THE K_{*}-LOCAL TYPE OF THE ORBIT MANIFOLD *(S2m+iχS')/Dq* **BY THE DIHEDRAL GROUP** *Dq*

YASUZO NISHIMURA

(Received September 6, 1995)

Introduction

For a given *CW*-spectrum *E* there is an associated *E*-homology theory $E_xX = \pi_x^*$ *(EAX).* A CW-spectrum Y is called E_* -local if any E_* -equivalence $A \rightarrow B$ induces an isomorphism $[B, Y]_{*} \cong [A, Y]_{*}$. For any *CW*-spectrum *X* there exists an E_* -equivalence $\iota_E: X \to X_E$ such that X_E is E_* -local. X_E is called the E_* -localization of *X*. Let *KO* and *KU* be the real and the complex *K*-spectrum respectively. There is no difference between the KO_{*} - and KU_{*} -localizations, and so we denote by S_K the K_{\star} -localization of the sphere spectrem $S = \Sigma^0$. According to the smashing theorem [2, Corollary 4.7] the smash product $S_K \wedge X$ is actually the K_* -localization of X for any CW -spectrum X .

In this note we shall be interested in the K_* -local type of certain orbit manifolds $D(q)^{m,l}$ introduced as a filtration of a classifying space of the dihedral group D_q in [8]. The manifold $D(q)^{m,l}$ is defind as follows: Let $q \ge 3$ be an odd integer, and *D^q* the dihedral group generated by two elements *a* and *b* with relations $a^q = b^2 = abab = 1$. Consider the unit spheres S^{2m+1} and S^1 in the complex $(m+1)$ -space C^{m+1} and the real $(l+1)$ -space R^{l+1} . Then D_q operates freely on the product space $S^{2m+1} \times S^l$ by

$$
a \cdot (z,x) = (z \exp(2\pi \sqrt{-1/q}),x), \quad b \cdot (z,x) = (\bar{z}, -x)
$$

where \bar{z} is the conjugate of z . The associted topological quotient spaces

$$
D(q)^{2m+1,l} = (S^{2m+1} \times S^l) / D_q = (L(q)^{2m+1} \times S^l) / Z_2,
$$

$$
D(q)^{2m,l} = (L(q)^{2m} \times S^l) / Z_2 \subset D(q)^{2m+1,l}
$$

are defined where $L(q)^{2m+1} = L^m(q)$ is the $(2m+1)$ -dimensional lens space mod q and $L(q)^{2m} = L_0^m(q)$ its 2*m*-skeleton.

The group $KU^0D(q)^{m,l}$ is decomposed to a direct sum of KU^0 -groups of suspensions of stunted lens spaces $mod q$ and $mod 2$ (cf. [5, Theorem 3.9]). Moreover KO^0 - and J^0 -groups of $D(q)^{m,l}$ have a quite similar direct sum decomposition (cf. [10] or [7]). In section 1 we shall show that $D(q)^{m,l}$ itself has

7 76 Y. NlSHIMURA

such a decomposition as K_* -local spectrum. The K_* -local type of the stunted real projective space $RP^m / RP^n = RP_{n+1}^m$ has been determined explicitly by constructing small cell spectra in [13]. In section 2 we shall study the K_{\star} -local type of the stunted lens space $L(p)^m / L(p)^n = L(p)^m_{n+1}$ for an odd prime *p*. Consequently we can observe the K_{\ast} -local type of $D(q)^{m,l}$ more explicitly in the special case that *q* is an odd prime *p.*

1. The K_{\star} -local type of $D(q)^{m,l}$

Let $\mathscr A$ be the category of abelian groups with stable Adams operations ψ^k $(k \in \mathbb{Z})$ (cf. [4, 5.1]). For an arbitrary set P of primes, let $\mathcal{A}_{(P)}$ be the full subcategory of $Z_{(P)}$ -modules of the abelian category $\mathscr A$. Then the inclusion functor $\mathscr A_{(P)} \subset \mathscr A$ has the obvious left adjoint ($\partial \otimes Z_{(P)}$. Assume that P is a finite set of primes. By the Chinese remainder theorem there exists an integer r such that: r generates $(Z/p^2)^*$ for each odd $p \in P$; $r = \pm 3 \mod 8$ when $2 \in P$; $|r| \ge 2$ when P is empty. Let $\mathscr{A}'_{(P)}$ be the category of $Z_{(P)}$ -modules with automorphism ψ^r and involution ψ^{-1} . By [4, 6.4] the forgetful functor $\mathcal{A}_{(P)} \rightarrow \mathcal{A}_{(P)}^r$ is a categorical isomorphism. Moreover if $2 \notin P$ then we don't need the involution ψ^{-1} in the abelian category $\mathscr{A}'_{(P)}$ (cf. [3, Proposition 5.7]).

For any prime *p* let us fix an integer *r* as above. Denote by *Ad(p)* the fiber of the $\psi_R^r - 1:KO_{(p)} \to KO_{(p)}$ where ψ_R^k is the stable real Adams operation. Then we have the following cofiber sequences (cf. [2, section 4]):

$$
Ad_{(p)} \xrightarrow{\xi} KO_{(p)} \xrightarrow{\psi_R^* - 1} KO_{(p)} \to \Sigma^1 Ad_{(p)}
$$

$$
S_{K(p)} \xrightarrow{IA} Ad_{(p)} \to \Sigma^{-1} SQ \to \Sigma^1 S_{K(p)}.
$$

For an odd prime *p* the first sequence can be replaced by

$$
Ad_{(p)} \to KU_{(p)} \stackrel{\psi_c^- - 1}{\to} KU_{(p)} \to \Sigma^1 Ad_{(p)}
$$

because $Ad_{(p)}$ also arises as the fiber of $\psi_c^r - 1:KU_{(p)} \to KU_{(p)}$. Using this fact we can easily verify the following lemma (cf. [3, Theorem 9.1]).

Lemma 1.1. Let X and Y be CW-spectra such that KU_0X and KU_0Y are odd *torsion groups and* $KU_1X=KU_1Y=0$ *. If* KU_0X *and* KU_0Y *are isomorphic in the abelian category* $\mathcal A$ *then X and Y have the same K* $_{*}$ -local type.

In order to describe the K_* -local type of $D(q)^{m,l}$ we first consider the lens space *L(q)^m .* Recall that

$$
KU^{0}L(q)^{2m+1}\cong KU^{0}L(q)^{2m}\cong Z[\sigma]/(\sigma^{m+1},(1+\sigma)^{q}-1),
$$

THE K_{\ast} -Local type of the Orbit Manifold 777

$$
KU^{1}L(q)^{2m+1} \cong Z
$$
, $KU^{1}L(q)^{2m} = 0$

(cf. [6] or [11]) where $\sigma = [\gamma]-1$ for the canonical line bundle γ over $L(q)^{2m+1}$ (which is induced by the natural surjection $\pi: L(q)^{2m+1} \to CP^m$) or its restriction over $L(q)^{2m}$. Therefore the stable Adams operation $\psi_{\mathcal{C}}^k$ operates on $KU^0L(q)^{2m}$ as

$$
\psi_c^k \sigma = (1 + \sigma)^k - 1.
$$

Since $KU^{0}L(q)^{2m}$ is an odd torsion group, there exist subgroups A^{m} and B^{m} on which the conjugation ψ_c^{-1} acts as 1 and -1 respectively (cf. [4, Proposition 3.8] and a direct sum decomposition $KU^{0}L(q)^{2m} \cong A^{m} \oplus B^{m}$ in \mathscr{A} . (In this case A^{m} and *B*^{*m*} are generated by the elements $\sigma + \psi_C^{-1}\sigma$ and $(\sigma - \psi_C^{-1}\sigma)(\sigma + \psi_C^{-1}\sigma)^{i-1}$ $(i \ge 1)$ respectively (cf. [5, Lemma 3.3]).) From [4, Theorem 10.1](or [3, Proposition 8.7]) and [4, Theorem 11.1] there exist certain finite spectra SA^{m} and SB^{m} such that $KU^0SA^m \cong A^m$, $KU^0SB^m \cong B^m$ and $KU^1SA^m = KU^1SB^m = 0$ in \mathscr{A} . Then the lens space $L(q)^{2m}$ has the same K_* -local type as $SA^m \vee SB^m$ by Lemma 1.1. We obtain the KO_z -groups by the Bott and Anderson cofiber sequences as follows:

$$
KO_iSA^m \cong \begin{cases} A^m & \text{for } i \equiv 3 \text{ mod } 4 \\ 0 & \text{otherwise} \end{cases}, \qquad KO_iSB^m \cong \begin{cases} B^m & \text{for } i \equiv 1 \text{ mod } 4 \\ 0 & \text{otherwise} \end{cases}
$$

