THE K_* -LOCAL TYPE OF THE ORBIT MANIFOLD $(S^{2m+1} \times S')/D_q$ BY THE DIHEDRAL GROUP D_q

YASUZO NISHIMURA

(Received September 6, 1995)

Introduction

For a given CW-spectrum E there is an associated E-homology theory $E_*X = \pi_*$ ($E \land X$). A CW-spectrum Y is called E_* -local if any E_* -equivalence $A \to B$ induces an isomorphism $[B, Y]_* \cong [A, Y]_*$. For any CW-spectrum X there exists an E_* -equivalence $\iota_E: X \to X_E$ such that X_E is E_* -local. X_E is called the E_* -localization of X. Let KO and KU be the real and the complex K-spectrum respectively. There is no difference between the KO_* - and KU_* -localizations, and so we denote by S_K the K_* -localization of the sphere spectrem $S = \Sigma^0$. According to the smashing theorem [2, Corollary 4.7] the smash product $S_K \land X$ is actually the K_* -localization of X for any CW-spectrum X.

In this note we shall be interested in the K_* -local type of certain orbit manifolds $D(q)^{m,l}$ introduced as a filtration of a classifying space of the dihedral group D_q in [8]. The manifold $D(q)^{m,l}$ is defind as follows: Let $q \ge 3$ be an odd integer, and D_q the dihedral group generated by two elements a and b with relations $a^q = b^2 = abab = 1$. Consider the unit spheres S^{2m+1} and S^l in the complex (m+1)-space C^{m+1} and the real (l+1)-space R^{l+1} . Then D_q operates freely on the product space $S^{2m+1} \times S^l$ by

$$a \cdot (z,x) = (z \exp(2\pi \sqrt{-1/q}), x), \quad b \cdot (z,x) = (\bar{z}, -x)$$

where \bar{z} is the conjugate of z. The associted topological quotient spaces

$$D(q)^{2m+1,l} = (S^{2m+1} \times S^{l}) / D_q = (L(q)^{2m+1} \times S^{l}) / Z_2,$$

$$D(q)^{2m,l} = (L(q)^{2m} \times S^{l}) / Z_2 \subset D(q)^{2m+1,l}$$

are defined where $L(q)^{2m+1} = L^m(q)$ is the (2m+1)-dimensional lens space mod q and $L(q)^{2m} = L_0^m(q)$ its 2m-skeleton.

The group $KU^0D(q)^{m,l}$ is decomposed to a direct sum of KU^0 -groups of suspensions of stunted lens spaces mod q and mod 2 (cf. [5, Theorem 3.9]). Moreover KO^0 - and J^0 -groups of $D(q)^{m,l}$ have a quite similar direct sum decomposition (cf. [10] or [7]). In section 1 we shall show that $D(q)^{m,l}$ itself has

such a decomposition as K_* -local spectrum. The K_* -local type of the stunted real projective space $RP^m/RP^n = RP_{n+1}^m$ has been determined explicitly by constructing small cell spectra in [13]. In section 2 we shall study the K_* -local type of the stunted lens space $L(p)^m/L(p)^n = L(p)_{n+1}^m$ for an odd prime p. Consequently we can observe the K_* -local type of $D(q)^{m,l}$ more explicitly in the special case that q is an odd prime p.

1. The K_* -local type of $D(q)^{m,l}$

Let \mathscr{A} be the category of abelian groups with stable Adams operations ψ^k $(k \in Z)$ (cf. [4, 5.1]). For an arbitrary set P of primes, let $\mathscr{A}_{(P)}$ be the full subcategory of $Z_{(P)}$ -modules of the abelian category \mathscr{A} . Then the inclusion functor $\mathscr{A}_{(P)} \subset \mathscr{A}$ has the obvious left adjoint () $\otimes Z_{(P)}$. Assume that P is a finite set of primes. By the Chinese remainder theorem there exists an integer r such that: r generates $(Z/p^2)^*$ for each odd $p \in P$; $r = \pm 3 \mod 8$ when $2 \in P$; $|r| \ge 2$ when P is empty. Let $\mathscr{A}_{(P)}^r$ be the category of $Z_{(P)}$ -modules with automorphism ψ^r and involution ψ^{-1} . By [4, 6.4] the forgetful functor $\mathscr{A}_{(P)} \to \mathscr{A}_{(P)}^r$ is a categorical isomorphism. Moreover if $2 \notin P$ then we don't need the involution ψ^{-1} in the abelian category $\mathscr{A}_{(P)}^r$ (cf. [3, Proposition 5.7]).

For any prime p let us fix an integer r as above. Denote by $Ad_{(p)}$ the fiber of the $\psi_R^r - 1: KO_{(p)} \to KO_{(p)}$ where ψ_R^k is the stable real Adams operation. Then we have the following cofiber sequences (cf. [2, section 4]):

$$Ad_{(p)} \xrightarrow{\xi} KO_{(p)} \xrightarrow{\psi_{\mathbf{R}}^{-1}} KO_{(p)} \to \Sigma^{1}Ad_{(p)}$$
$$S_{K(p)} \xrightarrow{\iota_{A}} Ad_{(p)} \to \Sigma^{-1}SQ \to \Sigma^{1}S_{K(p)}.$$

For an odd prime p the first sequence can be replaced by

$$Ad_{(p)} \to KU_{(p)} \xrightarrow{\psi_C^- 1} KU_{(p)} \to \Sigma^1 Ad_{(p)}$$

because $Ad_{(p)}$ also arises as the fiber of $\psi'_{C} - 1: KU_{(p)} \to KU_{(p)}$. Using this fact we can easily verify the following lemma (cf. [3, Theorem 9.1]).

Lemma 1.1. Let X and Y be CW-spectra such that KU_0X and KU_0Y are odd torsion groups and $KU_1X = KU_1Y = 0$. If KU_0X and KU_0Y are isomorphic in the abelian category \mathcal{A} then X and Y have the same K_* -local type.

In order to describe the K_* -local type of $D(q)^{m,l}$ we first consider the lens space $L(q)^m$. Recall that

$$KU^{0}L(q)^{2m+1} \cong KU^{0}L(q)^{2m} \cong Z[\sigma]/(\sigma^{m+1}, (1+\sigma)^{q}-1),$$

The K_* -Local type of the Orbit Manifold

$$KU^{1}L(q)^{2m+1} \cong Z, \quad KU^{1}L(q)^{2m} = 0$$

(cf. [6] or [11]) where $\sigma = [\gamma] - 1$ for the canonical line bundle γ over $L(q)^{2m+1}$ (which is induced by the natural surjection $\pi: L(q)^{2m+1} \to CP^m$) or its restriction over $L(q)^{2m}$. Therefore the stable Adams operation ψ_C^k operates on $KU^0L(q)^{2m}$ as

$$\psi_C^k \sigma = (1+\sigma)^k - 1.$$

Since $KU^0L(q)^{2m}$ is an odd torsion group, there exist subgroups A^m and B^m on which the conjugation ψ_c^{-1} acts as 1 and -1 respectively (cf. [4, Proposition 3.8]) and a direct sum decomposition $KU^0L(q)^{2m} \cong A^m \oplus B^m$ in \mathscr{A} . (In this case A^m and B^m are generated by the elements $\sigma + \psi_c^{-1}\sigma$ and $(\sigma - \psi_c^{-1}\sigma)(\sigma + \psi_c^{-1}\sigma)^{i-1}$ $(i \ge 1)$ respectively (cf. [5, Lemma 3.3]).) From [4, Theorem 10.1](or [3, Proposition 8.7]) and [4, Theorem 11.1] there exist certain finite spectra SA^m and SB^m such that $KU^0SA^m \cong A^m$, $KU^0SB^m \cong B^m$ and $KU^1SA^m = KU^1SB^m = 0$ in \mathscr{A} . Then the lens space $L(q)^{2m}$ has the same K_* -local type as $SA^m \vee SB^m$ by Lemma 1.1. We obtain the KO_* -groups by the Bott and Anderson cofiber sequences as follows:

$$KO_i SA^m \cong \begin{cases} A^m & \text{for } i \equiv 3 \mod 4 \\ 0 & \text{otherwise} \end{cases}, \qquad KO_i SB^m \cong \begin{cases} B^m & \text{for } i \equiv 1 \mod 4 \\ 0 & \text{otherwise} \end{cases}$$

