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1. Introduction

A new scheme to study the XXZ spin chain in massive regime is introduced by
Davies et al in [1]. In this scheme, which is called “quantum symmetry approach”,
the space of states is identified with some U, (Agl))-module. Under this identification,
the XXZ Hamiltonian can be constructed on this module as an operator which
commutes with the action of Uq(A(ll)). Furthermore, the row transfer matrix and
creation (annihilation) operators can be constructed by using vertex operators.

In a similar way to [1], the higher spin chain [2] and the models related to
the vector representation of Uq(A,(Il)) [3], Uq(B,(LI)), Uq(Dg)) [5] are studied. In this
paper, we consider the model related with the spin representation of Uq(DS)).

In physics the model that we consider here is explained as follows. It is a one
dimensional quantum spin chain model constructed from the spin representation of
Uq(Dﬁtl)). The Hamiltonian acts on the space of the infinite tensor product

oV evMevite -, (kez),

where Vk(") denotes a copy of spin representation V(1) (see Section 2.4). The explicit
form of the Hamiltonian is given by

H=3 rezPrtrks Prr1k= m®idVIfil ®h®idv,§f)1 ® -,
d
h=—(q— g Y)2——PR(2)|s=1,
(@ =g7)z - PR(z)[:=1

where hj1 x acts non-trivially only on the (k + 1)-th and the k-th component. The
operator R(z) is the R-matrix

R(z1/z) : VIV @ V) — VD @ VY

z2 )

and P denotes the transposition i.e. P(v Q@ w) = w Q v.
In quantum symmetry approach, the problem is formulated as follows. Consider
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the space of states as Uq(D,(ll))-module

D, vevw

where A and p are level one dominant integral weights, V(A) and V(A)** denote
the irreducible highest weight module with highest weight A and its antipode dual
(cf. [1]). We use vertex operators associated to Uq(D,(zl) )-modules V{* in order to
construct the transfer matrix (the Hamiltonian is obtained from the transfer matrix
T(z) as follows: H = —(q — g~ 1)2dlogT(z)/dz|,=1) and creation (annihilation)
operators. Here V.*) is the affinization of V(¥ that is the following representation
of the “derived subalgebra” Ué(D,(zl)) (see Section 2):

v the vector representation,
(1) V®(k=2,---,n—2) the fusion representation,
V(=1 y(n) the spin representation,

The row transfer matrix and creation (annihilation) operators are constructed

+
by using vertex operators for Vz(k) and its dual modules Vz(k)*a § Vertex operators
for these modules are defined by the following Uq(D,(ll))-homomorphisms:

(k)
(type 1) oV (2): V) — V() @ V),
(type 11) V) V() — VR @ V().
,ail
(type 1) VT (2) V() — V() @ VPRt
,ail
type 11 oV L) V() — VRt g (),
p A z

Commutation relations of vertex operators give us commutation relations of
the transfer matrix and creation (annihilation) operators, and then the excitation
spectra of the Hamiltonian H. In fact, we can show that vertex operators have the
following commutation relations:

n (k) ’ (n)
BV (2)8Y W (21) = 70 (21/2) Y ¥ (21) 84V (22),

2) n (kyva™ )4 3
<I>ZY< )( )(I)V N (zl) = T(k)(zl/ZQ)_l(I)V(k) "(zl)q)l;V (22)
k+n—2j
_k/2 qin- 4 q) Z) )
H@ an— 4 )k+n 2'72'_1) (1 < k S n 2),
[n 1/2) -
e @ 4n-—4(—(_q)4z Z)
7k () = { z~n2/4 q ' e
(2) e eq4n—4(-—(.—q)4z—]_z_1) ( )
[n/2] .
o ot
. j=1 GQ“"“‘(—(*Q)“"T‘Z—I) R
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where ©,(z) is the theta function given by

(e o)

0,(2) = (2:0)o0 (P2 ;D)oo (i P)oos  (2:P)o0 = [ [(1 — p'2),
1=0

and [z] denotes the greatest integer not exceeding z. The explicit form of 7(¥)(z) is
crucial to calculate the excitation spectra. From this formula, we can give explicit
forms of the energy €*)(#) and the momentum p*¥)(#) with the rapidity variable 6,

PO = 7®(2), M) =—(¢— q'l)zdi logT®) (2), —z=e*¥.
2

To prove the commutation relations (2), it is enough to show that the vacuum
expectation value of the both sides in (2) are equal (see section 5.1). Since the
vacuum expectation values satisfy the q-KZ equation, we can obtain their explicit
forms by finding appropriate solutions of the q-KZ equation (cf. [1]).

Here we state some comments about excitation spectra. By taking the scaling
limit as in [8] and [5], we have the following relativistic spectrum:

P®) () = 2usin ( ) sh(v), E®) () = 2usin < ) ch(v),

(1<k<n-2),

wk T
2n — 2 2n — 2
P®)() = ush(v), E® () = pch(v),

(k =n- 17"’)7

where P(*)(9), E*)() and v can be considered as an appropriate scaled version
of p*)(9), €¥) () and @ respectively. These spectra are exactly same as those of the
nonlinear sigma model in [10]. Furthermore, this spectrum coincides with the mass
spectrum of the spin chain constructed from vector representation of Uq(Dfll)) in
[5].

In general, the structure of the space of states turns out to be quite different
when we change the region of the parameter ¢ in the Hamiltonian H, so we have
to discuss the region where we can use the identification (1). We are not able to
determine this region at this point, and we only state a conjecture. The region where
the identification (1) is effective is given by

-1<g<0.

These kind of conjectures are already given in [3], [5]. Let us consider the case
of n = 3, then Uq(Dél)) is isomorphic to Uq(Ag,l)) and the spin representation of
Uq(Dél) ) is the vector representation of Uq(Agl)). The model related with the vector
representation of Uq(A%I)) is studied by Date and Okado in [3], and our conjecture

coincides with theirs when n = 3. In this Uq(Asll))-case, the validity of “quantum
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symmetry approach” on this region is supported by Bethe Ansatz results [8], however
in our case, as far as the author knows, there is no similar Bethe Ansatz result to
support the conjecture.

This paper is organized as follows. We prepare the notation and give the def-
inition of the quantum affine algebra Uq(D(nl)) in Section 2. In the same section,
we construct the spin representations of Uq(DS)) and its R-matrices. By using these
R-matrices, the fusion representations are constructed in Section 3. We also give
explicit forms of the R-matrices corresponding to the fusion representations there.
In Section 4, we give vertex operators for the modules constructed in the previous
sections and get two point functions. Commutation relations of vertex operators are
obtained in Section 5. In the same section, we further make a comment on a rela-
tionship between excitation spectra and fusion procedures. In Section 6, we describe
the formulation of the model. Finally, in Appendix, we give a detailed explanation
on calculation of two point functions, and construct an isomorphism between the
fusion representation and its dual.

Acknowledgement. The author would like to express his gratitude to Prof. E.
Date, Prof. K. Nagatomo and Prof. M. Okado for their valuable advices. He also
thanks to Prof. T. Nakanishi for his comment about relation between fusion and
excitation spectra. Furthermore he expresses his thanks to Prof. M. Ikawa for giving
him continuous encouragements.

2. Spin representations of the quantum group Uq(DS))

2.1. Notation. In this paper, we use the same notation in [11]. Let g be the
affine Lie algebra of type DY and g =n_@hdn, be the triangular decomposition.
Let a;, @) = h;, (i =0,1,...,n) be the simple roots and the simple coroots and A;
be the fundamental weights i.e. (A;,h;) = 6; ;. We denote the scaling element and
the center by d and c then we can choose elements hy, hs, ..., h,,c and d as a basis
of the Cartan subalgebra h. Let us define special elements p,§ € h* by p= Y- (A;
and § = ap+a; +2as + -+ 20,2 + ap_1 + a,. We also denote by kY the dual
Coxeter number, in D,(ll)-case, this is equal to 2n — 2. The invariant bilinear form
is normalized by (a;|a;) = 2. Let g be the Lie algebra of type D,,, underlying the
affine Lie algebra g. For A € h*, we denote by X the restriction to the finite part. We
can write a;, A; and j by using orthonormal basis {wi,...,wn} of b (cf. [11]) as
follows:

3
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wiF et w (1<i<n-2),
_ 1 .
4) A = 5((“}1 + o+ wpa _wn) (Z =n—1),
1 .
§(w1+-~-+wn_1 +w,) (i=mn),
®) 20 = (2n—2)wi + (2n — Dwa + - - + 2wp_1.

