1$. According to [6, Proposition 3.2] and its dual the spectra ${ }_{V} P_{m, n}, P_{m, n}^{V},{ }_{V} R_{m, n}$ and $R_{m, n}^{V}(m \geq 2)$ are quasi $K O_{*}$-equivalent to $\Sigma^{2} P_{n+1, m-1}$, $\Sigma^{6} P_{n+1, m-1}, \Sigma^{2} V^{\prime} N_{m, n}$ and $\Sigma^{6} V^{\prime} N_{m, n}$, respectively. Here the spectrum $V^{\prime} N_{m, n}$ is constructed as the cofiber of the map $\tilde{\eta} j \vee i \eta^{2} j: \Sigma^{1} S Z / 2^{m-1} \vee \Sigma^{1} S Z / 2^{n} \rightarrow S Z / 2$, and it is quasi $K O_{*}$-equivalent to $\Sigma^{6} V_{m} \vee \Sigma^{2} S Z / 2^{n}$ if $m \geq n$. The S-dual spectrum $N V_{n, m}$ of $V^{\prime} N_{m, n}$ and the spectrum $V R_{m, n}$ have been introduced in [13, Proposition 3.1], and the spectra $M P_{m, n}$ and $P M_{m, n}$ were written as $M V_{m, n}^{\prime}$ and $V^{\prime} M_{m, n}$, respectively, in [12, Propositions 2.3 and 2.4]. On the other hand, the spectra $M R_{m, n}$ and $R M_{n, m}$ have the same \mathcal{C}-type as $M_{m} \vee S Z / 2^{n}$. Note that $M R_{m, n}$ is quasi $K O_{*^{-}}$ equivalent to $M_{m} \vee \Sigma^{4} S Z / 2^{n}$ if $m \geq n$, and $R M_{m, n}$ is quasi $K O_{*}$-equivalent to $S Z / 2^{m} \vee \Sigma^{4} M_{n}$ if $m>n$. By a routine computation we obtain the $K O$-homology groups $K O_{i} X(0 \leq i \leq 7)$ of $X=M R_{m, n}(m<n)$ and $R M_{m, n}(m \leq n)$ as follows:

$X \backslash i$	0	1	2	3	4	5	6	7
$M R_{m, n}$	$Z / 2^{m} \oplus Z / 2^{n}$	0	$Z \oplus Z / 2$	$Z / 2$	$Z / 2^{m} \oplus Z / 2^{n+1}$	$Z / 2$	$Z \oplus(*)_{n}$	$Z / 2$
$R M_{m, n}$	$Z / 2^{m} \oplus Z / 2^{n+1}$	$Z / 2$	$Z \oplus(*)_{m}$	$Z / 2$	$Z / 2^{m-1} \oplus Z / 2^{n+1}$	0	$Z \oplus Z / 2$	$Z / 2$

where $(*)_{1} \cong Z / 4$ and $(*)_{k} \cong Z / 2 \oplus Z / 2$ if $k \geq 2$.
For any maps $f: \Sigma^{i} S Z / 2^{t} \rightarrow Z_{r}$ and $g: \Sigma^{i} Z_{r} \rightarrow S Z / 2^{s}$ whose cofibers are denoted by $X_{r, t}$ and $Y_{s, r}$, we introduce new small spectra $X P_{r, s, t}^{\prime}$ and $P^{\prime} Y_{s, t, r}$ constructed as the cofibers of the following maps

$$
\begin{align*}
& (f, i \bar{\eta}): \Sigma^{i} S Z / 2^{t} \rightarrow Z_{r} \vee \Sigma^{i-1} S Z / 2^{s}, \\
& i \bar{\eta} \vee g: \Sigma^{1} S Z / 2^{t} \vee \Sigma^{i} Z_{r} \rightarrow S Z / 2^{s}, \tag{1.3}
\end{align*}
$$

respectively. In particular, the spectra $N P_{r, s, 1}^{\prime}$ and $P P_{r, s, 1}^{\prime}$ are written as $N V_{r, s+1}$ and $P V_{r, s+1}$ in [13, Proposition 3.1], respectively, and $R P_{r, s, 1}^{\prime}=S Z / 2^{r} \vee \Sigma^{2} V_{s+1}$ and ${ }_{V} R P_{r, s, 1}^{\prime}=V_{r} \vee \Sigma^{2} V_{s+1}$. By virtue of [6, Propositions 3.2 and 3.3] the spec$\operatorname{tra}{ }_{V} P P_{r, s, 1}^{\prime}, P^{\prime} P_{s, 1, r}, P^{\prime} P_{s, 1, r}^{V}$ and $P^{\prime} R_{s, 1, r}$ are quasi $K O_{*}$-equivalent to $\Sigma^{4} K_{r, s+1}$, $\Sigma^{2} P_{r+1, s}, \Sigma^{4} P_{s+1, r}$ and $\Sigma^{2} V^{\prime} N_{s+1, r}$, respectively. On the other hand, the spectrum $V R P_{r, s, 1}^{\prime}$ is quasi $K O_{*}$-equivalent to $R_{r, s+1}^{\prime}, R^{\prime} R_{r, s+1}$ or $V_{r} \vee \Sigma^{4} V_{s+1}$ according as $r>s+1, r=s+1$ or $r \leq s$, and the spectrum $P^{\prime} R_{s, 1, r}^{V}$ is quasi $K O_{*}$-equivalent
to $\Sigma^{4} R_{s+1, r}, R^{\prime} R_{s+1, r}$ or $V_{s+1} \vee \Sigma^{4} V_{r}$ according as $r>s+1, r=s+1$ or $r \leq s$. Here the spectrum $R^{\prime} R_{m, n}$ has been introduced in [13, Proposition 3.3]. The spectra $P P_{r, s, t}^{\prime},{ }_{V} P P_{r, s, t}^{\prime}, P^{\prime} P_{s, t, r}, M P P_{r, s, t}^{\prime}$ and $P^{\prime} P M_{s, t, r}$ were written as $U_{s, r, t}, V_{s, r, t}$, $U_{s, t, r}^{\prime}, M U_{s, r, t}$ and $U^{\prime} M_{s, t, r}$ in [12], respectively, and their $K U$-homology groups with the conjugation ψ_{C}^{-1} and their $K O$-homology groups have been obtained in [12, Propositions 2.1, 2.2, 2.3 and 2.4].

Proposition 1.1.

i) "The $X=P P_{r, s, t}^{\prime}$ or ${ }_{V} P P_{r, s, t}^{\prime}$ case"

	>	
$K U_{0} X \cong$ $\psi_{C}^{-1}=$	$Z / 2^{r} \oplus Z / 2^{t} \oplus Z / 2^{s}$	$Z / 2^{r} \oplus Z / 2^{t-1} \oplus Z / 2^{s+1}$
	$\left(\begin{array}{ccc}1 & 2^{r-t} & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 1\end{array}\right)$	$\left(\begin{array}{ccc}1 & 2^{r-t+1} & -2^{r-t} \\ 0 & -1 & 1 \\ 0 & 0 & 1\end{array}\right)$
$r \leq t \geq s$		
$U_{0} X \cong Z / 2^{r-1} \oplus Z / 2^{t+1} \oplus Z / 2^{s} \quad Z / 2^{r-1} \oplus Z / 2^{t} \oplus Z / 2^{s+1}$		
${ }^{1}$	$\left(\begin{array}{ccc}1 & 0 & 0 \\ -2^{t-r+2} & -1 & 0 \\ -2^{t-r+1} & -1 & 1\end{array}\right)$	$\left(\begin{array}{ccc}1 & 0 & 0 \\ -2^{t-r+1} & -1 & 1 \\ 0 & 0 & 1\end{array}\right)$

ii) "The $X=M P P_{r, s, t}^{\prime}$ case"

$\left\{\begin{array}{c} K U_{0} X \cong \\ \psi_{C}^{-1}= \end{array}\right.$	$r>$	
	$Z \oplus Z / 2^{r} \oplus Z / 2^{t} \oplus Z / 2^{s}$	$Z \oplus Z / 2^{r} \oplus Z / 2^{t-1} \oplus Z / 2^{s+1}$
	$\left(\begin{array}{cccc}-1 & 0 & 0 & 0 \\ -1 & 1 & 2^{r-t} & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 1\end{array}\right)$	$\left(\begin{array}{cccc}-1 & 0 & 0 & 0 \\ -1 & 1 & 2^{r-t+1} & -2^{r-t} \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)$
$\begin{gathered} r \leq t \geq s \\ K U_{0} X \cong \quad Z \oplus Z / 2^{r-1} \oplus Z / 2^{t+1} \oplus Z / 2^{s} \end{gathered}$		$r \leq t \leq s$
		$Z \oplus Z / 2^{r-1} \oplus Z / 2^{t} \oplus Z / 2^{s+1}$
$\psi_{C}^{-1}=$	$\left(\begin{array}{cccc}-1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 2^{t-r+1} & -2^{t-r+2} & -1 & 0 \\ 0 & -2^{t-r+1} & -1 & 1\end{array}\right)$	$\left(\begin{array}{cccc}-1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 2^{t-r} & -2^{t-r+1} & -1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)$

iii) Their $K O$-homology groups $K O_{i} X(0 \leq i \leq 7)$ are tabled as follows:

$X \backslash i$	0	1	2	3	4	5	6	7
$P P_{r, s, t}^{\prime}$	$Z / 2^{r} \oplus Z / 2^{s}$	$Z / 2$	$(*)_{t-1, r} \oplus Z / 2$	$Z / 2$	$Z / 2^{r-1} \oplus Z / 2^{s+1}$	0	$Z / 2^{t}$	0
$V P P_{r, s, t}^{\prime}$	$Z / 2^{r-1} \oplus Z / 2^{s}$	0	$Z / 2^{t} \oplus Z / 2$	$Z / 2$	$Z / 2^{r} \oplus Z / 2^{s+1}$	$Z / 2$	$(*)_{t-1, r}$	0
$M P P_{r, s, t}^{\prime}$	$Z / 2^{r} \oplus Z / 2^{s}$	0	$Z \oplus Z / 2^{t} \oplus Z / 2$	$Z / 2$	$Z / 2^{r} \oplus Z / 2^{s+1}$	0	$Z \oplus Z / 2^{t}$	0

where $(*)_{k, 1} \cong Z / 2^{k+2}$ and $(*)_{k, l} \cong Z / 2^{k+1} \oplus Z / 2$ if $l \geq 2$.

For any spectrum X having the same \mathcal{C}-type as $P P_{r, s, t}^{\prime}$ or $M P P_{r, s, t}^{\prime}$ we have already determined its quasi $K O_{*}$-type in [12, Theorem 3.3].

Theorem 1.2.

i) If a spectrum X has the same \mathcal{C}-type as $P P_{r, s, t}^{\prime}$, then it is quasi $K O_{*^{-}}$ equivalent to one of the following small spectra $P P_{r, s, t}^{\prime}, \Sigma^{4} P P_{r, s, t}^{\prime},{ }_{V} P P_{r, s, t}^{\prime}$ and $\Sigma^{4}{ }_{V} P P_{r, s, t}^{\prime}$.
ii) If a spectrum X has the same \mathcal{C}-type as $M P P_{r, s, t}^{\prime}$, then it is quasi $K O_{*}$ equivalent to either of the small spectra $M P P_{r, s, t}^{\prime}$ and $\Sigma^{4} M P P_{r, s, t}^{\prime}$.

