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1. Introduction and statement of results

In this paper, we shall study a certain class of Yang-Mills connections on a
quaternionic Kahler manifold, called quaternίonic Yang-Mills connections.

Our basic setting is the following. Let E be an associated Riemannian vector
bundle of a principal bundle with a compact Lie group G as the structure group over
a compact oriented Riemannian manifold (M, g). Let A be the space of connections
on E. For a connection V G A, we denote by dv and δv the covariant exterior
derivative and its formal adjoint respectively acting on End(#)-valued p-forms.

The Yang-Mills energy functional YM : A —» M is defined by

= \ f
2 JM/M

where Fv is the curvature of a connection V E A. A connection V is called a
Yang-Mills connection , if V is a critical point of the Yang-Mills energy functional
FM(V); namely, if it satisfies the Euler-Lagrange equation

By the Bianchi identity dvFv = 0, the Euler-Lagrange equation is equivalent to

AVFV = 0,

which says that Fv is harmonic, where Λv = dv<5v + <5vdv.
Nitta ([6]), Mamone Capria-Salamon ([2]) independently found higher dimen-

sional analogues of the notion of self-dual and anti-self-dual connections on a
quaternionic Kahler manifold. A quaternionic Kahler manifold is a Riemannian
4n-manifold whose holonomy group lies in Sp(n) Sp(l), n > 1. In the case of n = 1,
we add the condition that M is Einstein and half-conformally flat. The bundle of
2-forms on a quaternionic Kahler manifold (M, g) has the following irreducible
decomposition as a representation of Sp(n) Sp(l):

(1.1) Λ2T*M - S2IHI Θ S2E 0 (52H 0 S2E)^,
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where H and E are the vector bundles associated with the standard representations of

Sp(l) and Sp(ri), respectively. Corresponding to the decomposition (1.1), we write
the curvature Fv as

where F1 <E Γ(M; 52H ® End(F)), F2 e Γ(M;52E ® End(£7)) and F3 G
Γ(M; (52H Θ S )̂-1 ® End(F)). A connection V is said to be a-self-dual (i= 1, 2
or 3) if F* = 0 for all j / i. In the case of n = 1, we have F1 = F+, F2 = F~ and
F3 = 0 where F+ (resp. F~) is the (resp. and-) self-dual part of the curvature Fv.
We shall confine ourself to the case where (M , g) is a compact quaternionic Kahler
4n-manifold.

Recall that each crself-dual connection is a Yang-Mills connection (cf. [6], [2],
[3]). Moreover, if M is compact, a c\ or c2-self-dual connection is minimizing the
Yang-Mills energy functional YM(V) (cf. [3], [2]). As far as we know, there is no
example of non-flat cs -self-dual connections. If they exist, they are believed to be
unstable. Indeed, it is known ([7]) that any non-flat c3-self-dual connection over the
quaternionic projective space HPn is, if it exists, unstable. Nagatomo ([5]) proved
that there is a unique non-flat c\ -self-dual connection over any simply-connected

quaternionic Kahler 4n-manifold with n > 1.
Let us recall some results on Yang-Mills connections. Bourguignon and Lawson

([!]) discussed gap-phenomena for Yang-Mills connections. They gave explicit C°-
neighborhoods of the minimal Yang-Mills fields which contain no other Yang-Mills
fields up to gauge equivalent. They obtained the following.

Theorem A. ([!]) Let V be a Yang-Mills connection on (54,^0) If the self-
dual part F+ of the curvature ofV satisfies the pointwise inequality ||F+||2 < 3,
then F+ — 0. The same is true for the anti-self-dual part F~~ of the curvature ofV.

They next examined the case where the inequality ||FV||2 < 3 is relaxed on

Theorem B. ([!]) Let V be a Yang-Mills connection on a Rίemannian vector
bundle E over (54, #0) IfFv satisfies the pointwise inequality ||FV||2 < 3, then either
E is flat or E = E0 0 5 where E0 is flat and where S is one of the ^-dimensional
bundles of tangent spinors with the canonical Riemannian connections.

The purpose of this paper is to generalize these results to quaternionic Kahler
manifolds. We introduce the following notion for connections:

DEFINITION 1.1. A connection V on a Riemannian vector bundle over a com-
pact quaternionic Kahler manifold is called a quaternionic Yang-Mills connection



QUATERNIONIC YANG-MILLS CONNECTIONS 149

if Z\V(FV Λ Ω71"1) = 0 where Ω is the fundamental 4-form on (M, g) (See §2).

