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1. Preliminary

We take a concentric annulus with center at zero in the complex plane C which
contains the unit circle C. We cut it along C to get two annuli

A={z;a<|z| <1} and B ={z;1< 2| < b}.
Take a continuous function ¢ on R such that
p(01) < p(82) if 6; < B2, p(0 + 27) = (0) + 27,

and weld A and B so that the point exp 6 € A corresponds to the point exp ip(f) €
OB. The resulting doubly connected region can not always be given a conformal struc-
ture whose restrictions to A and B are the same as original ones. We call ¢ a con-
formal welding function if there exists a conformal mapping f from A U B onto an
annulus A(yp, f) except for a Jordan curve 7 such that

li = 1 €1,
Aazu—z)le“ f(Z) Bazi)XIeI“P(o) f(Z) 7
where A(p, f) = {w;1 < |w| < eM(#:f)}. The number M (p, f) is called the modulus
of A(p, f). We call f a p-mapping. For a conformal welding function ¢, the weld-
ed doubly connected region has the conformal structure induced by A(yp, f), which is
consistent with the original conformal structure A and B.

Set

V(p) = {M(¢p, f); f is a p-mapping},

that is, V(¢) denotes the set of all moduli of annuli made from the welding by a fixed
conformal welding function ¢.

If ¢ is real analytic, V(y) is a point. For a @-mapping f, if v = f(C) has a pos-
itive area, we can induce a conformal structure given by the metric ds = |dw + tudw|,
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where tu(dw/dw) is a Beltrami differential whose support is contained in ~y. For the
modulus m(t) of the associated Riemann surface, we know the following variational

formula(cf. [2]);
o= ] 2

Since we can choose p which satisfies m'(0) # 0, V(g) is not a point.

K. Oikawa asked the following question. Is there a conformal welding function ¢
such that V() is a point but the welded doubly connected region has different con-
formal structures? If the welded doubly connected region has different conformal struc-
tures, there are @-mappings fi, fo such that F= fao fi ! is regarded as a mapping
from A(ep, f1) to A(wp, f2) which is not conformal on vy = fl(C) There is a homeo-
morphism F on the extended complex plane € such that F' = F' on A(p, f) and F
is quasiconformal on € — ~. Further there is a quasiconformal mapping h on C such
that F = ho F is conformal on € — ~. The mapping F' is continuous on C and is
conformal on € — ~. This + contains a point on which F' is not conformal. We are
concerned with a Jordan curve v which allows mappings like this F'.

It is said that a compact set E is of class Ngp if there exists no bounded uni-
valent analytic function on C — E and is of class Np if there exists no non-constant
analytic function with a finite Dirichlet integral on C—E. Each univalent meromorphic
function on € — E is continuously extendable to C if E € Nsp and it is a Mobius
Transformation if E € Np(cf. [7]). Let f, and f, be the extremal horizontal and ver-
tical slit mappings for C — E respectively, which are normalized as follows

dudv, =u+ ).

oo
fo=12+ E anz”™ ",
n=1

z+ f: bpz™ ™.
n=1

fo

For E € Nsg — Np, f, + frn is a mapping which is continuous on C and conformal
on € — E, and (f, + f»)(E) has positive area. Hence if y contains a set in the class
Ngp— Np, there is a mapping such that it is continuous on C, is conformal on é—’y,
but is not conformal on a point of .

Under such a background, in the first half we investigate, for the concerned map-
ping F, the behavior of a mapping F'(z) + tz with a complex parameter ¢, and in the
second half we check the set of parameter ¢ for which f, +¢f, is univalent. This arti-
cle is a stepping stone to get answer for Oikawa’s question. If the set of parameters ¢
for which F'(z)+tz is univalent has interior points, ~y is transformed to a Jordan curve
of positive area. Hence, if it is shown that the refered set has always interior points,
V(p) can’t be a point in the case the doubly connected region welded by ¢ has dif-
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ferent conformal structures. As an example we remark that the set of parameters ¢ for
which f, + tfn is univalent becomes a half plane.

