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1. Introduction

A smooth map between manifolds with only definite fold singular points is
called a special generic map. Burlet and de Rham [2] first defined a special
generic map and showed that a closed 3-manifold admits a special generic map
into R2 if and only if it is diffeomorphic to S3 or the connected sum of some
52-bundles over 51. Furthermore, Saeki determined completely those closed
manifolds which admit special generic maps into R2 in [20]. Further results are
known about the topology of manifolds which admit special generic maps (see
[12], [19], [20], [21], [22], [23]). In this paper we study special generic maps of
closed manifolds into open manifolds and their singular sets by using L2-Betti
numbers which were introduced by Atiyah [1].

Theorem 1.1. Let M be a closed connected n-dimensional manifold such that
the q-th L2-Betti number b(2}(M) of M is not zero for some q<n/2. Then for any
open p-dimensional manifold N with p<q, M does not admit a special generic map
into N.

By using this theorem, we see that no closed hyperbolic manifold of dimension
2n admits a special generic map into an open /7-dimensional manifold N with p<n
(see Corollary 5.2).

As is seen in [2], the topology of the singular set of a special generic map is
not determined only by the topology of the source manifold. However some
results are known about the relationship between the topology of the singular set
of a special generic map and that of the source manifold (see [20], [22], [23]). We
study the order of the fundamental group of the singular set by using the L2-Betti
numbers of the source manifold. In order to state the next theorem, we recall
the definition of residually finite groups. A group G is called residually finite if
every non-trivial element of G is mapped nontrivially in some finite quotient group
of G by a homomorphism.

Theorem 1.2. Let M be a closed connected n-dimensional manifold such that
nv(M) has infinite order and let f: M -> N be a special generic map of M into an open
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p-dimensional manifold N with p<n. Let S(f) = Sίv~ vSk be the decomposition
of the singular set of f into the connected components. If either (i) p<(n-\- 2) / 2 or
(ii) π1(M) is residually finite, then

Furthermore, i f p = (n + 2)/2, then

Here |π1(5'f)| denotes the order ofπ^S^ and we adopt the convention that 17^(5^)1 =
if and only if 1 / ̂ (S l̂ =0.

For special generic maps into open orientable 3-dimensional manifolds, Saeki
and Sakuma studied the case where source manifolds are 1-connected (see [20], [21],
[22], [23]). When the fundamental group of the source manifold is infinite, we
have the following.

Theorem 1.3. Let f:M -+ N3 be a special generic map of a closed connected
n-dimensional manifold («>3) into an open orientable ^-dimensional manifold. If
nv(M) has infinite order and if the first L2-Betti number b(2\M) of M vanishes,
then each connected component of the singular set S(f) off is diffeomorphic to either
the 2-sphere or the torus. Furthermore, we have

b(2\M) ifn>5,

-ό(

2

2)(M) ί/« = 4.

Here the left hand side of the equality denotes the number of connected components
S of S(f) such that S is diffeomorphic to S2.

Note that b(2\M) depends only on π^M). Let χ(M) denote the Euler
characteristic of M. Under the condition in Theorem 1.3, if n is even, then we
have χ(M) = χ(S(f)) (see [9], [20, Proposition 3.5], [23, Corollary 2.7]). Therefore
we obtain

Corollary 1.4. Let f:M-+N3 be a special generic map of a closed connected
In-dimensional manifold (n>2,neN) into an open orientable ^-dimensional manifold,
and let S(f) be the singular set of f. If πt(M) has infinite order and if the first
L2-Betti number b(2\M) vanishes, then we have χ(M) = 2|{Seπ0(5f(/));S^5'2}|.

Sakuma [22] has proved an analogous equality in the case where the source
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manifold is simply connected.
The paper is organized as follows. In Section 2, we define special generic

maps and their Stein factorizations, and study their basic properties. In Section
3, we define ZΛBetti numbers and prove some propositions concerning L2-Betti
numbers of compact smooth manifolds with boundary. In Section 4, we prove
our main theorems by using the results in Sections 2 and 3. In Section 5, we
state some facts concerning ZΛBetti numbers and give some applications of our
main results.