Note that in the case of n = 1, the quaternionic Yang-Mills connections are

the Yang-Mills connections, and vice versa. It is easy to see that the GI-, c2- and

ca-self-dual connections introduced above are quaternionic Yang-Mills connections.

Proposition 1.1. If a connection V is a quaternionic Yang-Mills connection,

then V is a Yang-Mills connection.

We shall give a proof of Proposition 1.1 in § 3.

Wolf ([9]) classified the compact simply-connected quaternionic Kahler

symmetric spaces, called Wolf spaces. The only examples of the Wolf spaces are the

following.

HLPn,
" S0(4)'

F4 EG E>r

Sp(3) Sp(l) ' SE7(6) 5p(l) ' Spίn(12) Sp(l) ' E7 - Sp(l) '

From now on, we suppose that (M, g) is a Wolf space. Note that the Riemannian

curvature operator R acting on Λ2TM has also a splitting R = RI + RZ + #3 with

respect to the decomposition (1.1). By ([4]) we can write the curvature operator R^

as RI = μi/Λ2TM where μι (i — 1 or 2) is a positive constant. Since R% is negative

semi-definite, we put μ3 = 0. We set λ; = s/(2n) — 2μ^ (i = 1, 2 or 3) where s is the

scalar curvature of (M, g). Then we shall state the following.

Theorem 1.1. LetV be a quaternionic Yang-Mills connection on a Wolf space

(M, g), (n > 1), and assume F3 = 0, ie., the c^-self-dual part F3 of the curvature

of V vanishes.

(1) If the cι-self-dual part F1 of the curvature of V satisfies the pointwise

inequality

! 2 n(4n - l)\\
1 1 " 16(2n-l)2 '

then F1 = 0, ί/zαί is, V & <z c^-self-dual connection.

(2) //* ^/z^ c<2-self-dual part F2 of the curvature of V satisfies the pointwise

inequality

2 2
n(4n -

then F2 = 0, ί/zαί is, V is a cι-self-dual connection.
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Theorem 1.1 for M = HP1 coincides with Theorem A. It seems that the as-

sumption F3 = 0 is necessary to get the generalization of Theorem A. We next

show that the c3-self-dual connections can be characterized as follows if they exist.

Theorem 1.2. Let V be a quaternίonic Yang-Mills connection on a Wolf space

(M,0), (n > 1). // the ^-self-dual part Fland the c2-self-dual part F2of the

curvature ofV respectively satisfy the pointwise inequalities

! 2 n(4n - iμ2

 2 2 n(4n -

1 1 " 2 ' " "
16(2n-l)2 ' 16(2n-l)2 '

then Fl = F2 = 0, that is, V is a c^-self-dual connection.

To generalize Theorem B, we suppose that the base manifold M is a quaternionic

projective space (HPn, g0) Let go be the Riemannian metric on HPn with the scalar

curvature s — 4n(2n — l)(n + 2). With respect to this metric go, we calculate λi and

\2 of Theorem 1.1. Then we can read Theorem 1.1 as follows.

Corollary 1.1. Let V be a quaternίonic Yang-Mills connection on (HLPn,go)>

(n > 1), and assume that F3 = 0.

(1) IfF1 satisfies the pointwise inequality

then F1 = 0, that is, V is a c^-self-dual connection.

(2) IfF2 satisfies the pointwise inequality

2 2

^

then F2 — 0, that is, V is a GI -self-dual connection.

Using Corollary 1.1, we examine what happens when the inequality ||PV||2 <

n(4n - 1) is relaxed on (ELPn, #0)

Theorem 1.3. Let V be a quaternionic Yang-Mills connection on a Riemannian

vector bundle E with any structure group G over (HPn,#0), (n > 1), and assume
thatF3 = 0. //Pv satisfies the pointwise inequality \\FV\\2 < n(4n - 1), then either

E is a flat vector bundle or E = E0 0 H, where E0 is a flat vector bundle and where

HI is the tautological quaternion line bundle.

In the case of n — 1, Theorem 1.3 coincides with Theorem B. We next obtain

the following theorem in which the assumption of F3 = 0 is not necessary.
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Theorem 1.4. Let V be a quaternίonic Yang-Mills connection on a Wolf space
(M,<?), (n>2).