Let us denote d1, d2 and o3 the following Dynkin diagram automorphism:

d1 : i-vertex — (1 — ¢)-vertex (i=0,1),
: g-vertex — i-vertex (i=2,3,---,n),
O : i-vertex — i-vertex (i=0,1,---,n—2),

: i-vertex — (2n — ¢ — 1)-vertex (i =n —1,n),
J3 : i-vertex — (n — 7)-vertex (i=0,1,---,n),

and further we extend the action of these automorphisms to the weight lattice P :=
@i ZA; by dx(A;) = Ay, ;). We also use the following notations:

qn __q—n
[n]q = _ q_l )
[2} _ [i]q[i_l]q"'[i+1”j]q
j q [j]q[j_ 1]q"'[1]q '
€= qhv :qzn—z
p= q2(hv+l) = ¢in—2

2.2. Definition of the quantum group Uq(Dﬁl)). The quantum group U,(g)
is the associative algebra over Q(q) with generators e;, fi, t; = ¢" (i =0,1,---,n)
and ¢®. The defining relations are

tit; = titi,  tiq" = q't;,
tiejt; !t =g ™loe;, b fit7t =gl gy

t; —t; "
[ei»fj] = 5i,jﬁ,
eiej — ejei = foJ - f]fl =0 (lf (ailaj) = 0),
61'(6]')2 - (q + q_l)ejeiej + (6j)2€1' =0
filfi)? =@+ ffifi + (f;)%fi =0

This algebra Uy(g) has the following Hopf algebra structure:

(if (auleyy) = —1).

Ale)=e;®@1+t; @6, Afi)=fiot;' +1Q fi,
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Alt) =ti®t;, AgY)=¢'®4%,
a(e:) = ~t; 'ei,a(fi) = —fiti, at:) = t; ', a(g?) = ¢ 77
We denote by Uy(n,) (resp. Us(n_)) the subalgebras of U,(g) which are gener-
ated by e; (1 =0,1,...,n) (resp. f; ({ =0,1,...,n)) and also denote by U,(g) the
subalgebra generated by e;, fi, t; (i =0,1,...,n). For any U;(g)-module (7, V), we
can define Uy(g)-module structure (7, V) by

Vz = Q(q)[zvz_l] ® V7

m(ed) (2" ® ) = 2750 @ n(er)o,

(6) T(fi) (2" @ v) = 2" @ 7 (fi)o,
7. (t:) (2" @v) = 2" @ 7(t;)v,
(¢! (=" @ v) = (¢2)" ® v,

and this Uy(g)-module (7., V) is called the affinization of (7, V).
The Dynkin diagram automorphisms can be extended to algebra automorphisms
of U,(g) as follows:

dl(xz) :ll_i(i:O,l), 61(x1) = T4 (7;:2,3,”',”),
Gao(x;) = (i =0,1,---,n—2), J2(z;) =Ton_i—1 (i=n—1,n),
0?3(331‘) = In_i(i = 0, 1, e ,n),

where z; stands for e;, f; or t;.

2.3. R-matrices. Let (7", W;) and (72, W) be finite-dimensional U,(9)-
modules. An operator R(z1/z2) € End(W; ® W>) is called R-matrix if it has the
following intertwining property:

RW1. W2 (zl/zz)(ﬂ'f[:1 ® 77212) A (z)

7
@ _ (% @ n) A ()R (7)o € U(g)),

where A’ = Po A.
Let (73, Ws3) be the third representation of U,(g). The R-matrices satisfy the
Yang-Baxter equation on W; @ Wy, ® W3,

Rwl’Wz(zl/Zz)RWhWB (21/213)RW2‘W3(Z2/Z3)

= RW2Ws (23/25) R0 W3 (21 23) RV W2 (21 ) 22),

(®)

where RW+Wi acts non-trivially on the i-th and the j-th components.
The modified universal R-matrix R/(z) is defined by

9 R'(z)=q 2y MOk Z 2Py ® u' (€ Uy (8)®U,(9)),
i
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where {ug;} (resp. {ui_ﬂ}) are dual bases of weight 3 (resp. —3) component of the
subalgebra U, (n;.) (resp. Uy(n_)) and ® means completion in formal topology with
respect to the weight decomposition of Ug(ny) (cf. [2]). In the same way as [2], we
can determine the image of the modified universal R matrix under the representation

™ @ x™2 : Ul (g)®U)(g) — End(Wy ® Ws).

If our R-matrix on W; ® W5 is uniquely determined up to multiple scalar factor
then the image of R’(z) has the following form:

(10) (7" @ 7"2)(R'(2)) = BY1W2(2) RM W2 ().

To calculate the scalar factor %"2(z), we have to obtain the explicit form of a
scalar function a"V1:W2(z) appeared in the second inversion relation:

(1) W) (R 72 (2)7)") ™" = (¢ @ DRV W2 (67%2) (¢ ® 1),

where the symbol ¢; means the transpose in the first component. It is known that
the scalar function a"1'"2(z) for the image of R'(z) is equal to one i.e.

(875 (2) RW2 W (2)) =1 )) =1
= (g% ® B Ve (622 R Wa (672%2) (¢ @ 1),

Comparing this equation with (11), we have
aWth(z)IBWth(z)—l — ,BW"W'Z(ﬁ_Qz)_l.

We can determine the explicit form of gW1:W2(2) as a solution of this difference
equation. In the case related with the spin representation, more detailed explana-
tion on calculation of a"1'W2(z) and W1'W2(z) is given in Appendix.

2.4. Spin representations. Let V;/; be a 2-dimensional vector space spanned
by vectors vy and v_y/, over the field Q(q'/?). We define operators Xt, X~ and
T acting on V7,5 by

o = . = —
X vy = vyq1, X 0y =021, TUy =q vy,

where if v # £1/2 then v, = 0 i.e. matrices corresponding to X+, X~ and T are

given by
0 1 0 0 ¢? 0
00/> \10)’ 0 q %)
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By using these operators, we can define a representation of U, (g) on a vector space
VP) = (V1 5)®" as follows [6]:

W(SP)(eO) =X X ®1®---®1,
W(SP)(to) =TT '1®---®1,

i-th (1 + I)-th
P(e)=10 -1 XT® X~ ®1®---®1 (1<i<n-1),

(12) ith (i + 1)-th
Pt)=19---®19 T ® T!' ®1®---®1 (1<i<n-—1),

7P (e,) =10 - @1 Xt XT,
7P(t,)=1® - -1TRT,
n(P)(f;) = m(P)(ey)".

We denote a vector v, ® -+ - ® v, € Vv (sp) py V(ey,....en) (Ex = sgn(7k)). The weight
of the element v, ..)isgiven by > | e;w;/2, where {wy} is the orthogonal basis
of h*. Let V(¥) and V() be the subspaces spanned by {v,,  .|[lie & = +}
and {v(, . )| [];=; & = —}, then we can easily show that they are irreducible
submodules. These irreducible representations are called spin representations and
are denoted by (7(¥), V(#)),

There exists isomorphisms of U, (g)-module (cf. [5])

(13) C:(;P) . ‘/Z(gg) N (‘/z(sp))*ai1‘

We denote the restrictions of C$™ to the irreducible components V(*+) (resp. V(7))
by C:(QL) (resp. Ci_)) ie.

+ + € *ail
C(i ) Vz(ng) - (Vz( )) )

(14)
c Vg — (v,

where ¢ is given by

+ (n:even),

E =
— (n:odd).
We can define the action of the Dynkin diagram automorphisms ¢4, g2 and d3
to the spin representations as follows:
UAI(U(EuEzw,En)) = Y(—e1,62,16n))

(15) 62(1}(51,'”,6”_1,57,)) = ’U(EIV"'vEﬂ—l‘_En)’

F3(Ver,e0,60)) = V(—ep,rry—e2,—e1)-
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2.5. R-matrices related with the spin representations. In this subsection,
we describe recursive forms of the R-matrices related with the spin representations.
In [6], the R-matrices related with the spin representations of Uq(B,(ll)) and Uq(Dﬁl))
are determined, and the R-matrix for Uq(B,(il)) is recursively expressed by using the
one for Uq(Ble_)l). We give a similar recursive relation in the case of Uq(D,(Ll)).