In this paper, we assume that all manifolds are smooth unless otherwise stated.

2. Special generic maps and their Stein factorizations

Let f\M-*N be a smooth map of an ^-dimensional manifold into a
/?-dimensional manifold with n>p. Set S(f) = {qeM\ rankdfq<p}9 which is called
the singular set of f. A point qeS(f) is called a fold point if there exist local

coordinates (*ι, •••,*,,) centered at q and (yι9 ,yp) centered at/(^r) such that/has
the form:

for some λ (Q<λ<n—p+l). If, in addition, λ = Q or λ = n—p+l, we call q a
definite fold point; otherwise, we call q an indefinite fold point. Finally, a smooth
map f:M-*Nofan ^-dimensional manifold into a /7-dimensional manifold with
n >p is a special generic map if all the points in S(f) are definite fold points. Note
that for a special generic map, S(f) is a (p— l)-dimensional submanifold of M and that

f \ S ( f ) is a smooth immersion.
Next we define the Stein factorization of a special generic map/: M ->N, where

M and N are n- and /^-dimensional manifolds respectively (n>p) (see

[2], [19], [20], [21], [22], [23]). For qrfeλf, define q-j if/(?) =/(?') and q and <f
belong to the same connected component oϊf~ί(f(q)). Denote by Wf the quotient
space of M under this equivalence relation and by qf:M -* Wf the quotient
map. Furthermore, we have the unique map f':Wf-*N such that /' ° qf =/ The
space Wf or the commutative diagram

M > N

is called the Stein factorization of /
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We state propositions which were proved in [20] for the case N=RP (see also
[2], [19]). Note that the same proof works also in our general case.

Proposition 2.1 . Letf : M -> N be a special generic map of a closed n-dimensional
manifold into an open p-dimensional manifold with n >p and qf:M -+ Wf the quotient
map in its Stein factorization. Then we have the following.

(i) Wf is a p-dimensional manifold with boundary.
(ii) dWf is diffeomorphic to S(f).
(iii) (qf)4l'nί(M)-^πί(Wf) is an isomorphism.

REMARK 2.2. In Proposition 2.1, if N is orientable, then so is Wf.

Proposition 2.3. Letf : M -> N be a special generic map of a closed n-dimensional
manifold into an open p-dimensional manifold with n>p and Wf the Stein factorization
of f. Then there exists a topological Dn~p+ί -bundle E over Wf such that dE is
homeomorphic to M.

We have the following relationship between the Euler characteristic of the source
manifold and that of the Stein factorization.

Proposition 2.4. Let f\M-+N be a special generic map of a closed
In-dimensional manifold (n e N) into a p-dimensional manifold with 2n >p. Then

Note that in the case where p is even this proposition has been proved in
[20, Proposition 3.5].

Proof of Proposition 2.4. Let E be as in Proposition 2.3. Put X=Ev8EE.

Since X is an odd-dimensional closed manifold, we have 2χ(E) — χ(dE) = χ(X) = Q.
Since dE is homeomorphic to M, χ(M) = χ(dE). Since E is homotopy equivalent

to Wf9 χ(E) = χ(Wf). Therefore χ(M) = 2χ(Wf). D

EXAMPLE 2.5 (see [21]). (1) Let Sn c Rn+ 1 be the unit sphere. The restriction
of the standard projection Rn+1 -+ Rp (n>p) to S" is a special generic map. If
n>p, the Stein factorization of this special generic map is diffeomorphic to Dp.

(2) Let g : Sn -> Rp be the special generic map as above and η:SmxRp -+ Rm+p

an embedding. Then the composition

/ : s
m x Sn— +Sm xRp^> Rm+p

is a special generic map. If n >/?, then Wf is diffeomorphic to Sm x Dp.
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In fact, we can show that if a closed ^-dimensional manifold Mn admits a
special generic map g:Mn -> Rp (n>p\ then Sm x Mn admits a special generic map
/into Rm+p by an analogous construction. If n>p, then the Stein factorization

of/ i s diffeomorphic to *Smx Wg.