(1) IfF1, F2 and F3 satisfy the pointwise inequalities

then F1 = F3 = 0, that is, V is a c2-self-dual connection. Moreover ifV is
non-flat, then the c2-self-dual part F2 satisfies

(2) IfF1, F2 and F3 satisfy the pointwise inequalities

then F2 = F3 = 0, that is, V is a cι-self-dual connection. Moreover if V £s
non-flat, then the cι-self-dual part F1 satisfies

2. Preliminaries

In this section, we fix notation. Let (M, g) be a compact quaternionic Kahler
4n-manifold, and P a principal G-bundle over (M, g) with a compact Lie group G
as structure group. We denote by 0 the Lie algebra of G. For a faithful orthogonal
representation p : G — > O(AΓ), we consider a Riemannian vector bundle E =
PxpR

N associated with P by p. Each connection on P corresponds to a connection

V on E. We denote by A the set of the connections on E. To each connection V

on E, the curvature Fv, given by the formula F%γ = [Vχ,Vy] - ^[x,γ] for
tangent vectors X, Y, is a 2-form on M with values in the bundle $OE whose fibre
sθE,x, x G M, consists of skew-symmetric endomorphisms of the fibre Ex of E. The
pointwise norm of Fv at each point x is given by

/ ^
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where {ei, , e4n} is an orthonormal basis of the tangent space TXM, x £ M, and

the inner product of the fibre SOE^X is given by

(2.1) (A,B) = ~tτ(AoB)

for A, B G sθ£?rE. There exists a subbundle 0^ of SOE corresponding to a bundle
QP = p xAd$ through p. Let AP(QE), 0 < p < 4n, be the space of g^-valued p-forms

on M. We get the exterior differential dv : AP(QE) — > Ap+l($E} and the adjoint

operator δv : AP(QE) — > AP~I(QE) corresponding to V <E A ^v - dv<5v + <5vdv

is the Laplacian for g^-valued p-forms. There is another second order operator V* V,
called the rough Laplacian , acting on g^-valued differential forms. It is given by the

formula V*Vc^ = - Σ)5=ι(V^,βj.y>), Ψ e ^(fl^), where V^^ - VXVY - VDχY.
The bundle of 2-forms on a quaternionic Kahler manifold M has the following

irreducible decomposition as a representation of Sp(n) Sp(l):

(2.2) Λ2T*M - 52H θ 52E Θ (52M θ S )̂-1,

where HI and E are the vector bundles associated to the standard representations
of Sp(l) and Sp(n), respectively. A connection whose g^-valued curvature 2-form
lies in S2H, S2E or (52M 0 52E)-L is called a ci, c2 or c3-self-dual connection
respectively. Corresponding to the decomposition (2.2), we write the curvature Fv

as

In the case of n = 1, corresponding to the fact that SΌ(4) = Sp(l) - 5p(l), Λ2Γ*M
is decomposed as

(2.3) Λ^M-Λ^ΘΛ2..

A connection whose g^-valued curvature 2-form lies in Λ^_ or Λ?_ is called a self-
dual or anti-self-dual connection respectively. Corresponding to the decomposition
(2.3), we write the curvature Fv as

The associated bundles H, E for this case are precisely the half-spinor bundles of
M. The vector bundle 52H is a subbundle of End(TM) of real rank 3. Locally 52H
has a basis {/, J, K} satisfying

I2 = J2 = -1, IJ = -JI = K.

The metric g on M satisfies g(IX,IY) = g(JX,JY) = g(KX,KY) = g(X,Y) for
all X, Y G TXM. Local 2-forms {ω/,α;j,ϋ;^} are defined by

ωj(X, Y) = g(IX, F), ωj(X, Y) = g(JX, Y), ωκ(X, Y) = g(KX, Y).
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{ωι,ωj,ωκ} is a local orthogonal frame of S2Ή.. We define a global 4-form Ω by

Ω = ωj Λ ωj + ω j Λ α; j + u;̂  Λ ω/f.

Ω is a nondegenerate and parallel form on M, called the fundamental 4-form on
M. A connection V on the quaternionic Kahler 4n-manifold (M, g) is a Q -self-dual
connection (i = 1, 2 or 3) if and only if its curvature Fv satisfies

(2.4) *Fv = c ίF
vΛΩ n" 1,

where * is the Hodge star operator and c\ — (6n)/((2n + 1)!), c2 = — l/((2n — 1)!)

and c3 = 3/((2n - 1)!) ([3]). Note that the equation (2.4) can be viewed as the
self-dual or anti-self-dual equation on a oriented Riemannian 4-manifold.