We normalize the R-matrix RV "V (%) by

v yle2) _
R (2)V(4 4 1bre1) O Ul trebez) = Ul rebrer) @ V(b bre2)s

and denote this R-matrix by R¢"*?)(z) where n stands for the rank ofg Expressing
the rank of g clearly, we denote the spin representations V(&) by Vn only in this
subsection. In order to describe recursive formulae of R-matrices, we consider an
isomorphism of vector spaces

(16) VEIRVE) — N Q@)unm @ (VA @ V),
n,m = £
n o= em
m = em

which maps

V(wy,v2...,vn) ® V(pr,p2.pn) 77 Vv, ® (U(V2“~v'/n) ® 'U(M,..,,u,,)),

where we denote v, ® v,, by v, ,,. We put

q(1 —=2)

_1-a _
&2 b(z) = c(z) = .

(17 a(z) = e

By using this isomorphism, we have the following expressions of R-matrices:
forn > 2

R (2)vsp ® tn1 =4y ® RO (2)tn_1,
R (2)0s— @ s
= v;- ®a(2) RO (P2)un
b ® R (2o X,
Rﬁf's)(z)v_+ ® Up—1
= vy @b(2)R 7 (4%2) o1 X5 U
tu_y ®alz )RS} (@ 2)un—1,
RE (2)v—— @ upn—1 =v__ ® R\ (2)un-1,

(18)
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RS (2)vpy @ 1 =v4p ® RS (2)un1,
R,(f’_e)(z)v+_ ® Un—1
£,€)

=14-Q Rif;el) (q2z)un—1 +v_4+ ® ZC(Z)Ril-_El’_E)(qzz)gn—lel_’l Un—1,

(19) o
RE ™ (2)v_y ®up_s
= vy ® c(2)RE)(¢22)0n1 X327 Vuno1 + -y ® R (@2)un-,
Rﬁf"e)(z)v__ QUp-1=0__Q Rsl—_sl‘e)(z)un_l,
forn=1

RF9(z)=1, R& () =1,
where an involution o, is defined by
Tn(Vier,en) ® Vinyrn)) = V(er,men—1,—en) @ V(mnyeein—1,~10)

and X% is a linear operator on V") ® V,{*?) that is defined inductively as

follows:
forn>2

X1(1€IY€2)U++ RUp—1 =044+ @ X,(IE_liEZ)un—l
0, o)y @unoyr = —g oy @ XU vy ® 0 rttn,

€1,€ A
X'r(z ! 2)v_+ QUn—1 =V4- QOp-1Up-1 — V-4 Q Xr(l—ll 2)“71—1’

X7(l5'1y€2),u__ ® Up—1 = V__ [ X,fl:slly_ez)un—l7
forn=1
XE0 2o, X9 21,

We denote by a2 (z) the scalar function aV“*>V“?’ (2) in (11). Then we can

find

[n/2] (1= g %+iz)(1 — g—in+iiz)
il:Il (1 — g 3i+2;)(1 — g-dn+aitzy) (e1 =e2),
@) o) ={
[(n-1)/2] (1 — q~4+22)(1 — g—in+ait2y)
| sy, @)

This fact is proved in Appendix A.

We also denote by 857 (z) the scalar factor 8V°""V? (2) in (10). By using
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the explicit form of the function a{f°?)(z), we can show (see Appendix B)

( [n/2] An—4i-2 . ¢2 4i-2,. ¢2

g H g dn—4i .75 )OO(Zi—4 .’5 Jec (€1 = e2),

=1 (q z; € )oo(q z;€ )00
(22) BE)(2) = 5
(n=1)/2]  4pn_4i—a . ¢2 4i,. ¢2
_n 25 oo zZ;3 oo

q /arar2) H (Zn—-4i—2 . g ) (i‘—z 5 )2 (61 # €2).

\ L e o)

3. Fusion construction

We construct the fusion representations and R-matrices related with them.

3.1. Construction of V(*),  Since V(*) and V(-) are the highest weight mo-
dules corresponding to the highest weights A, and A,_; as Uq(g)-modules, we
denote V() and V(=) by V(™) and V(»~1). We also denote R%"(z) and RS (2)
by R(™™(z) and R(™™~1)(z) respectively.

The R-matrix R(™™(z) (resp. R(™™~1(z)) have a pole of order one at z =
q " t2%+2 (k = n (mod 2)) (resp. z = ¢ 2"*2k+2 (K £ n  (mod 2))) for all
k=1,2,...,n — 2. We eliminate these poles by multiplying an appropriate scalar
factor to the R-matrix as follows.

[n/2]
R(n,n) (2:) — H (1 _ q4i—2z)R(n,n)(z),
i=1
((n-1)/2]

R(n,n—l)(z) — H (1 _ q4iz)R(n,n—1)(z).

i=1
By using these R-matrices, let us define operators T*) (1 < k < n —2) by

(o _ [ B (@) € Bnd(VW @ V™) (k=n mod 2),
R(mm=1)(g=2n+2k+2) ¢ End(V(™ @ V("=1)) (k2 n mod 2).

The following function (™ : N — {n — 1,n} is useful in this section:

0= (01 e

We introduce a vector space
VR = (V™) @ V) /kerT™®),
where 1 <k <n—2and n’ = ¢ (n — k). We define an action of U}(g)

#®) : Ul(g) — End(V™ @ V™)),
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#)(z) = (x(")

(—q)=ntk+1y ® ﬂ'giq))n—k—lz) o A(1")7

then we have the following proposition.

Proposition 3.1.  For all z € Uy(g),
(24) 7®) (z)kerT™® C kerT™®.
Then 7 induces a representation of Ui(g) on V®,

Proof. Let v be an arbitrary element in ker7(*). By means of the intertwiner
property of the R-matrices in (7), we have

TR ) (z)0 = R(n,n')(q—2n+2k+2)(7r§71)q)_n+k+lz ® wgfq))n_k_,z) A (z)v

(Wgﬁ)q)—n+k+lz ® W(nl) ) A (:L')R("v"’)(q—2n+2k+2),v
0,

Il

(—q)nktz

for all z € U/(g). Then #F) () € kerT®). O

We define an action of ¢ on V(%) which is a representation of U} (g) induced

by the above frgk) as similar to (6) and denote it by (wgk),Vz(k)). The following
isomorphisms of U,(g)-module are known in [5]:

(25) C:(Ek) : ‘/z(fkq): - (Vz(k))*ail (k = 1,27 ey — 2)
Explicit forms of Cik) are given in Appendix.

3.2. R-matrices related with V%), For k = 1,2,...,n — 2, we explicitly
construct R-matrices on V) @ V(0 y(*) g y(n-1) y(n) @ (k) gnd V(-1 g V(%)

(see (7)). Let m be n or n — 1. We define operators

R™¥)(2) € End(V™ @ V(™ g V("l)),
R®™(2) € End(V™ @ V(?) @ V(™)

R(m,k:) (z) — R(m,n')((_q)—n+k+1z)l3R(m,n) ((_q)n—k—lz)lz’
R(k,m) (z) — R(n,m) ((_q)—n+k+1z)13R(n’,m) ((_q)n—k—lz)23’
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where n' = (™ (n — k) and the subscripts of these R-matrices indicate the compo-
nents that each operator acts on, that is, R;; non-trivially acts on the i-th and the
j-th components.

Here we will show that

R™9) (2)(V(™ @ kerT®)) ¢ V(™) @ kerT®),

and so R(™*)(2) (resp. R%®™)(2)) define operators on V(™ @ V*) (resp. V(¥ @
V(™). In fact, for arbitrary v € V(™) @ kerT (%), by using the Yang-Baxter equation
(8), we have

(id @ T®YR™H) (2)y
= RO (q 222 RO ()= ) RO (—g) 1 2) g
= RO((—g)" RO (=) R ) RO (g
= 0.
Hence (id @ T*))R(™) (2)v € V(™) @ kerT*). We can prove
RE™) (2)(kerT™®) @ V(™)) ¢ kerT™®) @ V(™)

similarly. Then we have

Proposition 3.2. R(™F)(2) and R*™)(2) are well defined as operators acting
on V) @ V) and VK @ V(™) respectively.

Operators R("™*)(z) and R*™)(2) satisfy the intertwining property (7) i.e. they
are R-matrices on V() @ V(™) and V(™) g v (¥),

Proposition 3.3. For all x € Uy(g),

(26)  R™P)(z1/z5)(n™ @ 7)) A () = (2™ @ 1B)) A (2) RI™F) (2 /2,),
27 R(k’m)(zl/zz)(""gf) ® Wﬁl")) A(x) = (ﬂ'gf) ® Wg;n)) A (2)R*™ (2, /2,).