Let $\overline{f}: \Sigma^{2m} \to L(q)^{2m}$ be the attaching map of the top cell in $L(q)^{2m+1}$. Consider the associated map $f=(f_A, f_B): \Sigma^{2m} \to SA^m \lor SB^m$ such that $l_K \land \overline{f} = \varphi f$ where $\varphi: SA^m \lor SB^m \to S_K \land L(q)^{2m}$ is a K_* -equivalence. Since $KO_iSA^m = 0$ for $i \neq 3 \mod 4$, $f_A \in [\Sigma^{2m}, S_K \land SA^m] = 0$ when *m* is even. Similarly $f_B \in [\Sigma^{2m}, S_K \land SB^m] = 0$ when *m* is odd. Therefore $L(q)^{2m+1}$ has the same K_* -local type as the cofiber $C(f) = C(f_A) \lor SB^m$ when *m* is odd or $C(f) = SA^m \lor C(f_B)$ when *m* is even. We shall often denote SA^m and SB^m by SA and SB respectively for simplicity.

Lemma 1.2. Let $\iota_K : S_K \to KO$ denote the K_* -localized map of the unit $\iota : S \to KO$.

i) If $l \equiv 1 \mod 4$ then $[\Sigma^{l}SA, S_{K} \land SA] = 0 = [\Sigma^{l}SB, S_{K} \land SB]$, and if $l \equiv 0 \mod 4$ then $\iota_{K_{*}}: [\Sigma^{l}SA, S_{K} \land SA] \rightarrow [\Sigma^{l}SA, KO \land SA]$ and $\iota_{K_{*}}: [\Sigma^{l}SB, S_{K} \land SB] \rightarrow [\Sigma^{l}SB, KO \land SB]$ are monomorphisms.

ii) If $l \equiv 3 \mod 4$ then $[\Sigma^{l}SA, S_{K} \land SB] = 0 = [\Sigma^{l}SB, S_{K} \land SA]$, and if $l \equiv 2 \mod 4$ then $\iota_{K_{*}}: [\Sigma^{l}SA, S_{K} \land SB] \rightarrow [\Sigma^{l}SA, KO \land SB]$ and $\iota_{K_{*}}: [\Sigma^{l}SB, S_{K} \land SA] \rightarrow [\Sigma^{l}SB, KO \land SA]$ are monomorphisms.

Proof. i) There is an exact sequence

$$[\Sigma^{l}SA, \Sigma^{-1}KO_{(p)} \wedge SA] \rightarrow [\Sigma^{l}SA, S_{K(p)} \wedge SA] \xrightarrow{{}^{\prime}K_{\star}} [\Sigma^{l}SA, KO_{(p)} \wedge SA].$$

It is easily verified that $[\Sigma^{l}SA, KO \wedge SA] = 0$ when $l \equiv 1$ or 2 mod 4 because $KO_{i}SA = 0$ for $i \neq 3 \mod 4$. Now our result is immediate.

ii) is shown similarly.

Consider the Z/2-action on $L(q)^{2m}$ induced by the complex conjugation

 $t: L(q)^{2m} \to L(q)^{2m}, \quad [z] \mapsto [\bar{z}].$

By definition $t^*\sigma = \psi_c^{-1}\sigma$ and ψ_c^{-1} operates on SA^m and SB^m as 1 and -1 respectively. Therefore we obtain the following commutative diagram after replacing the K_* -equivalence $\varphi: SA^m \vee SB^m \to S_K \wedge L(q)^{2m}$ suitably necessary:

$$S_{K} \wedge L(q)^{2m} \xrightarrow{t} S_{K} \wedge L(q)^{2m}$$

$$\uparrow^{\varphi} \qquad \uparrow^{\varphi}$$

$$SA^{m} \vee SB^{m} \xrightarrow{1 \vee (-1)} SA^{m} \vee SB^{m}.$$

This can be also proved by induction on m using Lemma 1.2.

For the orbit manifold $D(q)^{m,l} = (L(q)^m \times S^l) / Z_2$ there is a fibering

$$L(q)^m \xrightarrow{k} D(q)^{m,l} \xrightarrow{p} RP^l.$$

Since the projection p has a right inverse $RP^{l} = D(q)^{0,l} \subset D(q)^{m,l}$ (cf. [5, Lemma 1.7]) we observe that

$$D(q)^{m,l} = RP^l \vee D(q)_{1,0}^{m,l}$$

where $D(q)_{1,0}^{m,l} = D(q)^{m,l} / RP^{l}$.

In order to determine the K_* -local type of $D(q)_{1,0}^{2m,l}$ by induction on l we need the following cofiber sequence (cf. [10]):

$$\Sigma^{l-1}L(q)^{2m} \xrightarrow{\pi_{l-1}} D(q)^{2m,l-1} \xrightarrow{k_l} D(q)^{2m,l} \xrightarrow{q_l} \Sigma^l L(q)^{2m}.$$

Note that $q_l \pi_l = \nabla \lambda_l \rho : \Sigma^l L(q)^{2m} \to \Sigma^l L(q)^{2m}$ where $\lambda_l = \mathrm{id} \vee (\tau \wedge t) : \Sigma^l L(q)^{2m} \vee \Sigma^l L(q)^{2m}$ $\to \Sigma^l L(q)^{2m} \vee \Sigma^l L(q)^{2m}$ for the antipotal map τ of Σ^l , ρ is the comultiplication of $\Sigma^l L(q)^{2m}$ and ∇ is the folding map (cf. [5, Lemma 1.11]). Therefore we may regard that $q_l \pi_l : \Sigma^l SA^m \vee \Sigma^l SB^m \to \Sigma^l SA^m \vee \Sigma^l SB^m$ is expressed as

$$q_l \pi_l = \begin{cases} 0 \lor 2 & \text{if } l \text{ is even} \\ 2 \lor 0 & \text{if } l \text{ is odd.} \end{cases}$$

The KU-cohomology of $D(q)_{1,0}^{2m,l}$ is given as follows (cf. [5, Theorem 3.9]):

The K_* -Local type of the Orbit Manifold

l	even	odd
$\frac{KU^0D(q)_{1,0}^{2m,l}}{KU^1D(q)_{1,0}^{2m,l}}$	$A^m \oplus (B^m \otimes KU^0 \Sigma^l) \\ 0$	$A^m \\ A^m \otimes KU^1 \Sigma^l.$

The components A^m and $C^m \otimes KU^*\Sigma^l$ (where C = A if l is odd and C = B if l is even) are given via the canonical inclusion $k: L(q)^{2m} = D(q)_{1,0}^{2m,0} \subset D(q)_{1,0}^{2m,l}$ and the natural projection $q_l: D(q)_{1,0}^{2m,l} \to \Sigma^l L(q)^{2m}$ respectively.

Proposition 1.3. $D(q)_{1,0}^{2m,l}$ has the same K_* -local type as $SA^m \vee \Sigma^l SB^m$ if l is even and $SA^m \vee \Sigma^l SA^m$ if l is odd.