Let (M , g) be a compact quaternionic Kahler 4n-manifold. At each point, we
consider Fv as a linear map

Fv : Λ2ΓM — > QE.

In Λ2TM we have the identities

(2.5) [e» Λ β j . β k Λ ei] = ^/e^ Λ βj -f ίjiβi Λ βfc + ίifcβj Λ e/ 4-

for all i, j, fc, /, where {ei, . . . , e4n} is an orthonormal basis of the tangent space
TXM. For any φ in A2($E), the Bochner-Weitzenbόck formula is

(AVφ, φ} - (V* VCΛ yp) = (^ o (^-/ - 2/ϊ) , ^) -

where

4n

= (κ(φ),φ) = <[FV^],^}, κHχ,y =

and .R is the Riemannian curvature operator acting on Λ2ΓM.

For (£ = Fv, this formula implies that

(2.6) (AFV, Fv) - (V* VFV, Fv) = (Fv o ί^-I - 2R\ , Fv) -
V z n /

where

(2-7)

We now examine the term p given by (2.7). We now introduce an inner product

on the bundle QE as follows. Recall that we have QE C so^, the bundle of skew-

symmetric endomorphisms of E. Given two endomorphisms A and B of EX9 we
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define (A, B) := l/ltr^A o B}. There is a natural bundle isomorphism f\2E ~

determined by the requirement that

(u Λ v}(w] = (u, w)v — (υ, u>}u

for u, v, w £ Ex. The elements {£; Λ £j}i<j form an orthonormal basis of (SOE)X

whenever (ξι, . . ,ξ jv) is an orthonormal basis of Ex. In particular, there is a
canonical isometry Λ2TM c± SOM We have also g C Λ2TXM ~ so(N}. For any
Lie algebra g with a fixed Λd-invariant inner product (•,•}, we have the associated

fundamental 3-form Φ0 given by Φg(X,Y,Z) = ([X,Y],Z) for X,Y,Z G 0 and

/3,7) = {[a,)8],7) for α,/3,7 G Λ2TM. We may rewrite (2.7) as

4n

4n

where, for notational convenience, we define the inner product in Λ3(Λ2Γ*M) by

(φ,φ) = Σ,u,v,wφ(u>v>w)*(u>v>w)> where u> V and W are an orthonormal
basis of Λ2ΓM. Therefore, we have the following basic result. Let Fv be a curvature
2-form on £ and let λ be the minimal eigenvalue of the operator (s/2n)I — 2R on
2-forms over a compact quaternionic Kahler manifold M. Then

(2.8) (V*VFV,FV) - (^VFV,FV) < -{λ||Fv||2 - (Fv*Φflβ, ΦΛ2TM)}.

At each point x G M , we want to estimate (^7*Φ0 E,ΦΛ2τxM) in terms of ||FV||2

where F^ : 0o(4n) — > g is a linear map and where g is any Lie subalgebra o f s o ( N ) .

Recall that an inner product on g is induced from the canonical one on 50 (N)
defined by (A,B) = -(l/2)tr(p(A) p ( B ) ) . Consequently Fj*Φ0 = F?*Φ5o(N}.
Therefore, in the argument of this paper, we can ignore g.

The norm || || induced by the inner product (2.1) has the property that

(2.9) ||μ,B]||<v^|μ|| ||β||

for all A, B in which the equality holds if and only if the pair A, B is orthogonally
equivalent to the following matrices:

(2.10)
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where

t =

0 -t
t 0

0 0
0 0

0 0 \
0 0

0 -t
t 0 /

7 j

/ O 0
0 0

t 0
\ 0 -t

-t 0
0 t

0 0
0 0

We shall also state the following result, which is used in proving our theorems.

Lemma 2.1. Let S = ((s^)) be a symmetric 4n x 4n matrix with Sij > 0 and
= 0. //trS2 = (4n(4n - I)λ2)/((4n - 2)222) for any positive real number λ, then

3 4n(4n - 1)Λ3

ith equality holding if and only if Sij = (λ)(4(2n — 1)), i ^ j.