Proof. Here we only prove (26). We denote
Alx) =Y za) @),
(A®id)(z) = ([d® A)(@) =Y _z01) ®T(2) ® T(3).
For all z € Uy(g),

R™F) (21 25)(n{™ @ 7)) A (2)
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= R(™¥)(2,/2,) {Z ™ (z0)) ® ”if)(x@))}
_ R(m,n')((_q)—n+k+1z1/22)13R(m»n)((_q)"’_k—lzl/z2)12
X {Z 71'2")(1‘(1)) & 71'((7_1)‘1)_““122 (z2)) ® ﬂ'giq))n—k—ln (x(3))}

— R(m’n,)((_.q)_n+k+121 /Z2)13

(n")

{Z”(m) @) @ T nnin s, (@) @ Tk 112(:6(3))}
X R™™ ((—g)" %121 /29)12
- {Zn(m)(a:(g))®7r((f)q)_n+k+1 JE@) e Iq))n ko1, (2 (1))}
x Rmm )((—(1)_"+k+121/22)13}_?("1’")((—q)n_k_lzl/Z?)12
= {3 ml@e) @ 1B @) } R (21/20)
= (rM @ 7P) &' (@) RT™P (21 /2).

O

For our aim of finding commutation relations of vertex operators, it is enough

to consider R-matrices in the cases listed below (see Section 4.3):

I vk @ y®) n:even k:even
11 V) @ V) n:odd k:even
11 V) @ yn-1) n:even k:odd
v vk g yin-1) n:odd k:odd
\% v(n) g vk n:even k:even
\%| v @ vk n:odd k:even
VII y(n=1) g k) n:even k:odd
VIII v g vk n:odd k:odd

where 1 < k < n — 2 in all these cases.

Let u(*) be the highest weight vector of the fundamental representation V(%)
We normalize R-matrices such that the eigenvalues of elements u*) ® u(™ (resp.

w™ @ u®) for RY™ (2) (resp. R{™¥)(2)) are equal to one, then we have

[(n=k)/2]
I andll R¥V(z) = I al@®*(-q) ™ 12)~'REM(2),
=1
. ((n—k=1)/2]
Mand IV RE" V() = ] al@2(—q) ") 1RE™V(2),
=1
) [(n=F)/2]
Voand VI BY(z) = J] alg“ *(—q) "+ 1) RIP(2),

i=1
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[(n—k-1)/2]
Viand VI RM(z) = [ a(@¥2(=q) 1) 'RI™M(2),
=1
where m = (™ (k) and a(z) = q(1 — 2)/(1 — ¢%2).
We denote the scalar functions oV V'"™ (2), V™ V* (2), ¥V ™ (2) and
BV VE (2) by o™ (2), o™ (2), B ™ (2) and BI™M(2). In a similar way to
Section 2.6, we can show

alf™(2) = al™(2)

(_

(_
BE™(2) = BmR) (2)

kg2 (S (=1 RGRE 225 €2) oo (— (1) R gRER 2262 o

(—(=1)n—kq=kE1/22;€2) oo (—(—1)"—Fgkg3/22;€2)

ke 1/22) (14 (—1) kg R 2z)
JRHET) L+ (DR )

(4 (1
T (14 (-1

4. Vertex operators and two point functions

In this section we define vertex operators and calculate two point functions.

4.1. Vertex operators. Vertex operators are the following homomorphisms
of Uy(g)-modules:

~ (k) ~
(type 1) d)f(v (z) : V(A — V() @ VIO,
type 1) &YH(2) : V(X)) — VO @ V(p),

where V(1) denotes the completion of V(x) in the formal topology with respect
to the weight decomposition of V' (u). (cf. [4]) The spin representations have level
one prefect crystal (cf. [7]), then our model can be constructed by using the vertex
operators with level one dominant integral weight A and p. Here we remark that
the level one dominant integral weights are only Ag, A7, A,_; and A, in Dg,l) case.
By using conformal weight Ay = (A|A+ 2p)/2(hY + 1) (for the level one dominant
integral weights we have Ap, = 0, Ay, = 1/2, Ay, _, = n/8, Ay, = n/8), we
multiply z2+~4 to vertex operators as follows:

) o
@fv * (2) = zA“"AMDKV k)(z),
) <y (k)
@}\/(k (z) = zA“_A“I)/\ : H(2).

When we express the image of the highest weight vector |A\) € V(A) under
@’jv(k)(z) as a linear combination of the weight vectors of V' (1), we call the coeffi-
cient of |u) the leading term of ‘ifv(k)(z) ie.

VN =W @ v+,
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where v € V(¥ is the leading term. Here we put
={v € =pu+wtv (mo NP v =0, tor allzg.
v ke VE|A d 6),e; MMty = 0, for alli

From the following proposition, we can know when non-trivial vertex operator
exists.

Proposition 4.1 [4].  The mapping to send a vertex operator to its leading term
gives an isomorphism of vector space:

(V" (2): V() — V() @ VR~ (V)L

Then for a given vector v € (V(’“))f{, a vertex operator which satisfies

VYN = W@ v,

uniquely exists. We will normalize vertex operators by specifying the leading term
v.
In the case of Uq(Dﬁtl)),

(28) dim(V®)¥ =0 or 1.

Therefore if there exists non-trivial vertex operators then it is unique up to multiple

. . . = k) .
constant. Only in the following cases, non-trivial vertex operator @’;V (2) exists.
The existence and uniqueness conditions for type II vertex operators are exactly
same (cf. [5]):

A n k A 7 k
A, Ao n Ao Ao 1<k<n-—2:even
An Ay n—1 A Ao 1<k<n-—2:odd
An_1 Ao n—1 A A 1<k<n-—2:even
An—l A1 n Ao A1 15k§n—2:odd
Ao A, n—1 A, A, 1<k<n-—2:even
Ao An—l n+i—1 A'n,—l An 1§k§n—2odd
A A, n+i1—1 A1 | A | 1<E<n—2:even
Aq An_q n—1 A, A1 | 1<k<n-—2:0dd

where ¢ =0 if n is even and 7 = 1 if n is odd.

o R = AoV (2R
After the normalization of three vertex operators @ﬁgv (2), Qﬁgv () and

~ (2k—1) . . . . .
@ﬁ‘:v (2), the normalization of the others can be determined by using Dynkin
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diagram automorphisms in the same way as [5]. Here we can choose arbitrary
normalization of the above three vertex operators, and so we fix the normalization
as follows:

V™ (2)A) = [Ao) ® w1+,

@ﬁﬁv(k)(z)lAw = |Ag) ®va + -+ (k:even),

407" (2) A1) = [Ao) ®vs+ - (k- odd).
The leading terms vy, vy and v are given by

U1 = U4, 4)s

k/2
(29) vy = Z d,?’“ufl"‘k“m),

m=0

(k—1)/2

vy = Z c(n k),U+ ®u(n k+2m)

m=0

where
m—1 q-—z(j+1)(1 + g2m—2)

(n,k) __
Cm " = 1:[0 (1 + q2n—2k+45)(1 + g2n—2k+4j+2)(] — g2n—2h+2j)

and u'® is inductively defined by

forn > 2,
W) = ey e 0 — (o) o, alt)
+(—q) " {vy _®u(k 1)+( Q) Yy ®on_ 1u(k 1)}
) = g g ey e @~ 0 o)
+(—q) " v, _®u(k 1)+( Q) v_, @0, 1u(k 1)}
u = ﬂ((_lq—)k m;z{”+ ®U(1) —(—q) v_4 @ ope 1u(1)
) =0,
forn =1,

u? =@ = v, _(k=1), uf =al? =0k #£1).
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The normalization of type Il vertex operators are given by

BY70(2)[An) = 01 ® [Ao) +
éX;k)AO(Z)MO) = v ®|Aog)+--- (k:even),
BV "M (2)|A) = vs®|Ao) +---  (k : 0dd),

where the leading term vy, vy and vs are the same ones in (29). The normalization
of the other cases is given by Dynkin diagram automorphisms.