Proof. i) The " $l \equiv 0 \mod 4$ " case: Since the conjugation acts on $KU^0 D(q)_{1,0}^{2m,l}$ as $\psi_c^{-1} = 1$ on A^m and $\psi_c^{-1} = -1$ on $B^m \otimes KU^0 \Sigma^l$, $KU^0 D(q)_{1,0}^{2m,l}$ is decomposed to A^m and $B^m \otimes KU^0 \Sigma^l$ in the abelian category \mathscr{A} . From Lemma 1.1, $D(q)_{1,0}^{2m,l}$ has the same K_* -local type as $SA^m \vee \Sigma^l SB^m$.

ii) The " $l \equiv 1 \mod 4$ " case: We consider the following cofiber sequence

$$\Sigma^{l-1}L(q)^{2m} \xrightarrow{\pi_{l-1}} D(q)^{2m,l-1}_{1,0} \xrightarrow{k_l} D(q)^{2m,l}_{1,0} \xrightarrow{q_l} \Sigma^l L(q)^{2m}.$$

Here we can replace $\Sigma^{l-1}L(q)^{2m}$ and $D(q)_{1,0}^{2m,l-1}$ by $\Sigma^{l-1}SA \vee \Sigma^{l-1}SB$ and $SA \vee \Sigma^{l-1}SB$ respectively from i). We set:

$$\pi_{l-1} = \begin{pmatrix} x & z \\ y & 2 \end{pmatrix}, \qquad q_{l-1} = \begin{pmatrix} u & w \\ v & 1 \end{pmatrix}$$

where all of x, \dots, v and w become trivial if they are carried from $[X, S_K \wedge Y]$ into $[X, KO \wedge Y]$ via the map $\iota_K : S_K \to KO$. From Lemma 1.2 x and u must be trivial. Since $q_{l-1}\pi_{l-1} = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$, y and w are also trivial. Thus we can express as

$$\pi_{l-1} = \begin{pmatrix} 0 & z \\ 0 & 2 \end{pmatrix}, \qquad q_{l-1} = \begin{pmatrix} 0 & 0 \\ v & 1 \end{pmatrix}.$$

Consider the following commutative diagram:

$$\Sigma^{l-1}SA \xrightarrow{0} SA \xrightarrow{} SA \vee \Sigma^{l}SA \xrightarrow{} \Sigma^{l}SA$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$\Sigma^{l-1}SA \vee \Sigma^{l-1}SB \xrightarrow{\pi_{l-1}} SA \vee \Sigma^{l-1}SB \xrightarrow{k_{l}} S_{K} \wedge D(q)_{1,0}^{2m,l} \xrightarrow{q_{l}} \Sigma^{l}SA \vee \Sigma^{l}SB$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$\Sigma^{l-1}SB \xrightarrow{2} \Sigma^{l-1}SB$$

Now we can determine the K_* -local type of $D(q)_{1,0}^{2m,l}$ as desired and we can take

$$k_l = \begin{pmatrix} 1 & b \\ 0 & 0 \end{pmatrix}, \quad q_l = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

iii) The " $l \equiv 3 \mod 4$ " case: As is shown in ii) we can express as $q_{l+1} = \begin{pmatrix} 0 & 0 \\ v & 1 \end{pmatrix}$. Our result is proved similarly to the case ii).

iv) The " $l \equiv 2 \mod 4$ " case: From Lemma 1.2 we can set $\pi_{l-1} = \begin{pmatrix} 0 & x \\ 2 & y \end{pmatrix}$. Since $q_{l-1} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $q_{l-1}\pi_{l-1} = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$, y is trivial. For the canonical inclusion $k: L(q)^m \to D(q)_{1,0}^{m,l+1}$ we notice that $k \mid SA = (1,*): SA \to SA \lor \Sigma^{l+1}SA$. Then x must be trivial because $k_{l+1}k_l\pi_{l-1} = 0$. Now our result is immediate.

REMARK. For the case iv) the subgroup $A^m \subset KU^0 D(q)_{1,0}^{2m,l}$ is the image of representation ring of D_q (cf. [5, Section 2]). Therefore $KU^0 D(q)_{1,0}^{2m,l}$ is also decomposed to A^m and $B^m \otimes KU^0 \Sigma^l$ in \mathscr{A} . Then we can prove the case iv) in a similar way to the case i).

Let $RP_{m+1}^{m+l+1} = RP^{m+l+1} / RP^m$ be the stunted real projective space. Consider the following commutative diagram:

$$\Sigma^{m+l+1} = \Sigma^{m+l+1}$$

$$\downarrow^{\gamma_0} \qquad \qquad \downarrow^{\gamma}$$

$$\Sigma^{m+1} \xrightarrow{\beta_0} \Sigma^1 R P_m^{m+l} \rightarrow \Sigma^1 R P_{m+1}^{m+l}$$

$$\parallel \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Sigma^{m+1} \xrightarrow{\beta} \Sigma^1 R P_m^{m+l+1} \rightarrow \Sigma^1 R P_{m+1}^{m+l+1}$$

where β 's are the bottom cell inclusions and γ 's are the top cell attaching maps. Recall that K_* -local type of $\Sigma^1 RP_{2s+1}^{2s+2n}$ has the same K_* -local type as a

certain small cell spectrum $\nabla SZ/2^n$ such that $KU_0 \nabla SZ/2^n \cong Z/2^n$ on which $\psi_c^{-1} = 1$ and $KU_1 \nabla SZ/2^n = 0$ (see [13, Theorem 2.7] for details). Then $\Sigma^1 RP_{2s+2n+1}^{2s+2n+1}$, $\Sigma^1 RP_{2s+2}^{2s+2n}$ and $\Sigma^1 RP_{2s+2n+1}^{2s+2n+1}$ have the same K_* -local types as the cofibers of the associated maps $\gamma: \Sigma^{2s+2n+1} \to \nabla SZ/2^n$, $\beta: \Sigma^{2s+2} \to \nabla SZ/2^n$ and $\beta_0 \lor \gamma_0:$ $\Sigma^{2s+2} \lor \Sigma^{2s+2n+1} \to \nabla SZ/2^n$ respectively, which are given explicitly in [13, Theorems 2.7, 2.9, 3.8]. Using these associated maps we can give the K_* -local type of $D(q)_{10}^{2m+1,l}$, as follows.

Theorem 1.4. $D(q)_{1,0}^{2m+1,l}$ has the same K_{\star} -local type as the spectra tabled below:

т	l	$D(q)_{1,0}^{2m+1,l}$
even	odd	$SA^m \vee \Sigma^l SA^m \vee \Sigma^m RP^{m+l+1}_{m+1}$
even	even	$SA^m \vee C(\Sigma^l f_B, \Sigma^{m-1}\gamma)$
odd	even	$\Sigma^{l}SB^{m} \vee C(f_{A}, \Sigma^{m-1}\beta)$
odd	odd	$C\begin{pmatrix} f_A & 0\\ 0 & \Sigma^l f_A\\ \Sigma^{m-1}\beta_0 & \Sigma^{m-1}\gamma_0 \end{pmatrix}$

Proof. We have the following cofiber sequence (cf. [5, Lemma 1.12]):

$$\Sigma^{m-1} RP_{m+1}^{m+l+1} \xrightarrow{F} D(q)_{1,0}^{2m,l} \to D(q)_{1,0}^{2m+1,l}$$

Here we may use $SA^m \vee \Sigma^l SC^m$ instead of $D(q)_{1,0}^{2m,l}$ by virtue of Proposition 1.3. When *m* is odd we consider the $KZ[1/2]_*$ -localization of the following commutative diagram:

$$\Sigma^{2m} \xrightarrow{f} L(q)^{2m} \rightarrow L(q)^{2m+1}$$

$$\downarrow^{k_0} \qquad \downarrow^k \qquad \downarrow^k$$

$$\Sigma^{m-1} RP_{m+1}^{m+l+1} \xrightarrow{F} D(q)_{1,0}^{2m,l} \rightarrow D(q)_{1,0}^{2m+1,l}$$

where k and k_0 are the canonical inclusions. Then we may regard as $k_0 = (1,0): \Sigma^{2m} \to \Sigma^{2m} \vee \Sigma^{m-1} RP_m^{m+l+1}, f = (f_A,0): \Sigma^{2m} \to SA^m \vee SB^m$ and $k = \begin{pmatrix} 1 & b \\ 0 & 0 \end{pmatrix}: SA^m \vee SB^m \to SA^m \vee \Sigma^l SC^m$. Therefore $F | \Sigma^{2m}$ is expressed as $(f_A,0): \Sigma^{2m} \to SA^m \vee \Sigma^l SC^m$.

