QUOTIENTS OF REAL ALGEBRAIC *G* **VARIETIES AND ALGEBRAIC REALIZATION PROBLEMS**

DONG YOUP SUH

(Received March 20, 1995)

1. Introduction

Let G be a compact Lie group. A *real algebraic G* variety in an orthogonal representation Ω is the common zeros of polynomials $p_1, \dots, p_m : \Omega \to \mathbb{R}$, which is invariant under the action of *G* on Ω . In this case we also say that *G* acts algebraically on *V.* There is a more obvious definition of algebraic actions of algebraic groups on algebraic varieties via algebraic automorphisms. Namely, since any compact Lie group has a unique real algebraic variety structure we can define an algebraic action of G on a real algebraic variety *V* as a *G* action whose action map $\theta: G \times V \to V$ is a regular map between real algebraic varieties. Remember that a map $f: V \subset \mathbb{R}^n \to W \subset \mathbb{R}^m$ between two real algebraic varieties is regular if f can be extended to a polynomial map $F: \mathbb{R}^n \to \mathbb{R}^m$. The above two definitions of real algebraic *G* variety are equivalent, see [3] or [8].

In smooth transformation group theory it is well known that the orbit space of a smooth manifold with a free action of a compact Lie group is a smooth manifold. Ozan proves an algebraic analogue of this for odd order group actions, [11]. In fact Ozan proves, in particular, that if an odd order group acts algebraically and freely on a non-singular irreducible real algebraic variety, then its orbit space is also a non-singular irreducible real algebraic variety. Before Ozan, Procesi and Schwarz [12] prove that the orbit space of real representation space of an odd order group has a real algebraic variety structure. In section 2 of this paper we extend Ozan's result to get the following theorem.

Theorem A. *Let G be a compact Lie group, and let H be an odd order group.* Let X be a real algebraic $G \times H$ variety. Then the orbit space X/H *has a real algebraic G variety structure. Moreover if the action of H is free and X is non-singular, then X/ H is also non-singular.*

Theorem A is applied to algebraic realizations of closed smooth *G* manifolds

The author was partially supported by Korea Science and Engineering Foundation 951-0105-005-2 and TGRC-KOSEF.

with one orbit type and smooth *G* vector bundles over them. A smooth closed *G* manifold *M* is said to be *algebraically realized* if it is G diffeomorphic to a non-singular real algebraic *G* variety *V.* A set J*" of *G* vector bundles *ξ* over M is said to be *algebraically realized* if *M* is algebraically realized by *V* with a G diffeomorphism $\phi: M \to V$ and there exists a set \mathcal{F}' of strongly algebraic G vector bundles over *V* such that each $\xi \in \mathcal{F}$ is G isomorphic to $\phi^* \eta$ for some $\eta \in \mathcal{F}'$. A strong algebraic G vector bundle is defined in Section 3. The questions we are interested in here are whether a given closed smooth G manifold is algebraically realized, and if the case is true, whether any set of G vector bundles over a closed smooth G manifold can be algebraically realized. The first question is called the manifold realization problem, and the second one is called the bundle realization problem. In section 3 we use Theorem A to solve the manifold realization problem for closed G manifolds with one orbit type:

Theorem B. *Let G be a compact Lie group acting smoothly on a closed manifold M with one orbit type. Then M can be algebraically realized.*

In section 4, using similar technique, we can partially solve the bundle realization problem over closed G manifolds with one orbit type:

Theorem C. *Let G be a compact Lie group acting smoothly on a closed manifold M with one orbit type. Let G | H be the unique orbit type, and let* $K := N/H$ *where N is the normalizer of H in G. If K is an odd order group, then the set of all G vector bundles over M can be algebraically realized.*

The author would like to thank Karl Heinz Dovermann and Mikiya Masuda for many helpful discussions on the topics of the present paper.

2. Quotients of algebraic $G \times H$ varieties by H

Let *V* be a real algebraic *G* variety. The orbit space V/G has, in general, a semialgebraic set structure. However Ozan showed that if G is an odd order group and V is irreducible, then the orbit space V/G has a real algebraic variety structure. Moreover if the action is free and V is non-singular, then V/G is also non-singular, see [13].

In this section we extend Ozan's result to the quotient space V/H of real algebraic $G \times H$ variety V, which is not necessarily irreducible, where G is a compact Lie group and *H* an odd order group. The following theorem is the main result of this section. For simplicity we identify *H* (respectively G) with the subgoup $0 \times H$ (respectively $G \times 0$) of $G \times H$.