2. Behavior of F' on the Jordan curve ~

Consider the situation in section 1, namely, the mapping F' is continuous on C
and is conformal on € — v and 7 contains a point on which F' is not conformal. Let
1 be a conformal mapping from the exterior of the unit disk to the exterior of Jordan
curve -y, whose Laurent development is

[o.o)
p1(2) = Z anz™ "
n=-—1

and p, be a conformal mapping from the interior of the unit disk to the interior of ~,
whose Taylor development is

p2(2) = Z bn2".
n=0

For R > 1, let Gg denote the bounded region enclosed by ¢;(|z| = R). Then the area
of Gg is

) 1 - 3 g ~
Gl =3 [ [ aciz=; / i3 /M:R o1 (2)7, () dz

AL (E)(E) s
0

n=-—1 m=-—1
(e o]
= Z —nla,|?*R2".
n=-—1
That is

—_ an|®

|Gr|=m {]a_1|2R2 - Z”#} :
n=1

The area |Gg| is decreasing as R decreases and
oo
lim |Gg|= 1P =) nlaal
Aim |G w{la 1] n_lnlanl

We denote this by |G;|. Similarly, for 7 < 1, let G, denote the bounded region en-
closed by 2(|z| =r). Then the area of G, is

) 27 s © S o .
=5 [ enei@z=} [ (L) (3 ) mbnbarrret-riag
|z|=r )

n=0 m=0
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oo
= Z n|bn|?r?".
n=1

We write

oo
- I — 2
|G| = lim |G,| = w;nlbnl :
If the area of 7 vanishes, then |G| = |G,|. Therefore we have

oo

la_1f® = Z n(|an|2 + |bn|2)~

n=1

We assume that there exists a homeomorphism F' of the extended complex plane
which is analytic off v, has a non-differentiable point on +, and fix the infinity. Further
assume that the area of F'(y) vanishes. Then 1); = Foy; is a conformal mapping from
the exterior of the unit disk to the exterior of F'(vy), whose Laurent development is

Pr(z) = Y Anz"

n=-—1

and 12 = F o ¢y is a conformal mapping from the interior of the unit disk to the
interior of F'(vy), whose Taylor development is

For R > 1, let g denote the bounded region enclosed by ;(|z| = R) and for r < 1,
let Q. denote the bounded region enclosed by 12(|z| = r). Then we have

oo Anz
|QR| = W{IA_1I2R2 - anRzl },

n=1

] = Rlin11+ |Qr| =7 {|A_1|2 - ZnIA,,|2} ,

n=1

Q| =7 Z n|Bp|*r’™,

n=-1

oo
01 = lim (9] =7 3 nlB,
Since the area of F'(y) vanishes, we have also

oo

|A_1* = 3 n(l Al + |Bal?).

n=1
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Let a parameter ¢t € C be fixed. Consider the following function

9(¢) = F({) + ¢,

and for R > 1, consider its Dirichlet integral over Gg — v which is now represented
as the Dirichlet inner product

(dg,dg)Gr— = (dF,dF)Gn— + 2RH(dF,d()G - + [t*(d(, dC) G r—v-
As for the last term, we have
(A, dC) G = Jim (dC, d)cn-G + lim (dC,dC)c,

= 2{R,li_rg+(|GR| —|Gr|) + 1rl_igl_ |GT|} = 2{|Ggr| - |G1] + |G, |}

=2 {|¢1_1|2(R2 -1) - Z nlan,|?(R™2" — 1) + Z nlbn|2}
n=1 n=1

=27 {|a_1|2R2 - Z nlan|2R_2"} .
n=1

Next

(dF7 dF)GR—GR/ = (dFO QDl,dFO (pl)(z:R’<|z|<R} = (dwlad"/)l){z:R’<|z]<R}

=2n {|A_1|2(R2 —R?) =) n|A, (R - R"Q")} ,

n=1
and
(dF,dF)g, = (dF o p2,dF o ©3)(z:|z|<r} = (A2, d2) (2:)z1<r}
=27 Z nan|2r2".
n=1
Therefore
(dF,dF)gp_y =27 {|A_1|2(R2 -1) - Z n|A.2(R72" - 1) + Z n|Bn|2}
n=1 n=1
=2 {IA_1|2R2 -3 nlAnlzR‘Z"} :
n=1
Similarly