When m+l is even we consider the $KZ[1/2]_*$ -localization of the following commutative diagram:

$$\begin{split} \Sigma^{2m+l} & \stackrel{f}{\to} \Sigma^{l}L(q)^{2m} \to \Sigma^{l}L(q)^{2m+1} \\ \downarrow^{\gamma} & \downarrow^{\pi_{l}} & \downarrow^{\pi_{l}} \\ \Sigma^{m-1}RP_{m+1}^{m+l+1} \stackrel{F}{\to} D(q)_{1,0}^{2m,l} \to D(q)_{1,0}^{2m+1,l} \end{split}$$

where γ is the top cell attaching map and π_l is the natural projection. Then we may regard as $\gamma = (0,1): \Sigma^{2m+l} \to \Sigma^{m-1} RP_{m+1}^{m+l} \vee \Sigma^{2m+l}$, $f = (f_C,0): \Sigma^{2m+l} \to \Sigma^l SC^m$ $\vee \Sigma^l SC'^m$ where C' = B if l is odd and C' = A if l is even, and $\pi_l = \begin{pmatrix} 0 & * \\ 2 & * \end{pmatrix}: \Sigma^l SC^m$ $\vee \Sigma^l SC'^m \to SA^m \vee \Sigma^l SC^m$. Therefore $F | \Sigma^{2m+l} |$ is expressed as $(0,2f_C): \Sigma^{2m+l} \to SA^m \vee \Sigma^l SC^m$. Consequently $D(q)_{1,0}^{2m+1,l}$ has the same $KZ[1/2]_*$ -local type as $SA^m \vee \Sigma^l SA^m, SA^m \vee \Sigma^l C(f_B), C(f_A) \vee \Sigma^l SB^m$ and $C(f_A) \vee \Sigma^l C(f_A)$ according as $(m,l) \equiv (0,1), (0,0), (1,0)$ and (1,1) mod 2 respectively. From the previous observation we can determine the K_* -local type of $D(q)_{1,0}^{2m+1,l}$ as desired.

Let n and k be integers such that $0 \le n \le m$ and $0 \le k \le l$. We set:

$$D(q)_{n,k}^{m,l} = D(q)^{m,l} / (D(q)^{m,k-1} \cup D(q)^{n-1,l})$$

This space is the Thom complex of a canonical bundle over $D(q)^{m-n,l-k}$ when *n* is even. We shall extend Proposition 1.3 and Theorem 1.4 to the case of $D(q)_{n,k}^{m,l}$. In order to state the extended theorem we express the K_* -local type of the stunted lens space $L(q)_{n+1}^m = L(q)^m / L(q)^n$ as follows: $L(q)_{2n+1}^{2m}$ has the same K_* -local type as $SA_n^m \vee SB_n^m$ where the conjugation acts as $\psi_c^{-1} = 1$ on $KU^0SA_n^m \cong A_n^m$ and $\psi_c^{-1} = -1$ on $KU^0SB_n^m \cong B_n^m$. $L(q)_{2n+1}^{2m+1}$, $L(q)_{2n+2}^{2m}$ and $L(q)_{2n+2}^{2m+1}$ have the same K_* -local types as the cofibers of the following maps respectively:

$$\begin{split} f &= (f_A, f_B) \colon \Sigma^{2m} \to SA_n^m \lor SB_n^m; \\ g &= (g_A, g_B) \colon \Sigma^{2n+1} \to SA_n^m \lor SB_n^m; \\ f \lor g \colon \Sigma^{2m} \lor \Sigma^{2n+1} \to SA_n^m \lor SB_n^m. \end{split}$$

Here $f_A = 0$ if m is even and $f_B = 0$ if m is odd, and $g_A = 0$ if n is even and $g_B = 0$ if n is odd.

Let $\langle \Sigma^k \rangle$ be Σ^k if k is odd and * if k is even. Then we can choose the map $\beta \lor \gamma \colon \Sigma^1 \langle \Sigma^k \rangle \lor \langle \Sigma^l \rangle \to \nabla SZ/2^i$ so that its cofiber $C(\beta \lor \gamma)$ has the same K_* -local type as $\Sigma^1 RP_{k+1}^l$ where *i* depends on k and l.

Theorem 1.5. i) $D(q)_{2n+1,k}^{2m,l}$ has the same K_* -local type as $\Sigma^k SE_n^m \vee \Sigma^l SC_n^m$ where C = A if l is odd and C = B if l is even, and E = A if k is even and E = B if k is odd.

ii) $D(q)_{2n+1,k}^{2m+1,l}$, $D(q)_{2n+2,k}^{2m,l}$ and $D(q)_{2n+2,k}^{2m+1,l}$ have the same K_* -local types as the

cofibers of the following maps respectively:

$$\begin{split} \widetilde{F} : X &= \Sigma^m \langle \Sigma^{m+k} \rangle \vee \Sigma^{m-1} \langle \Sigma^{m+l+1} \rangle \to \Sigma^k SE_n^m \vee \Sigma^l SC_n^m \vee \Sigma^{m-1} \nabla SZ/2^i, \\ \widetilde{G} : Y &= \Sigma^{n+1} \langle \Sigma^{n+k} \rangle \vee \Sigma^n \langle \Sigma^{n+l+1} \rangle \to \Sigma^k SE_n^m \vee \Sigma^l SC_n^m \vee \Sigma^n \nabla' SZ/2^j, \\ \widetilde{H} : X \vee Y \to \Sigma^k SE_n^m \vee \Sigma^l SC_n^m \vee \Sigma^{m-1} \nabla SZ/2^i \vee \Sigma^{n-1} \nabla' SZ/2^j \end{split}$$

which are expressed as the following matrices:

$$\tilde{F} = \begin{pmatrix} f_E & 0\\ 0 & f_C\\ \beta & \gamma \end{pmatrix}, \qquad \tilde{G} = \begin{pmatrix} g_E & 0\\ 0 & g_C\\ \beta' & \gamma' \end{pmatrix}, \qquad \tilde{H} = \begin{pmatrix} f_E & 0 & g_E & 0\\ 0 & f_C & 0 & g_C\\ \beta & \gamma & 0 & 0\\ 0 & 0 & \beta' & \gamma' \end{pmatrix}$$

where the maps $\beta \lor \gamma$ and $\beta' \lor \gamma'$ are taken such that the cofibers $C(\beta \lor \gamma)$ and $C(\beta' \lor \gamma')$ have the same K_* -local types as $\Sigma^m RP_{m+k+1}^{m+l+1}$ and $\Sigma^{n+1}RP_{n+k+1}^{n+l+1}$ respectively.

Proof. The case i) is proved similarly to the proof of Proposition 1.3. Consider the following cofiber sequences (cf. [7, Lemma 3.11]):

$$\Sigma^{m-1} R P_{m+k+1}^{m+l+1} \xrightarrow{F} D(q)_{2n+1,k}^{2m,l} \to D(q)_{2n+1,k}^{2m+1,l}$$
$$\Sigma^{n} R P_{n+k+1}^{n+l+1} \xrightarrow{G} D(q)_{2n+1,k}^{2m,l} \to D(q)_{2n+2,k}^{2m,l}.$$

By a similar argument to the proof of Theorem 1.4 we can show that the cofibers C(F) and C(G) have the same K_* -local types as the cofibers $C(\tilde{F})$ and $C(\tilde{G})$ respectively. Moreover the cofiber $C(\tilde{H})$ has the same K_* -local type as $C(F \lor G) = D(q)_{2n+2,k}^{2m+1,l}$.

REMARK. S. Kôno has independently studied the KO^{*-} and J^{*-} -groups of $D(q)_{n,k}^{m,l}$ in [7]. According to his computations the KO^{*-} and J^{*-} -groups of $D(q)_{n,k}^{m,l}$ are also decomposed to the KO^{*-} and J^{*-} -groups of the stunted lens spaces mod q and mod 2 when n is odd; but there is a case the J^{*-} -group doesn't necessarily have such a decomposition when n is even.