Let $\bar{f}: \Sigma^{2m} \to L(q)^{2m}$ be the attaching map of the top cell in $L(q)^{2m+1}$. Consider the associated map $f = (f_A, f_B) : \Sigma^{2m} \to \Sigma A^m \vee \Sigma B^m$ such that $l_K \wedge \overline{f} = \varphi f$ where φ : $SA^m \vee SB^m \to S_K \wedge L(q)^{2m}$ is a K_* -equivalence. Since $KO_iSA^m = 0$ for $i \neq 3 \mod 4$, $f_A \in \left[\sum^{2m} S_K \wedge SA^m\right] = 0$ when *m* is even. Similarly $f_B \in \left[\sum^{2m} S_K \wedge SB^m\right] = 0$ when *m* is odd. Therefore $L(q)^{2m+1}$ has the same K_* -local type as the cofiber $C(f) = C(f_A) \vee SB^m$ when *m* is odd or $C(f) = SA^m \vee C(f_B)$ when *m* is even. We shall often denote SA^m and SB^m by SA and SB respectively for simplicity.

Lemma 1.2. Let $\iota_K : S_K \to KO$ denote the K_{\ast} -localized map of the unit $\iota : S \to KO$.

i) If $l \equiv 1 \mod 4$ then $[\Sigma^l SA, S_K \wedge SA] = 0 = [\Sigma^l SB, S_K \wedge SB]$ *, and if* $l \equiv 0 \mod 4$ *then* $\iota_{K_*}: [\Sigma^l SA, S_K \wedge SA] \to [\Sigma^l SA, KO \wedge SA]$ and $\iota_{K_*}: [\Sigma^l SB, S_K \wedge SB] \to [\Sigma^l SB, KO$ *A SB] are monomorphisms.*

ii) If $l \equiv 3 \mod 4$ then $[\Sigma^l SA, S_K \wedge SB] = 0 = [\Sigma^l SB, S_K \wedge SA]$, and if $l \equiv 2 \mod 4$ *then* $\iota_{K_{\ast}} : [\Sigma^l SA, S_K \wedge SB] \to [\Sigma^l SA, KO \wedge SB]$ and $\iota_{K_{\ast}} : [\Sigma^l SB, S_K \wedge SA] \to [\Sigma^l SB, KO$ *ASA] are monomorphisms.*

Proof, i) There is an exact sequence

$$
\left[\Sigma^l SA, \Sigma^{-1}KO_{(p)} \wedge SA\right] \to \left[\Sigma^l SA, S_{K(p)} \wedge SA\right] \to \left[\Sigma^l SA, KO_{(p)} \wedge SA\right].
$$

It is easily verified that $\left[\sum^{\infty} SA, KO \wedge SA\right] = 0$ when $l \equiv 1$ or 2 mod 4 because $KO_iSA = 0$ for $i \neq 3$ mod 4. Now our result is immediate.

ii) is shown similarly.

Consider the $Z/2$ -action on $L(q)^{2m}$ induced by the complex conjugation

 $t: L(q)^{2m} \to L(q)^{2m}, \quad [z] \mapsto [\bar{z}].$

By definition $t^*\sigma = \psi_c^{-1}\sigma$ and ψ_c^{-1} operates on SA^m and SB^m as 1 and -1 respectively. Therefore we obtain the following commutative diagram after replacing the K_* -equivalence φ : $SA^m \vee SB^m \rightarrow S_K \wedge L(q)^{2m}$ suitably necessary:

$$
S_K \wedge L(q)^{2m} \xrightarrow{i} S_K \wedge L(q)^{2m}
$$

$$
\uparrow^{\varphi} \qquad \qquad \uparrow^{\varphi}
$$

$$
SA^m \vee SB^m \xrightarrow{i \vee (-1)} SA^m \vee SB^m.
$$

This can be also proved by induction on *m* using Lemma 1.2.

For the orbit manifold $D(q)^{m,l} = (L(q)^m \times S^l)/Z_2$ there is a fibering

$$
L(q)^m \xrightarrow{k} D(q)^{m,l} \xrightarrow{p} RP^l.
$$

Since the projection p has a right inverse $RP^l = D(q)^{0,l} \subset D(q)^{m,l}$ (cf. [5, Lemma 1.7]) we observe that

$$
D(q)^{m,l}=RP^l\vee D(q)^{m,l}_{1,0}
$$

where $D(q)^{m,l}_{1,0} = D(q)^{m,l} / RP^l$.

In order to determine the K_{\star} -local type of $D(q)_{1,0}^{2m,l}$ by induction on *l* we need the following cofiber sequence (cf. $\lceil 10 \rceil$):

$$
\Sigma^{l-1}L(q)^{2m} \stackrel{\pi_{l-1}}{\to} D(q)_{1,0}^{2m,l-1} \stackrel{k_l}{\to} D(q)_{1,0}^{2m,l} \stackrel{qi}{\to} \Sigma^{l}L(q)^{2m}.
$$

Note that $q_l \pi_l = \nabla \lambda_l \rho : \Sigma^l L(q)^{2m} \to \Sigma^l L(q)^{2m}$ where $\lambda_l = id \vee (\tau \wedge t) : \Sigma^l L(q)^{2m} \vee \Sigma^l L(q)^{2m}$ $\rightarrow \Sigma^l L(q)^{2m} \vee \Sigma^l L(q)^{2m}$ for the antipotal map τ of Σ^l , ρ is the comultiplication of $L(q)^{2m}$ and ∇ is the folding map (cf. [5, Lemma 1.11]). Therefore we may regard that $q_i \pi_i : \Sigma^i SA^m \vee \Sigma^i SB^m \rightarrow \Sigma^i SA^m \vee \Sigma^i SB^m$ is expressed as

$$
q_i \pi_i = \begin{cases} 0 \vee 2 & \text{if } l \text{ is even} \\ 2 \vee 0 & \text{if } l \text{ is odd.} \end{cases}
$$

The *KU*-cohomology of $D(q)_{1,0}^{2m}$ is given as follows (cf. [5, Theorem 3.9]):

THE K_{\star} -Local type of the Orbit Manifold 779

The components A^m and $C^m \otimes KU^* \Sigma^l$ (where $C = A$ if *l* is odd and $C = B$ if *l* is even) are given via the canonical inclusion $k: L(q)^{2m} = D(q)_{1,0}^{2m,0} \subset D(q)_{1,0}^{2m,1}$ and the natural projection $q_l: D(q)_{1,0}^{2m,l} \to \Sigma^l L(q)^{2m}$ respectively.