Applying Theorem 1.2 we see that
(1.4) the spectra $P^{\prime} P_{s, t, r}, P^{\prime} P_{s, t, r}^{V}$ and $P^{\prime} P M_{s, t, r}$ are quasi $K O_{*}$-equivalent to $\Sigma^{2} P P_{r+1, t-1, s}^{\prime}, \Sigma^{2}{ }_{V} P P_{r+1, t-1, s}^{\prime}$ and $\Sigma^{2} M P P_{r+1, t-1, s}^{\prime}$, respectively (see [12, Corollary 3.4]).
We can also show the following result (see [12, Proposition 3.1]).

Theorem 1.3.

i) If a spectrum X has the same \mathcal{C}-type as $S Z / 2^{r} \vee P_{s, t}^{\prime \prime}$, then it is quasi $K O_{*^{-}}$ equivalent to one of the following wedge sums $S Z / 2^{r} \vee P_{s, t}^{\prime \prime}, \Sigma^{4} S Z / 2^{r} \vee P_{s, t}^{\prime \prime}$, $V_{r} \vee P_{s, t}^{\prime \prime}$ and $\Sigma^{4} V_{r} \vee P_{s, t}^{\prime \prime}$.
ii) If a spectrum X has the same \mathcal{C}-type as $M_{r} \vee P_{s, t}^{\prime \prime}$, then it is quasi $K O_{*^{-}}$ equivalent to either of the following wedge sums $M_{r} \vee P_{s, t}^{\prime \prime}$ and $\Sigma^{4} M_{r} \vee P_{s, t}^{\prime \prime}$.
1.2. Since $P_{s, t}^{\prime}$ and $\Sigma^{2} P_{t-1, s+1}^{\prime}$ have the same \mathcal{C}-type a routine computation shows

Proposition 1.4.

i) The spectra $N P_{r, s, t}^{\prime}, V R P_{r, s, t}^{\prime}, R P_{r, t-1, s+1}^{\prime}, V R P_{r, t-1, s+1}^{\prime}, P^{\prime} R_{s, t, r}$ and $P^{\prime} R_{s, t, r}^{V}$ have the same \mathcal{C}-type as the wedge sum $S Z / 2^{r} \vee P_{s, t}^{\prime}$.
ii) The spectra $M R P_{r, t-1, s+1}^{\prime}$ and $P^{\prime} R M_{s, t, r}$ have the same \mathcal{C}-type as the wedge $\operatorname{sum} M_{r} \vee P_{s, t}^{\prime}$.

Note that if $r \geq t$ the spectra $R P_{r, s, t}^{\prime}, V R P_{r, s, t}^{\prime}$ and $M R P_{r, s, t}^{\prime}$ are quasi $K O_{*}-$ equivalent to $S Z / 2^{r} \vee \Sigma^{2} P_{s, t}^{\prime}, V_{r} \vee \Sigma^{2} P_{s, t}^{\prime}$ and $M_{r} \vee \Sigma^{2} P_{s, t}^{\prime}$, respectively, and if $r \leq s$ the spectra $P^{\prime} R_{s, t, r}, P^{\prime} R_{s, t, r}^{V}$ and $P^{\prime} R M_{s, t, r}$ are quasi $K O_{*}$-equivalent to $\Sigma^{4} S Z / 2^{r} \vee$ $P_{s, t}^{\prime}, \Sigma^{4} V_{r} \vee P_{s, t}^{\prime}$ and $\Sigma^{4} M_{r} \vee P_{s, t}^{\prime}$, respectively. By use of [13, Propositions 2.2 and 3.1] and (1.2) we can easily calculate

Proposition 1.5. For the small spectra X listed in Proposition 1.4 the KO homology groups $K O_{i} X(0 \leq i \leq 7)$ are tabled as follows:

$i \backslash X$	$N P_{r, s, t}^{\prime}$	$R P_{r, s, t}^{\prime}$	$V^{2} R P_{r, s, t}^{\prime}$	$V R P_{r, s, t}^{\prime}$
	$(t \geq 2)$	$(r<t)$	$(r<t)$	$(t \geq 2)$
0	$Z / 2^{r} \oplus Z / 2^{s}$	$Z / 2^{r} \oplus Z / 2^{t}$	$Z / 2^{r-1} \oplus Z / 2^{t}$	$Z / 2^{r} \oplus Z / 2^{s+1}$
1	$Z / 2$	$Z / 2$	0	$Z / 2$
2	$Z / 2^{t} \oplus Z / 2 \oplus Z / 2$	$Z / 2^{s} \oplus(*)_{r}$	$Z / 2^{s} \oplus Z / 2$	$Z / 2^{t} \oplus Z / 2$
3	$Z / 2 \oplus Z / 2$	$Z / 2$	$Z / 2$	$Z / 2$
4	$Z / 2^{r+1} \oplus Z / 2^{s+1}$	$Z / 2^{r-1} \oplus Z / 2^{t} \oplus Z / 2$	$Z / 2^{r} \oplus Z / 2^{t} \oplus Z / 2$	$Z / 2^{r+1} \oplus Z / 2^{s}$
5	$Z / 2$	$Z / 2$	$Z / 2 \oplus Z / 2$	$Z / 2$
6	$Z / 2^{t}$	$Z / 2^{s+1} \oplus Z / 2$	$Z / 2^{s+1} \oplus(*)_{r}$	$Z / 2^{t} \oplus Z / 2$
7	0	$Z / 2$	$Z / 2$	$Z / 2$

$i \backslash X$	$P^{\prime} R_{s, t, r}$	$P^{\prime} R_{s, t, r}^{V}$	$M R P_{r, s, t}^{\prime}$	$P^{\prime} R M_{s, t, r}$
	$(s<r, t \geq 2)$	$(s<r, t \geq 2)$	$(r<t)$	$(s<r)$
0	$Z / 2^{s} \oplus Z / 2^{r}$	$Z / 2^{s} \oplus Z / 2^{r+1}$	$Z / 2^{r} \oplus Z / 2^{t}$	$Z / 2^{s} \oplus Z / 2^{r+1}$
1	0	$Z / 2$	0	0
2	$Z / 2^{t-1} \oplus Z / 2$	$Z / 2^{t-1} \oplus Z / 2 \oplus Z / 2$	$Z \oplus Z / 2^{s} \oplus Z / 2$	$Z \oplus Z / 2^{t-1} \oplus Z / 2$
3	$Z / 2$	$Z / 2$	$Z / 2$	$Z / 2$
4	$(*)_{s-1, t} \oplus Z / 2^{r+1}$	$(*)_{s-1, t} \oplus Z / 2^{r}$	$Z / 2^{r} \oplus Z / 2^{s} \oplus Z / 2(*)_{s-1, t} \oplus Z / 2^{r+1}$	
5	$Z / 2 \oplus Z / 2$	$Z / 2$	$Z / 2$	$Z / 2$
6	$Z / 2^{t} \oplus Z / 2 \oplus Z / 2$	$Z / 2^{t} \oplus Z / 2$	$Z \oplus Z / 2^{s+1} \oplus Z / 2$	$Z \oplus Z / 2^{t} \oplus Z / 2$
7	$Z / 2$	$Z / 2$	$Z / 2$	$Z / 2$

where $(*)_{k, 1} \cong Z / 2^{k+2}$ and $(*)_{k, l} \cong Z / 2^{k+1} \oplus Z / 2$ if $l \geq 2$, and $(*)_{0, l}$ is abbreviated as (*) .

Let $N_{t}^{\prime}, P_{t}^{\prime}$ and R_{t}^{\prime} denote the small spectra constructed as the cofibers of the following maps $\eta^{2} j, \bar{\eta}: \Sigma^{1} S Z / 2^{t} \rightarrow \Sigma^{0}$ and $\eta^{2} \bar{\eta}: \Sigma^{3} S Z / 2^{t} \rightarrow \Sigma^{0}$, respectively. Consider the small spectrum $N^{\prime} P_{t}^{\prime}$ constructed as the cofiber of the map $\left(\eta^{2} j, \bar{\eta}\right)$: $\Sigma^{1} S Z / 2^{t} \rightarrow \Sigma^{0} \vee \Sigma^{0}$. Then we have two maps $i_{N P}^{\prime}: \Sigma^{0} \rightarrow N^{\prime} P_{t}^{\prime}$ and $\rho_{N P}^{\prime}:$ $\Sigma^{0} \rightarrow N^{\prime} P_{t}^{\prime}$ whose cofibers are N_{t}^{\prime} and P_{t}^{\prime}, respectively. These two maps are related by the equality $i_{N P}^{\prime} \bar{\eta}=\rho_{N P}^{\prime} \eta^{2} j: \Sigma^{1} S Z / 2^{t} \rightarrow N^{\prime} P_{t}^{\prime}$. In particular, $i_{N P}^{\prime}=(2, \bar{i})$: $\Sigma^{0} \rightarrow \Sigma^{0} \vee C(\bar{\eta})$ and $\rho_{N P}^{\prime}=(1,0): \Sigma^{0} \rightarrow \Sigma^{0} \vee C(\bar{\eta})$ when $t=1$. We denote by $N^{\prime} P_{r, t}^{\prime}, P^{\prime} N_{s, t}^{\prime}$ and $F_{t}^{n, m}$ the spectra constructed as the cofibers of the following maps $2^{r} \rho_{N P}^{\prime}, 2^{s} i_{N P}^{\prime}$ and $f_{t}^{n, m}=2^{n} \rho_{N P}^{\prime}+2^{m} i_{N P}^{\prime}: \Sigma^{0} \rightarrow N^{\prime} P_{t}^{\prime}$, respectively. In particular, $N^{\prime} P_{r, 1}^{\prime}=C(\bar{\eta}) \vee S Z / 2^{r}$ and $P^{\prime} N_{s, 1}^{\prime}$ is quasi $K O_{*}$-equivalent to $\Sigma^{4} R_{s+1}^{\prime}$. On the other hand, $F_{1}^{n, m}=C(\bar{\eta}) \vee S Z / 2^{n}$ if $n \leq m, F_{1}^{n, m}=C(\bar{\eta}) \vee V_{m+1}$ if $n=m+1$, and it is quasi $K O_{*}$-equivalent to $\Sigma^{4} R_{m+1}^{\prime}$ if $n>m+1$. Whenever $t \geq 2$ we can regard that the induced homomorphisms $\rho_{N P_{*}}^{\prime}$ and $i_{N P_{*}}^{\prime}: K U_{0} \Sigma^{0} \rightarrow K U_{0} N^{\prime} P_{t}^{\prime}$ are
given by $\rho_{N P *}^{\prime}(1)=(1,0,0)$ and $i_{N P_{*}}^{\prime}(1)=(0,2,1)$ in $K U_{0} N^{\prime} P_{t}^{\prime} \cong Z \oplus Z \oplus Z / 2^{t-1}$ because $i_{N P}^{\prime}$ may be replaced by $i_{N P}^{\prime}+2 q \rho_{N P}^{\prime}$ if necessary. Hence it is easily shown that
(1.5) i) the spectra $N^{\prime} P_{r, t}^{\prime}$ and $P^{\prime} N_{s, t}^{\prime}$ have the same \mathcal{C}-type as $S Z / 2^{r} \vee P_{t}^{\prime}$ and $\Sigma^{0} \vee P_{s, t}^{\prime}$, respectively, and
ii) the spectrum $F_{t}^{n, m}$ has the same \mathcal{C}-type as $S Z / 2^{n} \vee P_{t}^{\prime}$ when $n \leq m$, and as $\Sigma^{0} \vee P_{m, t}^{\prime}$ when $n>m$.
By use of [8, Proposition 4.2] and [9, Proposition 2.4] we can easily calculate the $K O$-homology groups $K O_{i} X(0 \leq i \leq 7)$ of $X=N^{\prime} P_{r, t}^{\prime}, P^{\prime} N_{s, t}^{\prime}$ and $F_{t}^{n, m}(t \geq 2)$ as follows:

$X \backslash i$	0	1	2	3	4	5	6	7
$N^{\prime} P_{r, t}^{\prime}$	$Z \oplus Z / 2^{r}$	$Z / 2$	$Z / 2^{t} \oplus Z / 2$	$Z / 2$	$Z \oplus Z / 2^{r+1}$	$Z / 2$	$Z / 2^{t}$	0
$P^{\prime} N_{s, t}^{\prime}$	$Z \oplus Z / 2^{s}$	$Z / 2$	$Z / 2^{t} \oplus Z / 2$	$Z / 2$	$Z \oplus Z / 2^{s+1}$	$Z / 2$	$Z / 2^{t}$	0
$F_{t}^{n, m}$	$Z \oplus Z / 2^{l}$	$Z / 2$	$Z / 2^{t} \oplus Z / 2$	$Z / 2$	$Z \oplus Z / 2^{l+1}$	$Z / 2$	$Z / 2^{t}$	0

where $l=\min \{n, m\}$.
Choose two maps $h_{N}^{\prime}: \Sigma^{2} \rightarrow N_{t}^{\prime}$ and $\bar{\rho}_{N}^{\prime}: C(\bar{\eta}) \rightarrow N_{t}^{\prime}$ whose cofibers coincide with $C\left(\eta^{2}\right)$ and V_{t}^{\prime}, respectively, where $C\left(\eta^{2}\right)$ is the cofiber of the map $\eta^{2}: \Sigma^{2} \rightarrow \Sigma^{0}$ and $V_{t}^{\prime}=P_{1, t-1}$ which is quasi $K O_{*}$-equivalent to $\Sigma^{6} V_{t}$ (see [13]). Then there exist two maps $\lambda_{N P}^{\prime}: C(\bar{\eta}) \rightarrow N^{\prime} P_{t}^{\prime}$ and $\bar{\rho}_{N P}^{\prime}: C(\bar{\eta}) \rightarrow N^{\prime} P_{t}^{\prime}$ satisfying $j_{N P}^{\prime} \lambda_{N P}^{\prime}=h_{N}^{\prime} \eta j \bar{j}$ and $j_{N P}^{\prime} \bar{\rho}_{N P}^{\prime}=\bar{\rho}_{N}^{\prime}$ for the canonical projection $j_{N P}^{\prime}$: $N^{\prime} P_{t}^{\prime} \rightarrow N_{t}^{\prime}$. In particular, we may choose as $\lambda_{N P}^{\prime}=(\bar{\lambda}, 2): C(\bar{\eta}) \rightarrow \Sigma^{0} \vee C(\bar{\eta})$ and $\bar{\rho}_{N P}^{\prime}=(0,1): C(\bar{\eta}) \rightarrow \Sigma^{0} \vee C(\bar{\eta})$ when $t=1$. Here the map $\bar{\lambda}: C(\bar{\eta}) \rightarrow \Sigma^{0}$ satisfies the equalities $\bar{\lambda} \bar{i}=4$ and $\bar{i} \bar{\lambda}=4$ (see [13, (1.3)]). Whenever $t \geq 2$, we can regard that the induced homomorphisms $\bar{\rho}_{N P_{*}}^{\prime}$ and $\lambda_{N P *}^{\prime}: K U_{0} C(\bar{\eta}) \rightarrow K U_{0} N^{\prime} P_{t}^{\prime}$ are given by $\bar{\rho}_{N P}^{\prime}(1)=(1,0,0)$ and $\lambda_{N P_{*}}^{\prime}(1)=(0,2,1)$ in $K U_{0} N^{\prime} P_{t}^{\prime} \cong Z \oplus Z \oplus$ $Z / 2^{t-1}$ because $\bar{\rho}_{N P}^{\prime}$ and $\lambda_{N P}^{\prime}$ may be replaced by $\bar{\rho}_{N P}^{\prime}+k i_{P N}^{\prime} \bar{\lambda}$ and $\lambda_{N P}^{\prime}+l i_{P N}^{\prime} \bar{\lambda}$ if necessary. By virtue of $\left[13\right.$, Lemma 1.5] we obtain that the cofiber of $\bar{\rho}_{N P}^{\prime}$ is quasi $K O_{*}$-equivalent to $\Sigma^{4} P_{t}^{\prime}$. On the other hand, by use of [13, Lemma 1.2 and Proposition 4.1] (or [9, Theorem 4.2]) we see that the cofiber of $\lambda_{N P}^{\prime}$ is quasi $K O_{*^{-}}$ equivalent to $\Sigma^{4} N_{t}^{\prime}$. More generally, the cofibers of the maps $2^{r} \bar{\rho}_{N P}^{\prime}$ and $2^{s} \lambda_{N P}^{\prime}$ are quasi $K O_{*}$-equivalent to $\Sigma^{4} N^{\prime} P_{r, t}^{\prime}$ and $\Sigma^{4} P^{\prime} N_{s, t}^{\prime}$, respectively, because $N^{\prime} P_{t}^{\prime}$ and $\Sigma^{4} N^{\prime} P_{t}^{\prime}$ have the same quasi $K O_{*}$-type (see [9, Corollary 4.5]).

Using the maps $f_{t}^{n, m}, \bar{\rho}_{N P}^{\prime}$ and $\lambda_{N P}^{\prime}$ we introduce new small spectra $N^{\prime} P^{\prime} F_{r, t}^{n, m}$ and $P^{\prime} N^{\prime} F_{s, t}^{n, m}$ constructed as the cofibers of the following maps

$$
\begin{align*}
& f_{t}^{n, m} \vee 2^{r} \bar{\rho}_{N P}^{\prime}: \Sigma^{0} \vee C(\bar{\eta}) \rightarrow N^{\prime} P_{t}^{\prime} \\
& f_{t}^{n, m} \vee 2^{s} \lambda_{N P}^{\prime}: \Sigma^{0} \vee C(\bar{\eta}) \rightarrow N^{\prime} P_{t}^{\prime} \tag{1.7}
\end{align*}
$$

respectively. In particular, $N^{\prime} P^{\prime} F_{r, 1}^{n, m}$ is equal to $\left(C(\bar{\eta}) \wedge S Z / 2^{r}\right) \vee S Z / 2^{n}$ if $n \leq m$, to $\left(C(\bar{\eta}) \wedge S Z / 2^{r}\right) \vee S Z / 2^{m+2}$ if $n=m+1>r$, and to $\left(C(\bar{\eta}) \wedge S Z / 2^{r}\right) \vee S Z / 2^{m+1}$
if $n>m+1>r$. Moreover it is quasi $K O_{*}$-equivalent to $\Sigma^{4} V_{r+1} \vee V_{m+1}, \Sigma^{4} R_{r, m+2}$ or $\Sigma^{4} R_{r, m+1}^{\prime}$ according as $n=m+1<r, n=m+1=r$ or $n>m+1 \leq r$ (use [6, Proposition 3.1]). On the other hand, $P^{\prime} N^{\prime} F_{s, 1}^{n, m}$ is just $R_{n, m+1, s+1}^{\prime}$ introduced in [13]. By a routine computation we can easily show

Proposition 1.6.

i) The spectrum $N^{\prime} P^{\prime} F_{r, t}^{n, m}(t \geq 2)$ has the same \mathcal{C}-type as $S Z / 2^{n} \vee P_{m-n+r, t}^{\prime}$ if $m \geq n<r$, and as $S Z / 2^{r} \vee P_{m, t}^{\prime}$ if otherwise.
ii) The spectrum $P^{\prime} N^{\prime} F_{s, t}^{n, m}(t \geq 2)$ has the same \mathcal{C}-type as $S Z / 2^{n-m+s} \vee P_{m, t}^{\prime}$ if $n>m \leq s$, and as $S Z / 2^{n} \vee P_{s, t}^{\prime}$ if otherwise.

Using (1.6) we can easily calculate
Proposition 1.7. For the spectra $X=N^{\prime} P^{\prime} F_{r, t}^{n, m}$ and $P^{\prime} N^{\prime} F_{s, t}^{n, m}(t \geq 2)$ the $K O$-homology groups $K O_{i} X(0 \leq i \leq 7)$ are tabled as follows:

$i \backslash X$	$N^{\prime} P^{\prime} F_{r, t}^{n, m}$	$P^{\prime} N^{\prime} F_{s, t}^{n, m}$
0	$\begin{cases}Z / 2^{n} \oplus Z / 2^{m-n+r+1} & (m \geq n \leq r) \\ Z / 2^{r+1} \oplus Z / 2^{m} & \text { (otherwise) }\end{cases}$	$\begin{cases}Z / 2^{n-m+s+1} \oplus Z / 2^{m} & (n>m \leq s) \\ Z / 2^{n} \oplus Z / 2^{s+1} & \text { (otherwise) }\end{cases}$
1	Z/2	Z/2
2	$Z / 2^{t} \oplus Z / 2$	$Z / 2^{t} \oplus Z / 2$
3	Z/2	$Z / 2$
4	$\begin{cases}Z / 2^{n+1} \oplus Z / 2^{m-n+r} & (m \geq n<r) \\ Z / 2^{r} \oplus Z / 2^{m+1} & \text { (otherwise) }\end{cases}$	$\begin{cases}Z / 2^{n-m+s} \oplus Z / 2^{m+1} & (n>m<s) \\ Z / 2^{n+1} \oplus Z / 2^{s} & \text { (otherwise) }\end{cases}$
5	Z/2	Z/2
6	$Z / 2^{t} \oplus Z / 2$	$Z / 2^{t} \oplus Z / 2$
7	Z/2	Z/2

2. The same quasi $K O_{*}$-type as $S Z / 2^{r} \vee P_{s, t}^{\prime}$ or $M_{r} \vee \boldsymbol{P}_{s, t}^{\prime}$

2.1. Let X be a spectrum having the same \mathcal{C}-type as $S Z / 2^{r} \vee P_{s, t}^{\prime}$. Then its selfconjugate K-homology group $K C_{i} X(0 \leq i \leq 3)$ is given as follows:

$$
K C_{i} X \cong Z / 2^{r} \oplus Z / 2^{s} \oplus Z / 2, Z / 2^{r} \oplus Z / 2^{s+1}, Z / 2 \oplus Z / 2 \oplus Z / 2^{t-1}, Z / 2 \oplus Z / 2^{t}
$$

according as $i=0,1,2,3$. In addition,
$K O_{1} X \oplus K O_{5} X \cong Z / 2 \oplus Z / 2$ and $K O_{3} X \oplus K O_{7} X \cong Z / 2 \oplus Z / 2$.
Hence $K O_{2 i+1} X(0 \leq i \leq 3)$ are divided into the nine cases (A,D) with $\mathrm{A}=\mathrm{a}, \mathrm{b}, \mathrm{c}$
and $D=d, e, f$ as follows:
(a) $K O_{1} X \cong K O_{5} X \cong Z / 2$
(b) $K O_{5} X=0$
(c) $K O_{1} X=0$
(d) $K O_{3} X \cong K O_{7} X \cong Z / 2$
(e) $K O_{7} X=0$
(f) $K O_{3} X=0$.