2. The K_* -local type of $L(p)_n^m$

In this section p denotes an odd prime. Recall that the groups $\pi_i S_{K(p)} \cong \pi_i S_K \otimes Z_{(p)}$ are isomorphic to the following: $Z_{(p)}$ for i=0; $Q/Z_{(p)}=Z/p^{\infty}$ for $i\equiv-2$; Z/p^r for $i\equiv-1 \mod 2(p-1)$ with $i\neq-1$ where $r=v_p(i+1)+1$; and 0 otherwise (cf. [2]). For t>0 with $v_p(t)\geq r-1$ there exists an element $\alpha_{t,r}:\Sigma^{2t(p-1)-1}\to\Sigma^0$ of order p' in the image of J-homomorphism $J:\pi_*SO\to\pi_*\Sigma^0$. Let SZ/p^r be the Moore spectrum

of type Z/p^r , and $i_r: \Sigma^0 \to SZ/p^r$ and $j_r: SZ/p^r \to \Sigma^1$ denote the bottom cell inclusion and the top cell projection. Then there exists an Adams' K_* -equivalence

$$A_{t,r}: \Sigma^{2t(p-1)}SZ/p^r \to SZ/p^r$$

such that $j_r A_{t,r} i_r = \alpha_{t,r}$ (see [1, Section 12]). For simplicity we shall often omit the subscript r such as $i = i_r$, $j = j_r$ and $\alpha_t = \alpha_{t,r}$ when $r = v_p(t) + 1$.

Let X be a CW-spectrum such that $KU_0X \cong Z/p^r$ and $KU_1X=0$. We fix an integer k such that it generates $(Z/p^2)^*$. Then the Adams operation ψ_C^k on KU_0X is expressed as $\psi_C^k = k^{-t}$ for some integer t because k also generates $(Z/p^r)^*$. This implies that X has the same K_* -local type as $\Sigma^{2t}SZ/p^r$ for some t $(0 \le t < p^{r-1}(p-1))$ (cf. [4, Proposition 10.5]).

Theorem 2.1. Let m and n be integers such that m-n=r(p-1)+s $(0 \le s < p-1, r \ge 0)$. The function e(k,j) is defined by $e(k,j)=2kp^j-1$ when $j\ge 0$ and e(k,-1)=2k-1. Then $L(p)_{2n+1}^{2m}$ has the same K_* -local type as

$$\bigvee_{i=1}^{p-1} \sum_{i=1}^{e^{(n+i,r(i))}} SZ/p^{r(i)+1}$$

where r(i) = r if $i \le s$ and r(i) = r - 1 if i > s.

Proof. If m=n+1 then $L(p)_{2n+1}^{2n+2}$ is actually $\Sigma^{2n+1}SZ/p$. Assume that $L(p)_{2n+1}^{2m}$ has the same K_* -local type as the desired wedge sum of Moore spectra. Consider the following cofiber sequence

$$\Sigma^{2m}SZ/p \xrightarrow{g} L(p)_{2n+1}^{2m} \rightarrow L(p)_{2n+1}^{2m+2}.$$

It is easily verified that $[\Sigma^{2m}SZ/p, S_K \wedge \Sigma^{e(n+i,r(i))}SZ/p^{r(i)+1}] = 0$ for $i \neq s+1$. Therefore the K_* -localized map g may be expressed as $g = (0, \dots, 0, g_{s+1}, 0, \dots, 0)$ where $g_{s+1}: \Sigma^{2m}SZ/p \to S_K \wedge \Sigma^{e(n+s+1,r-1)}SZ/p^r$. Recall that

$$KU_{-1}L(p)_{2n+1}^{2m+2} \cong \bigoplus_{i=1}^{s+1} Z/p^{r+1} \oplus \bigoplus_{i=s+2}^{p-1} Z/p^r$$

(cf. [6] or [11]). Hence $KU_{-1}C(g_{s+1})$ must be Z/p^{r+1} on which $\psi_C^k \equiv 1/k^{n+s+1} \mod p$ and $\psi_C^{k+p} = \psi_C^k$. This implies that $C(g_{s+1})$ has the same K_* -local type as $\Sigma^{e(n+s+1,r)}SZ/p^{r+1}$.

REMARK. Recall that each $M \in \mathscr{A}_{(p)}$ is a direct sum of its subobject $M^{[i]} \in T^{i}\mathscr{B}_{(p)}$ for $i=0,1,\dots,p-2$ (see [3, Proposition 3.7]). We can assert that $KU_{-1}L(p)_{2n+1}^{2m}$ $\cong \bigoplus_{i=1}^{p-1} Z/p^{r(i)+1}$ as an abelian group gives rise to a decomposition in \mathscr{A} because

 $\Sigma^{1}L(p)_{2n+1}^{2m}$ is mod p decomposable (see [10, Proposition 9.6]) and its Atiyah-Hirzebruch spectral sequence collapses. Using this result we may also obtain the above theorem immediately.

In order to investigate the K_* -local type of $L(p)_{2n+1}^{2m+1}$ we shall describe generators of the group $[\Sigma^{2t(p-1)-1}SZ/p, S_k \wedge SZ/p^r]$. We first assume that t>0 and put $q=v_p(t)+1$. For the map $\alpha_t=\alpha_{t,q}:\Sigma^{2t(p-1)-1}\to\Sigma^0$ of order p^q its coextention $\tilde{\alpha}_t=\tilde{\alpha}_{t,q}:\Sigma^{2t(p-1)}\to SZ/p^q$ is given by $A_{t,q}i_q$. Using the obvious map $\pi=\pi_{q,r}:SZ/p^q$ $\to SZ/p^r$ we obtain a generator $\pi\tilde{\alpha}_t$ (denoted simply by $\tilde{\alpha}_{t,r}$) in the group $[\Sigma^{2t(p-1)}, S_K \wedge SZ/p^r]\cong Z/p^{min(r,q)}$ such that $j_r\tilde{\alpha}_{t,r}=\alpha_{t,r}$ if $q \le r$ and $j_r\tilde{\alpha}_{t,r}=p^{q-r}\alpha_{t,r}$ if q>r. The map $i_r\alpha_t$ generates the group $[\Sigma^{2t(p-1)-1}, S_K \wedge SZ/p^r]\cong Z/p^{min(r,q)}$. We may assume that $\alpha_{t,1}=p^{q-1}\alpha_t:\Sigma^{2t(p-1)-1}\to\Sigma^0$. Then its extension $\bar{\alpha}_{t,1}:\Sigma^{2t(p-1)-1}SZ/p^r$. $/p\to\Sigma^0$ is given by $j_qA_{t,q}\pi_{1,q}$. Note that $p^{r-1}i_r\alpha_t=(\alpha_t \wedge \pi_{1,r})i_1:\Sigma^{2t(p-1)-1}\to SZ/p^r$. Now we can give two generators of the group

$$[\Sigma^{2t(p-1)-1}SZ/p, S_K \wedge SZ/p^r] \cong Z/p \oplus Z/p$$

for t>0 as follows (cf. [1, Theorem 12.11]): the first component is generated by $\tilde{\alpha}_{t,t}j_1$; the second component is generated by $i_r \bar{\alpha}_{t,1}$ and $\alpha_t \wedge \pi$ according as $r \ge q$ and $r \le q$ respectively. Moreover it is easily verifed that these generators have the following relations: $i_r \bar{\alpha}_{t,1} = \tilde{\alpha}_{t,t}j_1$ for r < q; $i_r \bar{\alpha}_{t,1} = \tilde{\alpha}_{t,t}j_1 + \alpha_t \wedge \pi$ for r = q; and $\tilde{\alpha}_{t,t}j_1 = \alpha_t \wedge \pi$ for r > q.