Proposition 1.3. $D(q)_{1,0}^{2m,l}$ has the same K_* -local type as $SA^m \vee \Sigma^l SB^m$ if *l* is *even and SA^m \/ΣSA^m* if / *is odd.*

Proof. i) The " $l \equiv 0 \mod 4$ " case: Since the conjugation acts on $KU^0D(q)_{1,0}^{2m,l}$ as $\psi_c^{-1} = 1$ on A^m and $\psi_c^{-1} = -1$ on $B^m \otimes KU^0 \Sigma^l$, $KU^0 D(q)_{1,0}^{2m,l}$ is decomposed to *A*^m and $B^m \otimes KU^0 \Sigma^l$ in the abelian category $\mathscr A$. From Lemma 1.1, $D(q)_{1,0}^{2m,l}$ has the same K_* -local type as $SA^m \vee \Sigma^l SB^m$.

ii) The " $l \equiv 1$ mod 4" case: We consider the following cofiber sequence

$$
\Sigma^{l-1}L(q)^{2m} \stackrel{\pi_{l-1}}{\to} D(q)_{1,0}^{2m,l-1} \stackrel{k_l}{\to} D(q)_{1,0}^{2m,l} \stackrel{q_l}{\to} \Sigma^{l}L(q)^{2m}.
$$

Here we can replace $\Sigma^{l-1} L(q)^{2m}$ and $D(q)_{1,0}^{2m,l-1}$ by $\Sigma^{l-1} SA \vee \Sigma^{l-1} SB$ and $SA \vee \Sigma^{l-1}SB$ respectively from i). We set:

$$
\pi_{l-1} = \begin{pmatrix} x & z \\ y & 2 \end{pmatrix}, \qquad q_{l-1} = \begin{pmatrix} u & w \\ v & 1 \end{pmatrix}
$$

y V \v where all of x, \dots, v and *w* become trivial if they are carried from $[X, S_K \wedge Y]$ into $[X, KO \wedge Y]$ via the map $\iota_K : S_K \to KO$. From Lemma 1.2 *x* and *u* must be trivial. Since $q_{t-1}\pi_{t-1} = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$, *y* and *w* are also trivial. Thus we can express as

$$
\pi_{l-1} = \begin{pmatrix} 0 & z \\ 0 & 2 \end{pmatrix}, \quad q_{l-1} = \begin{pmatrix} 0 & 0 \\ v & 1 \end{pmatrix}.
$$

Consider the following commutative diagram:

7 8 0 Y. NlSHIMURA

$$
\Sigma^{l-1}SA \xrightarrow{\circ} SA \rightarrow SA \vee \Sigma^{l}SA \rightarrow \Sigma^{l}SA
$$

\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$

\n
$$
\Sigma^{l-1}SA \vee \Sigma^{l-1}SB \xrightarrow{\pi_{l-1}} SA \vee \Sigma^{l-1}SB \xrightarrow{k_l} S_K \wedge D(q)_{1,0}^{2m,l} \xrightarrow{q_l} \Sigma^{l}SA \vee \Sigma^{l}SB
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
\Sigma^{l-1}SB \xrightarrow{\circ} \Sigma^{l-1}SB
$$

Now we can determine the K_{*} -local type of $D(q)_{1,0}^{2m,l}$ as desired and we can take

$$
k_l = \begin{pmatrix} 1 & b \\ 0 & 0 \end{pmatrix}, \qquad q_l = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.
$$

iii) The " $l \equiv 3 \mod 4$ " case: As is shown in ii) we can express as $q_{l+1} = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$. Our result is proved similarly to the case ii). *\v* 1/

iv) The " $l \equiv 2 \mod 4$ " case: From Lemma 1.2 we can set $\pi_{l-1} = \begin{pmatrix} 0 & x \\ 2 & x \end{pmatrix}$ \2 *y* Since $q_{l-1} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $q_{l-1}\pi_{l-1} = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$, *y* is trivial. For the canonical inclusion $k: L(q)^{m} \to D(q)_{1,0}^{m,l+1}$ we notice that $k \mid SA = (1,*) : SA \to SA \vee \Sigma^{l+1}SA$. Then x mus be trivial because $k_{i+1} k_i \pi_{i-1} = 0$. Now our result is immediate.

REMARK. For the case iv) the subgroup $A^m \subset KU^0D(q)_{1,0}^{2m,l}$ is the image of representation ring of D_q (cf. [5, Section 2]). Therefore $KU^0D(q)_{1,0}^{2m,1}$ is also decomposed to A^m and $B^m \otimes K U^0 \Sigma^l$ in $\mathscr A$. Then we can prove the case iv) in a similar way to the case i).

Let $RP^{m+l+1}_{m+1}=RP^{m+l+1}/RP^m$ be the stunted real projective space. Consider the following commutaive diagram:

$$
\Sigma^{m+l+1} = \Sigma^{m+l+1}
$$
\n
$$
\downarrow^{\gamma_0} \qquad \downarrow^{\gamma}
$$
\n
$$
\Sigma^{m+1} \stackrel{\beta_0}{\rightarrow} \Sigma^1 R P_m^{m+l} \rightarrow \Sigma^1 R P_{m+1}^{m+l}
$$
\n
$$
\parallel \qquad \qquad \downarrow \qquad \qquad \downarrow
$$
\n
$$
\Sigma^{m+1} \stackrel{\beta}{\rightarrow} \Sigma^1 R P_m^{m+l+1} \rightarrow \Sigma^1 R P_{m+1}^{m+l+1}
$$

where δ's are the bottom cell inclusions and *γ's* are the top cell attaching maps. Recall that K_* -local type of $\Sigma^1 RP_{2s+1}^{2s+2n}$ has the same K_* -local type as a

certain small cell spectrum $\nabla SZ/2^n$ such that $KU_0 \nabla SZ/2^n \cong Z/2^n$ on which $\psi_C^{-1} = 1$ and $KU_1\nabla SZ/2^n = 0$ (see [13, Theorem 2.7] for details). Then $\Sigma^1RP_{2s+1}^{2s+2n+1}$, K_* ¹ RP_{2s+2}^{2s+2n} and $\Sigma^1RP_{2s+2}^{2s+2n+1}$ have the same K_* -local types as the cofibers of the associated maps $\gamma : \Sigma^{2s+2n+1} \to \nabla S Z / 2^n$, $\beta : \Sigma^{2s+2} \to \nabla S Z / 2^n$ and $\beta_0 \vee \gamma_0$ $2^{2s+2} \vee 2^{2s+2n+1} \rightarrow \nabla SZ/2^n$ respectively, which are given explicitly in [13, Theorems 2.7, 2.9, 3.8]. Using these associated maps we can give the K_* -local type of $\lambda_{1,0}^{2m+1,l}$, as follows.

Theorem 1.4. $D(q)_{1,0}^{2m+1,l}$ has the same K_* -local type as the spectra tabled below:

m		$D(q)_{1,0}^{2m+1,l}$
even	odd	$SA^{m} \vee \Sigma^{l} SA^{m} \vee \Sigma^{m} RP^{m+l+1}_{m+1}$
even	even	$SA^{m} \vee C(\Sigma^{l} f_{B}, \Sigma^{m-1} \gamma)$
odd	even	$\Sigma^lSB^m\vee C(f_A,\Sigma^{m-1}\beta)$
odd	odd	$\Sigma^l f_A$ Σ^{m-1}

Proof. We have the following cofiber sequence (cf. [5, Lemma 1.12]):

$$
\Sigma^{m-1} R P_{m+1}^{m+l+1} \xrightarrow{F} D(q)_{1,0}^{2m,l} \xrightarrow{D(q)_{1,0}^{2m+1,l}}
$$

Here we may use $SA^m \vee \Sigma^l SC^m$ instead of $D(q)_{1,0}^{2m,l}$ by virtue of Proposition 1.3. When *m* is odd we consider the $KZ[1/2]_{*}$ -localization of the following commutative diagram:

$$
\Sigma^{2m} \longrightarrow L(q)^{2m} \longrightarrow L(q)^{2m+1}
$$

$$
\downarrow^{k_0} \qquad \qquad \downarrow^{k} \qquad \qquad \downarrow^{k}
$$

$$
\Sigma^{m-1}RP_{m+1}^{m+l+1} \longrightarrow D(q)_{1,0}^{2m,l} \longrightarrow D(q)_{1,0}^{2m+1,l}
$$

where k and k_0 are the canonical inclusions. Then we may regard as $k_0 = (1,0): \Sigma^{2m} \to \Sigma^{2m} \vee \Sigma^{m-1} R P_m^{m+l+1}, \ f = (f_A,0): \Sigma^{2m} \to S A^m \vee S B^m \text{ and } k = (1,0)$ $SA^m \vee SB^m \rightarrow SA^m \vee \Sigma^l SC^m$. Therefore $F|\Sigma^{2m}$ is expressed as $(f_A, 0): \Sigma^{2m} \rightarrow SA^m$ \vee Σ l *SC*ⁿ

When $m+l$ is even we consider the $KZ[1/2]_{*}$ -localization of the following commutative diagram:

7 8 2 Y. NlSHIMURA

$$
\Sigma^{2m+l} \longrightarrow \Sigma^{l}L(q)^{2m} \longrightarrow \Sigma^{l}L(q)^{2m+1}
$$

$$
\downarrow^{\gamma} \qquad \qquad \downarrow^{\pi_{l}} \qquad \qquad \downarrow^{\pi_{l}}
$$

$$
\Sigma^{m-1}RP_{m+1}^{m+l+1} \longrightarrow D(q)_{1,0}^{2m,l} \longrightarrow D(q)_{1,0}^{2m+1,l}
$$

where γ is the top cell attaching map and π_l is the natural projection. Then we may regard as $\gamma = (0,1): \Sigma^{2m+1} \to \Sigma^{m-1} R P_{m+1}^{m+1} \vee \Sigma^{2m+1}$, $f = (f_C, 0): \Sigma^{2m+1} \to \Sigma^t SC$ $\forall \Sigma S'C''''$ where $C' = B$ if *l* is odd and $C' = A$ if *l* is even, and $\pi_l = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$: $\Sigma^l SC''''$ $\forall \Sigma^l SC'^m \to SA^m \lor \Sigma^l SC^m$. Therefore $F|\Sigma^{2m+l}$ is expressed as $(0,2f_C): \Sigma^{2m+l}$ \rightarrow *SA*^{*m*} \vee *Σ¹SC^{<i>m*}. Consequently *D*(*q*)²_{*m*}¹.^{*l*} has the same *KZ*[1/2]_{*}-local type as $SA^m \vee \Sigma^l SA^m$, $SA^m \vee \Sigma^l C(f_B)$, $C(f_A) \vee \Sigma^l SB^m$ and $C(f_A) \vee \Sigma^l C(f_A)$ according as $(m, l) \equiv (0, 1), (0, 0), (1, 0)$ and $(1, 1)$ mod 2 respectively. From the previous observation we can determine the K_{*} -local type of $D(q)_{1,0}^{2m+1,l}$ as desired.

Let *n* and *k* be integers such that $0 \le n \le m$ and $0 \le k \le l$. We set:

$$
D(q)_{n,k}^{m,l} = D(q)^{m,l} / (D(q)^{m,k-1} \cup D(q)^{n-1,l}).
$$

This space is the Thom complex of a canonical bundle over $D(q)^{m-n,1-k}$ when *n* is even. We shall extend Proposition 1.3 and Theorem 1.4 to the case of $D(q)_{n,k}^{m,l}$. In order to state the extended theorem we express the K_* -local type of the stunted lens space $L(q)_{n+1}^m = L(q)^m / L(q)^n$ as follows: $L(q)_{2n+1}^{2m}$ has the same K_* -local type as $SA_n^m \vee SB_n^m$ where the conjugation acts as $\psi_c^{-1} = 1$ on $KU^0SA_n^m \cong A_n^m$ and $\psi_c^{-1} = -1$ on $KU^0SB_n^m \cong B_n^m$. $L(q)_{2n+1}^{2m+1}$, $L(q)_{2n+2}^{2m}$ and $L(q)_{2n+2}^{2m+1}$ have the same K_* -local types as the cofibers of the following maps respectively:

$$
f = (f_A, f_B) : \Sigma^{2m} \to SA_n^m \vee SB_n^m;
$$

\n
$$
g = (g_A, g_B) : \Sigma^{2n+1} \to SA_n^m \vee SB_n^m;
$$

\n
$$
f \vee g : \Sigma^{2m} \vee \Sigma^{2n+1} \to SA_n^m \vee SB_n^m.
$$

 $f_A = 0$ if *m* is even and $f_B = 0$ if *m* is odd, and $g_A = 0$ if *n* is even and $g_B = 0$ if *n* is odd.

Let $\langle \Sigma^k \rangle$ be Σ^k if k is odd and $*$ if k is even. Then we can choose the map $\beta \vee \gamma: \Sigma^1 \langle \Sigma^k \rangle \vee \langle \Sigma^l \rangle \to \nabla SZ/2^i$ so that its cofiber $C(\beta \vee \gamma)$ has the same K_* -local type as $\Sigma^1RP_{k+1}^l$ where *i* depends on *k* and *l*.

Theorem 1.5. i) $D(q)_{2n+1,k}^{2m,l}$ has the same K_* -local type as $\Sigma^k SE^m_n \vee \Sigma^l SC^m_n$ *where* $C = A$ *if l is odd and* $C = B$ *if l is even, and* $E = A$ *if k is even and* $E = B$ *if k is odd.*

ii) $D(q)_{2n+1,k}^{2m+1,l}$, $D(q)_{2n+2,k}^{2m,l}$ and $D(q)_{2n+2,k}^{2m+1,l}$ have the same K_* -local types as the

cofibers of the following maps respectively.

$$
\widetilde{F}: X = \Sigma^m \langle \Sigma^{m+k} \rangle \vee \Sigma^{m-1} \langle \Sigma^{m+l+1} \rangle \to \Sigma^k SE_n^m \vee \Sigma^l SC_n^m \vee \Sigma^{m-1} \nabla SZ / 2^i,
$$

$$
\widetilde{G}: Y = \Sigma^{n+1} \langle \Sigma^{n+k} \rangle \vee \Sigma^n \langle \Sigma^{n+l+1} \rangle \to \Sigma^k SE_n^m \vee \Sigma^l SC_n^m \vee \Sigma^n \nabla^r SZ / 2^i,
$$

$$
\widetilde{H}: X \vee Y \to \Sigma^k SE_n^m \vee \Sigma^l SC_n^m \vee \Sigma^{m-1} \nabla SZ / 2^i \vee \Sigma^{n-1} \nabla^r SZ / 2^i
$$

which are expressed as the following matrices:

$$
\tilde{F} = \begin{pmatrix} f_E & 0 \\ 0 & f_C \\ \beta & \gamma \end{pmatrix}, \qquad \tilde{G} = \begin{pmatrix} g_E & 0 \\ 0 & g_C \\ \beta' & \gamma' \end{pmatrix}, \qquad \tilde{H} = \begin{pmatrix} f_E & 0 & g_E & 0 \\ 0 & f_C & 0 & g_C \\ \beta & \gamma & 0 & 0 \\ 0 & 0 & \beta' & \gamma' \end{pmatrix}
$$

where the maps $\beta \lor \gamma$ *and* $\beta' \lor \gamma'$ *are taken such that the cofibers* $C(\beta \lor \gamma)$ *and* $C(\beta' \vee \gamma')$ have the same K_* -local types as $\sum^m R P_{m+k+1}^{m+l+1}$ and $\sum^{n+1} R P_{n+k+1}^{n+l+1}$ respectively.

Proof. The case i) is proved similarly to the proof of Proposition 1.3. Consider the following cofiber sequences (cf. [7, Lemma 3.11]):

$$
\sum_{m-1}^{m-1} R P_{m+k+1}^{m+l+1} \rightarrow D(q)_{2n+1,k}^{2m,l} \rightarrow D(q)_{2n+1,k}^{2m+l+1}
$$

$$
\sum_{m} R P_{m+k+1}^{n+l+1} \rightarrow D(q)_{2m+1,k}^{2m,l} \rightarrow D(q)_{2n+2,k}^{2m,l}.
$$

By a similar argument to the proof of Theorem 1.4 we can show that the cofibers $C(F)$ and $C(G)$ have the same K_* -local types as the cofibers $C(\tilde{F})$ and $C(\tilde{G})$ respectively. Moreover the cofiber $C(\tilde{H})$ has the same K_{*} -local type as $C(F \vee G) = D(q)_{2n+2,k}^{2m+1,l}$.

REMARK. S. Kôno has independently studied the KO^* - and J^* -groups of $D(q)_{n,k}^{m,l}$ in [7]. According to his computations the KO^* - and J^* -groups of $D(q)_{n,k}^{m,l}$ are also decomposed to the KO^* - and J^* -groups of the stunted lens spaces mod q and mod 2 when *n* is odd; but there is a case the J^* -group doesn't necessarily have such a decomposition when *n* is even.