Now we consider covering spaces of source manifolds. Let f:M-*N be a

special generic map of a closed connected ^-dimensional manifold into an open
/7-dimensional manifold with n>p. Let Γ be a normal subgroup of πt(M) such

that the index [π^Af):!"1] is finite, and let π:M-+M be the covering of M
associated with Γ c π^M). Set/=/oπ. Evidently f:M-> N is also a special
generic map. Then by Proposition 2.1 (iii), we easily see the following.

Proposition 2.6. Under the condition above , the Stein factorization Wj of J is
diffeomorphic to the covering space of the Stein factorization Wf off associated
with (qf)jΓ) c: te/)s,(π1(M)) = π1(PF/).

3. ZΛBetti numbers and manifolds with boundary

In this section we definte ZΛBetti numbers and study their properties.
Let Γ be a countable group and /2(Γ) the space of formal sums ΣyeΓΛ,y y with

complex coefficients λy satisfying ΣyeΓ |Λy |
2<oo. /2(Γ) is a Hubert space with the

inner product given by

<Σ V?» Σ/vy> = Σ V^y"
yeΓ yeΓ yeΓ

for ΣyeΓΛ,y y, ΣyeΓμy ye/2(Γ). The von Neumann algebra ^Γ(Γ) of Γ is the algebra
of bounded operators from /2(Γ) to /2(Γ) which commute with the right Γ-action
on /2(Γ). A finitely generated Hubert Λ"(Γ)-module P is a Hubert space together

with a continuous left ^(Π-module structure such that there exists an isometric
Λ/XΠ-module embedding into ΦJ=1/

2(Γ) for some reN. A map/: ί/-> Fbetween
finitely generated Hubert ^Γ(Γ)-modules always means a bounded operator from
U to V which commutes with multiplication by ^Γ(Γ).

Let ,/Γ'(Γ) denote the algebra of ^(Γ)-module maps from /2(Γ) to /2(Γ). The
von Neumann trace tr(/) of an element/e ̂ '(Γ) is the complex number </(£),£>,
where eeΓ is the unit element. For an ^(Π-module map /:θ?=ι/2(Γ)

-*θ?=ι/2(Π, we consider / to be an («x«)-matrix (fitj) over ^Γ'(Γ) and define
tr(/) = Σ?=1tr(/5l). For a finitely generated Hubert !yK(Γ)-module P, Let pr

' θ"=ι/2(Π~^ θ"=ι/2(Π be a projection whose image is isometrically
isomorphic to P. The von Neumann dimension of P is defined by di
= tr(pr). Note that dim^(Γ)(P) is a well-defined nonnegative real number

(see [3], [7]). A sequence 0-»ί/-»F-»^->0 of finitely generated Hubert



156 Y. KARA

JΓ (Γ)-modules is weakly exact if j is injective, im(/) = ker(^r) and im(g) = W9

where the bar means the closure.

Lemma 3.1 ([5], [13]). For finitely generated Hubert Ji "(Γ)-modules U9 V and
W, we have the following.

(i) dinv(Γ)((7) = 0 if and only if (7=0.

(ii) IfUciV, then dim^(Γ)(C/)<dim^(Γ)(K).
i 9

(iii) If Q-+U-+V-+W-+Q is weakly exact, then dimt/Γ(Γ)(F) = dim

For more information about finitely generated Hubert eyΓ(Γ)-modules, we refer
to [7], [13], [14] and [18].

Let A" be a finite connected CPF-complex and A c X a CW-subcomplex. Let
π: ,?-> A" be the universal covering and put A=π~~l(A). We adopt the convention
that n^X) acts from the left on the universal covering and on its cellular chain
complex. Consider a group homomorphism φ:πί(X)-*Γ. Let CJiX9A 9φ*l2(Γ))
denote the finitely generated Hubert .yΓ(Γ)-chain complex /2(Γ)®Zπι(X)CJ|e(Λ^,^), where
the right π1(Λr)-action on /2(Γ) is induced by φ:πl(X)-*Γ. Let c(2) denote the
differentials. The p-th L2-homology of X with coefficients in φ*/2(Γ) is defined by

Hp(X,A ;φ*

Since we take the quotient by the closure of the image, this is again a finitely
generated Hubert «yΓ(Γ)-module. Define the p-th L2-Betti number of X with
coefficients in ψ*/2(Γ) by

bp(X,A φ */2(Γ)) = dim^(Γ}Hp(X9A φ */2(Γ)).

