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1. Introduction

It was observed by J.L. Alperin ([1]) that the Glauberman Correspondence
(in the case a p-group acts on a p’-group) was a consequence of the Brauer First
Main Theorem. Namely, if a p-group P acts on a p’-group G and x is an
irreducible P-invariant character of G, then y uniquely extends to some Brauer
character ¢ of '=GP. This Brauer character lies in a p-block B of defect P and,
in fact, ¢ is the only modular character in B. If b is the p-block of N(P)=Cg(P) x P
with 5°=B, then b contains a unique Brauer character ¢* and x*=q¥,p is
irreducible. This is the Glauberman Correspondence via the Alperin Argument.
(Perhaps, this is a good place to stress that, although the p-group case is certainly
important, the Glauberman Correspondence is defined for general P solvable).

Later, H. Nagao extended the Glauberman Correspondence (also in the p-group
case) to a noncoprime situation. If G is a normal subgroup of I' with p-power
index and y is a I'-invariant p-defect zero character of G, then x is naturally
associated with an irreducible p-defect zero character of Cg;(P), where now P is
some p-subgroup of I' complementing G. Notice that Nagao’s map is, again,
another application of the Alperin Argument: since y is a Brauer character and
I' /G is a p-group, then there is a unique Brauer character ¢ of I" over y (Green’s
Theorem); the block B of ¢ has a unique modular character (because B covers the
block {x}), and the defect group P of B complements G in I" (Fong’s Theorem). Now
the p-block b of N(P)=C4(P)x P with b°=B, has a unique modular character
o* with x*=¢¢,p irreducible. (The Nagao correspondence in the non p-group
case was constructed in [11]))

As we see, there is an essential idea above: find blocks B with only one Brauer
character and prove that Brauer First Main correspondents b satisfy the same
property. If this is the case, the existence of a natural map, has been shown. In
the Glauberman-Nagao conditions, this is not a problem: since N(P)=PCg;(P),
it follows that every block of defect P of Np(P) has a unique modular
character. To prove this fact in general, however, seems deep and it is a consequence
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of the Alperin Weight Conjecture. (For nilpotent blocks, this is known to be true
and we suggest the reader the articles of Puig and Watanabe [14],[15],[17].)

From this point of view, we see that the existence of a general natural map
from groups to local subgroups is a consequence of the Alperin Weight Conjecture
together with the Alperin Argument.

We find interesting to explicitly construct this map in the cases where the
Alperin conjecture is known to be true and this is, for p-solvable groups, what
we do in this paper.

After some preparatory work, in Section 5 below, we will characterize the
Brauer characters which lie in blocks with only one modular character. It is our
belief that blocks with one Brauer character should have an strong relationship
with fully ramified characters (at the very least, it is a consequence of the Alperin
Weight Conjecture that the canonical character of such a block is fully ramified
in its inertia group). This is proven to be true for p-solvable groups: these
Brauer characters are exactly those which are induced from some character y € IBr(J)
such that, y, is fully ramified with respect to N (H is a p-complement of J and
N is its p’-radical). (The most relevant cases of blocks B with only one modular
character will appear, in this context, quite naturally: if H=N then, B is nilpotent
[12]; if J=H then B has defect zero.)

In Section 6, we will give an explicit construction of our map in terms of the
Glauberman Correspondence. Therefore, for p-solvable groups, Theorem (6.2)
below can be seen as a common generalization of the Glauberman and Nagaos
maps. Some new results (which show, once again, how much Glauberman
correspondents are related) will be needed.

2. Preliminaries

To obtain greater generality, we will make use of the Isaacs n-partial characters
and work in m-separable groups. Recall (for those readers not interested in
n-characters) that when n=p’, the set of Isaacs m-partial characters, 1(G), is just
IB1(G), the set of irreducible Brauer characters. We will also use n-blocks (as defined
by M. Slattery [16]).

The notation is taken from [4] and [5].

We begin with some easy lemmas on partial characters that will be needed later.

If J is a subgroup of G and puel (J), as usual, we will denote by I (G|p) the
set of ¢ el (G) which have u as an irreducible constituent of ¢,.