2. The K_{\star} -local type of $L(p)^{m}_{n}$

In this section p denotes an odd prime. Recall that the groups $\pi_i S_{K(p)} \cong \pi_i S_K \otimes Z_{(p)}$ are isomorphic to the following: $Z_{(p)}$ for $i=0$; $Q/Z_{(p)} = Z/p^{\infty}$ for $i \equiv -2$; Z/p^r for $i \equiv -1 \mod 2(p-1)$ with $i \neq -1$ where $r = v_p(i+1) + 1$; and 0 otherwise (cf. [2]). For *t*>0 with $v_p(t) \ge r-1$ there exists an element $\alpha_{t,r} : \Sigma^{2t(p-1)-1} \to \Sigma^0$ of order *p*^{*r*} in the image of *J*-homomorphism $J: \pi_*SO \to \pi_*\Sigma^0$. Let SZ/p^r be the Moore spectrum

784 Y. NisfflMURA

of type Z/p^r , and $i_r: \Sigma^0 \to SZ/p^r$ and $j_r: SZ/p^r \to \Sigma^1$ denote the bottom cell inclusion and the top cell projection. Then there exists an Adams' K_* -equivalence

$$
A_{t,r} : \Sigma^{2t(p-1)}SZ/p^r \to SZ/p^r
$$

such that $j_r A_{t,r} i_r = \alpha_{t,r}$ (see [1, Section 12]). For simplicity we shall often omit the subscript *r* such as $i = i_r$, $j = j_r$ and $\alpha_t = \alpha_{t,r}$ when $r = v_p(t) + 1$.

Let *X* be a CW-spectrum such that $KU_0X \cong Z/p^r$ and $KU_1X=0$. We fix an integer *k* such that it generates $(Z/p^2)^*$. Then the Adams operation ψ_c^k on $KU_0\lambda$ is expressed as $\psi_c^k = k^{-t}$ for some integer *t* because *k* also gererates $(Z/p^r)^*$. This implies that *X* has the same K_{\star} -local type as $\sum^{2t} SZ/p^r$ for some t ($0 \le t < p^{r-1}(p-1)$) (cf. [4, Proposition 10.5]).

Theorem 2.1. Let m and n be integers such that $m - n = r(p-1) + s$ ($0 \le s < p-1$, $r \ge 0$). The function $e(k, j)$ is defined by $e(k, j) = 2kp^j - 1$ when $j \ge 0$ and $e(k, -1) = 2k - 1$. Then $L(p)_{2n+1}^{2m}$ has the same K_{*} -local type as

$$
\bigvee_{i=1}^{p-1} \sum_{j=1}^{e(n+i,r(i))} SZ/p^{r(i)+1}
$$

where $r(i) = r$ if $i \leq s$ and $r(i) = r-1$ if $i > s$.

Proof. If $m = n + 1$ then $L(p)_{2n+1}^{2n+2}$ is actually $\Sigma^{2n+1}SZ/p$. Assume that $L(p)_{2n+1}^{2m}$ has the same K_* -local type as the desired wedge sum of Moore spectra. Consider the following cofiber sequence

$$
\Sigma^{2m}SZ/p \to L(p)_{2n+1}^{2m} \to L(p)_{2n+1}^{2m+2}.
$$

It is easily verified that $[\Sigma^{2m}SZ/p, S_K \wedge \Sigma^{e(n+i,r(i))}SZ/p^{r(i)+1}]=0$ for $i \neq s+1$. Therefore the K_{*} -localized map g may be expressed as $g = (0, \dots, 0, g_{s+1}, 0, \dots, 0)$ where g_{s+1} : $\Sigma^{2m}SZ/p \rightarrow S_K \wedge \Sigma^{e(n+s+1,r-1)}SZ/p^r$. Recall that

$$
KU_{-1}L(p)_{2n+1}^{2m+2} \cong \bigoplus_{i=1}^{s+1} Z/p^{r+1} \bigoplus_{i=s+2}^{p-1} Z/p^r
$$

(cf. [6] or [11]). Hence $KU_{-1}C(g_{s+1})$ must be Z/p^{r+1} on which ψ_c^k $\equiv 1/k^{n+s+1}$ mod p and $\psi_c^{k+p} = \psi_c^k$. This implies that $C(g_{s+1})$ has the same K_* -local $\sum e^{(n+s+1,r)}$ *SZ* / p^{r+1} *.*

REMARK. Recall that each $M \in \mathcal{A}_{(p)}$ is a direct sum of its subobject $M^{[i]} \in T^i \mathcal{B}_{(p)}$ for $i=0,1,\dots,p-2$ (see [3, Proposition 3.7]). We can assert that $KU_{-1}L(p)_{2n+1}^{2m}$ \cong $\bigoplus^{\infty} Z/p^{r(i)+1}$ as an abelian group gives rise to a decomposition in $\mathscr A$ because

 $\Sigma^1 L(p)_{2n+1}^{2m}$ is mod *p* decomposable (see [10, Proposition 9.6]) and its Atiyah-Hirzebruch spectral sequence collapses. Using this result we may also obtain the above theorem immediately.

In order to investigate the K_* -local type of $L(p)_{2n+1}^{2m+1}$ we shall describe generators of the group $\left[\sum_{k=1}^{2t(p-1)-1} \frac{SZ}{p}, \frac{S_k}{SZ/p'}\right]$. We first assume that $t > 0$ and put $q = v_p(t) + 1$. For the map $\alpha_t = \alpha_{t,q} : \Sigma^{2t(p-1)-1} \to \Sigma^0$ of order p^q its coextention $A_t = \tilde{\alpha}_{t,q}: \Sigma^{2t(p-1)} \to SZ/p^q$ is given by $A_{t,q}i_q$. Using the obvious map $\pi = \pi_{q,r}: SZ/p^q$ \rightarrow *SZ/p^r* we obtain a generator $\pi \tilde{\alpha}_t$ (denoted simply by $\tilde{\alpha}_{t,r}$) in the group $[\Sigma^{2t(p-1)}, S_K \wedge SZ/p^r] \cong Z/p^{min(r,q)}$ such that $j_r \tilde{\alpha}_{t,r} = \alpha_{t,r}$ if $q \le r$ and $j_r \tilde{\alpha}_{t,r} = p^{q-r} \alpha_{t,r}$ if *q>r.* The map $i_{r} \alpha_{t}$ generates the group $[\Sigma^{2t(p-1)-1}, S_{K} \wedge SZ/p^{r}] \cong Z/p^{min(r,q)}$. We may assume that $\alpha_{t,1} = p^{q-1}\alpha_t : \Sigma^{2t(p-1)-1} \to \Sigma^0$. Then its extension $\bar{\alpha}_{t,1} : \Sigma^{2t(p-1)-1} SZ$ $I_p \to \Sigma^0$ is given by $j_q A_{t,q} \pi_{1,q}$. Note that $p^{r-1} i_r \alpha_t = (\alpha_t \wedge \pi_{1,r}) i_1 : \Sigma^{2t(p-1)-1} \to SZ/p^r$. Now we can give two generators of the group

$$
\left[\sum_{k=1}^{2t(p-1)-1} SZ/p, S_k \wedge SZ/p'\right] \cong Z/p \oplus Z/p
$$

for $t>0$ as follows (cf. $[1,$ Theorem 12.11]): the first component is generated by $\tilde{\alpha}_{t}$, *j*₁; the second component is generated by $i_r \tilde{\alpha}_{t,1}$ and $\alpha_t \wedge \pi$ according as $r \ge q$ and $r \leq q$ respectively. Moreover it is easily verifed that these generators have the following relations: $i_r \bar{\alpha}_{t,1} = \tilde{\alpha}_{t,\nu} j_1$ for $r < q$; $i_r \bar{\alpha}_{t,1} = \tilde{\alpha}_{t,\nu} j_1 + \alpha_t \wedge \pi$ for $r = q$; and $\tilde{\alpha}_{t,s}j_1 = \alpha_t \wedge \pi$ for $r > q$.