The induced homomorphisms $\left(-\tau, \tau \pi_{C}\right)_{*}: K C_{i} X \rightarrow K O_{i+1} X \oplus K O_{i+5} X(i=0,2)$ are represented by the following matrices

$$
\begin{aligned}
& \Phi_{0}=\varphi_{0}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right): Z / 2^{r} \oplus Z / 2^{s} \oplus Z / 2 \rightarrow Z / 2 \oplus Z / 2 \\
& \Phi_{2}=\varphi_{2}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right): Z / 2 \oplus Z / 2 \oplus Z / 2^{t-1} \rightarrow Z / 2 \oplus Z / 2
\end{aligned}
$$

respectively, where $\varphi_{0}, \varphi_{2}: Z / 2 \oplus Z / 2 \rightarrow Z / 2 \oplus Z / 2$ is one of the following matrices:

$$
\left.\left(\begin{array}{ll}
(1) \tag{4}\\
0 & 1
\end{array}\right) \stackrel{(2)}{\left(\begin{array}{ll}
(2) \\
0 & 1 \\
1 & 0
\end{array}\right)} \stackrel{(3)}{1} \begin{array}{ll}
1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
(4) \\
0 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1^{(5)} & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1^{(6)} & 1 \\
1 & 0
\end{array}\right) .
$$

Evidently it is sufficient to take as φ_{0} or φ_{2} only the matrix (1) in case of (b), (c), (e) or (f). By using a suitable transformation of $K U_{0} X$ similarly to [6, 4.1] we can verify that in case of (a) the matrix (1) as φ_{0} is replaced by (5), and in case of (d) the matrix (1) as φ_{2} is replaced by (5) if $r \leq s$, and by (3) if $r>s$. Therefore it is sufficient to take as φ_{0} the matrices (1), (2) and (3) in case of (a), and as φ_{2} the matrices (1), (2) and (3) in case of (d) and $r \leq s$, and (1), (2) and (6) in case of (d) and $r>s$.

Let X be a spectrum having the same \mathcal{C}-type as $M_{r} \vee P_{s, t}^{\prime}$. Then its self-conjugate K-homology group $K C_{i} X(0 \leq i \leq 3)$ is given as follows:

$$
\begin{aligned}
K C_{i} X \cong & Z / 2^{r} \oplus Z / 2^{s} \oplus Z / 2, Z / 2^{r+1} \oplus Z / 2^{s+1} \\
& Z \oplus Z / 2 \oplus Z / 2 \oplus Z / 2^{t-1}, Z \oplus Z / 2^{t}
\end{aligned}
$$

according as $i=0,1,2,3$. In addition,

$$
K O_{1} X \oplus K O_{5} X \cong Z / 2 \quad \text { and } K O_{3} X \oplus K O_{7} X \cong Z / 2 \oplus Z / 2
$$

Hence $K O_{2 i+1} X(0 \leq i \leq 3)$ are divided into the six cases (A, D) with $\mathrm{A}=\mathrm{b}, \mathrm{c}$ and $\mathrm{D}=\mathrm{d}$, e, f given in (2.1). The induced homomorphisms $\left(-\tau, \tau \pi_{C}\right)_{*}: K C_{i} X \rightarrow$ $K O_{i+1} X \oplus K O_{i+5} X(i=0,2)$ are represented by the following matrices

$$
\begin{gathered}
\Phi_{0}=(0,0,1): Z / 2^{r} \oplus Z / 2^{s} \oplus Z / 2 \rightarrow Z / 2 \\
\Phi_{2}=\varphi_{2}\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right): Z \oplus Z / 2 \oplus Z / 2 \oplus Z / 2^{t-1} \rightarrow Z / 2 \oplus Z / 2
\end{gathered}
$$

where $\varphi_{2}: Z / 2 \oplus Z / 2 \rightarrow Z / 2 \oplus Z / 2$ is one of the matrices given in (2.2). Evidently it is sufficient to take as φ_{2} only the matrix (1) in case of (e) or (f). On the other hand, it is sufficient to take as φ_{2} the matrices (1), (2) and (3) in case of (d) and $r \leq s$, and (1), (2) and (6) in case of (d) and $r>s$.

Given a spectrum X having the same \mathcal{C}-type as $S Z / 2^{r} \vee P_{s, t}^{\prime}$ or $M_{r} \vee P_{s, t}^{\prime}$ we define its φ-type ($\mathrm{A}, \mathrm{D}, i, j$) where $\mathrm{A}=\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{D}=\mathrm{d}, \mathrm{e}, \mathrm{f}$ and $1 \leq i, j \leq 6$, using the above notations as in [6, §4].

Lemma 2.1.

i) Let X be a spectrum having the same \mathcal{C}-type as $S Z / 2^{r} \vee P_{s, t}^{\prime}$. Then its φ-type is one of the following 25 types: $(a, d, i, j),(a, e, i, 1),(a, f, i, 1),(b, d, 1, j)$, $(c, d, 1, j),(b, e, 1,1),(b, f, 1,1),(c, e, 1,1)$ and $(c, f, 1,1)$ where $i=1,2$, 3 , and $j=1,2,3$ if $r \leq s$ and $j=1,2,6$ if $r>s$.
ii) Let X be a spectrum having the same \mathcal{C}-type as $M_{r} \vee P_{s, t}^{\prime}$. Then its φ-type is one of the following 10 types: $(b, d, 1, j),(c, d, 1, j),(b, e, 1,1),(b, f, 1,1)$, $(c, e, 1,1)$ and $(c, f, 1,1)$ where $j=1,2,3$ if $r \leq s$ and $j=1,2,6$ if $r>s$.
2.2. Using [6, Lemmas 4.2 and 4.3] we can easily determine the φ-types of the small spectra appearing in Propositions 1.3 and 1.5.

Proposition 2.2.

i) The spectra $N P_{r, s, t}^{\prime}, V R P_{r, s, t}^{\prime}(t \geq 2), R P_{r, t-1, s+1}^{\prime}, V R P_{r, t-1, s+1}^{\prime}, P^{\prime} R_{s, t, r}$ and $P^{\prime} R_{s, t, r}^{V}(t \geq 2)$ have the following φ-types $(a, e, 3,1),(a, d, 4,1),(a$, $d, 1,3),(c, d, 1,3),(c, d, 1,6)$ and ($a, d, 1,6$), respectively.
ii) The spectra $M R P_{r, t-1, s+1}^{\prime}$ and $P^{\prime} R M_{s, t, r}$ have the following φ-types ($c, d, 1$, 3) and (c, $d, 1,6$), respectively.
iii) The spectrum $N^{\prime} P^{\prime} F_{r, t}^{n, m}(t \geq 2)$ has the following φ-type ($a, d, 4,1$), (a, d, 4, 3) or ($a, d, 4,2$) according as $m \geq n<r, m \geq n=r$ or otherwise, and the spectrum $P^{\prime} N^{\prime} F_{s, t}^{n, m}(t \geq 2)$ has the following φ-type ($a, d, 4,2$), (a, d, 4, 6) or ($a, d, 4,1$) according as $n>m<s, n>m=s$ or otherwise.

Let X be a spectrum having the same \mathcal{C}-type as $S Z / 2^{r} \vee P_{s, t}^{\prime}$ or $M_{r} \vee P_{s, t}^{\prime}$. If a spectrum Y has the same \mathcal{C}-type as X, then we can choose a quasi $K U_{*}$-equivalence $f: Y \rightarrow K U \wedge X$ with $\left(\psi_{C}^{-1} \wedge 1\right) f=f$. If there exists a map $h: Y \rightarrow K O \wedge$ X satisfying $\left(\epsilon_{U} \wedge 1\right) h=f$ for the complexification map $\epsilon_{U}: K O \rightarrow K U$, then h becomes a quasi $K O_{*}$-equivalence (see [8, Proposition 1.1]). After choosing a suitable small spectrum Y having the same φ-type as X we can prove the following theorems by applying the same method developed in [6], [8] or [9].

Theorem 2.3. Let X be a spectrum having the same \mathcal{C}-type as $S Z / 2^{r} \vee P_{s, t}^{\prime}(t \geq$ 2). Then it is quasi $K O_{*}$-equivalent to one of the following small spectra (cf. [6, The-
orem 5.3]):
i) The case of $r \leq s: Y_{r} \vee Y_{s, t}, N P_{r, s, t}^{\prime}, \Sigma^{4} N P_{r, s, t}^{\prime},{ }_{V} R P_{r, t-1, s+1}^{\prime}, \Sigma^{4}{ }_{V} R P_{r, t-1, s+1}^{\prime}$, $V R P_{r, s, t}^{\prime}, \Sigma^{4} V R P_{r, s, t}^{\prime}, R P_{r, t-1, s+1}^{\prime}, \Sigma^{4} R P_{r, t-1, s+1}^{\prime}, N^{\prime} P^{\prime} F_{r, t}^{r, s}$.
ii) The case of $r>s: Y_{r} \vee Y_{s, t}, N P_{r, s, t}^{\prime}, \Sigma^{4} N P_{r, s, t}^{\prime}, P^{\prime} R_{s, t, r}, \Sigma^{4} P^{\prime} R_{s, t, r}$, $V R P_{r, s, t}^{\prime}, \Sigma^{4} V R P_{r, s, t}^{\prime}, P^{\prime} R_{s, t, r}^{V}, \Sigma^{4} P^{\prime} R_{s, t, r}^{V}, P^{\prime} N^{\prime} F_{s, t}^{r, s}$.
Here $Y_{r}=S Z / 2^{r}, \Sigma^{4} S Z / 2^{r}, V_{r}$ or $\Sigma^{4} V_{r}$, and $Y_{s, t}=P_{s, t}^{\prime}, \Sigma^{4} P_{s, t}^{\prime}, \Sigma^{2} P_{t-1, s+1}^{\prime}$ or $\Sigma^{6} P_{t-1, s+1}^{\prime}$.