(dF,d{)gr-Gp = (AF 0 @1,dp1) (2R <|z|<r} = (d¥1,d01) (2R <|2| <R}
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=1 {/IZI=R Y1y — /|z|=R’ ¢1EE}

= / 2”( i ) ( i ) — MAGm (R = R m)e(mnmfigg
0

n=-—1 m=-—1

=2 {A—lﬁ(Rz ~R?) -3 nAna, (R - R'—%)} ,

n=1
and
(dF7 dC)G,. = (dF°S02ad902){z:|z|<r} = (d¢2ad<p2){z:|z|<r} =1 " I/)2_d"72
2T (e oo - .
= / (Z) (Z)mBnbmr""'me("_’")o’dﬁ
0 n=0 m=0
=27 Z nBpb,r>",
n=1

so that

(dF,d¢)Gr—y = 27 {A_la:T(R2 -1)- Z nA,a,(R™2" - 1)+ Z anb_,{} i
n=1

n=1

By combining the results we obtain

(dg,dg) Gy = 2 {IA—1I2R2 -3 AR
n=1
+ |t)? (|a_1l2R2 - i n|a,.|2R_2")
n=1
+2§RE[A_1G(R2 -1)- i nAna,(R™2" - 1) + i anF,:] }
n=1 n=1
=2 {— f: n|A, + ta,|?R™2" + 2§RZ< i nAna, + inBJZ) }
n=-1 n=-—1 n=1

Set

Q= i nAnGn + f: nBpby.
n=1

n=-—1

Then we can write

(dg,dg)gr—~ =27 {2%2@ - Z n|lA, + tan|2R_2"} .

n=-—1
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We remark the following.

Lemma 1.

Q= i nA,an, + ianEi;&o.

n=-—1 n=1

Proof. Since 3, and ¢; are conformal at infinity, A_; and a_; don’t vanish.
Let to = —(A_;/a—1) and set

90(¢) = F(C) + toC-

Then
0 < (dgo, dgo)Gr—~
=2 {2§REQ - i n|A, + toan]2R_2"} .
n=—1
Hence
4R t0Q = }Zli_illoo(dgo,dgo)ca—v > 0,
and Q # 0. ]

For t # to and sufficiently large R, go ({2 : |2| = R}) becomes a Jordan curve
and the interior region is denoted by Q, r. We have

i i -
|g,r| = —/ dwdo = —/ gopi(z)dg o ¢1(z)
2/ Ja, 2 Jsa, »

2m ol st
= % / ( > ) ( > ) —m(An + tan)(Am + tam)R™"" e ("% g
0 1

n=— m=—1

oo
=7 Z —n|An + tan|*R™".

n=-—1

Therefore we have the following.

Lemma 2.

1 _
|anR| - §(dgvdg)GR——'y = —'27T§RtQ
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Let

F(G) = F(¢)
G =

Then we have the following assertion.

S(F) ={  (C11G2) € € x c—{<<,o}<ec}.

Theorem 1.  The set S(F) contains a half plane;
{t: RtQ <0} C S(F).