Consider the group $\pi_{-2t(p-1)-1}S_{K(p)}$ for t>0. Since $\tilde{\alpha}_t = A_{t,q}i_q: \Sigma^{2t(p-1)} \rightarrow SZ/p^q$ we obtain a K_* -equivalence $e_t: \Sigma^{2t(p-1)+1} \rightarrow C(\tilde{\alpha}_t)$ such that $e_j = i_c A_{t,q}$ and $j_c e_t = p^q$ for the canonical inclusion $i_c: SZ/p^q \rightarrow C(\tilde{\alpha}_t)$ and the canonical projection $j_c: C(\tilde{\alpha}_t) \rightarrow \Sigma^{2t(p-1)+1}$. Moreover there exists a K_* -equivalence $A_{-t,q}: SZ/p^q \rightarrow \Sigma^{-1}C(\tilde{\alpha}_t) \wedge SZ/p^q$ such that $(1 \wedge j_q)A_{-t,q} = i_c$. Set $\alpha_{-t} = i_c i_q: \Sigma^{2t(p-1)-1} \rightarrow \Delta_{-t}\Sigma^0 = \Sigma^{-2t(p-1)-1}C(\tilde{\alpha}_t)$ which may be regarded as a generator of the group $\pi_{-2t(p-1)-1}S_{K(p)}$. By using α_{-t} instead of α_t in the previous discussion we can give two generators of the group $[\Sigma^{-2t(p-1)-1}SZ/p, S_K \wedge SZ/p^r] \cong Z/p \oplus Z/p$ for t>0 when SZ/p^r is replaced by $\Delta_{-t}SZ/p^r = \Sigma^{-2t(p-1)-1}C(\tilde{\alpha}_t) \wedge SZ/p^r$.

Denote by $L_{r,1}^t$ $(t \neq 0)$ the spectrum constructed as the cofiber of the map $\alpha_t \wedge \pi : \Sigma^{2t(p-1)-1}SZ/p \to \Delta_t SZ/p^r$ where $\Delta_t SZ/p^r = SZ/p^r$ for t > 0. Recall that $KU_0C(\alpha_t) \cong Z \oplus Z$ and $KU_0C(i_r\alpha_t) \cong Z \oplus Z/p^r$ on which the Adams operations ψ_c^k act as

$$\psi_{C}^{k} = \begin{pmatrix} 1/k^{t(p-1)} & 0\\ (1-k^{t(p-1)})/p^{q}k^{t(p-1)} & 1 \end{pmatrix}$$

with $q = v_p(t) + 1$ and $KU_1C(\alpha_t) = KU_1(i_r\alpha_t) = 0$ (cf. [1]). Then the KU_* -group of $L_{r,1}^t$ is given as follows:

$$KU_{0}L_{r,1}^{t} \cong Z/p \oplus Z/p^{r}; \ \psi_{C}^{k} = \begin{pmatrix} 1/k^{t(p-1)} & 0\\ p^{r-1}(1-k^{t(p-1)})/p^{q}k^{t(p-1)} & 1 \end{pmatrix}$$
$$KU_{1}L_{r,1}^{t} = 0.$$

For a given spectrum X, we shall denote by ΔX a CW-spectrum having the same K_* -local type as X.

Proposition 2.2. Assume that $t \neq 0$ and put $q = v_p(t) + 1$ and $t = xp^{q-1}$. Let $\iota: S \to S_K$ be the unit of S_K . For each map $g: \Sigma^{2\iota(p-1)-1}\Delta SZ/p \to \Delta SZ/p^r$ its cofiber C(g) has the same K_* -local type as the following spectrum: i) The " $q \geq r$ " case: $SZ/p^r \vee \Sigma^{2\iota(p-1)}SZ/p$ when $\iota \wedge g = 0$; $\Sigma^{2\iota(p-1)}SZ/p^{r+1}$ when $\iota \wedge g = \tilde{\alpha}_t \wedge \pi + u\tilde{\alpha}_{t,p}j$ for a unit u of Z/p where $w = -u^{-1}xp^{r-1}$ if q > r and $w = (1-u^{-1})xp^{r-1}$ if q = r, ii) The "q < r" case: $SZ/p^r \vee \Sigma^{2\iota(p-1)}SZ/p$ when $\iota \wedge g = 0$; SZ/p^{r+1} when $\iota \wedge g = i\tilde{\alpha}_{t,1}j$; $L_{r,1}^t$ when $\iota \wedge g = \tilde{\alpha}_t \wedge \pi + u\tilde{\alpha}_{t,p}j$ for a unit u of Z/p where $w = -u^{-1}xp^{r-1}$ if q > r and $w = (1-u^{-1})xp^{r-1}$ if q = r, ii) The "q < r" case: $SZ/p^r \vee \Sigma^{2\iota(p-1)}SZ/p$ when $\iota \wedge g = 0$; SZ/p^{r+1} when $\iota \wedge g = i\tilde{\alpha}_{t,1}j$; $L_{r,1}^t$ when $\iota \wedge g = \tilde{\alpha}_{t,p}j$ for a unit u of Z/p where $w = up^{r-1}$.

Proof. Use the following commutative diagram:

$$\Sigma^{2t(p-1)} = \Sigma^{2t(p-1)}$$

$$\downarrow^{\varphi} \qquad \downarrow^{p}$$

$$\Sigma^{2t(p-1)-1} \xrightarrow{g_{i}} \Delta SZ/p^{r} \rightarrow C(g_{i}) \rightarrow \Sigma^{2t(p-1)}$$

$$\downarrow^{i} \qquad \parallel \qquad \downarrow^{h} \qquad \downarrow$$

$$\Sigma^{2t(p-1)-1}SZ/p \xrightarrow{g} \Delta SZ/p^{r} \rightarrow C(g) \rightarrow \Sigma^{2t(p-1)}SZ/p.$$

i) It is sufficient to show the case $g = \alpha_t \wedge \pi + u\tilde{\alpha}_{t,r}j$. Note that $gi = p^{r-1}i\alpha_t$ and $\varphi_*: KU_0 \Sigma^{2t(p-1)} \to KU_0 C(p^{r-1}i_r\alpha_t)$ is expressed as $\binom{p}{u}: Z \to Z \oplus Z/p^r$. Hence we obtain that

$$KU_0C(g) \cong Z/p^{r+1}; \quad h_* = (1, -pu^{-1}): Z \oplus Z/p^r \to Z/p^{r+1},$$

and that ψ_C^k on $KU_0C(g)$ behaves as $\psi_C^k = 1/k^{t(p-1)} - p^r(1-k^{t(p-1)})/p^q u k^{t(p-1)}$. Put $k^{p-1} = 1 + yp$ and $t = xp^{q-1}$. Then $\psi_C^k = 1 - xyp^q + u^{-1}xyp^r = 1 - zyp^r = 1/k^{w(p-1)}$ where $z = -u^{-1}x$ if q > r and $z = (1 - u^{-1})x$ if q = r.

ii) From the relation $\tilde{\alpha}_{t,\mathbf{r}}j = \alpha_t \wedge \pi$ it follows that $C(\tilde{\alpha}_{t,\mathbf{r}}j) = L_{r,1}^t$. Since $C(i\bar{\alpha}_{t,1})$ has the same K_* -local type as SZ/p^{r+1} we can take $\varphi_* = \begin{pmatrix} p \\ 1 \end{pmatrix} : Z \to Z \oplus Z/p^r$ $\cong KU_0C(i\alpha_{t,1})$ when u = 0, and generally $\varphi_* = \begin{pmatrix} p \\ 1 + p^{r-q}u \end{pmatrix} : Z \to Z \oplus Z/p^r$. The rest of

proof is similar to i).

We shall next describe generators of the group

$$[\Sigma^{-1}SZ/p, S_{\mathbf{K}} \wedge SZ/p^{\mathbf{r}}] \cong Z/p \oplus Z/p.$$

Set $\beta_r = (\tilde{\alpha}_{1,r} \wedge 1)i_C : \Sigma^{-1}SZ/p \to \Delta_0 SZ/p^r = \Sigma^{-2p+1}SZ/p^r \wedge C(\tilde{\alpha}_1)$ where $i_C : SZ/p \to C(\tilde{\alpha}_1)$ is the canonical inclusion. Using the relations $i_C i_1 = \alpha_{-1}$ and $(\alpha_1 \wedge 1)\alpha_{-1} = (j_r \wedge 1)\beta_r i_1$ we obtain that

$$KU_0C(\beta_r i_1) \cong Z \oplus Z/p^r; \quad \psi_C^k = \begin{pmatrix} 1 & 0 \\ p^{r-2}(k^{p-1}-1)/k^{p-1} & 1 \end{pmatrix}.$$

Therefore β_r is a generator of the group $[\Sigma^{-1}SZ/p, S_K \wedge SZ/p^r]$ and another generator is cleary $i_k j_1$. Note that $\iota_K \wedge \beta_r$ is identified with the element $p^{r-1}i_k j_1$ of the group $[\Sigma^{-1}SZ/p, KO \wedge SZ/p^r]$ where $\iota_K : S_K \to KO$ is the K_* -localized map of the unit of KO.