The proof of Lemma 2.1 is entirely similar to the argument for Lemma (5.14)
in [1].

Denoting F* by F^9 we have the following.

Proposition 2.1 ([3]). Let F1, F2 and F3 be respectively the c^-self-dual,
c2-self-dual and c3-self-dualparts.
(1) The ci -self-dual part F1 satisfies

= 0, (VP ^ q,V<*, β).

(2) The c2 -self-dual part F2 satisfies

4fc+l,4fc+4
2
4p+l,4ς+l

(Vfc),

— _ Z?2

— -Γ4p+4,4ςf+l J
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(3) The c3 -self-dual part F3 satisfies

n— 1 n — 1 n — 1

/ v ^4fc+l,4fc+2 — / v ^4fc+l,4fc+3 = / ^

fc=0 fc=0 k=0

J_
~r~

rι3 _ IT'S i
~ r 4 2 4 3 """

4

Σ F3

4p+o:,4

Proposition 2.1 follows from the argument for Theorem 2.2 in [3].

3. Some properties of quaternionic Kahler manifolds

In this section, we prepare a few propositions. First, we shall give a proof of

Proposition 1.1.

Proof of Proposition 1.1. We see that dv(Fv Λ Ω71-1) = 0 by dvFv = 0 and

dΩ = 0. Hence if M is compact, then the connection V satisfies Z\V(FV ΛΩ71"1) = 0

if and only if <5V(FV Λ Ω™-1) = 0. We shall prove that V satisfies <5VFV = 0 if

<5V(FV Λ Ω71-1) - 0. We take an orthonormal frame field {e^ i = 1, 2, . . . , 4n} such

that ie4A;+1 = e4fc+2, Je*k+i = β4fc+3, Kz±k+ι = e4fc+4, (fc = 0,1, .. . ,ra - 1),
and denote the dual frame by {θί-,i = 1,2,.. ., 4n}. The vector bundle 52H has the

following frame field, {ωι,ωj,ωχ}:

4- 0 Λ

Λ

n-1

k=0

The fundamental 4-form is Ω = ωj Λ α;/ H- ωj Λ cjj + a;/^ Λ CJK. Using the or-

thonormal frame {θl\i = 1,2, ...,4n}, we can write the curvature 2-form Fv as

Fv = Σi<j Fijθί Λ &• From Ωn-1 = ((2n - 1)1/6) * Ω ([3]), <5V(FV Λ Ω71-1) - 0 is
equivalent to <5V(FV Λ *Ω) = 0. It is easy to see that the quaternionic Yang-Mills

equation <5V (Fv Λ *Ω) = 0 is equivalent to
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On the other hand, the Yang-Mills equation δv Fv = 0 is equivalent to

157

Therefore, if V satisfies <5V(FV Λ Ω71-1) = 0, then δv Fv = 0. Π

Proposition 3.1. Let F1, F2 and F3 be respectively the c^-self-dual, c2-self-
dual and c^-self-dual parts of the curvature Fv on a compact quaternίonίc Kάhler
manifold. Then the following are equivalent:

(3.1)

(3.2)
cβ

for any permutation (α,/3,7) of {1,2,3}.

Proof. Let

(3.3) Fv = Fa + F@ -h FΊ

denote the curvature, for any (α, /?, 7) as above. From (3.3), we have

(3.4) c7F
v Λ Ω71"1 - cΊF

a Λ Ω71"1 + c7F^ Λ Ω71"1 + c7F
7 Λ Ω71"1.

Hence, we get

Γ35) r * ΓFV Λ Ω n ~ M - ^Fa 4- ̂{»} ,~S J L"y f \J- / \ <Λ ίi I J. |^

Cα C/3

It follows from (3.3) and (3.5) that

(3.6)
_

cβ

_

Applying dv and <5V to (3.6), respectively, and using Bianchi identity dv

and dΩ71"1 = 0, we obtain

= 0

Cβ
\ /

Ca) \ Cβ

From Proposition 1.1, V fullfills δvFv = 0 if it satisfies ̂ (^ΛΩ^1) - 0. Hence,

(3.1) and (3.2) are equivalent. This completes the proof of Proposition 2.1. D
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In the case n = 1, we conclude that the following three conditions are equivalent

([!]):
(1) <5VFV = 0, (2) AVF+ = 0, (3) ΔVF~ = 0.