Proof. Note that (1/2)(dg,dg)G,—~ is the image area of Gg— by g, counting
multiplicity. Hence if 2rR#Q > 0, by Lemma 2, there is an image point mapped from
at least two points (1, Co. When ¢ = to, by Wermer’s lemma g(7) = g(C) (cf. [1]), we
can also find two points (3, (2 with the same property. Then

F(G) +t¢ = F(¢2) + tla,
or

L= FQ) - F@) g,
G —¢
If —t does not belong to S(F'), F((1) +t¢1 # F(¢2) +t(2 for every pair (1, (2),
(1 # (2. Then g(¢) = F(¢)+tC is univalent. When —t € C—S(F) and R{Q < 0, g is
univalent and the image area of v by g is positive. Then g() contains a compact set
whose complement belongs to the class Ngg — Np (cf. [7]). If the closure of S(F)
doesn’t contain —t, then RZQ < 0. Hence g is univalent and the image area g(v) is
positive. O

Theorem 2. If (C— S(F))N{t; RtQ > 0} # 0, there exists a homeomorphism
g on C such that g is conformal on C — «y and area of g(vy) is positive.

3. Linear combination of the extremal horizontal and vertical slit mappings

Let G be a region in the extended complex plane which allows non-constant ana-
lytic function with a finite Dirichlet integral. Assume that infinity is contained in G.

Theorem 3. Let fr, f, be the extremal horizontal slit mapping and the extremal
vertical slit mapping on G. Assume that fy, f, are normalized such that

fo=C+) an("

n=1

fo=CH+ ) bl

n=1
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at a neighborhood of infinity. Then f, — tfp is univalent on G if Rt <O0.

Proof. Assume that G is a multiply connected regular region. Then w = f(z) =
foofi 1 (2) is a conformal mapping from a multiply connected horizontal slit region H
to a vertical slit region V. The function f(z) has the following Laurent developement,

f=2z+ i": Apz™"
n=1

on a neighborhood of oco. The function f(z) has an analytic extension to every com-
ponent of the boundary except for 4 points and R f'(z)= 0 on JH —{a finite number
of points}. The function f'(z) can be regarded as a meromorphic function on the dou-
bled surface. The doubled surface is compact and the total order of f' is twice of the
number of slits. Hence the inverse image of the imaginary axis by f' consists of the
boundary slits of H. Therefore the real part of f' doesn’t vanish on any interior points
of H. Further by the normalization of f; f'(c0) = 1, it follows that the real part of f'
is positive on H. Let A be the left end point of a boundary horizontal slit of H, C
its right end point, B the point which is mapped on the top end point of a bound-
ary vertical slit of V, and D the point which is mapped on the bottom end point of a
boundary vertical slit of V. Then note that

f(B)=f'(D)=0, f'(A)=f(C)=ooc.

It follows that B lies on the upper side of the horizontal slit and D lies on the under
side of the horizontal slit. Further, we have

S f'(z) >0, on (4,B)U(D,C),
Sf(z) <0, on (B,C)U(A,D).

By the monotonous change of & f'(z),

$f"(2) <0, on (A4,B)U(B,C),
S f"(z) >0, on (D,C)U(A,D),

where (A, B), (B,C) lie on the upper side of the horizontal slit and (D, C), (A, D)
lie on the under side of the horizontal slit. Let g(z) = f(2)+2z = u+iv. The curvature
of the boundary curve g(0H) is
U — vii _ %g//g‘/ _g fllf_‘/ +fll
(42 +92)% lg'l? IfF+ 13
_ % fll
If'+ 1P
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<0 on (4,B)U(B,C)
>0 on (A,D)U(D,C).

Hence g(0H) surrounds a convex region, if it is univalent. Similarly for h(z) =
f(2) — z the curvature of the boundary curve h(9H)

g h”ﬁ' _a _fu .
W fr =1

For 21, (#)22 € H, let p = |z — 21|, € = (22 — 21)/(|22 — 21|). Assume that
0 <6 < 7. Then

fe) = sl = [ " Pl +re)e®dr + UG - £,

where zi+ denotes the point on the upper side of a boundary horizontal slit of H
which meets the line segment [21, z2] and z; denotes the point on its under side. We
have

gl 2 f0) 1 ["p ey s revyar + L2 S5 - e,

22— 21
Since f(z;) and f(z;") lie on a vertical slit,

F(5) = f(z7) = i{S f(zh) = S f(=)}-
Suppose that {S f(2;7) — S f(2;7)} < 0. The function {S f(2;}") — S f(2;)} is con-

tinuous on the horizontal slit and it is positive near the end point. There is a point 2g
such that

{Sf(zf) —S f(z5)}=0.
Then f(z3) = f(z5) and
9(23) = fzg) + 20 = f(zg) + 20 = g(25).