Note that if Γ is the trivial group, then the L2-Betti number is equal to the
ordinary Betti number dimQHp(X,A Q). In the case where Γ = π1(Ar) and </> = id,
we write /2(Γ) instead of id*/2(Γ) and put

It is known that L2-Betti numbers are homotopy invariants. The following
proposition is proved in [13], [15] (see also [3], [4], [5], [7], [14]).

Proposition 3.2. (i) b(Q\X) and b(2\X) depend only on the fundamental group
n,(X\ __

(ii) Let p\X-+ X be an n-sheeted finite covering and A=p l(A). Then
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(iii) If the image of φ '.n^X) -> Γ is finite, then

1

Otherwise

(iv) Denoting the Euler characteristic of X by χ(X), we have

P>0

(v) Let M be a compact connected orientable triangulable (topological) manifold
of dimension n and φ : π1(Λf ) -*• Γ a group homomorphism. Then

where dM is the boundary of M.

REMARK 3.3. For a compact connected non-orientable triangulable (topo-
logical) manifold M of dimension «, we have

by Proposition 3.2 (ii) and (v). However this equality is not true in general
coefficients. For example, when M=RP2 and Γ is the trivial group, b0(Mιφ*l2(Γ))
= 1 and 62(M;</>*/2(Γ)) = 0.

Now we consider applications of L2-Betti numbers to manifolds with
boundary.

Proposition 3.4. Let M be a compact connected p-dimensional manifold with
nonempty boundary dM and dM=SίV'-uSk the decomposition of dM into the
connected components. If π^M) has infinite order, then

Proof. Let π denote the fundamental group of M and p: M -> M the universal
covering. Set §i=p~l(Si) (/= 1,2,•••,&) and 8M=p~1(dM). Under the condition
in Proposition 3.4, we have the exact sequence of chain complex
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k
20 -> /2(π)(g)zJ 0

i = l

Let (/i)*:πιOSi) -> π be the homomorphism induced by the inclusion Ji'.S{ -> M. We
see easily that /2(π)®Zπ (®^=ίCJ(SiιZ)) is naturally isomorphic to Θ^iC^^

ί((/i)*)*^2(π)) Therefore we have the exact sequence of chain complex

0 -> Θ C^;(0 )*)*/2(π)) -> C^M /V)) -* C^M^M;/2^)) -+ 0.
ί = i

Therefore we have the following.

Lemma 3.5 ([4], [5], [14]). Under the condition above, we have the weakly
exact sequence

...̂  Θ
i = l

^ Φ
ί = l

Φ H^StM

By Lemmas 3.5 and 3.1, we have

By our assumption that \πi(M)\ = co together with Proposition 3.2 (iii), we have
6<0

2>(M) = 0. By Proposition 3.2 (v) (see also Remark 3.3), we have bγ\M,dM)
= 211(M). Since

by Proposition 3.2 (iii), we have Σ^^l/lπ^^D^fr^^Af). D

The following proposition is essentially due to [13].