Proposition 3.2. Let Fl and F2 be respectively the c\ -self-dual and c2 -self-dual
parts. Then for vectors X, Y G TXM, the quantity

4n

is symmetric in X and Y.

Proof. Let {ei,..., e±n} be an orthonormal frame field of TXM. Substituting
X = 64*5+1, Y = e4fc+2 into ̂  ™1 F*. x - F£. Y and using Proposition 2.1, we see
that

4n

y^ F1 F2 = F1 F2

= F1 F2 + F1 F2

4n

for each 0 < k < n — 1. This completes the proof of Proposition 3.2. Π

The following is the key of the proofs of the theorems.

Proposition 3.3. LetF1, F2 andF3 be respectively thecι-self-dual, c^-self-dual
and cz-self-dual parts. Then
(1) [Fl,F2]Xιγ = Q,
(2) [F2, F3]x?y G (52MX Θ S2EX)^ ® fl,
(3) [FSF3]^ G (52MX 0 52EX)^ 0 fl,

H /Z^ [F",F0]X,Y = Σίlι{[FζlX,ffjtγ] ~ [Fζ,γ,^,χ]} for allX^Y G Γ.M, αf

β = 1, 2, 3.

Proof. (1) From Proposition 3.2, X and F are symmetric. Hence,

[F\F*]χ,γ = 0.
(2) From the properties of the Killing form, we have

(3.7) <[A,B],C)'=(A,[B,C])

for any A,B,C G Λ2T^M (g) 3 Using Proposition 2.1, we see that [Fl,Fl]x,γ G
52M:E (g) 9, [F2,F2]x,y G 52EX <g> g and [F3,F3]x,y G Λ2ΓX*M 0 g and note that
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[Fa,Fβ] = [F^,Fα]. Putting A = F1, B = F2 and C = F3 in (3.7) and using
[F1,F2]x,γ=0, we get

(3.8) (F\[F2,F3})=0.

Putting A = F1, B = F3 and C = F2 in (3.7), we have

(3.9) (IF1,F3},F2) = (F1,[F3,F2]).

Putting A = F1, B = F1 and C = F3 in (3.7), we get {[F1^1]^3} =
(F1, [F1,^3]}. From [F1,ί'1]χ,y € S2MX <g>0, we have

(3.10) (F1,[F1,F3]} = 0.

Putting A = F2, B = F2 and C1 = F3 in (3.7), we get ([F2,F2],F3} =
(F2, [F2,F3]). From [F2,F2]x,y 6 S2EX ® 0, we have

(3.11) (F2,[F2,F3]} = 0

From (3.8) and (3.11), we conclude that

[F2, F3]Xtγ € (S2mx Θ S2EX)^ ® 0.

(3) From (3.8) and (3.9), we get

(3.12) ([F1,F3],F2}=0.

From (3.10) and (3.12), we conclude that

[F1, FS}X!Y e (52MX θ 52EX)-L ® 0

These complete the proof of Proposition 3.3. D

The proof of the following Proposition 3.4 is analogous to that of Proposition

(5.6) in [1].

Proposition 3.4. Let Fj7 : so(4n) —> so(N) be a linear map and λ be a

positive real number.
(I) //||FV||2 < (n(4n - I)λ2)/(16(2n - I)2), then

(3.13) (Fx

v*Φβ,ΦΛ2TιM)<λ||Fv | |2.

(II) Putting λ = 4(2n - 1), we have the following:

//||-FV||2 <n(4n-l), then
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(3.14) (Fj*Φβ,ΦΛ2TιM) <4(2n-

The equality holds if and only if there is an orthogonal splitting RN = 50 θ SΊ
(dim Si = 4) with respect to which F^ = 0 0 σ where σ is a representation
σ : sp(l) — >so(4).