Theorem 2.4. Let X be a spectrum having the same \mathcal{C}-type as $M_{r} \vee P_{s, t}^{\prime}$. Then it is quasi $K O_{*}$-equivalent to one of the following small spectra:
i) The case of $r \leq s: Y_{r} \vee Y_{s, t}, M R P_{r, t-1, s+1}^{\prime}, \Sigma^{4} M R P_{r, t-1, s+1}^{\prime}$.
ii) The case of $r>s: Y_{r} \vee Y_{s, t}, P^{\prime} R M_{s, t, r}, \Sigma^{4} P^{\prime} R M_{s, t, r}$.

Here $Y_{r}=M_{r}$ or $\Sigma^{4} M_{r}$, and $Y_{s, t}=P_{s, t}^{\prime}, \Sigma^{4} P_{s, t}^{\prime}, \Sigma^{2} P_{t-1, s+1}^{\prime}$ or $\Sigma^{6} P_{t-1, s+1}^{\prime}$.
Combining Theorem 2.3 with Proposition 2.2 iii) we get

Corollary 2.5.

i) The spectrum $N^{\prime} P^{\prime} F_{r, t}^{n, m}(t \geq 2)$ is quasi $K O_{*}$-equivalent to $V R P_{n, m-n+r, t}^{\prime}$ if $m \geq n<r$, and to $\Sigma^{4} V R P_{r, m, t}^{\prime}$ if $m \geq n>r$ or $m<n$.
ii) The spectrum $P^{\prime} N^{\prime} F_{s, t}^{n, m}(t \geq 2)$ is quasi $K O_{*}$-equivalent to $\Sigma^{4} V R P_{n-m+s, m, t}^{\prime}$ if $n>m<s$, and to $V R P_{n, s, t}^{\prime}$ if $n>m>s$ or $n \leq m$.

3. Weighted mod 4 lens spaces

3.1. Let $S^{2 n+1}\left(q_{0}, \cdots, q_{n}\right)$ denote the unit sphere $S^{2 n+1} \subset C^{n+1}$ with S^{1}-action defined by $\lambda \cdot\left(x_{0}, \cdots, x_{n}\right)=\left(\lambda^{q_{0}} x_{0}, \cdots, \lambda^{q_{n}} x_{n}\right) \in C^{n+1}$ for any $\lambda \in S^{1} \subset C$. Then we set

$$
\begin{aligned}
P^{n}\left(q_{0}, \cdots, q_{n}\right) & =S^{2 n+1}\left(q_{0}, \cdots, q_{n}\right) / S^{1} \\
L^{n}\left(q ; q_{0}, \cdots, q_{n}\right) & =S^{2 n+1}\left(q_{0}, \cdots, q_{n}\right) /(Z / q)
\end{aligned}
$$

where Z / q is the q-th roots of the unity in $S^{1} \subset C$. Denote by $L_{0}^{n}\left(q ; q_{0}, \cdots, q_{n}\right)$ the subspace of $L^{n}\left(q ; q_{0}, \cdots, q_{n}\right)$ defined by

$$
L_{0}^{n}\left(q ; q_{0}, \cdots, q_{n}\right)=\left\{\left[x_{0}, \cdots, x_{n}\right] \in L^{n}\left(q ; q_{0}, \cdots, q_{n}\right) \mid x_{n} \text { is real } \geq 0\right\}
$$

Of course, $P^{n}(1, \cdots, 1), L^{n}(q ; 1, \cdots, 1)$ and $L_{0}^{n}(q ; 1, \cdots, 1)$ are the usual complex projective space $C P^{n}$, the usual $\bmod q$ lens space $L^{n}(q)$ and its $2 n$-skeleton $L_{0}^{n}(q)$, respectively. For a weighted mod 4 lens space $L^{n}\left(4 ; q_{0}, \cdots, q_{n}\right)$ we may assume that $q_{0}=\cdots=q_{r-1}=4, q_{r}=\cdots=q_{r+s-1}=2$ and $q_{r+s}=\cdots=q_{n}=1$ where $0 \leq r \leq$ $r+s \leq n$. For such a tuple $\left(q_{0}, \cdots, q_{n}\right)$ we simply set $P(r, s, t)=P^{n}\left(q_{0}, \cdots, q_{n}\right)$, $L(r, s, t)=L^{n}\left(4 ; q_{0}, \cdots, q_{n}\right)$ and $L_{0}(r, s, t)=L_{0}^{n}\left(4 ; q_{0}, \cdots, q_{n}\right)$ with $n=r+s+t$.

Moreover we shall omit the " r " as $P(s, t), L(s, t)$ or $L_{0}(s, t)$ when $r=0$. Notice that $L(r, s, t)=\Sigma^{2 r} L(s, t)$ and $L_{0}(r, s, t)=\Sigma^{2 r} L_{0}(s, t)$.

Denote by γ the canonical line bundle over $C P^{n}$ and set $a=[\gamma]-1 \in K U^{0} C P^{n}$. Then it is well known that the (reduced) $K U$-cohomology group $K U^{*} C P_{+}^{n} \cong$ $Z[a] /\left(a^{n+1}\right)$ where $C P_{+}^{n}$ denotes the disjoint union of $C P^{n}$ and a point. According to [1, Theorem 3.1] the map $\varphi: C P^{n} \rightarrow P(r, s, t)$ defined by $\varphi\left[x_{0}, \cdots, x_{n}\right]=$ $\left[x_{0}^{q_{0}}, \cdots, x_{n}^{q_{n}}\right]$ with $n=r+s+t$ induces a monomorphism $\varphi^{*}: K U^{*} P(r, s, t) \rightarrow$ $K U^{*} C P^{n}$ and the free abelian group $K U^{*} P(r, s, t)$ has the following basis $\left\{T_{1}, \cdots\right.$, $\left.T_{n}\right\}$ such that $\varphi^{*} T_{l}=a(2)^{l}$ for $1 \leq l \leq r, \varphi^{*} T_{r+k}=a(2)^{r} a(1)^{k}$ for $1 \leq k \leq s$ and $\varphi^{*} T_{r+s+h}=a(2)^{r} a(1)^{s} a^{h}$ for $1 \leq h \leq t$, where $a(1)=(a+1)^{2}-1$ and $a(2)=(a+1)^{4}-1$.

In order to calculate the $K U$-cohomology group $K U^{*} L(s, t)$ we use the following cofiber sequence

$$
\begin{equation*}
L(s, t) \xrightarrow{\theta} P(s, t) \xrightarrow{i} P(1, s, t) \tag{3.1}
\end{equation*}
$$

where θ is the natural surjection and i is the canonical inclusion (cf. [3, Assertion 1]). Since $a(2)=2 a(1)+a(1)^{2}=2 a(1)+2 a(1) a+a(1) a^{2}=4 a+6 a^{2}+4 a^{3}+a^{4}$, the induced homomorphism $i^{*}: K U^{*} P(1, s, t) \rightarrow K U^{*} P(s, t)$ is given as follows: $i^{*} T_{k}=2 T_{k}+T_{k+1}$ for $1 \leq k \leq s-1, i^{*} T_{s}=2 T_{s}+2 T_{s+1}+T_{s+2}, i^{*} T_{s+h}=$ $4 T_{s+h}+6 T_{s+h+1}+4 T_{s+h+2}+T_{s+h+3}$ for $1 \leq h \leq t$ and $i^{*} T_{s+t+1}=0$. Using the (n, n)-matrix $E_{k}=\left(e_{k}, \cdots, e_{n}, 0, \cdots, 0\right)$ we here introduce the two (n, n)-matrices $A_{n}=2 E_{1}+E_{2}$ and $B_{n}=4 E_{1}+6 E_{2}+4 E_{3}+E_{4}$, where e_{j} is the unit column vector entried " 1 " only in the j-th component. Moreover we set

$$
C_{s, t}=\left(\begin{array}{cc}
A_{s} & 0 \\
\xi & B_{t}
\end{array}\right) \text { where } \xi=\left(0, \cdots, 0,2 e_{1}+e_{2}\right) .
$$

Then the induced homomorphism $i^{*}: K U^{0} P(1, s, t) \rightarrow K U^{0} P(s, t)$ is expressed as $\left(C_{s, t}, 0\right): \bigoplus_{s+t+1} Z \rightarrow \bigoplus_{s+t} Z$. Therefore $K U^{0} L(s, t) \cong \operatorname{Coker} C_{s, t}$ and $K U^{1} L(s, t) \cong Z$. In particular, $K U^{0} L^{n}(2) \cong K U^{0} L(n, 0) \cong \operatorname{Coker} A_{n}$ and $K U^{0} L^{n}(4) \cong$ Coker B_{n}.

Recall that the $K U$-cohomology groups $K U^{0} L^{n}(2) \cong Z[\sigma] /\left(\sigma^{n+1}, \sigma(1)\right)$ and $K U^{0} L^{n}(4) \cong Z[\sigma] /\left(\sigma^{n+1}, \sigma(2)\right)$ are given as follows (see [4, 5]):
i) $\quad K U^{0} L^{n}(2) \cong Z / 2^{n}$ with generator σ,
ii) $\quad K U^{0} L^{2 m}(4) \cong Z / 2^{2 m+1} \oplus Z / 2^{m} \oplus Z / 2^{m-1}$ with generators $\sigma, \sigma(1)$ and $\sigma(1) \sigma$, $K U^{0} L^{2 m+1}(4) \cong Z / 2^{2 m+2} \oplus Z / 2^{m} \oplus Z / 2^{m}$ with generators $\sigma, \sigma(1)+2^{m+1} \sigma$ and $\sigma(1) \sigma$, where $\sigma=\theta^{*} a$ and $\sigma(i)=\theta^{*} a(i)$.
Therefore the induced homomorphism $\theta^{*}: K U^{0} C P^{n} \rightarrow K U^{0} L^{n}(2)$ is given by the following row:

$$
\begin{equation*}
\alpha_{n}=(-1)^{n-1}\left(1,-2, \cdots,(-2)^{n-1}\right): \bigoplus_{n} Z \rightarrow Z / 2^{n} \tag{3.2}
\end{equation*}
$$

On the other hand, the induced homomorphism $\theta^{*}: K U^{0} C P^{n} \rightarrow K U^{0} L^{n}(4)$ is represented by the following $(3, n)$-matrix β_{n} :

$$
\beta_{2 m}=\left(\begin{array}{cccc}
1 & -2 & 4-2^{m+1} & * \tag{3.3}\\
0 & 1 & -2 & * \\
0 & 0 & 1 & *
\end{array}\right), \beta_{2 m+1}=\left(\begin{array}{cccc}
1 & -2-2^{m+1} & 4+2^{m+2} & * \\
0 & 1 & -2 & * \\
0 & 0 & 1 & *
\end{array}\right) .
$$

Notice that $K U^{0} L(s, t)$ is isomorphic to the cokernel of

$$
\binom{A_{s}}{\beta_{t} \xi}: \bigoplus_{s} Z \rightarrow\left(\bigoplus_{s} Z\right) \oplus \operatorname{Coker} B_{t} .
$$