Proposition 3.6. Let M be a compact connected orientable ^-dimensional
manifold with nonempty boundary. Suppose that πt(M) has infinite order and that
the first L2-Betti number b(*\M) vanishes. Then each connected component of dM
is diffeomorphic to either the 2-sphere or the torus. Furthermore,
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Proof. Let M=Mί$ $Mr be the prime decomposition. As is seen in the
proof of [13, Proposition 6.5], if \πί(M)\ = oo and b(2\M) = Q, then the prime
decomposition of M must consist of homotopy 3-spheres, 3-disks and either

A. A prime manifold M' with infinite fundamental group and vanishing b(2\M')
or

B. Two prime manifolds M1 and M2 with fundamental groups isomorphic
to Z/2Z.

In case A, M' is SlxS2 or is irreducible. If M' is irreducible and has
nonempty boundary, then [13, Lemma 6.4] implies that its boundary components
are tori. In case B, we easily see δMf = 0 (ι=l,2). Therefore each component of
dM is diffeomorphic to either the 2-sphere or the torus. By Proposition 3.2 (iv),
we have χ(M) = Σp>0(-l)p-b(2\M). By our assumption, b™(M) = Q for
Therefore

-

Since each connected component of dM is diffeomorphic to either the 2-sphere or
the torus,

This completes the proof. Π

REMARK 3.7. If the fundamental group of a compact connected orientable
3-dimensional manifold M with nonempty boundary is finite, then each connected
component of the boundary is diffeomorphic to S2. However the number of
connected components is not equal to the second L2-Betti number in general. For
example, the second L2-Betti number of the 3-disk is zero.

For the case where M is non-orientable, we have the following.

Proposition 3.8. Let M be a compact connected non-orientable ^-dimensional
manifold with nonempty boundary. Suppose that nv(M) has infinite order and that
the first L2-Betti number b(2\M) vanishes. Then each connected component of dM
is diffeomorphic to the 2-sphere9 the torus, the real projective plane RP2 or the Klein
bottle. Furthermore,

Proof. Let p : M -» M be the orientable double covering of M. By Proposition
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3.2 (ii), the first L2-Betti number of M is also zero. Therefore each connected
component of dM is diffeomorphic to either the 2-sphere or the torus by Proposition
3.6. Hence each connected component of dM is diffeomorphic to S2, Γ2, RP2

or the Klein bottle.
If S is a connected component of dM which is diffeomorphic to S2, then

p~ 1(S) is diffeomorphic to the disjoint union of two 2-spheres. If 5" is a connected
component of dM which is diffeomorphic to RP2, then p~i(S') is diffeomorphic to
S2. If S" is a connected component of dM which is diffeomorphic to neither S2

nor RP2, then each connected component of p~l(S") is diffeomorphic to the
torus.

By Proposition 3.6, \{Sen0(dM)ιS^S2}\ = b^\M). Hence

By Proposition 3.2 (ii), we have 62

2)(M) = 2£(

2

2)(M), and hence the required equality
follows. Π

4. Proof of main theorems

Proposition 4.1. Let f:M—> N be a special generic map of a closed connected
n-dimensional manifold into an open p-dimensional manifold with n>p. Denote
by Wf the Stein factorization of f. Then for q<n—p, we have

Proof. By Proposition 2.3, there exists a Dn~p+ ^bundle E over Wf such
that dE is homeomorphic to M . The composition of the inclusion i : dE -> E and
the projection π : E -> Wf is homotopic to the composition of the homeomorphism
from dE to M and qf:M^Wf. Since both (qf) „, : π t ( Af ) -* π t ( Wf) and
π#:π1(£)-*π1(W/

/) are isomorphisms, i^:ni(dE)-^ni(E) is also an isomorphism.
Therefore by the exact sequence

0 -> C^as ;/2MM))) -> CJJE\l\πι(M))) -> C^,^;/2(πι(M))) -> 0,

we have the weakly exact sequence

As is seen in the proof of [20, Proposition 3.1], E is the associated Dn~p+1-
bundle of a smooth 5w~p-bundle over Wf. Hence we easily see that E is
triangulable. By Proposition 3.2 (v) and Remark 3.3, b^



SPECIAL GENERIC MAPS AND L2-BEτπ NUMBERS 161

= b(,?Ίq(Wf) — Q for q<n—p, since E is homotopy equivalent to Wf. Similarly, we
have b(*\E,dE) = Q. Therefore by the exact sequence above, we have bf\dE)

for q<n—p. Since dE is homeomorphic to M, we have
Hence b™(M) = b™(Wf) for q<n-p. Q

Proof of Theorem 1.1. Let M be a closed connected ^-dimensional manifold
such that b^\M)^Q for some q<n/2. If M admits a special generic map into
an open /7-dimensional manifold (p<q\ then b(f\Wf)=Q for all r>p. By
Proposition 4.1, we have £<2)(M) = 0 for all r with p<r<n—p. Since /;
<q<n — q<n—p, this is a contradiction. Π

Let f'.M^N be a special generic map of a closed connected ^-dimensional
manifold into an open /7-dimensional manifold with n >p. Let Wf be the Stein
factorization of /and qf:M-+ Wf the quotient map.