4.2. Vertex operators for dual modules. By using the isomorphisms
C(ik)(k = 1,2,---,n), we can construct vertex operators for dual modules. These

isomorphisms are defined in (25) for k = 1,2,---,n — 2 and C’ n1 C( ) and
C(i") = C(;) (see (14)). Here we denote by k’ the number such that Vz(ﬁ1 is isomor-
phic to ( (k))*“ " as U, (g)-module, i.e.

k <k<n-2),

n—1 (n:even,k=n—1),
n:odd,k=n—1),
n:odd, k = n).

n

(1

(
K=<(n (n:even, k = n),
(
n—1 (

Thanks to Proposition 4.4 and (28), the fact that Vé;1 are isomorphic to

a +1
(Vz(k))*u leads that if there exists the vertex operator @f\‘(v g (%) then it is
unique up to multiple scalar factor. Therefore we have

(2) = (const.)(id ® C{*)@uV™ (2671,
(i)f\v(k))*a lz) = (const.)(C(ikl) ®id)®, V( n (26T,

In order to construct the transfer matrix and the creation operator, it is enough

(V(k))mil

to consider type I vertex operators éf (z) for k = n and type II vertex

~ (v (k)yxa™ 1
operators ‘I’f\v ) H(z) for k =1,...,n. (see Section 6)

Let {(v(e,,....c.))*} be dual basis of {v(, . .. }. We give the normalization of
+1

(2) by

~ (n)y*a
the vertex operator @2‘;(‘/ )

~ A V(n) watl .
(I'Ai( : (2)|An) = |Ag) ® ('U(_ _ ,.»_)) 4o

and the other vertex operators are normalized by an appropriate Dynkin Diagram
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automorphism & as follows:

= 5(Ao)(a(VM))raEt L . . .
BTNV (2)]5(An)) = [6(A0)) ® (60— )"+

We normalize vertex operators of type II such that
~ (v (k)yxa~1 . N~ (k)
B\ H(z) = s(id o )BT M (28),
where s is a constant defined by
(—1)/2A+k(n=k) (X = Ag,A; and k =n — 1,n),
s={ (=1)kn=k) (A=Ag,A; and k < n —2),

1 (others).

We remark that the constant s is defined as above so that the scalar factor 7(¥)(2) in
the commutation relation (68) does not depend on the fundamental weights A and p.

4.3. Two point functions. We calculate the following vacuum expectation
values of two vertex operators (two point functions).

(type 1-1) (@472 (2) @4 (21))
(30) (type 11-T) (@2 (20)@4" (21))
(type 1-11) (@2 (20)@ " (21))

In the case of type I-1, consider the composition
VO 9=V () @V, =V (@) @ W,, @ V,, ==V (1) @ Vi, @ W,

Expressing the image of the highest weight vector of V() under the above compo-
sition as a linear combination of weight vectors with coefficients in W,, ® V,,, the
coefficient of the highest weight vector of V(v) is called vacuum expectation value.
Here the subscript of the space V(*) and V(™) in two point function means that the
space indexed by 1 (resp.2) always come in the first (resp. second) component of
tensor product. Therefore in the case of type 1I-1 and I-11 we do not need the last
transposition. (cf. [2])
Let RK‘W(z) be the image of the modified R-matrix in (9).

Proposition 4.2 [2]. Let ¥(z1,23) be a two point function of type 1-1 ,11-1 or
I-11. Then W(zy, z3) satisfies the following difference equation (the q-KZ equation ):

U(pz1, 22) = A(21/22)¥(21, 22),

(31)
\Ij(pzl1pz2) = (q_¢ & q_¢')‘11(21, 22)7
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where p = 2" 1), ¢ = X+ v+ 2p and

(32) A(z) = RYY (p2)(¢? ®1) for type I,
(33) = (¢ ?®@1)RYY (pg™'2)(¢*" ®1)  for type 1],
(34) =" l)I-ZK’W(qz)(q"7 ®1) for type 1-11.

Then we can determine two point functions as solutions of the q-KZ equation.
For our aim to determine commutation relations of vertex operators, we need
to calculate the following four types of two point functions:

(i) (@2 (2) @4 (21))
a5 O (@ )y )
() k)

(i) (@), 5 2 (z) @ (20))

. *)y,, (n)

(iv) <<I>£Y () @5 (24))
where k = 1,2,---,n, and all combinations of weights (v, u’, 1, A) that non-trivial
vertex operator exists are given by
For n: even

Table 1
v w i A k
An Ao Ao An | n
A1 | Ay Ay An_1 | n
Ao An A, Ao | n
Al An—l An—l Al n

An AO Al An—l n—1
An—l Al AO An n—1
Ao An A'n—l A1 n—1
A1 An—l An AO n—1

A, Ao A, Ao 1<k<n-—2:even
An_1 A4 An_q A 1<k<n-—2:ven
Ao A, Ao A, 1<k<n-—2:even
Ay A1 A Ap_1 | 1<k<n-—2:even

A, | Ao | A, 1| A, |1<k<n—2:0dd
An—l A1 An AO 1<k<n-—2:0dd
AO An A1 An—l 1< k <n-—2 :odd
A A1 Ao A, 1<k<n-—2:0dd
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For n: odd
Table 2
v o " A
A, Ay A4 An_1
An—1 Ao Ao A,
Ao An A, A
A Ao | A1 | Ao
v u w A k
An Al Ao An n—1
An—l Ao A1 An—l n—1
AO An An—l Ao n—1
Al An—l An A1 n—1
v 74 I A k
An Ay A, A 1<k<n-—2:even
An—l AO An—l AO 1 S k S n — 2 :even
Ao A, Ao A, 1<k<n-—2:ven
A An_q Ay A1 | 1<k<n-—2:even

3 3 3 3|

v 7 I A k

A, Ay Anq Ao 1<k<n-2:0dd
An_1 Ao A, Ay 1<k<n-2:0dd

Ao A, A A1 | 1<k<n-—2:0dd

Aq A1 Ao A, 1<k<n-2:0dd

The following propositions in [2], [5] are useful to calculate two point func-
tions.

Proposition 4.3 [2]. Let U(z1,22) be a two point function of type (i) in (35).
For any:1=0,1,---,n,

(772’1’) ® ﬂﬁ’:)) A (&) PN (21, 20) = 0, wt¥(z1,25) = A — 7,
hold.

Proposition 4.4 [2]. Let VY(z,,22) be a solution of the q-KZ equation (31)
with A(z) specified by (32), then

(@7 @1)¥(g 21, 22), (¢ ®@1)¥(p~"qz1, 22),

satisfy the equation with A(z) specified by (33) and (34) respectively.
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Proposition 4.5 [5].  If a V ® W-valued function w(z) satisfies

(“Z ® 77;/‘2/)A/(ei)<hi’u>+lw(z1/22) =0 (1=0,1,...,n),
RYW(p2)(q~? ® Dw(z) = r(z)w(pz),

for some scalar function r(z), then w(z) = P(q~% ® 1)w(p~'z7!) satisfies

(rl @Y )A () " (21 /22) =0 (i=0,1,...,n),
R™Y (pz)(q~% ® 1)w(2) = ¢V r(p=227 )i (pz).

Proposition 4.6 [5]. Let )\, u be level 1 dominant integral weights and v be a
weight vector in V¥), Define a non-negative integer m(\, u; v) by the minimal value

of mg satisfying

A—p+ ijaj =wtv (mod Z6),
=0
m; >0 (j=0,1,...,n).

If a two point function have a form

(k) — —
(@2 (@)@ (@) = TN T Y aim/z)u @

then
<¢,&(V)¢‘7(V“))2(z )tba(“)&(v(k))‘(zl)) — ZIA:(“)_A?WZZA?(.,)_A?(,L)

G(n) G(N)
X Z ai(z1/22)(21/22) ™ 6 (vi) ® 6(vy),

where & is a Dynkin diagram automorphism and

A~

m; = m(G(A),6(n); 6 (vi)) — m(A, p; vi).

Indeed, by using Proposition 4.4, type (iii) and (iv) in (35) are determined from
type (i) and (ii). Furthermore we can calculate type (ii) from type (i) by virtue of
Proposition 4.5. Hence we need to know explicit forms of type (i) for each case in
Table 1 and Table 2. Thanks to Dynkin diagram symmetry of two point functions
(Proposition 4.6), we obtain the two point functions in Table 1 and 2 from the ones
listed below.
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For n: even
v | o i A k
case 1 | Ag | A, A, Ao n
case 2 | Ag | Ap | Ap_q Ay n—1
case 3 | Ag | A, Ao A, 1<k<n-—2:even
case 4 | Ay | A, A Ap_1 | 1<k<n-—2:0dd
For n: odd
v | W U A k
case 5 | Ap | Ay A, A n
case 6 | Ag | Ap | A1 Ao n—1
case 7 | Ao | A Ao A, 1<k<n-2:even
case 8 | Ag | A, A A1 | 1<k<n-2:0dd

Explicit forms of these two point functions are given in the next subsection.