Consider the group $\pi_{-2t(p-1)-1}S_{K(p)}$ for $t>0$. Since $\tilde{\alpha}_t = A_{t,q}i_q \colon \Sigma^{2t(p-1)}$ \rightarrow *SZ* / p^q we obtain a K_* -equivalence e_t : $\Sigma^{2i(p-1)+1} \rightarrow C(\tilde{\alpha}_t)$ such that $e_j{}_q = i_c A_{t,q}$ and $j_c e_t = p^q$ for the canonical inclusion i_c : $SZ/p^q \rightarrow C(\tilde{\alpha}_t)$ and the canonical projection $j_c: C(\tilde{\alpha}_i) \to \Sigma^{2t(p-1)+1}$. Moreover there exists a K_* -equivalence $A_{-t,q}: SZ/p^q$ $\rightarrow \Sigma^{-1} C(\tilde{\alpha}_t) \wedge SZ/p^q$ such that $(1 \wedge j_q)A_{-t,q} = i_C$. Set $\alpha_{-t} =$ $=\sum 2^{t(p-1)-1}C(\tilde{\alpha}_t)$ which may be regarded as a generator of the group $\pi_{-2t(p-1)-1}S_{K(p)}$. By using α_{-t} instead of α_t in the previous discussion we can give two generators of the group $[\Sigma^{-2t(p-1)-1}SZ/p, S_K \wedge SZ/p^r] \cong \mathbb{Z}/p \oplus \mathbb{Z}/p$ for *t* > 0 when SZ/p^r is replaced by $\Delta_{-t}SZ/p^r = \Sigma^{-2t(p-1)-1}C(\tilde{\alpha}_t) \wedge SZ/p^r$.

Denote by $L_{r,1}^{t}$ ($t \neq 0$) the spectrum constructed as the cofiber of the map $\Lambda \pi : \Sigma^{2t(p-1)-1}SZ/p \to \Delta_t SZ/p^r$ where $\Delta_t SZ/p^r = SZ/p^r$ for $t > 0$. Recall that $KU_0C(\alpha_t) \cong Z \oplus Z$ and $KU_0C(i_0\alpha_t) \cong Z \oplus Z/p^r$ on which the Adams operations ψ_c^k act as

$$
\psi_c^k = \begin{pmatrix} 1/k^{t(p-1)} & 0 \\ (1 - k^{t(p-1)})/p^q k^{t(p-1)} & 1 \end{pmatrix}
$$

with $q = v_p(t) + 1$ and $KU_1C(\alpha_t) = KU_1(i, \alpha_t) = 0$ (cf. [1]). Then the KU_* -group of $L^{t}_{r,1}$ is given as follows:

786 Y. NlSHIMURA

$$
KU_0L_{r,1}^t \cong Z/p \oplus Z/p^r; \ \psi_C^k = \begin{pmatrix} 1/k^{t(p-1)} & 0 \\ p^{r-1}(1-k^{t(p-1)})/p^q k^{t(p-1)} & 1 \end{pmatrix}
$$

\n
$$
KU_1L_{r,1}^t = 0.
$$

For a given specturm X, we shall denote by ΔX a CW-spectrum having the same K_{\star} -local type as X.

Proposition 2.2. Assume that $t \neq 0$ and put $q = v_p(t) + 1$ and $t = xp^{q-1}$. Let $\iota: S \to S_K$ be the unit of S_K . For each map $g: \Sigma^{2t(p-1)-1} \Delta SZ/p \to \Delta SZ/p^r$ its *cofiber* $C(g)$ has the same K_* -local type as the following specturm: i) The " $q \ge r$ " case: $SZ/p^r \vee \Sigma^{2t(p-1)}SZ/p$ when $\iota \wedge g = 0$; $\Sigma^{2t(p-1)}SZ/p^{r+1}$ when $\partial \Omega \wedge g = \tilde{\alpha}_{t,j}$; $L_{r,1}^t$ when $\partial \Omega = \alpha_t \wedge \pi$; and $\Sigma^{2(p-1)w} SZ/p^{r+1}$ when $\partial \Omega = \alpha_t \wedge \pi + u\tilde{\alpha}_{t,j}$ *for a unit u of Z/p where* $w = -u^{-1}xp^{r-1}$ *if* $q > r$ *and* $w = (1 - u^{-1})xp^{r-1}$ if $q=r$, ii) The " $q < r$ " case: $SZ/p^r \vee \frac{\sum^{2t(p-1)}SZ/p$ when $\frac{l}{q}} = 0$; SZ/p^{r+1} when $\frac{l}{q} = i\bar{\alpha}_{t,1}$; $L_{r,1}^t$ when $\iota \wedge g = \tilde{\alpha}_{t,r}$ *j*; and $\Sigma^{2(p-1)w}SZ/p^{r+1}$ when $\iota \wedge g = i\bar{\alpha}_{t,1} + u\tilde{\alpha}_{t,r}$ *j* for a unit u of Z/p where $w = up^{r-1}$.

Proof. Use the following commutative diagram:

$$
\Sigma^{2t(p-1)} = \Sigma^{2t(p-1)}
$$

$$
\downarrow^{\varphi} \qquad \qquad \downarrow^{p}
$$

$$
\Sigma^{2t(p-1)-1} \qquad \stackrel{gi}{\to} \Delta S Z/p^r \to C(gi) \to \Sigma^{2t(p-1)}
$$

$$
\downarrow^{i} \qquad \qquad || \qquad \qquad \downarrow^{h} \qquad \qquad \downarrow
$$

$$
\Sigma^{2t(p-1)-1} SZ/p \stackrel{g}{\to} \Delta S Z/p^r \to C(g) \to \Sigma^{2t(p-1)} SZ/p.
$$

i) It is sufficient to show the case $g = \alpha_t \wedge \pi + u\tilde{\alpha}_{t,\nu}$. Note that $g_i = p^{r-1}i\alpha_t$ and $\varphi_*: KU_0 \Sigma^{2t(p-1)} \to KU_0 C(p^{r-1}i_r \alpha_t)$ is expressed as $\binom{p}{u}: Z \to Z \oplus Z/p^r$. Hence we obtain that

$$
KU_0C(g) \cong Z/p^{r+1};
$$
 $h_*=(1,-pu^{-1}): Z \oplus Z/p^r \to Z/p^{r+1},$

and that ψ_c^k on $KU_0C(g)$ behaves as $\psi_c^k = 1/k^{t(p-1)} - p^r(1 - k^{t(p-1)})/p^q u k^{t(p-1)}$. Put $k^{p-1} = 1 + yp$ and $t = xp^{q-1}$. Then $\psi_c^k = 1 - xyp^q + u^{-1}xyp^r = 1 - zyp^r = 1/k^{w(p-1)}$ where $z = -u^{-1}x$ if $q > r$ and $z = (1 - u^{-1})x$ if $q = r$.

ii) From the relation $\tilde{\alpha}_{t,\nu} j = \alpha_t \wedge \pi$ it follows that $C(\tilde{\alpha}_{t,\nu} j) = L_{r,1}^t$. Since $C(i\bar{\alpha}_{t,1})$ has the same Λ_* -local type as $\frac{dZ}{p}$ we can take $\varphi_* = \begin{pmatrix} 1 & Z \end{pmatrix}$. $Z \to Z \oplus Z/p$ $\leq KU_0C(\alpha_{t,1})$ when $u=0$, and generally $\varphi_* = \begin{pmatrix} 1+p^{r-q}u \end{pmatrix}$. $Z \to Z \oplus Z/p$. The rest of

proof is similar to i).

We shall next describe generators of the group

$$
[\Sigma^{-1}SZ/p, S_K \wedge SZ/p'] \cong Z/p \oplus Z/p.
$$

Set $\beta_r = (\tilde{\alpha}_{1,r} \wedge 1)i_c : \Sigma^{-1}SZ/p \rightarrow \Delta_0SZ/p^r = \Sigma^{-2p+1}SZ/p^r \wedge C(\tilde{\alpha}_1)$ where $i_c : SZ/p$ $\rightarrow C(\tilde{\alpha}_1)$ is the canonical inclusion. Using the relations $i_c i_1 = \alpha_{-1}$ and $(\alpha_1 \wedge 1)\alpha_{-1}$ $=(j_r \wedge 1)\beta_r i_1$ we obtain that

$$
KU_0C(\beta_i i_1) \cong Z \oplus Z/p^r
$$
; $\psi_C^k = \begin{pmatrix} 1 & 0 \\ p^{r-2}(k^{p-1}-1)/k^{p-1} & 1 \end{pmatrix}$.