Lemma 4.2. If n^M) is residually finite, then there exists a nested sequence
of normal subgroups of π^M), ••• c: Γm+1 c: Ym c: • •« cz Γj c: Γ0 = π1(M), ^wcA fAαf
/Λe following conditions are satisfied:

(i) 77z£? /We c [π^Λ/J ΓJ is finite for all w>0.

(ii) 7%^ intersection (~]m>oΓm is the trivial group.

(iii) The covering space Mγ of M associated with Γ t and the covering space
Wγ of Wf associated with (qf)J^ι) are orientable.

Proof. Since (qf) „, is an isomorphism, there exists a normal subgroup Γ j of finite
index satisfying the condition (iii).

Since πi(M) — {e} (e is the unit element) is countable, there exists a bijection
g:N-+ nv(M) — {e}. By the residual finiteness of π^M), there exist a finite group
GI and a homomorphism 0 ί:π1(Af)-> Gt- such that φi(g(i)) is not the unit element
for each /.

Put Γ^Γjn (Pl^Γ/kerφi) (m>2). Then the sequence ••• c Γm + 1 c Γm

c= ... c Γλ ci Γ0 = π1(M) satisfies the conditions (i), (ii) and (iii). Π

Consider any sequence (Γm)m>0 satisfying the conditions in Lemma 4.2. Let
pm\Mm-+M be the covering of M associated with Γm c π^M). Suppose that
f:M-+Nis a special generic map into an open /7-dimensional manifold, and put
fm=f°pm. Then we have the following.

Lemma 4.3. Suppose the conditions above and that |π1(M)| = oo. Denote by
S(fm) the singular set of fm and by $S(fm) the number of connected components of
S(fm). Then we have
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lim

Note that the left hand side of the inequality is always convergent, since the
sequence (%S(fm)/ [π^M) : Γm])m>0 is monotone decreasing and each term is positive.

Proof of Lemma 4.3. By Proposition 2.6, the Stein factorization of fm is
diffeomorphic to the covering space Wm of Wf associated with (qf)J(Γm), and hence
it is orientable for m>\. Since Mm and Wm are orientable for

#S(/J<Vi(Mm)+l for w>l by [20, Proposition 3.15], where bp

= dimc//p_1(Mm;β). Hence ίf5(/m)/[π1(M):Γm]<(fep_1(MJ+ l)/[πι(M):ΓJ.
By [16, Theorem 0.1], we have

-=&{?2ι(Af).
m^ool^l(M):im]

Since Iπ^M^oo,

WJ <2>

REMARK 4.4. Hempel has shown that the fundamental group of a compact
3-dimensional manifold whose prime decomposition consists of non-exceptional
manifolds (i.e. manifolds finitely covered by a manifold which is homotopy equivalent
to a Haken, Seifert or hyperbolic manifold) is residually finite (see [11]). As another
example of residually finite groups, it is known that every finitely generated group
possessing a faithful representation into GL(n,F) for a field F is residually finite. For
more information about residually finite groups, we refer to [10, Chapter 15] and

[17].

Proof of Theorem 1.2. Let/:Λ/-»Λf be a special generic map of a closed
connected ^-dimensional manifold into an open /^-dimensional manifold with p<n
and S(f) = Sl(j "uSk the decomposition of S(f) into the connected components.