Lemma 2.1. Suppose that J is a subgroup of a mn-separable group G with
n'-index and let pel(J) and o €1 (G). If ¢; =up for some integer u, thenu=1. Also,
@ is the only m-partial character of G lying over p.

Proof. See Lemma (3.1) of [13]. [ ]
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Lemma 2.2. Let J be a subgroup of a n-separable group G. Let 1€l (J) and
suppose that 1°e1(G). If Y el (G|1) then y=1°.

Proof. Let H be a Hall n-subgroup of G such that HnJ is a Hall n-subgroup
of J and let aeIrr(HNJ) be a Fong character for t (see (2.4) of [5]). By Lemmas
2.3 and 2.4 of [10], we know that «” e Irr(H) is a Fong character for t¢. Now,
if 7 is under y, it follows that « is an irreducible constituent of Yy, ., and hence,
off is an irreducible constituent of Y. By (2.5.b) of [5], we have that Y =16, as
required. |

3. Vertices

The vertices for n-partial characters were defined in [7]. B. Huppert already
noticed that every irreducible Brauer character (in a p-solvable group) is induced
from a character with p’-degree. The same happens for n-partial characters: if
@ el (G), then ¢ =y for some y eI (U) with n-degree (see (3.2) and (3.4) of [5]). It
is not trivial to prove that the Hall n-complements of U only depend (up to
G-conjugacy) on ¢ (not on U). These subgroups are called the vertices for ¢.

If Q is a n'-subgroup of G, we will denote by I, (G| Q) the set of m-partial
characters of G which have vertex Q.

Now, we want to distinguish between some of the normal irreducible constituents
of pel (G| Q). Recall that Clifford Theory works for m-partial characters in the
same way it works for Brauer characters ((3.1) and (3.2) of [5]).

DEerINITION 3.1. Let Q be a n'-subgroup of a m-separable group G and let
el (G|Q). If N is a normal subgroup of G and 6el (N) lies under ¢, we say
that 0 is Q-good (relative to ¢) if the Clifford correspondent of ¢ over 6 has vertex Q.

Theorem 3.2. Let el (G|Q) and let NG, where G is n-separable. Then
@y contains a Q-good constituent and all of them are Ng(Q)-conjugate.

Proof. Let (€l (N) be any irreducible constituent of ¢y, let I be the inertia
subgroup and let el (I|&) be the Clifford correspondent of ¢ under £ Since t
induces ¢, every vertex for t is a vertex for ¢. Therefore, there is ge G such that
el (/| Q8. Hence, if 0=¢"", u=8""and T=1I%"", it follows that u has vertex
Q, u is the Clifford correspondent of ¢ over 0 and therefore, 0 is Q-good (relative
to ¢). This proves the existence.

Now, suppose that #n is also a Q-good irreducible constituent of ¢ and let
del(U) be a n-degree character which induces u and such that Q is a complement
of U. By Clifford’s theorem, n=0%, for some xe G, and hence, Q% is a vertex for
uw* (because 6* is a n-degree character which induces u*). By hypothesis, we have
that Q is a vertex for u*, however. Hence, Q* and Q are conjugate in 7. Thus,
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txeNg(Q) for some teT and we have that n=0*=0", as desired. [ |

4. Fully ramified characters

If N is a normal subgroup of G and felrr(N) is G-invariant, we say that 0
is fully ramified with respect to G if 0% =ey for some yeIrr(G) (sometimes, we will
also say that y is fully ramified with respect to N or with respect to ). We see
that a G-invariant character of N is fully ramified in G if only one irreducible
character of G lies over 6. Later, we will need the following fact.

Lemma 4.1. Let NG, let yelrr(G) and let 6 be an irreducible constituent
of xn. Then[xn,01><|G/N|. Equality holds if 0 is fully ramified with respect to G.

Proof. Let Y €lrr(T) be the Clifford correspondent of y over 6 (where T is
the inertia group of §). We know that [xy,0]=[¥s,0]. Also,

0T= 3 e
&elrr(T|6)
and thus
Y. €e;=|T/N].
&elrr(T|0)
Now, since [xy,0]=e,, everything follows. [ ]

In [6] (in the classical case), M. Isaacs already noticed the relationship between
ordinary fully ramified characters and its m-analog. For our purposes here, it
suffices to show the following.