Therefore β_r is a generator of the group $[\Sigma^{-1}SZ/p, S_K \wedge SZ/p^r]$ and another generator is cleary i,j_1 . Note that $i_K \wedge \beta_r$ is identified with the element $p^{r-1}i,j_1$ of the group $[\Sigma^{-1}SZ/p, KO\wedge SZ/p^r]$ where $\iota_K: S_K \to KO$ is the K_{\star} -localized map of the unit of *KO.*

So we replace the generator β_1 by $\beta_1 - i_1j_1$ when $r=1$. Denote by $L_{r,1}^0$ the spectrum constructed as the cofiber of the map β_r . The KU_* -group of $L^0_{r,1}$ is given as follows:

$$
KU_0L_{r,1}^0 \cong Z/p \oplus Z/p^r; \qquad \psi_C^k = \begin{pmatrix} 1 & 0 \\ p^{r-2}(k^{p-1}-1)/k^{p-1} & 1 \end{pmatrix}
$$

$$
KU_1L_{r,1}^0 = 0.
$$

Similarly to Proposition 2.2 we can show the following proposition.

Proposition 2.3. *Let* $\iota: S \to S_K$ *be the unit of* S_K *. For each map g*: $\sum^{-1} \Delta SZ/p$ $\rightarrow \Delta SZ/p^r$ its cofiber C(g) has the same K_* -local type as the following spectrum $SZ/p^r \vee SZ/p$ when $\iota \wedge g = 0$; SZ/p^{r+1} when $\iota \wedge g = ij$; $L^0_{r,1}$ when $\iota \wedge g = \beta_r$; and $2(p-1)w$ *SZ* / p^{r+1} when $1 \wedge g = \beta_r + u$ *ij for a unit u of Z* / *p* where $w = u^{-1}p^{r-1}$ *if* $r > 1$ *and* $w = -u^{-1}$ *if* $r = 1$.

Set $q = v_p(t) + 1$ and $a = \min(r, v_p(t) + 1)$ for $t \neq 0$. Denote by M_r^t , N_r^t and P_r^t the spectra constructed as the cofibers of the maps $p^{a-1}i_r\alpha_t$: $\Sigma^{2t(p-1)-1}$ $p^{a-1}\alpha_{J_r}$: $\Sigma^{2t(p-1)-2}SZ/p^r \rightarrow \Delta_t \Sigma^0$ and $(1 \wedge \pi_{1,r+1})\tilde{\alpha}_{t,1}$: $\Sigma^{2t(p-1)} \rightarrow \Delta_t SZ$ */p^{r+1}* respectively. Evidently $N_r^t = \sum^{2t(p-1)} DM_r^t$ where DX denotes the Spanier Whitehead dual of *X.* For *t >* 0 we consider the following commutative diagram:

7 8 8 Y. NlSHIMURA

$$
\Sigma^{-1}SZ/p^r = \Sigma^{-1}SZ/p^r
$$

\n
$$
\downarrow^{ij} \qquad \downarrow^{\varphi}
$$

\n
$$
\Sigma^{2t(p-1)} \stackrel{\tilde{\alpha}_{t,1}}{\rightarrow} SZ/p \rightarrow C(\tilde{\alpha}_{t,1})
$$

\n
$$
\parallel \qquad \qquad \downarrow^{\pi} \qquad \qquad \downarrow
$$

\n
$$
\Sigma^{2t(p-1)} \rightarrow SZ/p^{r+1} \rightarrow P^t_r.
$$

The map φ may be regarded as $\alpha_{-t,1}j_r : \Sigma^{-1}SZ/p^r \to C(\tilde{\alpha}_{t,1})$. Therefore P_r^t has the same K_* -local type as $\Sigma^{2t(p-1)+1} N_r^{-t}$ when $q \le r$ and $\Sigma^{2t(p-1)+1} \vee SZ/p^r$ when $q>r$. This relation still holds in the case of $t < 0$ similarly. In the $t = 0$ case $M^0_0 = \Sigma^0$ and M^0_r is defind as the cofiber of the map $\beta_r i_1 : \Sigma^{-1} \to \Delta_0 SZ/p^r$ when $r \ge 1$. We may also define N_r^0 and P_r^0 by the equalities: $N_r^0 = \sum_{r=1}^{r} P_r^0$

Theorem 2.4. Let n and m be integers such that $m - n = r(p - 1) + s$ ($0 \le s < p - 1$, $r \geq 0$). Put $t = r - (n+s+1)(p^{r-2}+p^{r-3}+\cdots+1)$ and $l=n (p^{r-2}+p^{r-3}+\cdots+1)$ *where we understand* $p^{r-2} + p^{r-3} + \cdots + 1 = 0$ *when* $r \leq 1$. The function $e(k, j)$ is *defined by* $e(k,j) = 2kp^j - 1$ *when* $j \ge 0$ and $e(k,-1) = 2k-1$. Then i) $L(p)_{2n+1}^{2m+1}$ has the same K_{*} -local type as the following spectrum

$$
\begin{aligned}\n &\bigvee_{1 \le i \le p-1, i \neq s+1} \Sigma^{e(n+i, r(i))} SZ/p^{r(i)+1} \big) \vee \Sigma^{e(n+s+1, r-1)} M_r^t \quad \text{when } m+1 \not\equiv 0 \mod p^r, \\
&L(p)_{2n+1}^{2m} \vee \Sigma^{2m+1} \quad \text{when } m+1 \equiv 0 \mod p^r.\n \end{aligned}
$$

ii) $L(p)_{2n}^{2m}$ has the same K_* -local type as

$$
(\vee_{i=1}^{p-2} \Sigma^{e(n+i,r(i))} SZ/p^{r(i)+1}) \vee \Sigma^{2n} N_r^l \quad when \; n \neq 0 \; \text{mod} \; p^r,
$$

$$
L(p)_{2n+1}^{2m} \vee \Sigma^{2n} \quad when \; n \equiv 0 \; \text{mod} \; p^r.
$$

Proof, i) Consider the following commutative diagram:

$$
\Sigma^{2m} \rightarrow L(p)_{2n+1}^{2m} \rightarrow L(p)_{2n+1}^{2m+1}
$$

$$
\downarrow^{i} \qquad \parallel \qquad \downarrow
$$

$$
\Sigma^{2m}SZ/p \stackrel{g}{\rightarrow} L(p)_{2n+1}^{2m} \rightarrow L(p)_{2n+1}^{2m+2}.
$$

As is shown in the proof of Theorem 2.1 the bottom cofiber sequence is essentially given by the following cofiber sequence:

$$
\Sigma^{2t(p-1)-1}SZ/p \stackrel{g_{s+1}}{\rightarrow} \Delta_tSZ/p^r \rightarrow \Sigma^{2(p-1)w} \Delta SZ/p^{r+1}
$$

where $w = (n + s + 1)p^{r-1}$. In the $t \neq 0$ case we set $q = v_p(t) + 1$. Note that $m+1 \equiv w \mod p^r$ when $q>r$, $m+1 \equiv w-t \mod p^r$ when $q=r$, and $m+1 \not\equiv 0 \mod p^r$ when $q < r$ because $m+1 = t(p-1) + w$. On the other hand, it is immediate that $r = 2$, $r + s = 1$ and hence $m + 1 = w = 2p$ in the $t = 0$ case. Since the cofiber $C(g_{s+1})$ has the same K_* -local type as $\Sigma^{2(p-1)w}SZ/p^{r+1}$, we can determine the form of g_{s+1} uniguely up to K_* -equivalence, by means of Propositions 2.2 and 2.3. In fact the map g_{s+1} is chosen as follows: $\tilde{\alpha}_{t}, \tilde{f}$ if " $q > r$ and $w \equiv 0 \mod p$ " or " $q = r$ and $w \equiv t \mod p$ ""; $\alpha_t \wedge \pi + u\tilde{\alpha}_{t}, j$ if " $q > r$ and $w \not\equiv 0 \mod p$ "" or " $q = r$ and $w \neq t \mod p^m$; $i\bar{\alpha}_1$ if " $q < r$ and $w \equiv 0 \mod p^m$; $i\bar{\alpha}_1 + u\tilde{\alpha}_{t}, j$ if " $q < r$ and $w \neq 0 \mod p^m$; and $\beta_2 + uij$ if " $t = 0$ " where $u \in Z/p$ is a suitable unit. Therefore the cofiber $C(g_{s+1}i)$ has the same K_* -local type as M_*^t when $m + 1 \neq 0$ mod p^r , but it has the same K_* -local type as the wedge sum $SZ/p^r \vee Z^{2t(p-1)}$ when $m+1 \equiv 0 \mod p^r$. ii) Consider the following cofiber sequence

$$
L(p)_{2n}^{2m} \to L(p)_{2n+1}^{2m} \to \Sigma^{2n+1}.
$$

The dual map *Dh* has already been given in i), so our result is immediate.