4.4. Explicit forms of two point functions.

CAsE 1.
(i) and (i1)

n (n) n
(36) (@A )@k VI () = S B m) (5 /20 ) D)

(iii)
V(M)A An (VW
Gy (@G e)
= 2782 B ypn) (p=1 gz, [ 25)(—1) Y 2q(1/Dn(n=1) py D)
(iv)

(n) (MY A _n/8 n nn), —
(38) (@2 ()@ AR (20)) = 272 By (¢ 2y )2 ) Pul)

CAsE 2.
(i
n—1) n — —-n —
(39) (@3 ()@ VT () = A/BT D B 2
(i)

(n) (n—1)
@32 () pn (T 1))

(40) _ z;l/s—(l/Q)Z;"/Sd,("’"*l)(zl/ZQ)
x (~1)7/2-1g/2 G (g0 @ 1) Puf?
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(iii)

(n) (n—1)
@ el )
(41) = /D By (pg 12 /29)
x (—1)_n/2+1q—(1/2)(n—1)("—2)Pu512)

(iv)
(V=) A0 A1 (VM)
@2) (P, _, (22)@," (21))
— zl_n/sz;/s_(l/z)z,b("*"'l)(q“le/zl)Pugzz)
CASE 3.
(i)
(n) (k)
@) @ R )@yn Y )
= 25, M50 (21 /2 )w P (2 [ 29)
(i1)

(k) (n)
(@ 2 ()en T (a))
(44) = 27 Mok (p~129 /2 )q R/ D) (21 [ 25) /2
x P(g=? ®@ 1)w™k) (p~1zy/21)

(iii)
(n) (k)
P e R )
= 2, "SR (p71g21 /22) (¢7% ® Dw (™M) (p~Lgz /25)
(iv)
(k) (n)
(@, ()0 (1)
(46) _ z;n/sd)(n’k)(q_122/21)qk("_1)(21/22)—k/2
X (g% @ Nw(™k) (p~1gz1/2)
CASE 4.

Two point functions for the case 4 are obtained from the following ones by
using the Dynkin diagram automorphism &-5.
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(1)

(n—1) (k)
) (@l (@) )
= 25 "/5 PR (21 ) 20 Jw(™K) (21 [ 25)

(i1)

(k) (n—1)
(@p ()t (@)
(48) _ 2:/2—("/8)Z;1/2,¢(n,k)(p—1z2/z1)

x (=1)" 7 gERC D (2 25) KD P(g7% @ 1w™W (p~ 22/ 21)

(ii1)
Ag(Vn—1) v (k) Ap—
P N )
= 25 SR 12 (p~1gz, /2) (q7¢ © 1w ™k (p~ g2y ) 22)
(iv)

V(‘v‘) A A V(n—l)
(@ M E)eyt " @)
0 =2 2P IR (7 1) (1) g2
% qlc(n—l)(21/22)—(k—1)/2(q—¢ ® 1)w("‘k)(p‘1qzl/z2)

CASE 5.
(i) and (ii)
n) () n/8— - nn
5D (@ )y T () = D 2 )l
(iii)

vm)A Ap (V™
(@ ()2 (=)
(52) — z;‘/S—(l/z)z;"/Sw(n,n)

% (_1)—(n-1)/2q(1/z)(n—1)(n—2)(p—lqzl/zQ)Pug)
(iv)

Ao(V Vimy AL
(@32 ()@ (2))

(53)
= 2y P BT Ry (g1 2y 2 ) Pufl)
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CASE 6.
(i)
(n-1) (n) n/8 —n _
(54) (@30T ()@ VI () = 2B By () 2 YD)
(ii)

Ao (V™ An(Vr—D
@n" 2 z)enr T (a))

(55) = 21/%2; ™S (5, /29)
X (—1)~(n=1/24(1/2)@n-1) (4—6 @ 1) Py (D)
(iii)
Ao(V(™ vr=1y A,
(@0 )@l )

(56) = 282 SN (pg 12, [ 2y)
x (—=1)~(n=1/2g=(n/2)(n=1) py, (1)

(iv)
yin-1 (V)
57 (@, e )
= 2] 3 By (g1 25 /21) Pul)
CAsE 7.
(i)
(n) (k) —
(58) (@32 () @0 (2)) = 25 BB (2 /29 )w R (24 / 25)
(i)

(k) (n)
(@302 ()90 ()

(59) — zl“"/s,l’b(n,k)(p—lzz/zl)q(k/Z)(Zn—l)(zl/z2)k/2
x P(q7? @ 1wk (p~12y/z)

(i1i)
(n) (k)
60 O )T )
= 258k (p=1gz, /2) (g7 ® 1)w(™®) (p~g2, / 25)
(iv)

) n
(@l e z)ape M )
(61) = 2P (g 2/ 20)g D) (21 22) 2
x (g7 ® DD (p~'gz1/2)



COMMUTATION RELATIONS OF VERTEX OPERATORS 473

Cask 8.
Two point functions for the case 8 are obtained from the following ones by
using the Dynkin diagram automorphism &s.

(i)
Ag(VR~1)) An—1 (V)
(62) (Par) 82(22)‘1’An ' "(21))
= 255K (21 / 20 )w (™R (21 [ 22)
(i1)
(@2 ()@t VT ()

(63) _ 211/2—(”/8)22—1/21/)("’“(p_lzg/zl)

x (—1)=1gk/En=1) (3, /20)k=1/2P(q=¢ @ 1)w (k) (p~125/2,)

(iii)

Aop(Vn—D VE)Y A
(AZ(_l )Z(ZZ)CI)&,I " "(21))

(64) 3
= 29 n/BT/’("'k)ql/?(P_lqzl/zz)(q_d’ ® Nw(™® (p~1gzy/z;)

(iv)
(k) (n—1)
<‘1’£\‘f )mo(zz)@tw )2(21))

(69 = 22y (g )
% (_1) -lql/zqk("—l)(21/22)_(k—1)/2(q_¢ ® l)w(n’k)(p‘lqzl/@)
where 1("*)(z) is given by
k—1

H (=€ 2P F (1) %2 /29,6 o0
L (—qg3/2q2i—k+1(—1) k2 [22;€%) 0

(1<k<n-2),
=1

<

n—1)/2 .
e /2 (=250 /20 €2) o

(g~ %pz1/22; €)oo

PR (z) = (k=n-1),

=1

n/2 .
/el (¥ *pz1/22;€%) o
(q=4*2p21/22;€%) oo

(k =n).

\ =1
Furthermore, ul, ul? and w(™k)(2) are given as follows:
ngl) — (_q)(l/Z)n(n—l)vn,

u1(12) — (_q)(l/z)(n_l)(n—z)v++ ® Vp—1,
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where v,, is inductively defined by

Up =V @Upn_1+ (—q@) " | ®0p_1Vn_1, v1 =v4_.
[k/2]
wm k) Z c(nk Z)w(n k— 2m)
=0
Cs::’k)(z)
m—1 q (J+1)
= H (1 + q2n—2F+47)(1 + g2n—2kT4512)(] — g2n—2k+27)

m—1—z i—1
1 2m—2j 2n—2k+2m+25\ | _qyn—k ntk—m_\i
XZ II a+fm ) [[a+q )| q(( 1)"*q 2) 0,

i=0 | j=0 j=0

and wflk) is inductively defined by

forn>2
w
_(_q)—n+k+2 k+1 - k+1)
T @)1+ ) {vsmr @i = () F Moo ss ® (0no1)r2dy N}
T4 ® wnk—l (1<k<n),

(=) oy @ W + () oy ® (01 )18}
@)

—(—g) 2 k+1 _ 41
- (1+q2k)(1+q2k+2){v+ y@ay = (—q)F oy @ (on- Dizwi i}
tup g @B, (1<k<mn),

+(=q) " {opy @B + (—g)Fo_ iy ® (0n-1) 12w Y

—(—q) "2 _ §
510)=%%1T{v+ +@w ) — () ooty ® (Fno1) 120}

Fuppm @ WY, (k=0),
o =0 (k = 0),
w¥ = o =0 (k>nork<0),
forn=1
wi =3 = v, (k=1),
o = e =0 (= 0),
w® =M =0 (k #0,1).