So we replace the generator β_1 by $\beta_1 - i_1 j_1$ when r = 1. Denote by $L_{r,1}^0$ the spectrum constructed as the cofiber of the map β_r . The KU_* -group of $L_{r,1}^0$ is given as follows:

$$KU_0 L_{r,1}^0 \cong Z/p \oplus Z/p^r; \qquad \psi_C^k = \begin{pmatrix} 1 & 0 \\ p^{r-2}(k^{p-1}-1)/k^{p-1} & 1 \end{pmatrix}$$
$$KU_1 L_{r,1}^0 = 0.$$

Similarly to Proposition 2.2 we can show the following proposition.

Proposition 2.3. Let $\iota: S \to S_K$ be the unit of S_K . For each map $g: \Sigma^{-1}\Delta SZ/p \to \Delta SZ/p^r$ its cofiber C(g) has the same K_* -local type as the following spectrum $SZ/p^r \vee SZ/p$ when $\iota \wedge g = 0$; SZ/p^{r+1} when $\iota \wedge g = ij$; $L^0_{r,1}$ when $\iota \wedge g = \beta_r$; and $\Sigma^{2(p-1)w}SZ/p^{r+1}$ when $\iota \wedge g = \beta_r + uij$ for a unit u of Z/p where $w = u^{-1}p^{r-1}$ if r > 1 and $w = -u^{-1}$ if r = 1.

Set $q = v_p(t) + 1$ and $a = \min(r, v_p(t) + 1)$ for $t \neq 0$. Denote by M_r^t , N_r^t and P_r^t $(t \neq 0)$ the spectra constructed as the cofibers of the maps $p^{a-1}i_r\alpha_t: \Sigma^{2t(p-1)-1} \rightarrow \Delta_t SZ/p^r$, $p^{a-1}\alpha_j j_r: \Sigma^{2t(p-1)-2}SZ/p^r \rightarrow \Delta_t \Sigma^0$ and $(1 \wedge \pi_{1,r+1})\tilde{\alpha}_{t,1}: \Sigma^{2t(p-1)} \rightarrow \Delta_t SZ/p^{r+1}$ respectively. Evidently $N_r^t = \Sigma^{2t(p-1)}DM_r^t$ where DX denotes the Spanier-Whitehead dual of X. For t > 0 we consider the following commutative diagram:

$$\begin{split} \Sigma^{-1}SZ/p^r &= \Sigma^{-1}SZ/p^r \\ \downarrow^{ij} & \downarrow^{\varphi} \\ \Sigma^{2t(p-1)} \xrightarrow{\tilde{\alpha}_{t,1}} SZ/p &\to C(\tilde{\alpha}_{t,1}) \\ \parallel & \downarrow^{\pi} & \downarrow \\ \Sigma^{2t(p-1)} &\to SZ/p^{r+1} &\to P_r^t . \end{split}$$

The map φ may be regarded as $\alpha_{-t,1}j_r: \Sigma^{-1}SZ/p^r \to C(\tilde{\alpha}_{t,1})$. Therefore P_r^t has the same K_* -local type as $\Sigma^{2t(p-1)+1}N_r^{-t}$ when $q \le r$ and $\Sigma^{2t(p-1)+1} \lor SZ/p^r$ when q > r. This relation still holds in the case of t < 0 similarly. In the t=0 case $M_0^0 = \Sigma^0$ and M_r^0 is defined as the cofiber of the map $\beta_r i_1: \Sigma^{-1} \to \Delta_0 SZ/p^r$ when $r \ge 1$. We may also define N_r^0 and P_r^0 by the equalities: $N_r^0 = \Sigma^{-1}P_r^0 = DM_r^0$.

Theorem 2.4. Let n and m be integers such that m-n=r(p-1)+s $(0 \le s < p-1, r \ge 0)$. Put $t=r-(n+s+1)(p^{r-2}+p^{r-3}+\cdots+1)$ and l=n $(p^{r-2}+p^{r-3}+\cdots+1)$ where we understand $p^{r-2}+p^{r-3}+\cdots+1=0$ when $r\le 1$. The function e(k,j) is defined by $e(k,j)=2kp^j-1$ when $j\ge 0$ and e(k,-1)=2k-1. Then i) $L(p)_{2n+1}^{2m+1}$ has the same K_{*} -local type as the following spectrum:

$$(\bigvee_{1 \le i \le p-1, i \ne s+1} \Sigma^{e(n+i,r(i))} SZ/p^{r(i)+1}) \vee \Sigma^{e(n+s+1,r-1)} M_r^t \quad when \ m+1 \not\equiv 0 \ \text{mod} \ p^r,$$
$$L(p)_{2n+1}^{2m} \vee \Sigma^{2m+1} \qquad when \ m+1 \equiv 0 \ \text{mod} \ p^r.$$

ii) $L(p)_{2n}^{2m}$ has the same K_* -local type as

$$(\vee_{i=1}^{p-2} \Sigma^{e(n+i,r(i))} SZ/p^{r(i)+1}) \vee \Sigma^{2n} N_r^l \quad \text{when } n \not\equiv 0 \mod p^r,$$

$$L(p)_{2n+1}^{2m} \vee \Sigma^{2n} \qquad \text{when } n \equiv 0 \mod p^r.$$

Proof. i) Consider the following commutative diagram:

$$\Sigma^{2m} \xrightarrow{J} L(p)_{2n+1}^{2m} \rightarrow L(p)_{2n+1}^{2m+1}$$

$$\downarrow^{i} \qquad \qquad \downarrow$$

$$\Sigma^{2m}SZ/p \xrightarrow{g} L(p)_{2n+1}^{2m} \rightarrow L(p)_{2n+1}^{2m+2}.$$

As is shown in the proof of Theorem 2.1 the bottom cofiber sequence is essentially given by the following cofiber sequence:

$$\Sigma^{2t(p-1)-1}SZ/p \xrightarrow{g_{s+1}} \Delta_t SZ/p^r \to \Sigma^{2(p-1)w}\Delta SZ/p^{r+1}$$

where $w = (n+s+1)p^{r-1}$. In the $t \neq 0$ case we set $q = v_p(t)+1$. Note that $m+1 \equiv w \mod p^r$ when q > r, $m+1 \equiv w-t \mod p^r$ when q = r, and $m+1 \neq 0 \mod p^r$ when q < r because m+1 = t(p-1)+w. On the other hand, it is immediate that r=2, n+s=1 and hence m+1=w=2p in the t=0 case. Since the cofiber $C(g_{s+1})$ has the same K_* -local type as $\Sigma^{2(p-1)w}SZ/p^{r+1}$, we can determine the form of g_{s+1} uniguely up to K_* -equivalence, by means of Propositions 2.2 and 2.3. In fact the map g_{s+1} is chosen as follows: $\tilde{\alpha}_{t,s}j$ if "q > r and $w \equiv 0 \mod p^{rm}$ " or "q=r and $w \equiv t \mod p^{rm}$; $\alpha_t \wedge \pi + u\tilde{\alpha}_{t,s}j$ if "q > r and $w \equiv 0 \mod p^{rm}$; and $\beta_2 + uij$ if "q < r and $w \equiv 0 \mod p^{rm}$; $i\tilde{\alpha}_1 + u\tilde{\alpha}_{t,s}j$ if "q < r and $w \neq 0 \mod p^{rm}$; and $\beta_2 + uij$ if "t=0" where $u \in Z/p$ is a suitable unit. Therefore the cofiber $C(g_{s+1}i)$ has the same K_* -local type as M_r^t when $m+1 \neq 0 \mod p^r$, but it has the same K_* -local type as the wedge sum $SZ/p^r \vee \Sigma^{2t(p-1)}$ when $m+1 \equiv 0 \mod p^r$.

$$L(p)_{2n}^{2m} \to L(p)_{2n+1}^{2m} \xrightarrow{h} \Sigma^{2n+1}.$$

The dual map Dh has already been given in i), so our result is immediate.