Proof. We shall prove the inequality for ||FV||2 = (n(4n-l)λ2)/(16(2n-l)2).
Let {βi Λ ej}i<j be the orthonormal basis of so(4n) = Λ2TXM. Then ||FV||2 =

Σi^^fe Λ β ')ll2 and (Fj*Φ f l,ΦΛ2ΓχM) = ΣSfeiW^Λe^F^ Λ
efc)],Fj7(e/e Λ βi)). We now denote Fj (βi Λ e^ ) by F^ . We introduce the 4n x 4n-
symmetric matrix 5 = ((sij)) with non-negative entries s^ = v^ll^jll By the

assumption, trS2 = Σ^=1 4 - 4Σ«J l l^ul l 2 - (4n(4n - I)λ2)/((4n - 2)222). By
Lemma 2.1 we have

Therefore, using (2.9), we see that

4n

4n

4n

i,j,fe=l

4n

= 2 Σ

Hence, we complete the proof of (I).
We next prove (II). Putting λ = 4(2n — 1) in (I), we see that

4n

*(Fj*Φβ,ΦΛ2TχM)< \dFij, Fjk},Fkί)\
i,j,fc=l

< Σ ιi[^
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Suppose now that we have the equality in each line. From the last line we see
that sij = 1, and so \\Fij\\ = (l/\/2) for i ^ j. From the first and second lines
we conclude that, when i, j, k are mutually distinct, [Fij,Fjk] — tFki where t > 0.
Taking the inner product with Fki and using the equality in each line we see that
t = 1. Hence, we have

(3.15) [Fij,Fjk} = Fki

for all i, j, k distinct. This equation has a number of consequences. Setting

a ijki = [Fij, FM], we have aijki = -ajikι, aijkι = -α ,̂ aijki+otikij+aujk = 0,
&ijki — akiίj However, from the definition we see c*ijki = —&kiij, and so we con-
clude that

(3.16) [F^,F f c Z]=0

for i, j, /c, / distinct. Comparing (3.15) and (3.16) with (2.5) we conclude that
Fj7 : 50 (4n) — > so (TV) is a Lie algebra homomorphism. Finally, we observe that by
(2.9) each pair (-F^ , Fjk) for i, j, /c distinct is conjugate to a pair of matrices of (2.10).
In particular, each of the endomorphisms Fij is supported in the same 4-dimensional
subspace. Therefore, we conclude that F{j : so(4n) — > so (4) is also a Lie algebra
homomorphism. This homomorphism is injective. To see this directly we note that if

ί, j, /c, / are mutually distinct, then it is easy to see that (Fij,Fki) = 0. The matrices
{Fij}i<j are orthogonal. Hence Fij is injective. Therefore, Fij : so (4n) — > so (4)
reduce the Lie algebra homomorphism F^ : sp(l) — > 50 (4). Note that so(4n) =
5p(l)θ5p(n)θ(sp(l)Θsp(n))-L. This completes the proof of Proposition 3.4. D

4. Proof of theorems

In this section, we shall give the proofs of theorems stated in Introduction.
Proof of Theorem 1.1. We shall rewrite the Bochner-Weitzenbόck formula

(2.4).

(4.1) (ΔVφ, φ) - (V* V^, φ) = (φo (-^1 - 2R) , φ) - p(φ),

where p(φ) = ([Fv,φ],φ) for any φ e A2(&E). We put A = (a - c2)/(cι) and
B = (c3 - c2)/(c3). Substituting φ = AF1 -\- BF3 into (4.1) and using Proposition

3.1, we have

(4.2) -\\V(AFl + BF3)\\2 = ̂ λiHF1!!2 + ̂ 2λ3||F
3||2 - p(AFl + BF3),
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where λ» = ((s/(2n))I - 2Ri}χ,γ = s/(2n) - 2μΐ? X,Y 6 TXM. We see that

p(AFl + £F3) = {[Fv, AF1 + BF\AFl + ̂ F3}

- A2{([F\ F1], F1) + {[F2, F1], F1) + {[F3, F1], F1)}

+ A5{([F1,F1],F3) + {[F2,F1],F3) + {[F3,F1],F3}}

Using Proposition 3.3, we get

p(AF1+BF3) = ̂ ([FSF^.F1) + (2AB + B2)([F3,F1],F3)

Since we assume F3 = 0, (4.2) implies that

(4.4) -IIVF1!!2 = λjF1!!2

By Proposition 3.4 (I), if HF1 I I 2 < (n(4n-l)λ?)/(16(2n-l)2), then
λillF1!!2. Hence, the right hand side of (4.4) is non-negative. On the other hand, the
left hand side of (4.4) is non-positive. This is a contradiction. This implies F1 = 0.
The same statement is true for F2. Π