Here recursive formula of wﬁlk) and w,&“ are understood as similar to Section 2.5
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and wn ) denotes an equivalent class represented by itself in the space
(vim g vr) VY /{kerT™® @ V(m)} =vFE gyim,

where n’ = (™ (n — k) and m = (™ (k).

5. Commutation relations

We describe commutation relations of vertex operators and make a remark on
difference equations for scalar functions which appeared in the commutation rela-
tions.

From the explicit forms of two point functions, we can obtain the following
theorem.

Theorem 5.1.  For any possible combination of weights (v, 1, u, \) (see Table
1 and 2 in Section 4.3),

(n) v _ v )
(66) 0.2 (22)@) (21) = ralz1/2z) RSV (21/22) @000 (2)852 (22),
Ly (k) 1 v, v
(67) 12 ()8 M () = W (m1/z) 0 U(21)@) (2),
Vv(n) (k):m. V(k)ma. V(n)
(68) @ (22) @ “(z1)=7<k>(z1/z2) o, Y(2)@5"7 (29),

where r,,(z) and 7%)(z) are given by

n/2 . .
T (Z) = z""/‘1 [ﬁ] (q4l—22§§2)oo(q4n_4lz_1;62)00
n (q4i—2z—1;€2)oo(q4n—4iz; '52)00 ’

i=1
L—k/2 k @52 k+" 232)
H@£2 k+n 25,-1) (1<k<n-2),
[(n—-1)/2]
Ogz2(— ( —q)%12)
(n—2)/4 —
() = " enrgiey k=D

j=1

n/2 .
_m‘” Oz (—(—q)¥~32)
L oa(—(—gu 31

To prove this theorem, it is enough to show that the vacuum expectation values
of the both sides in commutation relations are exactly same. Indeed, by irreducibility
of V(A) and V(v), if the vacuum expectation values of both sides coincide, then the
equality as operators on V(A) can be proved.
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This theorem gives us the explicit forms of the excitation spectra mentioned in

Introduction.
We make a remark on a relation between difference equations for the scalar
function 7(¥)(2) and fusion procedure of finite dimensional Uq(D,(ll))-modules (cf.

(9D

REMARK 5.1.  The scalar factor 7(F)(2) satisfies the following difference equa-
tions:
for n + k:even
7®)(2) = (=1) 72 ()T (),
¥ (z) = (1) 72Tl ((),

for n + k:odd
r#)(2) = (~1) /DR (712D (),
79(3) = (—1)~WACR=Dr-D (L)) 2),

where we put ¢ = (—q)""*~1. We can see correspondence between these equations
and the following fusion procedure

VR < Vg(fl)z ® VC(:) ~ VC(Z_;) ® Vg(zn_l) (n+k : even),

v v ovI T vV eV (n+k:odd).

6. Formulation of the model

We will construct the transfer matrix, the creation and annihilation operators,
in the same way as in [1].
In quantum symmetry approach, we define the space of states by

F= P Fops

Au€{Ao,A1,An_1,An}
where
Fau=V(X) ® V()™ = Homgy) (V (1), V(N)).

Following [1], we complete the space F) , in the topology of formal power series
in g. From now on we denote the completed space by the same simbol F) .
The left U,y (g)-module structure of F, , can be written as

ef =3 zayo foa(zm) (f € Fauz e Uyla)),
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where A(z) = Y x(1) ®(2). At the same time, we can define right module structure
on Fy,, by

f:v—Za m(z) o fomyy,

and then we denote this right module by 77 . We have a natural pairing (cf. [2])

try(x) (g% fg)
try () (g=2°)

(69) (flg) == , fEFN,9€ Fun

which satisfies

(fzlg) = (flzg).

In order to define “local operators” on our space of states, we consider vertex
operator

Ok (2) V(A — V(w) @ V.
We fix the normalization of CD/\V(H)( z) by

82 (2)(1An) ® (s 4, 1)) = [Ao) +

and normalize the other vertex operators by using Dynkin diagram automorphisms.
Then we can show the following formula (cf. [2])

~ N4 .
DL, ()R (2) = g xidv(y),

LT .
‘I)Z)v (Z)‘I’,'\me(z) = g x idyngvm-

where
n/2 -
(q4z 25;52)00
T ditdr. f2\ (TL : eVen),
B EGRGE
(n=1)/2  4ip r2
(¢ €%) oo (n: odd),

(7**286%) o

i=1

These formulas can be proved by the explicit forms of two point functions in Section
4.4 in the same way as [2].
By the formulas, we see that

V" (2) V) — V() @ VW
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is invertible (cf. [1]).
We recall that, for any integral weight A of level one, there is a unique level one
~ k
weight p such that non-trivial vertex operator @f\‘v( )(z) exists (see Section 4.1). We

denote such u by A(*). For vertex operator @’;V(k)m (2), we define A(*)* similarly.
The row transfer matrix

(n) ()
T/{\# ks : .7:)\,” — .7'-/\(7»)’“("),
is defined by the composition of the following operators
(700 V) @ V()** — V(AM) @ VM @ V(i)™ — V(AM) @ V(™)™
= n n . ~ n)xa~1
where the first map is @j\\( v )(z) ®1id and the second one is id ® (@Z(‘i() : (2))t.

Since idy () € Fa,a, we define |vac)y := idy(y). In a similar way to [2], we can
show

)\(")’/\(")

TS\ [vac) = g|vac) o,

from the next formula

AV s pymreT!
(R (2257 () =g,
where

PV @V ),

vy ®@vy +— (v1,v3).

The creation and annihilation operators are constructed by using type II vertex
operators. We express vertex operators as follows:

q,v<ku<k> Z v ® (I)(k)
‘bv(’”m A(")' Z v ® q)(k)*

-1

where {v;} and {v}} are dual basis of V(¥) and V(®¥)*a™" and @&k}(z),@&k}*(z) €

F . am«. The creation operator
k
AT (2) P — Froe
is given by

o) (z)of.
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The annihilation operator
D1(2) 2 Fage — Faom s
is defined by the adjoint of
ch) —’-7'7;,,\’ fefo q’(k)< ),

Hy

with respect to the pairing (69).
Commutation relations of vertex operators (67) and (68) lead the following
relations between the transfer matrix and the creation and annihilation operators:

k)% ) () AR ) () ()
B (AT = ) (2 [ TR Y (2,
A(n) PPV CO RN CO R
S0 (AT " = 70 (21 /2) ) 882,

where 7(*) (21 /z,) is given in the previous section.

7. Appendix A

We calculate the scalar functlon a'$%) (2) in (21) and B (2) in (22). We
only consider o™ +)( ) and B (z) for any even integer n. (The other cases can
be calculated similarly.)

7.1. Scalar function oy, The second inversion relation can be written
as follows:

(+, +)( )‘

(D) afh () H RV ()™ = (P @ DR (E22)) g @ 1).

Let v, be a vector v(4,... 1) ®v(... -y € V)@V ). Applying both sides in (71) to
vn, We can obtain the explicit form of alh +)( ). We will show that v, is an eigen-
vector for operators (g2 ® 1)(RS™ ) (6-22)t )_ (% ® ) (resp (RSHH) (z)-1)t)
and its eigenvalue is given by ]—[:”/f a(q*=*¢722) (resp. Hl L a( d-diy=1y),

By using the isomorphism (16), we see v, = v4_ ® v,_1 wWhere v,_; € V(+
V,E_i. Taking transpose in the first component of the tensor product in the recursive

formulae (18), we can obtain recursive relations for Rﬁfr’”(z)tl. In particular we
have

(72) RS{""")(z)tlvn = a(z)vy_ ®R (q 2) 1,1,
(73) R (), = v @ RUE +>(q 2) "o,y

where a(z) = q(1 — 2z)/(1 — ¢?z). Combining (72) with (73), we find

R (2)tw, = a(z)vy @ vy ®R(++ (¢*2)"1vn s,
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then

n/2
RGP (2)% (vn) =Ha $ )0 - QUi ® - QU

n/2

— H a(q4i—4
=1

Since (¢=% ® 1)v,, = ¢~ ™™~V/2y,, we obtain

n/2
(q2p®1)(R(++)( )tl) ( —2p® Ha 4i— 4 —1,
We can similarly show
n/2
(R(+ H(2)~ Dy, = Ha(q4i—4z—1)vm
i=1

by using the first inversion relation
RV ()71 = PRGHD)(27Y)P (P : transposition).