Since $\beta_{2 m} \xi=\left(0, \cdots, 0, e_{2}\right)$ and $\beta_{2 m+1} \xi=\left(0, \cdots, 0,-2^{m+1} e_{1}+e_{2}\right)$, we can easily calculate the $K U$-cohomology group $K U^{0} L(s, t)$ for $t \geq 1$ as follows:

$$
\begin{align*}
K U^{0} L(s, 2 m) & \cong Z / 2^{s+m} \oplus Z / 2^{2 m+1} \oplus Z / 2^{m-1} \\
K U^{0} L(s, 2 m+1) & \cong \begin{cases}Z / 2^{s+m} \oplus Z / 2^{2 m+2} \oplus Z / 2^{m} & (s \leq m) \\
Z / 2^{s+m+1} \oplus Z / 2^{2 m+1} \oplus Z / 2^{m} & (s>m)\end{cases} \tag{3.4}
\end{align*}
$$

Moreover we see that the quotient morphism $\delta_{s, t}:\left(\bigoplus_{s} Z\right) \oplus \operatorname{Coker} B_{t} \rightarrow K U^{0} L(s, t)$ is represented by the following matrix:

$$
\left.\right)\left(\begin{array}{cccc}
\alpha_{s} & 0 & -2^{s} & 0 \\
2^{m-s+1} \alpha_{s} & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
\alpha_{s} & 2^{s-m-1} & 0 & 0 \\
0 & 1 & 2^{m+1} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

Since the induced homomorphism $\theta^{*}: K U^{0} P(s, t) \rightarrow K U^{0} L(s, t)$ is expressed as the composition $\delta_{s, t}\left(1 \oplus \beta_{t}\right)$, we can immediately give a basis of $K U^{0} L(s, t)(s, t \geq 1)$ as follows:

$$
\begin{equation*}
(\sigma(1), \sigma(s, 1), \sigma(s, 3)) B_{s, t}^{\prime} \tag{3.5}
\end{equation*}
$$

where $\sigma(1)=\theta^{*} T_{1}, \sigma(s, i)=\theta^{*} T_{s+i}$ and $B_{s, t}^{\prime}(s, t \geq 1)$ is the matrix tabled below:

$$
B_{s, 2 m}^{\prime}=\left(\begin{array}{ccc}
(-1)^{s-1} & 0 & (-1)^{s} 2^{s+1} \tag{3.6}\\
0 & 1 & 2^{m+1}-4 \\
0 & 0 & 1
\end{array}\right)
$$

$$
B_{s, 2 m+1}^{\prime}=\left(\begin{array}{ccc}
(-1)^{s-1} & 0 & (-1)^{s} 2^{s+1} \\
-2^{m-s+1} & 1 & -4 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
(-1)^{s-1} & (-1)^{s} 2^{s-m-1} & (-1)^{s} 2^{s+1} \\
0 & 1 & -4 \\
0 & 0 & 1
\end{array}\right)
$$

3.2. Next we shall investigate the behavior of the conjugation ψ_{C}^{-1} on $K U^{0} L(s, t)(s, t \geq 1)$. Note that $\psi_{C}^{-1} a^{h}=(-1)^{h} a^{h}(1+a)^{-h}$ and $\psi_{C}^{-1} a(1)^{k}=$ $(-1)^{k} a(1)^{k}(1+a)^{-2 k}$ in $K U^{0} C P^{n}$. Since $a(2)=(1+a(1))^{2}-1$ and $a(1)^{s} a(2)=$ $a(1)^{s}\left\{(a+1)^{4}-1\right\}$ it follows immediately that

Since $a(1)^{s} a^{2} \equiv(-1)^{s} 2^{s} a(1)-2 a(1)^{s} a \bmod a(2)$, the conjugation ψ_{C}^{-1} on $K U^{0} L(s, t)$ behaves as

$$
\psi_{C}^{-1}(\sigma(1), \sigma(s, 1), \sigma(s, 3))=(\sigma(1), \sigma(s, 1), \sigma(s, 3)) P_{s}
$$

for the following matrix P_{s} :

$$
P_{2 n}=\left(\begin{array}{ccc}
1 & 3 \cdot 2^{n} & 3 \cdot 2^{2 n+1} \tag{3.7}\\
0 & -3 & -8 \\
0 & 1 & 3
\end{array}\right), \quad P_{2 n+1}=\left(\begin{array}{ccc}
1 & -2^{2 n+1} & 2^{2 n+2} \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Consider the following matrix $C_{s, t}(s, t \geq 1)$ representing an automorphism on $K U^{0} L(s, t)$:

$$
C_{s, 2 m}=\left(\begin{array}{ccc}
1 & 2^{s-1} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
\begin{gather*}
s=2 n>m \tag{3.8}\\
\left(\begin{array}{ccc}
1 & 2^{s-m-1} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gather*}
$$

$$
C_{s, 2 m+1}=\left(\begin{array}{c}
s=2 n \leq m \\
1+2^{m} \\
0
\end{array} 0^{-2^{s}} \begin{array}{ccc}
s=2 n+1 \leq m \\
0 & 1 & 0 \\
-2^{m-s} & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 2^{s-1}\left(1-2^{m}\right) & -2^{s}\left(1-2^{m}\right) \\
2^{2 m-s+1} & 1+2^{2 s}\left(1-2^{m}\right) & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
\begin{aligned}
& s=2 n>m \geq 0 \\
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \begin{array}{ccc}
s=2 n+1>m \geq 1 & s=2 n+1>m=0 \\
\left(\begin{array}{ccc}
1 & 2^{s-m}+2^{s-1} & 2^{s+m} \\
0 & 1 & 2^{m+1} \\
0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)
\end{array} .
\end{aligned}
$$

In order to express the conjugation ψ_{C}^{-1} on $K U^{0} L(s, t)$ plainly we here change the basis of $K U^{0} L(s, t)$ given in (3.5) slightly as follows:

$$
\begin{equation*}
(\sigma(1), \sigma(s, 1), \sigma(s, 3)) B_{s, t} \text { where } B_{s, t}=B_{s, t}^{\prime} C_{s, t} . \tag{3.9}
\end{equation*}
$$

$$
\begin{aligned}
& \psi_{C}^{-1} a(1) \equiv a(1) \bmod a(2) \\
& \psi_{C}^{-1} a(1)^{s} a \equiv\left\{\begin{array}{lll}
a(1)^{s}\left(a^{3}+3 a^{2}+3 a\right) \\
a(1)^{s}\left(a^{2}+a\right)
\end{array} \quad \bmod \quad a(1)^{s} a(2) \quad s: \begin{array}{l}
s: \text { even } \\
s: \text { odd }
\end{array}\right. \\
& \psi_{C}^{-1} a(1)^{s} a^{3} \equiv\left\{\begin{array}{lll}
a(1)^{s}\left(3 a^{3}+6 a^{2}+4 a\right) \\
-a(1)^{s}\left(a^{3}+2 a^{2}+4 a\right)
\end{array} \quad \bmod \quad a(1)^{s} a(2) \quad s: \begin{array}{l}
s: \text { even } \\
s: \text { odd } .
\end{array}\right.
\end{aligned}
$$

Then the conjugation ψ_{C}^{-1} on $K U^{0} L(s, t)$ is represented by the composition $B_{s, t}^{-1} P_{s} B_{s, t}$. Therefore a routine computation shows

Proposition 3.1. On the $K U$-cohomology group $K U^{0} L(s, t)$ with basis $(\sigma(1)$, $\sigma(s, 1), \sigma(s, 3)) B_{s, t}(s, t \geq 1)$ the conjugation ψ_{C}^{-1} behaves as follows:
i) \quad On $K U^{0} L(s, 2 m) \cong Z / 2^{s+m} \oplus Z / 2^{2 m+1} \oplus Z / 2^{m-1}$,

$$
\psi_{C}^{-1}=\left(\begin{array}{ccc}
1 & -2^{s} & 2^{s+1} \\
0 & 1 & 0 \\
0 & 1 & -1
\end{array}\right) \quad\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1-2^{m+1} & 2^{m+2} \\
0 & 1 & -1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 2^{s+1} \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

ii) \quad On $K U^{0} L(s, 2 m+1) \cong Z / 2^{s+m} \oplus Z / 2^{2 m+2} \oplus Z / 2^{m}(s \leq m)$,

$$
\left.\psi_{C}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1-2^{m+1} & 2^{m+2} \\
0 & 1 & -1
\end{array}\right) \quad \begin{array}{ccc}
s=2 n+1 \leq m \\
1 & 0 & 0 \\
2^{m-s+2} & -1 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

iii) $\quad O n K U^{0} L(s, 2 m+1) \cong Z / 2^{s+m+1} \oplus Z / 2^{2 m+1} \oplus Z / 2^{m}(s>m)$,

$$
\begin{array}{r}
s=2 n>m \geq 0 \\
\psi_{C}^{-1}=\left(\begin{array}{ccc}
1 & -2^{s} & 2^{s+1} \\
0 & 1 & 0 \\
0 & 1 & -1
\end{array}\right) \quad s=2 n+1>m \geq 1 s=2 n+1>m=0 \\
\left(\begin{array}{ccc}
1 & 2^{s-m} & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
\end{array}
$$

Remark. When $t=0$, the conjugation $\psi_{C}^{-1}=1$ on $K U^{0} L(s, 0) \cong Z / 2^{s}$ with basis $\sigma(1)$.

We shall use the dual of Proposition 3.1 to study the behavior of the conjugation ψ_{C}^{-1} on $K U_{*} L_{0}(s, t)$ and $K U_{*} L(s, t)$.

Proposition 3.2. The weighted mod 4 lens spaces $\Sigma^{1} L_{0}(s, t)$ and $\Sigma^{1} L(s, t)(s \geq$ $1, t \geq 0$) have the same \mathcal{C}-types as the small spectra tabled below, respectively (cf. [12, Proposition 5.1]):

	$\Sigma^{1} L_{0}(s, 2 m)$	$\Sigma^{1} L(s, 2 m)$	$\Sigma^{1} L_{0}(s, 2 m+1)$
$s=2 n \leq m$	$P P_{2 m+1, s+m-1, m}^{\prime}$	$M P P_{2 m+1, s+m-1, m}^{\prime}$	$S Z / 2^{s+m} \vee P_{2 m+1, m+1}^{\prime \prime}$
$s=2 n>m$	$S Z / 2^{s+m} \vee P_{2 m, m}^{\prime \prime}$	$M_{s+m} \vee P_{2 m, m}^{\prime \prime}$	$P P_{2 m+1, s+m, m+1}^{\prime}$
$s=2 n+1, m \geq 1$	$\Sigma^{2} S Z / 2^{2 m+1} \vee P_{s+m-1, m}^{\prime}$	$\Sigma^{2} M_{2 m+1}^{\prime} \vee P_{s+m-1, m}^{\prime}$	$\Sigma^{2} S Z / 2^{m} \vee P_{s+m, 2 m+2}^{\prime}$
$s=2 n+1, m=0$	$S Z / 2^{s}$	$\Sigma^{0} \vee S Z / 2^{s}$	$S Z / 2 \vee S Z / 2^{s+1}$

Moreover $\Sigma^{1} L(s, 2 m+1)$ has the same \mathcal{C}-type as the wedge sum $\Sigma^{2 s} \vee \Sigma^{1} L_{0}(s, 2 m+$ 1).