Lemma 4.2. Let ¢ €l (G), where G is n-separable, let N be a normal m-subgroup
of G and let H be any Hall n-subgroup of G. Suppose that @y=e0, where
Oelrt(N). Then 1(G|0)={¢} if and only if 0 is fully ramified with respect to
H. Also, in this case, @y is irreducible.

Proof. Suppose that 6 is fully ramified with respect to H and write
Irr(H | 0)={¢}. Since 0 is G-invariant, notice that ¢4 =e¢ for some integer e. Now,
since 0 is fully ramified and Lemma (2.1, we have that ¢z=¢ and
(G| &) =pel(G|0)={¢}, as required.

Conversely, if I(G|0)={¢}, by Lemma (2.7) of [16], ¢ has n-degree and
therefore ¢, € Irr(H) (by (2.6) of [5]). Now let felrr(H|0). Since f is a constituent
of (B%)y, there is some pel(G) lying over B (and hence, over 0). Therefore, p=¢
and hence fB=¢@y. This finishes the proof of the Lemma. ]
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5. Blocks with one modular character

The goal of this section is to show that a modular character ¢ is the only
modular character of its block if and only if ¢ is induced from some yel(U)
such that, if K is a Hall n-subgroup of U, then yg is an irreducible character fully
ramified with respect to some normal n-subgroup of U. Arguing by induction, and
using Fong Theory, one direction is easily obtained. To prove that such a ¢ is
unique in its block is more complicated, we believe.

Next we show that there is no essential difference (concerning ¢) about whether
the character yg is fully ramified with respect to some normal n-subgroup of U
or with respect to O,(U). If we wish to control the irreducible ordinary characters
of the block, this precision will have some importance, however.

To state more clearly our results, it seems convenient to make a definition. If
U is a n-separable group we say that (U,y,0) is a uniqueness triple if the following
conditions are satisfied:

(@) yel(U) and O€elrr(M), where M=0_,(U), and

(b) if K is a Hall n-subgroup of U, then yy is irreducible and fully ramified
with respect to 0.

We say in this case that y is a uniqueness character.

If (U,y,0) is a uniqueness triple, notice that y(1) is a n-number since yy is
irreducible. Also, 6 is U-invariant and 1(U|0)={y} by Lemma 4.2.

Lemma 5.1. Let G be a n-separable group. let ¢ €1,(G) and let H be a Hall
n-subgroup of G. Suppose that @y is a multiple of 0elrr(N), where N is a normal
n-subgroup of G and 0 is fully ramified with respect to H. Then there exists a
uniqueness triple (V,y,0) such that ¢=v% and N < V. Also, induction defines a
bijection from Irr(V|y) onto Irr(G|0).

Proof. By Lemma 4.2, we know that ¢p is irreducible and fully ramified
with respect to N. In particular, ¢ has n-degree. Let O=0,(G) and let # €Irr(0)
be an irreducible constituent of ¢,. Then, Lemma (4.2) gives us I(G|n)={¢}. If
n is G-invariant, again by Lemma (4.2), n is fully ramified with respect to H,
(G,0,7) is a uniqueness triple and the result follows in this case. So we may
assume that T, the inertia group of #, is proper in G. Since ¢ has n-degree notice
that T has n-index.

If u is the Clifford correspondent of ¢ over n, we have that (ur.gz)" =0y
(observe that TH =G, because T has n-index in G). Also, if felrt(Tn H|n), then
BY is irreducible and lies over 0. Therefore, f¥ =@y and thus f=u;. .y by the
uniqueness in the Clifford Correspondence. So we see that the hypotheses of the
lemma are satisfied with the character p and the normal n-subgroup O of
T. Therefore, by induction, there exists a uniqueness triple (¥,y,t) with y"=pu and
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O <V and such that induction defines a bijection Irr(V|1) = Irr(T|n). We see
that (V,y,7) is a uniqueness triple inducing ¢ such that N < V. To finish the
proof of the lemma, by the Clifford correspondence, it suffices to show that
Ire(G|0)=Irr(G|n). If xelrr(G) lies over 0, it follows that each irreducible
constituent of xy lies over 0. Therefore, yy is a multiple of ¢y. Since we chose
n lying under ¢, everything follows. |

Lemma 5.2. Let G be a m-separable group, let @€l (G) and suppose that
y¢=¢, where (U,y,0) is a uniqueness triple. Assume further that O (G)< U. If
®o,c) is homogeneous, then U=G.