REMARK. In the case ii) we may assert that $L(p)_{2n}^{2m}$ has the same K_* -local type as the wedge sum $\sum_{i=1}^{e(n,r-1)} P_r^{-i} \vee \sqrt{\sum_{i=1}^{p-2} \sum_{i=1}^{e(n+i,r(i))} SZ/p^{r(i)+1}}$ in any cases.

Theorem 2.5. Let r,s,t,l,e(k,j) and r(i) be the integers given in Theorem 2.4 which depend on m and n, and put $\tau = r+1-n(p^{r-1}+\cdots+1)$, $\lambda = n(p^{r-1}+\cdots+1)$. Then $L(p)_{2n}^{2m+1}$ has the same K_* -local type as the following spectrum X: i) When $m+1 \equiv 0 \mod p^r$, $X = L(p)_{2m}^{2m} \vee \Sigma^{2m+1}$.

ii) When $n \equiv 0 \mod p^r$, $X = L(p)_{2n+1}^{2m+1} \lor \Sigma^{2n}$.

iii) When m+1, $n \neq 0 \mod p^r$ and $m-n+1 \neq 0 \mod p-1$,

$$X = (\bigvee_{1 \le i \le p-1, i \ne s+1} \Sigma^{e(n+i,r(i))} SZ/p^{r(i)+1}) \vee \Sigma^{e(n+s+1,r-1)} M_r^t \vee \Sigma^{2n} N_r^l.$$

iv) When m+1, $n \not\equiv 0 \mod p^r$ and $m-n+1 \equiv 0 \mod p-1$,

$$(\bigvee_{1\leq i\leq p-2}\Sigma^{e(n+i,r(i))}SZ/p^{r(i)+1})\vee\Sigma^{e(n,r)}C(p^{a-1}i_{r+1}\alpha_{\tau}\vee u\tilde{\alpha}_{-\lambda,1}).$$

where $a = \min(v_n(\tau) + 1, r + 1)$ and $u \in \mathbb{Z}/p$ is a suitable unit.

Proof. The cases i), ii) and iii) are immediately shown by use of Theorem 2.4. To show the case iv) we consider the following commutative diagram:

$$\Sigma^{2m} = \Sigma^{2m}$$

$$\downarrow^{f} \qquad \downarrow$$

$$\Sigma^{2n-1} \xrightarrow{g} L(p)^{2m}_{2n-1} \xrightarrow{i_g} L(p)^{2m}_{2n}$$

$$\parallel \qquad \downarrow^{i_f} \qquad \downarrow$$

$$\Sigma^{2n-1} \rightarrow L(p)^{2m+1}_{2n-1} \rightarrow L(p)^{2m+1}_{2n}$$

By Theorem 2.1 we may decompose $L(p)_{2n-1}^{2m}$ as the wedge sum $\bigvee_{i=1}^{p-2} \Sigma^{e(n+i,r)} SZ$ $/p^{r+1} \vee \Sigma^{e(n,r)} SZ/p^{r+1}$. From Theorem 2.4 i) we can take map $f_{p-1} = p^{a-1} i \alpha_{\tau} : \Sigma^{2m} \to \Sigma^{2w-1} \Delta_{\tau} SZ/p^{r+1}$ with $2w-1 = e(n,r) = 2np^{r} - 1$ because $\tau \neq 0$ in the case iv). Since $\Sigma^{2n} N_{r}^{\lambda}$ has the same K_{*} -local type as $\Sigma^{2w-1} P_{r}^{-\lambda}$ we may take $g_{p-1} = u(1 \wedge \pi) \tilde{\alpha}_{-\lambda,1}$: $\Sigma^{2n-1} \to \Sigma^{2w-1} \Delta_{-\lambda} SZ/p^{r}$ for some unit $u \in Z/p$. Then the (p-1)-th component of $L(p)_{2n}^{2m+1}$ has the same K_{*} -local type as the cofiber of the map

$$p^{a-1}i\alpha_{\tau} \vee u(1 \wedge \pi)\tilde{\alpha}_{-\lambda,1}: \Sigma^{2m} \vee \Sigma^{2n-1} \to \Sigma^{2w-1}\Delta_{v}SZ/p^{r+1}$$

after compositing suitable K_* -equivalences $\Delta_r \Sigma^0 \to \Delta_v \Sigma^0$ and $\Delta_{-\lambda} \Sigma^0 \to \Delta_v \Sigma^0$ for some integer v if necessary (cf. [14]).

REMARK. Recall that the *J*-group is given as the cokernel of $\psi^k - 1$. Note that

$$J^{2t(p-1)}N_r^l \otimes Z_{(p)} \cong \begin{cases} Z/p^q \oplus Z/p^{\min(q,r)} & \text{for } q < s \\ Z/p^{q-s+1+\min(r,v)} \oplus Z/p^{s-1} & \text{for } q \ge s \end{cases}$$

where $q = v_p(t) + 1$, $s = v_p(l) + 1$ and $v = v_p(l-t) + 1$ (=s when q > s) and $J^i N_r^l \otimes Z_{(p)} = 0$ for $i \neq 0 \mod 2(p-1)$. Applying Theorems 2.1 and 2.4 ii) we can compute $J^*L(p)_n^{2m}$ and hence $J^*L(p)_n^{2m+1}$ immediately although they have already been calculated in [9]. Note that the K_* -local type of $L(p)_n^{2m}$ is classified by the J-group $J^*L(p)_n^{2m}$ (cf. [3, Lemma 6.7]).

References

- [1] J.F. Adams: On the group J(X)-IV, Topology 5 (1966) 21-71.
- [2] A.K. Bousfield: The localization of spectra with respect to homology, Topology 18 (1979) 257-281.
- [3] A.K. Bousfield: On the homotopy theory of K-local spectra at an odd prime, Amer. J. Math. 107 (1985) 895–932.
- [4] A.K. Bousfield: A Classification of K-local spectra, J. Pure and Applied Algebra 66 (1990) 121-163.
- [5] M. Imaoka, M. Sugawara: On the K-Ring of the Orbit Manifold $(S^{2m+1} \times S^{l})/D_n$ by the dihedral group D_n , Hiroshima Math J. 4 (1974) 53-70.
- [6] T. Kambe: The structure of K_{Λ} -rings of the lens space and their applications, J. Math. Soc. Japan 18 (1966) 135–146.
- [7] S. Kôno: Stable homotopy type of Thom spaces of canonical bundles over Orbit Manifolds

 $(S^{2m+1} \times S^{l})/D_{p}$ by the dihedral group D_{p} , preprint.

- [8] M. Kamata, H. Minami: Bordism groups of dihidral groups, J. Math. Soc. Japan 25 (1973) 334–341.
- [9] S. Kôno, A. Tamamura: J-groups of the suspensions of the stunted lens spaces mod p, Osaka J. Math 24 (1987) 481-498.
- [10] S. Kôno, A. Tamamura, M. Fujii: J-group of the Orbit Manifolds $(S^{2m+1} \times S^{l})/D_{n}$ by the dihedral group D_{n} , Math J. Okayama Univ. 22 (1980) 205-221.
- [11] N. Mahammed: A propos de la K-théorie des espaces lenticularies, C.R. Acad. Sc. Paris 271 (1970) 639-642.
- [12] M. Mimura, G. Nishida, H.Toda: Localization of CW-complexes and its applications, J. Math. Soc. Japan 23 (1971) 593-624,
- [13] Z. Yosimura: The K_* -localizations of the stunted real projective spaces, J. Math. Kyoto Univ. 33 (1993) 523-541.
- [14] Z. Yosimura: K_* -localizations of spectra with simple K-homology, II, preprint.

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558, Japan