First we consider the case where π±(M) is residually finite with infinite
order. Let (ΓJm67V, (pm)meN and (fm)meN be as in Lemmas 4.2 and 4.3. Let
lπo(Pm 1(«S'i))l denote the number of elements of n0{p~i(Si)). Clearly,

WJ= Σ \πo(pΛst))\> Σ [

i=l i=l

Hence *5l/"J/[π1(3f):ΓJ^Σf=1l/|π1(5r

i)| for m>0. Therefore, by Lemma 4.3,
wehaveft<,221(M)^Σf=1l/|πι(S i)|.

If /><(« + 1)/ 2 and π^M) has infinite order, then the result follows from
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Propositions 2.1 (ii), 3.4 and 4.1.
If p = (n + 2)/2 and nv(M) has infinite order, then by Propositions 2.4 and

3.2 (v) and Remark 3.3, we have

B/

By Proposition 4.1, ^2)(PF/) = ftg

2)(M) for q<n/2-\. Therefore 2b($(Wf)
= b%l(M). Using this equality and Propositions 2.1 (ii) and 3.4, we obtain the
required result. This completes the proof of Theorem 1.2. Π

Proof of Theorem 1.3. Using Proposition 4.1, we obtain b(2\M) =
for # = 0,1. Therefore by our assumption, b(2\Wf) — Q for q = 0,1. By Proposition
3.6, each connected component of d Wf is diffeomorphic to either the 2-sphere or
the torus, and \{Seκ0(8Wf);S^S2}\=b<?\Wf). By Proposition 2.1 (ii), S(f) is
diffeomorphic to d Wf , and thus each connected component of S(f) is diffeomorphic
to either the 2-sphere or the torus.

Furthermore, if n > 5, b(?\M) = b(ϊ\Wf) by Proposition 4.1. Hence \{Sε π0(S(f))

If n = 49 then χ(M) = 2χ(Wf) by Proposition 2.4. By our assumption and
Poincare duality, b(2\M) = 0 for q^2. Therefore by using Proposition 3.2 (iv),
we obtain b(2\M) = χ(M) = 2χ(Wf) = 2b(2\Wf). Hence 1(56 π0(dWf)ι S^ S2}\

f) = (\/2)b(2\M). This completes the proof of Theorem 1.3. Π

Analogously, we have the following by Propositions 3.8 and 4.1.

Proposition 4.5. Let f: M —»N3 be a special generic map of a closed connected
n-manifold (n>3) into an open non-orientable ^-manifold. If τc1(Λ/) has infinite
order and if the first L2-Betti number b(2\M) of M vanishes, then each connected
component of the singular set S(f) off is diffeomorphic to the 2-sphere, the torus, the real
projective plane RP2 or the Klein bottle. Furthermore, we have

b(2\M) ifn>5,

-b(}\M) i f n = 4.
2

5. Applications

In this section, we give some applications of the theorems which have been
proved in §4. The following theorem is an immediate consequence of [8, p. 176].

Theorem 5.1 (Donnelly and Xavier). Let M be a closed connected Riemannian
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anifold of dimension 2n(neW) with sectional curvatures K pinched by

i ^ 2 f2n-2\2

-l<K<-c2<-\ .
V2Λ-1/

Then the L2-Betti number b(2\M) of M vanishes for p + n, and

The following corollary is an immediate consequence of the theorem above
and Theorem 1.1.

Corollary 5.2. Suppose that M is a closed connected Riemannian manifold
of dimension 2n with sectional curvatures K pinched by

Then for any open p-dimensional manifold N with p<n, M does not admit a special
generic map into N.

By this corollary, we see that no closed hyperbolic manifold of dimension 2n
admits a special generic map into an open ^-dimensional manifold N with
p<n.

Luck showed the following theorem.

Theorem 5.3 (Luck [15]). IfF-*E-+Sl is a fibration of connected finite
CW-complexes, then all the L2-Betti numbers of E vanish.

By Theorems 1.2 and 5.3, we have the following.

Corollary 5.4. Let M be the connected sum M^ -ΰM,. of closed connected
n-dimensional manifolds such that Mf fibers over Slfor all i. Suppose that M admits
a special generic map into an open p-dimensional manifold with p<n. If either (i)
p<(n + 2)/2 or (ii) πj(M) is residually finite, then the fundamental group of each
connected component of the singular set has infinite order.