Proof. First of all, let Q and K be a n-complement and a Hall n-subgroup
of U, respectively. Since y has n-degree, observe that Q is a vertex for ¢. Now,
let N=04G)< O0=0,(U), and write ¢@y=en, where nelrr(N). Let M/N
=0,(G/N). If xeB,G) lifts ¢ (see (2.3) of [5]), it follows that # is an irreducible
constituent of yy. Since n is G-invariant, we have that n extends to M and by
(6.3) of [4], there is a unique extension 7 of n to M lying in B (M). By Lemma
(5.4) of [4], we have that B, -characters with n-degree are n-special (we will use
this fact several times). Hence, observe that 7 is n-special. Since normal irreducible
constituents of B,-characters are again B, -characters ((7.5) of [4]), by (6.2.b) of
[4], it follows that yx,, is a multiple of #, and therefore (M,#) is a subnormal
factorable pair in the sense of Section 3 of [4]. By Definition (5.1) of [4], it
follows that there exists a subgroup W containing M together with a n-degree
character Y such that y¢=y. Since y lifts ¢, it follows that  lifts some pel (W)
with ué=¢. Since, p has n-degree, we have that the m-complements of W are
vertices for ¢. Hence, some G-conjugate of Q, say Q%, is a m-complement of
W. Then, M=N(QENM)=N(Qn M) and therefore, M = U.

Now, since O/ N is a normal n-subgroup of U/ N, we have that O/ N centralizes
M/N. But Cgn(M/N)< M/N and therefore, O=N. Hence, 0=n.

By hypothesis, we know that y, is irreducible and fully ramified with respect
to N. If uel(G|n), uy is a multiple of #, and therefore py is a multiple of
y¢. By Lemma (2.1), u, contains y. Now, by Lemma (2.2), u=y°=¢. Hence,
I(G|n)={¢p}. By Lemma (4.2), we have that @y is fully ramified with respect to
n, where we choose K = H a Hall n-subgroup of G. Notice that, since (y)y is
irreducible, by Mackey, we have that UH=G and hence HhU=K. Now, we
have that 07 =eqpy with e?=|H/N| and, also, we have that 0X=dy, with
d?>=|K/N|. Now, 07=(0%=d(y%y=dpy and thus d=e and H=K. Hence,
U=G, as required. ]

To control the ordinary characters of the block, the following lemma will be
needed.
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Lemma 5.3. Suppose that G=UV, where U,V are subgroups of G. Assume
that a is a character of U such that (ay,.y)" is irreducible. If &y, is a multiple
of ay.y for every Eelrt(U|ay,y), then induction defines a bijection from Irt(U|ay,.y)
onto Irt(G|(ay~p)")-

Proof. Write B=(ay.y)” and let Eelrr(Ul|ay,y). By hypothesis, &,y
=eoy.y and then, (£%),=eB. Therefore, we may write

fG= Z [EG’X]X .

xelrr(G|B)

Let x be an irreducible constituent of £¢.  Then y,, =dp, where, clearly,d<e. Now,

Dtwovs 2wavl=dlBynv, tyrvl=dLB, oy v1=d[B,fl=d.

Now, we may write yy=¢+4E, for some character E. Hence, yy v =%¢unv+Evnv
=eay.y+Ey~y and therefore, e<d. Hence, we conclude that e=d and that 5,
does not contain ay.,. It follows that y=¢&9 is irreducible and that induction
defines a one to one map. Clealy, the map is surjective. |

Theorem 5.4. Let G be a separable group, let ¢ €1,(G) and let B be the block
of ¢. Then 1(B)={¢} if and only if ¢ =y, where (U,y,0) is a uniqueness triple. In
this case, induction defines a bijection from Irr(U|0) onto Irr(B).