Proof. By dualizing Proposition 3.1 we can immediately determine the \mathcal{C}-type of $\Sigma^{1} L_{0}(s, t)$ because $K U_{-1} L_{0}(s, t) \cong K U^{0} L_{0}(s, t)$ and $K U_{0} L_{0}(s, t)=0$. On the other hand, Proposition 3.4 below implies that $\Sigma^{1} L(s, 2 m+1)$ has the same \mathcal{C}-type as $\Sigma^{2 s} \vee \Sigma^{1} L_{0}(s, 2 m+1)$. We shall now investigate the \mathcal{C}-type of $\Sigma^{1} L(s, 2 m)$ in case of $s=2 n \leq m$. Note that $K U_{-1} L(s, t) \cong K U_{-1} \Sigma^{2 s+2 t+1} \oplus K U_{-1} L_{0}(s, t)$ and $K U_{0} L(s, t)=0$. According to the dual of Proposition 3.1 the conjugations ψ_{C}^{-1} on $K U_{-1} L(s, 2 m) \cong Z \oplus Z / 2^{s+m} \oplus Z / 2^{2 m+1} \oplus Z / 2^{m-1}$ and $K U_{-1} L_{0}(s, 2 m+1) \cong$ $Z / 2^{s+m} \oplus Z / 2^{2 m+2} \oplus Z / 2^{m}$ are represented by the following matrices

$$
\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
a & 1 & 0 & 0 \\
b & -2^{m+1} & 1 & 2^{m+2} \\
c & 1 & 0 & -1
\end{array}\right) \text { and }\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1-2^{m+1} & 2^{m+2} \\
0 & 1 & -1
\end{array}\right)
$$

for some integers a, b and c, respectively. As is easily verified, we may regard that $a=c=0$ and $b=0$ or -1 after changing the direct sum decomposition of $K U_{-1} L(s, 2 m)$ suitably if necessary. Consider the canonical inclusion map $i_{L_{0}}: L(s, t) \rightarrow L_{0}(s, t+1)$. By virtue of (3.9) the induced homomorphism $i_{L_{0}}^{*}:$ $K U^{0} L_{0}(s, t+1) \rightarrow K U^{0} L(s, t)$ is actually represented by the matrix $F_{s, t}=$ $B_{s, t}^{-1} B_{s, t+1}$. Since a routine computation shows that

$$
F_{s, 2 m}=\left(\begin{array}{ccc}
1+2^{m} & 0 & -2^{s} \\
-2^{m-s+2}\left(1+2^{m-1}\right) & 1 & 2^{m+1} \\
-2^{m-s+1} & 0 & 1
\end{array}\right)
$$

the induced homomorphism $i_{L_{0} *}: K U_{-1} L(s, 2 m) \rightarrow K U_{-1} L_{0}(s, 2 m+1)$ is expressed as the following matrix

$$
\left(\begin{array}{cccc}
x & 1+2^{m} & -2\left(1+2^{m-1}\right) & -2^{m+2} \\
y & 0 & 2 & 0 \\
z & -1 & 1 & 2
\end{array}\right)
$$

for some integers x, y and z. Here y must be odd because $i_{L_{0} *}$ is an epimorphism. Using the equality $\psi_{C}^{-1} i_{L_{0} *}=i_{L_{0} *} \psi_{C}^{-1}$ we get immediately that $b \equiv y \bmod 2^{m}$, thus $b=-1$. Therefore $\Sigma^{1} L(s, 2 m)$ has the same \mathcal{C}-type as $M P P_{2 m+1, s+m-1, m}^{\prime}$ when $s=$ $2 n \leq m$. In the other three cases the \mathcal{C}-types of $\Sigma^{1} L(s, 2 m)$ are similarly obtained.
3.3. Using Proposition 3.2 we can immediately calculate $K O_{i} X \oplus K O_{i+4} X(i=$ $0,2)$ for $X=L_{0}(s, t)$ and $L(s, t)(s \geq 1, t \geq 0)$ as tabled below:

$X=$	$L_{0}(2 n, 2 m)$	$L(2 n, 2 m)$	$L_{0}(2 n, 2 m+1)$	$L(2 n, 2 m+1)$
$K O_{0} X \oplus K O_{4} X \cong$	$Z / 2$	0	$Z / 2$	$Z / 2 \oplus Z / 2$
$K O_{2} X \oplus K O_{6} X \cong$	$Z / 2$	$Z / 2$	$Z / 2$	$Z / 2$
$L_{0}(2 n+1,2 m)$				$L(2 n+1,2 m)$
$K O_{0} X \oplus K O_{4} X \cong$	$(* *)_{m}$	$Z / 2 \oplus Z / 2$	$Z / 2 \oplus Z / 2$	$Z / 2 \oplus Z / 2$
$K O_{2} X \oplus K O_{6} X \cong$	$(* *)_{m}$	$Z / 2$	$Z / 2 \oplus Z / 2$	$Z / 2 \oplus Z / 2 \oplus Z / 2$

where $(* *)_{0} \cong Z / 2$ and $(* *)_{m} \cong Z / 2 \oplus Z / 2$ if $m \geq 1$.
Lemma 3.3. For $X=L_{0}(s, t)$ and $L(s, t)(s \geq 1, t \geq 0)$ the sets $S(X)=$ $\left\{2 i ; K O_{2 i} X=0(0 \leq i \leq 3)\right\}$ are given as follows:

$$
\begin{array}{cccccc}
\text { (i) } X= & L_{0}(2 n, 2 m) & L(2 n, 2 m) & L_{0}(2 n, 2 m+1) & L(2 n, 2 m+1) & \\
S(X)= & \{4,6\} & \{0,4,6\} & \{0,6\} & \{0,6\} & n+m: \text { even } \\
& \{0,6\} & \{0,4,6\} & \{4,6\} & \{4,6\} & n+m: \text { odd }
\end{array}
$$

(ii) $X=L_{0}(2 n+1,2 m) L(2 n+1,2 m) L_{0}(2 n+1,2 m+1) L(2 n+1,2 m+1)$
$S(X)=\{0,6\}$
$\{0,6\}$
\{0\}
$\{0\} \quad n, m:$ even
$\{0,6\} \quad n, m+1:$ even
$\{4,6\} \quad n, m+1:$ odd
\{4\}
n, m : odd
where $\{4,(6)\}_{0}=\{4,6\}$ and $\{4,(6)\}_{m}=\{4\}$ if $m \geq 1$.

Proof. Consider the following (homotopy) commutative diagram

$$
\begin{array}{cccc}
L_{0}(s, t) & \xrightarrow{\theta_{0}} P(s, t) & \xrightarrow{i_{0}} P(1, s, t-1) \\
i_{L} \downarrow & \| & & \downarrow \tilde{i} \\
L(s, t) & \xrightarrow{\theta} P(s, t) \xrightarrow{i} & P(1, s, t)
\end{array}
$$

with two cofiber sequences, where the maps i_{L}, i and \tilde{i} are the canonical inclusions , and the map i_{0} is defined by $i_{0}\left[x_{0}, \cdots, x_{s+t}\right]=\left[x_{s+t}^{4}, x_{0}, \cdots, x_{s+t}\right]$. According to [7, Theorem 2.4] the weighted projective space $P(s, t)$ is quasi $K O_{*}$-equivalent to the wedge sum $\vee_{n+m} C(\eta), \Sigma^{4 n+4 m+4} \vee\left(\vee_{n+m} C(\eta)\right), \Sigma^{4 n+2} \vee\left(\vee_{n+m} C(\eta)\right)$ or $\Sigma^{4 n+2} \vee \Sigma^{4 n+4 m+4} \vee\left(\vee_{n+m} C(\eta)\right)$ according as $(s, t)=(2 n, 2 m),(2 n, 2 m+1)$, $(2 n+1,2 m)$ or $(2 n+1,2 m+1)$. In addition, $P(1, s, t)$ is quasi $K O_{*}$-equivalent to the wedge sum $\Sigma^{2} \vee \Sigma^{2} P(s, t)$. Using the above commutative diagram we can immediately obtain our result.

Proposition 3.4. The weighted mod 4 lens space $L(s, 2 m+1)$ is quasi $K O_{*^{-}}$ equivalent to the wedge sum $\Sigma^{2 s+4 m+3} \vee L_{0}(s, 2 m+1)$.

Proof. Consider the following commutative diagram

with two cofiber sequences. Since the quasi $K O_{*}$-type of $P(1, s, t)$ is given as in the proof of Lemma 3.3 we see that the map $1 \wedge \tilde{\alpha}: \Sigma^{2 s+4 m+3} K O \rightarrow K O \wedge P(1, s, 2 m)$ is trivial. Hence our result is immediate.

Applying Theorems 1.2 and 1.3 and Proposition 3.4 with the aid of Proposition 3.2 and Lemma 3.3 we can immediately obtain

Theorem 3.5. The weighted mod 4 lens spaces $\Sigma^{1} L_{0}(2 n, t)$ and $\Sigma^{1} L(2 n, t)$ for $n \geq 1$ are quasi $K O_{*}$-equivalent to the small spectra tabled below, respectively (cf. [12, Theorem 3]):

i) | | $\Sigma^{1} L_{0}(2 n, 2 m)$ | $\Sigma^{1} L(2 n, 2 m)$ | $\Sigma^{1} L_{0}(2 n, 2 m+1)$ |
| :---: | :---: | :---: | :---: |
| $n+m:$ even | $P P_{2 m+1,2 n+m-1, m}^{\prime}$ | $M P P_{2 m+1,2 n+m-1, m}^{\prime}$ | $V_{2 n+m} \vee P_{2 m+1, m+1}^{\prime \prime}$ |
| $n+m:$ odd | $V P P_{2 m+1,2 n+m-1, m}^{\prime}$ | $M P P_{2 m+1,2 n+m-1, m}^{\prime}$ | $S Z / 2^{2 n+m} \vee P_{2 m+1, m+1}^{\prime \prime}$ |
| $n+m:$ even | $S Z / 2^{2 n+m} \vee P_{2 m, m}^{\prime \prime}$ | $M_{2 n+m} \vee P_{2 m, m}^{\prime \prime}$ | $V P P_{2 m+1,2 n+m, m+1}^{\prime}$ |
| $n+m:$ odd | $V_{2 n+m} \vee P_{2 m, m}^{\prime \prime}$ | $M_{2 n+m} \vee P_{2 m, m}^{\prime \prime}$ | $P P_{2 m+1,2 n+m, m+1}^{\prime}$ |

in cases when i) $2 n \leq m$ and ii) $2 n>m$. Moreover $\Sigma^{1} L(2 n, 2 m+1)$ is quasi $K O_{*}{ }^{-}$ equivalent to $\Sigma^{4 n+4 m+4} \vee \Sigma^{1} L_{0}(2 n, 2 m+1)$.