Proof of Theorem 1.4. From (4.2), (4.3) and using (2.7), we obtain

-\\V(AFl + BF3)\\2

= A2{X1\\F1\\2-((F1,F1],F1)}

+ ^{λaliF3!!2 - (n + 3){[F3, F1], F3}

-{[F2,F3],F3)-([F3,F3],F3}}

+ B2{A3 | |F
3 | |2-v/2(n

-V2||F2||||F3||2-Λ/2||F3||3}

+ B2{(XS - v/2(n + SJHF1!! - Λ/2||F2 | | -

Hence, if

O and λa

we see that F1 = F3 = 0. When F1 = F3 = 0, moreover, from the second in-
equality stated above, we have ||F2|| < λ3/\/2. On the other hand, from the Bochner-
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Weitzenbόck formula for Fv = F2 and using Proposition 3.3 and (2.7), we get

<Z\VF2,F2} - ||VF2||2 = λ2||F
2||2 - ([F2,F2],F2}

Since ΔVF2 = 0, we have

-| |VF2 | |2>(λ2-V2||F2 | |) | |F2 | |2.

If ||F2|| < A2/>/2, then F2 = 0. Thus if F2 φ 0, then λ2/Λ/2 < ||F2||. Consequently,

if V is a non-flat, then the c2 -self-dual part F2 satisfies λ2/>/2 < ||F2|| < λ3/\/2,

where λi, λ2 and λ3 always satisfy λi < λ2 < λ3 on (M, g). The same argument

can be applied to (2) of Theorem 1.4. Π

Proof of Theorem 1.2. We put A = (a — c3)/cι and B = (c2 — c3)/c2.

Substituting φ = AF1 + BF2 into the Bochner- Weitzenbόck formula (4.1) and

using Proposition 3.1, we have

u sϊ + BF2)||2 =
1 >3; + £?2{A2||F

2||2-([JF
2,JF

2],F2)}.

By Proposition 3.4 (I), if

! 2 n(4n-l)Λ 2

 2 2 n(4n - l)Λj

11 " < 2 " "
16(2n-l)2 16(2n-l)2

then

{[F1,F1],F1)<λ1||F
1||2 and ((F\F2},F2) < λ2||F

2||2.

Hence, the right hand side of (4.5) is non-negative. Meanwhile, the left hand side

of (4.5) is non-positive. This is a contradiction. This implies F1 = F2 = 0. D

Proof of Corollary 1.1. Let HPn = Sp(n + l)/Sp(n) x Sp(l) be the quater-

nionic projective space. Let sp(n + 1) = sp(n) + sp(l) + m be the orthogonal

decomposition of sp(n -f 1) with respect to Killing form B. We identity m with

the tangent space of HPn at the origin in a natural manner. Let g0 denote the

invariant Riemannian metric on HLPn defined by — 2(2n — l)(n + 2)B\m. The Ricci

tensor of (HPn, #0) is given by Λic(X, F) = (2n - l)(n + 2)^0(^, F) for X, y G m.

Accordingly, the scalar curvature is given by s — 4n(2n — l)(n + 2). Corresponding

to the decomposition (2.2), we can write the Riemannian curvature operator R as

R = RI + R2 + RS. From [4] and for this metric gQ we know

Ri = n(Ίn - I)/, R2 = (2n - I)/, Ή3 - 0.
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We have Xl = (s/(2n)I - 2Rι)x,γ = (s/(2n)I - 2n(2n - l)/)χ,y = 4(2n - 1).

In the same way, we have λ2 = 2(2n — l)(n + 1). Substituting λi and λ2 into

Theorem 1.1, we get Corollary 1.1. Π

Proof of Theorem 1.3. When ||FV||2 < n(4n - 1), by the Bochnor-

Weitzenbόck formula (4.1) and Proposition 3.4 (II), we conclude that Fv = 0.

Hence E is flat bundle. When ||FV||2 = n(4n - 1), we get VFV = 0. Proposi-

tion 3.4 (II) implies that there is an orthogonal splitting E = E0 0 5 where EQ

is flat, where 5 is a 4-dimensional bundle. By Corollary 1.1 (2) and VFV = 0,

Fv : Λ2ΓM —> P xAd 50(4) reduces to Fv : S2M —> P xAd so(4). This

implies that the connection V is a c\-self-dual connection. The vector bundle

H on any simply-connected quaternionic Kahler manifold with non-zero scalar

curvature admits a unique c\-self-dual connection ([5]). The vector bundle H, only

when M = HPn, is globally defined ([8]). Consequently S = H, hence E = E0 ΘH.

D
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