Proof. We argue by induction on |G|. Write N=0,(G) and suppose first
that I (B)={¢}. We want to show that ¢ is induced from a uniqueness
character. Let pu be an irreducble constituent of ¢ If 6 is the Clifford
correspondent of ¢ over y, by (2.10) of [16], we know that ¢ is also unique in
its block. Since ¢ induces ¢, by the inductive hypothesis, we may assume that
the character u is G-invariant. In this case, by page 73 of [16], we have that
I.(B)=1(G|p). Now, by Lemma (4.2), we have that ¢ is itself a uniqueness
character and in this case, we are done.

Assume now that ¢ =7 where (U,y,0) is a uniqueness triple. We want to
prove that ¢ is unique in its block an that induction defines a bijection from Irr(U| 6)
onto Irr(B).

Write O0=0,U) and let K be a Hall n-subgroup of U. Since NnU < O,
observe that O, (UN)= ON and that KN is a Hall n-subgroup of UN. Write a =yg.

Now, notice that yU¥ is an irreducible character with n-degree (since y also
has n-degree and |UN: U| is a n-number). Therefore, by (2.6) of [6], B=a*N =(y"M)xn
is irreducible.

By hypothesis, write ay=ef, where e>=|K: O| and notice that we may write
Bon = ¥)on=e0°". Hence, if n is an irreducible constituent of 6°, we have that
[Bow-n1=e. Since |KN:ON|=|K:0O|=e* by Lemma (4.1), we conclude that
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Bon=en, and necessarily, that 0°=n. Therefore, we have found a uniqueness
triple (UN,yY",n) inducing ¢ and containing N. We wish to replace (V,y,0) by
(UN,yYN, ) and this will be possible if we are able to show that induction defines
a bijection from Irr(U|0) onto Irr(UN|#n).

If yelrr(U) lies over 0, notice that y, is multiple of «, because no other
irreducible character of K than « lies over 6. Hence, we are in the hypotheses
of Lemma (5.3) with the group UN. This lemma tells us that induction defines
a bijection from Irr(U|a)=Ire(U|0) onto Irt(UN|B)=Irt(UN|n). So, as we see,
there is no loss of generality if we assume N < O.

Now, let v be an irreducible constituent of 0y and let T be the inertia subgroup
of vin G. We have that TnU, TnK and TnO are the inertia groups of v in
U, K, and O (respectively), and we write y,, o, and 0, for the Clifford correspondents
of y, o and 0 (respectively).

First of all, note that y§=y°=¢, and thus yJ is the Clifford correspondent
of ¢ over v. If T=G, notice that Lemma (5.2) implies that U=G. In this case,
by Lemma (4.2), we have that I,(G|0)={p} and by the results of [16] mentioned
above, we have that I (B)={¢} and Irt(B)=Irt(G|0). So we may assume that T
is proper in G.

Now, since y, induces y and y has n-degree, observe that (Tn U)K=U and
hence, that TnK is a Hall n-subgroup of TnU. Also, since a=(y9)x=Gor~x)%
we have that ay=y¢7~x, by uniqueness of the Clifford correspondents.

Now, we claim that 0, is fully ramified with respect to TnK. First of all,
since 0 is K-invariant (by hypothesis) and 6, is the Clifford correspondent of 6
over v, it follows that 0, is T K-invariant. If ¢ is any irreducible character of
TnK lying over 0, then ¢ lies over v and by the Clifford Correspondence, we
know that X is irreducible. Now, (¢7"K9), =(e;.0)° contains (0,)° which contains
0. Therefore, e¥ lies over 0 and hence, e¥=a. Now, by the uniqueness in the
Clifford Correspondence, since ¢ lies over v and induces «, necessarily e=a, and
the claim is proved.

Now, by Mackey, we have that ((yo)r~x)* =(7§)x is irreducible. Moreover, if
Eelrr(Tn U|yorak) then & lies over 0,. Since 0, is fully ramified with respect
to TnK and it is Tn U-invariant, it follows that &, x is a multiple of yo7.x- So
we are in the hypothesis of Lemma 5.3. By applying Lemma 5.3, we have that
induction defines a bijection Irr(Tn U|6,) — Irr(U| 6).