REMARK. In the case ii) we may assert that $L(p)_{2n}^{2m}$ has the same K_* -local type as the wedge sum $\Sigma^{e(n,r-1)} P_r^{-1} \vee \bigvee_{i=1}^{r} \Sigma^{e(n+i,r(i))} SZ/p^{r(i)+1}$ in any cases

Theorem 2.5. Let r,s,t,l,e(k,j) and r(i) be the integers given in Theorem 2.4 *which depend on m and n, and put* $\tau = r + 1 - n(p^{r-1} + \cdots + 1)$, $\lambda = n(p^{r-1} + \cdots + 1)$. *Then L(p)* $_{2n}^{2m+1}$ *has the same K*_k-local type as the following specrum X: i) When $m + 1 \equiv 0 \mod p^r$, $X = L(p)_{2n}^{2m} \vee \Sigma^{2m+1}$.

ii) When $n \equiv 0 \mod p^r$, $X = L(p)_{2n+1}^{2m+1} \vee \Sigma^{2n}$.

iii) *When* $m+1$, $n \neq 0 \mod p^r$ and $m-n+1 \neq 0 \mod p-1$,

$$
X = (\bigvee_{1 \leq i \leq p-1, i \neq s+1} \Sigma^{e(n+i,r(i))} SZ/p^{r(i)+1}) \vee \Sigma^{e(n+s+1,r-1)} M_r^t \vee \Sigma^{2n} N_r^l.
$$

iv) When $m+1$, $n \neq 0 \mod p^r$ and $m-n+1 \equiv 0 \mod p-1$,

$$
\big(\bigvee_{1\leq i\leq p-2}\Sigma^{e(n+i,r(i))}SZ/p^{r(i)+1}\big)\vee \Sigma^{e(n,r)}C(p^{a-1}i_{r+1}\alpha_{\tau}\vee u\tilde{\alpha}_{-\lambda,1}).
$$

where $a = min(v_p(\tau) + 1, r + 1)$ and $u \in Z/p$ is a suitable unit.

Proof. The cases i), ii) and iii) are immediately shown by use of Theorem 2.4. To show the case iv) we consider the following commutative diagram:

7 90 Y. NlSHIMURA

$$
\Sigma^{2m} = \Sigma^{2m}
$$

\n
$$
\downarrow^{f} \qquad \downarrow
$$

\n
$$
\Sigma^{2n-1} \stackrel{g}{\rightarrow} L(p)_{2n-1}^{2m} \rightarrow L(p)_{2n}^{2m}
$$

\n
$$
\parallel \qquad \downarrow^{i_f} \qquad \downarrow
$$

\n
$$
\Sigma^{2n-1} \rightarrow L(p)_{2n-1}^{2m+1} \rightarrow L(p)_{2n}^{2m+1}.
$$

By Theorem 2.1 we may decompose $L(p)_{2n-1}^{2m}$ as the wedge sum $\sqrt{\frac{p-2}{i-1}} \Sigma^{e(n+i,r)} S$ $/p^{r+1} \vee \Sigma^{e(n,r)} SZ/p^{r+1}$. From Theorem 2.4 i) we can take map $f_{p-1} = p^{a-1} i\alpha_r : \Sigma^{2m}$ $\rightarrow \Sigma^{2w-1}\Delta_t SZ/p^{r+1}$ with $2w-1 = e(n,r) = 2np^r - 1$ because $\tau \neq 0$ in the case iv). Since ²ⁿN_r² has the same K_{*} -local type as $\Sigma^{2w-1}P_{r}^{-\lambda}$ we may take $g_{p-1} = u(1 \wedge \pi)\tilde{\alpha}_{-\lambda,1}$: $2^{2n-1} \rightarrow \sum_{\alpha}^{2w-1} \Delta_{-\alpha} SZ/p^r$ for some unit $u \in Z/p$. Then the $(p-1)$ -th component of $L(p)_{2n}^{2m+1}$ has the same K_{*} -local type as the cofiber of the map

$$
p^{a-1}i\alpha_{\tau}\vee u(1\wedge\pi)\tilde{\alpha}_{-\lambda,1}:\Sigma^{2m}\vee\Sigma^{2n-1}\to\Sigma^{2m-1}\Delta_v SZ/p^{r+1}
$$

after compositing suitable K_* -equivalences $\Delta_t \Sigma^0 \to \Delta_v \Sigma^0$ and $\Delta_{-lambda} \Sigma^0 \to \Delta_v \Sigma^0$ for some integer *v* if necessary (cf. [14]).

REMARK. Recall that the *J*-group is given as the cokernel of $\psi^k - 1$. Note that

$$
J^{2t(p-1)}N_r^l \otimes Z_{(p)} \cong \begin{cases} Z/p^q \oplus Z/p^{min(q,r)} & \text{for } q < s \\ Z/p^{q-s+1+min(r,v)} \oplus Z/p^{s-1} & \text{for } q \ge s \end{cases}
$$

where $q = v_p(t) + 1$, $s = v_p(l) + 1$ and $v = v_p(l-t) + 1$ (=s when $q > s$) and $J'N'_r \otimes Z_{(p)} = 0$ for $i \neq 0$ mod $2(p-1)$. Applying Theorems 2.1 and 2.4 ii) we can compute $J^*L(p)_{nm}^{2m}$ and hence $J^*L(p)_n^{2m+1}$ immediately although they have already been calculated in [9]. Note that the K_{*} -local type of $L(p)_{n}^{2m}$ is classified by the *J*-group $J^{*}L(p)_{n}^{2m}$ (cf. [3, Lemma 6.7]).

References

- [1] J.F. Adams: On the group $J(X)$ -IV, Topology 5 (1966) 21-71.
- **[2] A.K. Bousfield:** *The localization of spectra with respect to homology,* **Topology 18 (1979)** 257-281.
- **[3] A.K. Bousfield:** *On the homotopy theory of K-local spectra at an odd prime,* **Amer. J. Math. 107** (1985) 895-932.
- [4] A.K. Bousfield: *A Classification of K-local spectra,* J. Pure and Applied Algebra 66 (1990) 121-163.
- [5] M. Imaoka, M. Sugawara: On the K-Ring of the Orbit Manifold $(S^{2m+1}\times S^1)/D_n$ by the dihedral *group Dⁿ ,* Hiroshima Math J. 4 (1974) 53-70.
- **[6] T. Kambe:** *The structure of K^A -rings of the lens space and their applications,* **J. Math. Soc. Japan** 18 (1966) 135-146.
- **[7] S. Kόno:** *Stable homotopy type of Thorn spaces of canonical bundles over Orbit Manifolds*

 $(S^{2m+1} \times S^{l})/D_p$ by the dihedral group D_p , preprint.

- [8] M. Kamata, H. Minami: *Bordism groups of dihidral groups,* J. Math. Soc. Japan 25 (1973) 334-341.
- **[9] S. Kόno, A. Tamamura:** *J-groups of the suspensions of the stunted lens spaces* **mod/?, Osaka** J. Math 24 (1987) 481-498.
- **[10] S. Kόno, A. Tamamura, M. Fujii:** *J-group of the Orbit Manifolds (S2m+ι x S)/Dⁿ by the dihedral group Dⁿ ,* Math J. Okayama Univ. 22 (1980) 205-221.
- **[11] N. Mahammed:** *A propos de la K-thέorie des espaces lenticularies,* **C.R. Acad. Sc. Paris 271** (1970) 639-642.
- **[12] M. Mimura, G. Nishida, H.Toda:** *Localization of CW-complexes and its applications,* J. Math. Soc. Japan 23 (1971) 593-624,
- **[13] Z. Yosimura:** *The K ^-localizations of the stunted real projective spaces,* **J. Math. Kyoto Univ.** 33 (1993) 523-541.
- **[14] Z. Yosimura:** *K^-localizations of spectra with simple K-homology,* **II, preprint.**

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558, Japan