If we use the fact that g(z) is univalent and the complement of the image domain
consists of convex sets, this gives a contradiction. It follows that

{Sf(zH) -Sf(z)}>0.
Now we have

RY {f(z) - f2)}e™® =R 2N S {f(F) - f(27)} > 0.
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Therefore

Rl =1G)

29 — 21

It is clear in the case @ = 0 or the second term vanishes. For t € C (Rt < 0),

f(z2) = (=)

22— 21

# t i.e. f(22) - tZ2 :,é f(zl) - tZl.

We have F(z) = f(z) — tz is an univalent function on H if ®¢ < 0. It follows the
result holds on a multiply connected regular region.

Let G be an arbitrary region in the complex plane and {G,} be a regular ex-
haustion. Let f, and f, be the extremal horizontal and vertical slit mappings for G
respectively, which are normalized as follows

oo
fon=2z+ Z bnz_na
n=1
oo
fo=2+ Z anz” "
n=1

Let f.n and fr, be those normalized extremal slit mappings for G,. Then {f.n} con-
verges to fp and {fn..,} converges to f,. Hence f,, — tf.n converges to fr — tf,.
Therefore, by Hurwitz’s theorem f, —tf is univalent if R¢ < 0. The theorem is valid
for an arbitrary plane region. O

Remark.  C. FitzGerald commented me that this was not published. But he knew
the fact and remarked that it may be valid for the rectilinear slit mapping with arbi-
trary directions.

Corollary 1. If G is a multiply connected regular region, then
{t; fo — tfn is not univalent} is dense in the right half complex plane {t;Rt > 0}.

Proof. Let f = f,o f; !, The closure of S(f) contains f'(z) and the right half
complex plane. O

Remark. (1) N. Suita kindly teaches me the following. For a multiply connect-
ed (not simply connected) regular region G,

{t; fo — tfn is univalent} is precisely the left half complex plane {t; Rt < 0}.

It is shown in the proof of Theorem 3 that  f’ covers the right half complex plane
{t; Rt > 0}. Therefore g:(2) = f(z) — tz has a vanishing derivative if ®¢ > 0 and is
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not univalent. Further the curvature of the boundary curve g;(0H) is —Rt S f"/|f' —
t]®. If Rt <0, it is in the same situation as the proof of Theorem 3

<0 on (4,B)U(B,C)

>0 on (A,D)U(D,C).
Hence the complement of the image of g; consists of a finite number of convex re-

gions. If ®¢ = 0, the curvature vanishes. Hence the complement of the image of g,
consists of a finite number of line segments. If ¢ > 0, it is

>0 on (A,B)U(B,C)
<0 on (A,D)U(D,C).

Hence the every component of boundary curve g;(OH) surrounds a part of the image
g+(H) convexly, which contains a branch point.

(2) M. Shiba also remarks me the following. By the extremal property of the co-
efficients a; and b, the linear combination f, — tf, is not univalent for any ¢ # 1 in
the right half plane, if a; # b;.

(3) M. Sakai[6] showed that f, — fp is univalent iff G is conformally equivalen-
tto {z: |z] > 1}|J{oo} — E, where E is a set satisfying E(JK € Np for every
compact subset K of {z:|z| > 1} J{oo}.

By the proof of Theorem 1, we have the following.

Theorem 4. Ifé—G is of class Nsp— Np, then {t; f, —tfn is univalent} =
{t; Rt <0}

ExampLe. The set E = C— f,(G) has a vanishing area. There is a Jordan curve
~ which contains E and has a vanishing area. Under the assumption of Theorem 4,
the function f, o f,° lisa homeomorphism on C and is conformal on C — v. The set
S(fs o ;') is the right half plane.
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