We wish to apply the inductive hypothesis to the character y5. However,
since we do not know whether or not Tn O is O,(T), we apply Lemma 5.1 to
conclude that there exists a uniqueness triple (V,&,,7,) with TnO < V such that
EINU=9%  Also, we know that induction defines a bijection Irr(V|to)— Irr(T
nU|8,).

Now, we see that (V,&,,1,) is a uniqueness triple inducing yJ. Since T is
proper in G, by the inductive hypothesis, we have that the block b of (yo)" has
a unique modular character and that induction is a bijection Irr(U|1,) — Irr(b). By



ALPERIN ARGUMENT 979

Theorem 2.10 of [16], we conclude that B has a unique modular character.
Finally, since induction defines a bijection in each of the following cases
Irre(V]to) — Irr(d), Irr(b) — Irx(B), Ire(V|ty) — Irt(TnU|0,), and Irt(TA U|6,)
— Irr(U| ), we have that induction is also a bijection from Irr(U|0) — Irr(B), as
required. |

6. A correspondence of characters

First of all, we need the following fact.

Lemma 6.1. Suppose that G=UN, where G is a m-separable group, U is a
subgroup of G and N is normal n-subgroup of G. If Q is a n-complement of U, then
N(Q)=Ny(Q)CW Q).

Proof. We argue by induction on |G|. Let M=NN4(Q) and since Q is a
n-complement of MU, if M <G, the result follows by induction. So we may
assume that QN is a normal subgroup of G. Hence, Q(UnN) is normal in U
and the Frattini argument gives us U=(UNN)Ny(Q). Now, G=UN=Ny(Q)N
and therefore, Ng(Q)=Ny(Q)CNQ). [ ]

Now we are ready to prove our main result. The solvability assumption we
make on the Hall n-complements comes from the results in [8].

Theorem 6.2. Let G be a mn-separable group with a solvable Hall
n-complement. Suppose that ¢ =7%€1,(G), where ye1(U) and (U,y,0) is a uniqueness
triple. Let K be a Hall n-subgroup of U, so that that yxelrr(K) is fully ramified
with respect to O4(U). Write where yo_y,=e0, where IrrO,(U)) and let Q be a
n-complement of U.  If 0*€Irt(Co_y)(Q)) is the Glauberman correspondent of 0, then:
(@) The character 0* is fully ramified with respect to Ng(Q). If 0*N<@ =e*5*, for
some 5* € Irr(N(Q)), then 6* extends to a unique y* € 1 (Ny(Q)) and y*Ne@ e I (N4(Q)).
(b) Assume that ¢ =pu°, where uel (V). Suppose that H is a Hall n-subgroup of
V and that uy is fully ramified with respect to O (V). If Q is a n-complement of
V, then y*Ne(@ = | #Nc(@)

Proof. We simultaneously porve parts (a) and (b) by induction on the order
of G.

Write yx=0, O0=0,U) and notice, since Q is a n-complement of U, that
U=KNy(Q). By Theorem (6.3) of [8], we have that the number of I,-characters of
ON(Q) lying over 0 and with vertex Q is 1 (because I(U|0)={y}, y has n-degree
and, since Q is a n-complement of U, then y has vertex Q). Now, by Proposition
(6.4) of [8], we have that the number of I, -characters of Ny (Q) over 0* with vertex
Q equals 1. Since Q is a m-complement of U, notice that (inside U) to have
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vertex Q is equivalent to have n-degree. Since all I -characters of Ny(Q) have
n-degree (just consider a B, -lifting and observe that the normal n'-subgroup Q
must lie in its kernel), it follows that [[(Ny(Q)|6%|=1. Let y* be the unique
character in this set. Notice that since 6 is Ny(Q)-invariant, by the uniqueness
in the construction of the Glauberman map, 0* is Ny(Q)-invariant. Now, by
Lemma (4.2), we have that (y*)y, o) =0*€Irr(Ng(Q)) and 6* is fully ramified with
respect to Nx(Q).