Applying Theorems 2.3 and 2.4 in place of Theorems 1.2 and 1.3 we show
Theorem 3.6. The weighted mod 4 lens spaces $\Sigma^{1} L_{0}(2 n+1, t)$ and $\Sigma^{1} L(2 n+$ $1, t)$ are quasi $K O_{*}$-equivalent to the small spectra tabled below, respectively:

	$\Sigma^{1} L_{0}(2 n+1,2 m)$	$\Sigma^{1} L(2 n+1,2 m)$	$\Sigma^{1} L_{0}(2 n+1,2 m+1)$
i)	$V_{2 n+1}$	$\Sigma^{4} \vee V_{2 n+1}$	$\Sigma^{4} S Z / 2 \vee V_{2 n+2}$
ii)	$\Sigma^{2} S Z / 2^{2 m+1} \vee P_{2 n+m, m}^{\prime}$	$\Sigma^{2} M_{2 m+1} \vee P_{2 n+m, m}^{\prime}$	$\Sigma^{2} V_{m} \vee P_{2 n+m+1,2 m+2}^{\prime}$
iii)	$\Sigma^{2} V_{2 m+1} \vee P_{2 n+m, m}^{\prime}$	$\Sigma^{2} M_{2 m+1} \vee P_{2 n+m, m}^{\prime}$	$\Sigma^{2} S Z / 2^{m} \vee P_{2 n+m+1,2 m+2}^{\prime}$
iv)	$S Z / 2^{2 n+1}$	$\Sigma^{0} \vee S Z / 2^{2 n+1}$	$S Z / 2 \vee S Z / 2^{2 n+2}$
v)	$\Sigma^{6} S Z / 2^{2 m+1} \vee \Sigma^{6} P_{m-1,2 n+m+1}^{\prime}$	$\Sigma^{6} M_{2 m+1} \vee \Sigma^{6} P_{m-1,2 n+m+1}^{\prime}$	$\Sigma^{6} V_{m} \vee \Sigma^{6} P_{2 m+1,2 n+m+2}^{\prime}$
vi)	$\Sigma^{6} V_{2 m+1} \vee \Sigma^{6} P_{m-1,2 n+m+1}^{\prime}$	$\Sigma^{6} M_{2 m+1} \vee \Sigma^{6} P_{m-1,2 n+m+1}^{\prime}$	$\Sigma^{6} S Z / 2^{m} \vee \Sigma^{6} P_{2 m+1,2 n+m+2}^{\prime}$

in cases when i) n is even and $m=0$, ii) n and $m \geq 2$ are even, iii) n is even and m is odd, iv) n is odd and $m=0, v) n$ is odd and $m \geq 2$ is even, and vi) n and m are odd. Moreover $\Sigma^{1} L(2 n+1,2 m+1)$ is quasi $K O_{*}$-equivalent to $\Sigma^{4 n+4 m+6} \vee$ $\Sigma^{1} L_{0}(2 n+1,2 m+1)$.

Proof. By a quite similar argument to the case of the real projective space $R P^{k}$ (cf. [10, Theorem 5]) we can easily determine the quasi $K O_{*}$-types of $\Sigma^{1} L_{0}(2 n+$ $1,0)$ and $\Sigma^{1} L(2 n+1,0)$. The quasi $K O_{*}$-type of $\Sigma^{1} L(2 n+1,2 m)$ for $m \geq 1$ is immediately determined by applying Theorem 2.4 ii) with the aid of Proposition 3.2 and Lemma 3.3. On the other hand, the quasi $K O_{*}$-types of $\Sigma^{1} L_{0}(2 n+1,2 m)$ in cases of ii) and vi) and those of $\Sigma^{1} L_{0}(2 n+1,2 m+1)$ in cases of iii), iv) and v) are also determined by applying Theorem 2.3 and [6, Theorem 5.3] in place of Theorem 2.4 ii).

We shall now investigate the quasi $K O_{*}$-types of $\Sigma^{1} L_{0}(2 n+1,2 m-1)$ and $\Sigma^{1} L_{0}(2 n+1,2 m)$ in case when n is even and m is odd. Consider the following two cofiber sequences

$$
\begin{array}{cc}
\Sigma^{4 n+4 m} & \xrightarrow{\alpha_{0}} \Sigma^{1} L(2 n+1,2 m-2) \xrightarrow{i_{L_{0}}} \Sigma^{1} L_{0}(2 n+1,2 m-1) \\
\Sigma^{4 n+4 m+2} & \xrightarrow{\alpha_{0}} \Sigma^{1} L(2 n+1,2 m-1) \xrightarrow{i_{L_{0}}} \quad \Sigma^{1} L_{0}(2 n+1,2 m)
\end{array}
$$

where $\Sigma^{1} L(2 n+1,2 m-1)$ is quasi $K O_{*}$-equivalent to $\Sigma^{4 n+4 m+2} \vee \Sigma^{1} L_{0}(2 n+1,2 m-$ 1) according to Proposition 3.4. Note that $\Sigma^{1} L(2 n+1,0)$ is quasi $K O_{*}$-equivalent to $\Sigma^{4} \vee V_{2 n+1}$. Since $\Sigma^{1} L_{0}(2 n+1,1)$ has the same \mathcal{C}-type as $S Z / 2 \vee S Z / 2^{2 n+2}$ by Proposition 3.2, [6, Proposition 3.2] asserts that it must be quasi $K O_{*}$-equivalent to $\Sigma^{4} S Z / 2 \vee V_{2 n+2}$. Hence it is easily calculated that $K O_{3} L_{0}(2 n+1,2) \cong Z / 2 \oplus Z / 2^{2 n+3}$ and $K O_{7} L_{0}(2 n+1,2)$ is isomorphic to the cokernel of $\alpha_{0 *}: Z / 2 \rightarrow Z / 2 \oplus Z / 2 \oplus$ $Z / 2^{2 n+1}$. From Lemma 3.3 we recall that the set $S(X)$ consists of only 0 for $X=$ $L_{0}(2 n+1,2 m-1)$ or $L_{0}(2 n+1,2 m)$ under our assumption on n and m. Applying Theorem 2.3 i) and ii) combined with Proposition 3.2 we see that $\Sigma^{1} L_{0}(2 n+$ $1,2 m-1)$ is quasi $K O_{*}$-equivalent to one of the three spectra $\Sigma^{2} V_{m-1} \vee P_{2 n+m, 2 m}^{\prime}$, $\Sigma^{2} S Z / 2^{m-1} \vee \Sigma^{2} P_{2 m-1,2 n+m+1}^{\prime}$ and $\Sigma^{2} N P_{m-1,2 m-1,2 n+m+1}^{\prime}$ when $m \geq 3$, and $\Sigma^{1} L_{0}(2 n+1,2 m)$ is quasi $K O_{*}$-equivalent to one of the three spectra $\Sigma^{2} V_{2 m+1} \vee$ $P_{2 n+m, m}^{\prime}, \Sigma^{2} S Z / 2^{2 m+1} \vee \Sigma^{2} P_{m-1,2 n+m+1}^{\prime}$ and $\Sigma^{2} N P_{2 m+1, m-1,2 n+m+1}^{\prime}$ when $m \geq$ 1. Since $\Sigma^{1} L(2 n+1,2 m-2)$ is quasi $K O_{*}$-equivalent to $\Sigma^{2} M_{2 m-1} \vee P_{2 n+m-1, m-1}^{\prime}$ when $m \geq 3$, it is immediate that $K O_{1} L_{0}(2 n+1,2 m-1) \cong Z / 2^{2 m-1} \oplus Z / 2^{m-2} \oplus Z / 2$. Therefore $\Sigma^{1} L_{0}(2 n+1,2 m-1)$ must be quasi $K O_{*}$-equivalent to $\Sigma^{2} V_{m-1} \vee P_{2 n+m, 2 m}^{\prime}$ when $m \geq 3$. Hence it is easily calculated that $K O_{3} L_{0}(2 n+1,2 m) \cong Z / 2 \oplus$ $Z / 2^{2 n+m+1} \oplus Z / 2$ and $K O_{7} L_{0}(2 n+1,2 m)$ is isomorphic to the cokernel of $\alpha_{0 *}$: $Z / 2 \rightarrow Z / 2 \oplus Z / 2 \oplus Z / 2^{2 n+m}$. Therefore $\Sigma^{1} L_{0}(2 n+1,2 m)$ must be quasi $K O_{*^{-}}$ equivalent to $\Sigma^{2} V_{2 m+1} \vee P_{2 n+m, m}^{\prime}$ when $m \geq 3$ as well as $m=1$.

In case when n is odd and $m \geq 2$ is even the quasi $K O_{*}$-types of $\Sigma^{1} L_{0}(2 n+$ $1,2 m-1)$ and $\Sigma^{1} L_{0}(2 n+1,2 m)$ are determined by a parallel argument.

Remark. According to Theorems 3.5 and $3.6, L_{0}(s, 0)$ and $L(s, 0)$ are quasi $K O_{*}$-equivalent to the real projective spaces $R P^{2 s}$ and $R P^{2 s+1}$, respectively.

References

[1] A.Al. Amrani: Complex K-theory of weighted projective spaces, J. Pure and Applied Algebra, 93 (1994), 113-127.
[2] A.K. Bousfield: A Classification of K-local spectra, J. Pure and Applied Algebra, 66 (1990), 121-163.
[3] T. Kawasaki: Cohomology of twisted projective spaces and lens complexes, Math. Ann. 206 (1973), 243-248.
[4] T. Kobayasi and M.Sugawara: K_{Λ}-rings of the lens spaces $L^{n}(4)$, Hiroshima Math J. 1 (1971), 253-271.
[5] N. Mahammed: A propos de la K-théorie des espaces lenticulaires, C. R. Acad. Sc. Paris, 271 (1970), 639-642.
[6] H. Nakai and Z. Yosimura: Quasi $K O_{*}$-types of $C W$-spectra X with $K U_{*} X \cong Z / 2^{m} \oplus$ $Z / 2^{n}$, Mem. Fac. Sci. Kochi Univ. (Math.) 17 (1996), 111-140.
[7] Y. Nishimura and Z. Yosimura: The quasi $K O_{*}$-types of weighted projective spaces, J. Math. Kyoto Univ. 37 (1997), 251-259.
[8] Z. Yosimura: Quasi K-homology equivalences,I, Osaka J. Math. 27 (1990), 465-498.
[9] Z. Yosimura: Quasi K-homology equivalences,II, Osaka J. Math. 27 (1990), 499-528.
[10] Z. Yosimura: The quasi $K O_{*}$-types of the real projective spaces, Homotopy theory and related topics, Lecture Notes in Math. 1418 (1990), 156-174.
[11] Z. Yosimura: The quasi KO-homology types of the stunted real projective spaces, J. Math. Soc. Japan, 42 (1990), 445-466.
[12] Z. Yosimura: The quasi $K O_{*}$-types of the stunted mod 4 lens spaces, Math. J. Okayama Univ. 35 (1993), 193-228.
[13] Z. Yosimura: KO-homologies of a few cells complexes, Kodai Math. J. 16 (1993), 269-294.

Y. Nishimura
Department of Mathematics
Osaka City University
Osaka 558
Japan
Z. Yosimura
Department of Mathematics
Nagoya Institute of Technology
Nagoya 466
Japan