Proof. In the case where p = 2, each connected component of the singular
set is diffeomorphic to S1 and hence we have the consequence.

In the case where/?>3, by Theorem 5.3 and [13, Proposition 3.7], b\2\M)~Q
for all i with 2<i<n — 2. Therefore Theorem 1.2 implies the consequence.

D

REMARK 5.5. (i) For a fibration F-> E-+ S1, π^E) is residually finite if and
only if π^F) is residually finite (see [10, p. 180]).

(ii) It is known that the free product of residually finite groups is residually
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finite (see [6, p. 27]). Therefore in Corollary 5.4, if w>3 and if π^M;) is residually
finite for all /, then π^Λf) is residually finite.

EXAMPLE 5.6. Set M=Sl xS f5«5 r l xS2xS3. By Example 2.5 and [20,
Lemma 5.4] M admits a special generic map / : M -» R4. The ordinary third Betti
number b3(M) of M is equal to 2. By [20, Proposition 3.15], $S(f)
<(1/2)&3(M)+ 1 = 2, where #S(f) is the number of connected components of
S(f). By Corollary 5.4, the fundamental group of each connected component of
S(f) has infinite order.

In the case of special generic maps into open orientable 3-dimensional manifolds,
by Theorems 1.3 and 5.3, we have the following.

Corollary 5.7. Let M be a closed connected n-dimensional manifold (n > 3) which
fibers over Sl. If M admits a special generic map into an open orientable
^-dimensional manifold, then the singular set is diffeomorphic to a union of
tori. Furthermore if the ordinary first Betti number of the fiber is zero, then the
singular set is diffeomorphic to the torus.

In the case where n = 4, if the ordinary first Betti number of the fiber is zero
and if M is orientable, this corollary follows from [23, Corollary 4.4].

Proof of Corollary 5.7. If M admits a special generic map / into an open
orientable 3-dimensional manifold, the singular set is diffeomorphic to a union
of tori by Theorems 1.3 and 5.3.

If the ordinary first Betti number of the fiber is zero, then the ordinary first
Betti number bγ(M) of M is equal to 1. Let Wf be the Stein factorization of

/ Since dWf is diffeomorphic to S(f), we have χ(S(f)) = χ(d Wf) = 2χ( Wff). By
Proposition 2.1 (iii), we have bi(Wf) = b1(M)=l. Hence χ(Wf) = b0(Wf)-bί(Wf)
+ b2(Wf)=l-l+ b2( Wf} = b2( Wf\ and consequently b2( Wf) = (l/ 2)χ(S(f)). Since
S(f) is a union of tori, b2(Wf) = (l/2)χ(S(f)) = 0. By using the homology exact
sequence for (Wf,d\Vf) and Poincare duality, we see easily that \nQ(dWf)\
= b0(dWf)<b2(Wf) + L Therefore #S(f)<b2(Wf) + l = L Thus S(f) is diffeo-
morphic to the torus. Π

In the case of special generic maps into open non-orientable 3-dimensional
manifolds, we have the following.

Corollary 5.8. Let M be a closed connected n-dimensional manifold (n > 3) which
fibers over Sl. If M admits a special generic map into an open non-orientable
3-dimensional manifold, then the singular set is diffeomorphic to a union of tori and
Klein bottles. Furthermore if the first homology group Hi(F'9Z/2Z) of the fiber F
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with coefficient in Z/2Z is trivial, then the singular set is diffeomorphic to either
the torus or the Klein bottle.

Proof. If M admits a special generic map / into an open non-orientable
3-dimensional manifold, the singular set is diffeomorphic to a union of tori and
Klein bottles by Theorem 5.3 and Proposition 4.5.

In the case where //1(F;Z/2Z) = 0, we can obtain the result in a way simillar
to that in the proof of Corollary 5.7 by using dimz/2Z7/I(W/

/;Z/2Z) instead of
the ordinary Betti numbers b^Wj). Π
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