To complete part (a), we need to show that y*Ne@e] (N;(Q)). This will
require some work, however.

Let N=0,(G). First of all observe that, by the first step in the proof of
Theorem (5.4), we have that §°V is irreducible and fully ramified with respect to
(¥"Mgy. Now, by Lemma (6.1), notice that Nyy(Q)=Ny(Q)Cx(Q). Also, by Lemma
(3.5) of [10], notice that Cy(Q)Cn(Q)=Con(O).

By the first part of the proof, we know that (9°%)* e Irr(Cop(Q)) is fully ramified
with respect to an irreducible character (6%")* e Irr(N(Q)Cn(Q)) which has a unique
extension (yU¥)* e [,(Nyn(Q)).

Now, by Theorem A of [7], it follows that (6%)C°o¥@ =(0°%)*, Therefore,

(5 *Nx(Q)CN(Q))CON(Q) =d *9*Con @)
where d*?=|Ng(Q):Co(Q)|. Since 0*€ov@ js fully ramified with respect to the
group N (Q)Cy(Q) it follows that (§*)N<@CN(@ —(5KNM* js jrreducible and
consequently, (y*)N¥@ = (yUN)* is also irreducible. Hence, to prove that y* induces
irreducibly to Ng(Q), we may assume that N < U. The same happens to prove
part (b): we may assume that N is also contained in V.

Since 6 is Q-invariant, by (13.27) of [3], let v be a Q-invariant irreducible
constituent of 0. Let T be the inertia subgroup of v in G and let y,e (TN U),
do€Irr(Tn K) and 0, e Irr(Tn O) be the Clifford correspondents of y, 6 and 0 over
v, respectively. By the second step in the proof of Theorem (5.4), we know that
0 is fully ramified with respect to §, and that (yo)rx=00.-

Since y, induces y, it has n-degree, and since Q is a n-complement of T'n U,
it follows that ¢q=(y,)" (which is the Clifford correspondent of ¢ overv) has vertex
Q. Hence v is a Q-good constituent of ¢. To prove part (b), notice that we
may change V by some Ng(Q)-conjugate. Since Q-good irreducible constituents
of ¢ are Ng4(Q)-conjugate, it follows that we may assume that © lies over v (where
Ho.wy=/7). Therefore (15)" = @,.

If T=G, by Lemma (5.2), U=V =G and there is nothing to prove. So we
may assume that T is proper in G.

By Lemma (5.1), there exists a subgroup U, = UnT together with a character
oo € 1(Uy) such that af° =y, and age . =doto With 1o € Irr(0(U,)) is fully ramified
with respect to Uyn K. Notice that since y, induces y and y has n-degree, UnT
has m-index in U and hence KN T is Hall n-subgroup of Un7. By the same
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argument, Kn U, is a Hall n-subgroup of U,. Also, we may certainly U, such
that Q is a Hall n-complement of U, and such that OnT < O (U,).

By induction, we have that (xo)*N*@ is irreducible. By the definition, we
know that of lies over n§. Also, by (13.29) of [3], it follows that n¥ lies over
0% and that 6 lies over v*. Since N(Q) is the inertia group of v* in N4(Q) (by
the uniqueness in the Glauberman Correspondence), by the Clifford Correspondence,
we have that a3Ne@ is irreducible. In particular, a¥™v@ js also irreducible. Since
040D = 0* we have that a3Nv© lies over 0*. Therefore, afNv@ =9y* and therefore,
y*Ne@ is irreducible, as requered.

Finally, if (Vy,B0,¢0) is @ uniqueness triple with V< VAT, B,el(V,) such
that Bg°=p, and Poo, . =doto, Where g,€lrr(0,(V,)), chosen in the same way
that we chose (Ug,aq,70) for 74, since 5 =¢,=puT, by induction we have that

(aﬁ)NT(Q’ = ( ﬂ g)Nr(Q).
Hence,

(aa‘)NG(Q’ — (ﬂ(’,")NG(Q)
and since (@¥)Nv@=y* and (BHNVD = pu*, then

(,},*)NG(Q) — (# *)NG(Q)

and the proof is finished. |
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