Applying both sides in (71) to v,, we obtain

n/2

(++) Ha 4i—4 —1) -2 4z )

"/2 —4i —4n+ai
1] (1 — g~ *H2)(1 — g~ *%2)
(

1 — g~ 4+22)(1 — g~ ntdit2y)’

i=1

7.2. Scalar factor ﬂ(+ +)( ) We can determine the explicit form of the
scalar factor 5™ +)( ) in (22) by using ol ( ).
We recall that

(74) (P @ () (R (2)) = BTHH) (2)REH) (2).

and the factor 85" (2) is a solution of the following difference equation (see
Section 2.3):

ot P ()AL ()7 = B (E7%2) 7
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Then ﬁ,(f"”(z) can be written as

> N2 An—4i-2,. i-2,,.
ﬂ7(1+'+)(2)=CHa£l+’+)(zf2i)_l=CH(q4 2218800 (04 %21 6%) 0

(@2 82) 00 (012160

i=1 i=

for some constant c. Applying the both sides in (74) to v( ... 4y ® V(4,... 4) We can
determine the constant c. Indeed, from the explicit form of the modified universal
R-matrix in (9), we find

(P @ 7N (R (2)) (vt t) @ V(o))
=q 2 "(+)("")®"(+)(’_\")(v(+,...,+) ® V(4,....4+)) + (higher degree of z),

and by direct calculation we have

~ST ) (h)en ) (A B
g~ 2™ ST @) = 4T V) ® V4 )
On the other hand we obtain

ﬁr(z+’+)(z)R,(1+’+)(z)v(+’...,+) ® V(4 14)

+,4
= ﬂr(x )(Z)’U(_,_y‘..y.,.) ® V(4. 4)
= CVU(4,....4) ® V(4,... +) + (higher degree of z),

then we see
c=q ™",
8. Appendix B

We describe calculation of two point function of the case 1 in Section 4.3. (The
other cases can be calculated similarly.) In this case, n is an even integer and two
point function is given by

(n) n
@2 @)an " @),
We denote this two point function by ¥,,(z1, 22). Here we remark that (cf. [1])
(75) Uy (21,22) € VD @ VD @ (21/29) 4 2% ® Q(g)[[21/22]).

We can determine the explicit form of ¥, (21, 22) by using Proposition 4.3 and
the following lemma.

Lemma 8.1. If a vector v, in V1) @ V(1) satisfies

(Wi‘:‘) ® ﬂ-g-;)) A (ei)<hi,V>+1vn =0, and wtv, = 0,
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for alli =0,1,---,n, then v, is uniquely determined up to multiple constant. More
exactly v, is given by

)—n+1

Un = Vy— @ Un_1+(—¢ Vot ® On_1VUn_1, V1 =V4_.

Combining this lemma with Proposition 4.3, we can find

(76) U, (21, 22) = Pn(21, 22)Un,

for some scalar function ¥, (21, 22). As being described in [2], the two point function
can be written as

U, (21, 29) = 250 280 800 =BG () 12).
Then the scalar function (21, 22) can be also written as

Yalzz) = 2T 02T (o /),
for some scalar function in(z) Substituting (76) to the q-KZ equation we have
(77)  (p2)* ™ ha(p2)vn = 2584 (2) 8501 (p2) RSEH) (p2) (g7 © 1)on,

where z = z;/z2.

Lemma 8.2.

RiFD(2)(a7 % @ Lo = fu(2)on,

n/2 442,

fa(z) = g4/2 H((ll%qqz—)

i=1

Proof.  Using the recursive relation
Vn =V4— @Un_1 + (=¢) " v_y ® Op_ 101,
we can easily show the following formula:
(78) X7 (07 @ Dvnmy = [0 — gvary,

n—1

where X,(:’l") is given by (20) and p’ = (2n — 4)wy + (2n — 6)wsz + -+ + 2w, —1 (see
Section 2.1). By using the recursive relation of the R-matrices in (18), we find

R (2) (g ® Lo,
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= ¢ "oy ®a(2)RT(¢%2)( @ 1vns
+¢7 oy ® 2b(2) R (0%2)on-1 XS0 (67 @ 1)vn
+ (=1 oy @b(2) RS (022)on 1 X T (07 ©1)0n 101

+ ()™ vy @ a(2) R (42) (0% © Von_1vn_1.

Combining the above formula (78) with

on 1R (2) = ROP (2)on_1, onan X7 = X000, 4,

and
On1(g7% ®1) = (¢ @ 1)on_1,
we have
_ s L1 —q 2, (o~ Y
B DE @1 =0 g o @ R (@) (0 @ Doy

+(—q) ™ v y ® 0n 1 RS (¢22) (7% ® 1)v,_y )

On the other hand,

—2n42
o1l —q 2"1t22

1—=2

+ (=) "y ® Un—lRit’lJr)(q%)(q‘Q’;l ® 1)vp_1},

R (2) (g7 @ 1)vn =g {vs- @ RSP (@%2)(¢7% @ Vvns

for any odd integer n. We obtain the eigenvalue f,(z) by using these recursive
relation inductively. O

By using this lemma, the q-KZ equation (77) can be reduced to the following
difference equation:

Pn(pz) = p~24n BEHD) (p2) fu (p2) Y00 (2).

Then we have

TLp™ fale?2) 2 Ba(p 9) ')

j=1

o [n/2 o n/2 T 4 s
(1 _ q41 2pjz) (q4n 41p_7z; gZ)oo(q4z 4PJZ; 62)00
‘I 1

<

3

O
I

Il

1= g 2p2) L (g2 2 ) o (¢ 2955 )

i=1
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oo n/ -4’+2p7+lz 52) ( 41—4pjz;§2)°°
- CH i= l(q_4l+2p72 S2) ( i 4pj+1z;€2)oo

j=1

(S}

n/
4 Pzg)oo

¢ H g~ +2pz; €2)

i=

[

By the property in (75), we see that

¥n(2) € Q(q)[[2])-

Then c is a constant. This constant ¢ can be determined by the constant term of the
two point function ¥, (21/22) = ¥n(21/22)v,. It is easy to know this constant term
from the normalization of vertex operators (see Section 4.1) and we find

o= (_q)(1/2)n(n—1)'
Then we obtain the explicit form of the two point function.

9. Appendix C

We give explicit forms of isomorphisms of U,(g)-module in (25)
C(k) . (k) V'Z(k)*a:tl (1 <k<n-— 2)’

though the existence of these isomorphisms is proved in [5].
Let us recall that there exist the following isomorphisms of U,(g)-modules

(79) VR =V @ Vi @@ (Vi orVp) (k=1,2,...n—2),

where V;. is denoted the irreducible U, (g)-module with highest weight A; (cf. [6]).
Here we know that if two irreducible finite-dimensional representations of Ug,(g)
have the same highest weight then they are isomorphic. For i = 1,2,...n — 2, V3,
and (V;\i)*“il have the same highest weight, then there exists an isomorphism

+1

Cit: Vi, — (Vi)™ ,

and this isomorphism is unique up to multiple constant. Thanks to the isomorphism
(79), we can write C\" as a linear combination of C; +. Then we normalize C; 1
and express the isomorphism C’ik) by using them. Let us recursively define a vector
Ty by

)m—l

Ty = V4 @ Tm—1 + (— Vet @ Om—1Tm-1, L1 =V4—,
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where z,,, € V5P @ V) and if m is even (resp. odd) then & = +, (resp.—). By using

ZTm, We recursively define yﬁ";) (m < n) by

yv(z":-) =144 ® y'l(v,T)l,-i- (n>m),

K = o™ (nm),

yin,m-)k = y,(nml =Tm (m =n).
We remark that
VE = v @ V) fkerT® (0 = o(n — k),
and the equivalent classes represented by y,(l":_) (resp. y,(zm_) ) are the highest weight
vector (resp. the lowest weight vector) in U,(g)-module Vz _ . Let us normalize

Ci+(i=1,2,...,n—2) by

Cn—m,:};(!/m,-}) = y:n,— (m =2,3,..., TL)

By using these isomorphisms C; +(i = 1,2,...,n — 2) we have
X (k/2] B
P = Z km,+Cr—2m,+-
m=0

By direct calculation we can show

km,:t — (_q):i:m(2n—2k—2m+1)
m—1
[2n — 2k + 2i], ks di o
% 1 n—2k+41 1 2n—2k+4i+2 .
1=0
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