Theorem A. *Let G be a compact Lie group, and let H be an odd order*

group. Let X be a real algebraic $G \times H$ variety. Then the quotient space X/H *has a real algebraic G variety structure. Moreover if the action of H is free and X is non-singular, then X / H is also non-singular.*

Let G and H be compact Lie groups. Let Ω be an orthogonal representation of $G \times H$. Let $R[\Omega]$ be the *R*-algebra of polynomial functions defined on Ω . This algebra has the induced action of $G \times H$ from the linear action of $G \times H$ on Ω defined by $k \cdot f = f \circ k^{-1}$ for $f \in \mathbb{R}[\Omega]$ and $k \in G \times H$. The *H*-fixed point set $\mathbb{R}[\Omega]^H$ is the subalgebra of H -invariant polynomials. By a theorem of Hilbert and Hurewitz [15, Ch 8, section 14] the subalgebra $R[\Omega]^H$ is finitely generated.

Let X be a real algebraic $G \times H$ variety in an orthogonal representation Ω. Let $\mathcal{I}(X)$ denote the ideal of polynomials on Ω which vanish on X. Then the ring $R[X]$ of polynomial functions on X is defined to be $R[\Omega]/\mathcal{I}(X)$. This ring is an *R*-algebra with the induced $G \times H$ action from the $G \times H$ action on $R[\Omega]$.

Lemma 2.1. The subalgebra $R[X]^H$ of H invariant polynomial functions on X is *finitely generated.*

Proof. Let $i: X \subseteq \Omega$ be the inclusion, and let $i^*:R[\Omega] \to R[X]$ be the corresponding algebra homomorphism. If we restrict i^* to $R[\Omega]^H$, then clearly its image $i^*(R[\Omega]^H)$ is contained in $R[X]^H$. Since $R[\Omega]^H$ is finitely generated it is enough to show that $i^* \colon \mathbb{R}[\Omega]^H \to \mathbb{R}[X]^H$ is surjective. For $f \in \mathbb{R}[X]^H$ we can consider that f is a polynomial $\Omega \to \mathbb{R}$ which is H-invariant on X, i.e. $f(hx) = f(x)$ for all $x \in X$ and $h \in H$. Define $\bar{f}: \Omega \to \mathbb{R}$ by $f(x) = \int_H f(hx) dh$, where *dh* is the Haar measure of H. Then \bar{f} is a polynomial function which is H-invariant on Ω and $\bar{f} = f$ on *X*. Namely $i^*(\bar{f}) = f \in \mathbb{R}[X]^H$. This shows that $i^*: \mathbb{R}[\Omega]^H \to \mathbb{R}[X]^H$ is surjective, and hence $R[X]^H$ is finitely generated. \Box

Let p_1, \dots, p_d generate $R[X]^H$, and let us consider the regular map

$$
p = (p_1, \cdots, p_d) : X \to \mathbb{R}^d.
$$

Let Z be the real algebraic variety in R^d defined by the polynomial relations of p_1, \dots, p_d . Since *p* is constant on *H*-orbits of *X* the map *p* factors through the quotient space X/H . Let $\bar{p}: X/H \to Z$ be the induced map such that $p = \bar{p} \circ \pi$ where $\pi: X \to X/H$ is the quotient map. In general, the map $\bar{p}: X/H \to Z$ is not surjective but is a homemorphism onto its image, see [13].

We now complexify the above argument. For a real algebraic variety *V* its complexification V_c is the complex Zariski closure of V, namely the smallest complex algebraic variety which contains *V.* Since every compact Lie group *K* has a unique real algebraic variety structure we can consider its complexification K_c . Then K_c is a complex reductive algebraic group with K as a maximal compact

subgroup, see [14]. Note that if *K* is a finite group, then $K_c = K$.

Let K be a compact Lie group. Let V be a real algebraic K variety in an orthogonal representation Ω . Let θ : $K \times V \rightarrow V \subset \Omega$ be the algebraic action map. Then θ is a regular (i.e. polynomial) map. Consider the complexification θ_c : $(K \times V)_c \rightarrow \Omega_c = \Omega \otimes_R C$, where θ_c is the same polynomial as θ viewed as a complex polynomial map. In Zariski topology $(K \times V)_c$ is the closure of $K \times V$ and the regular map θ_c is a continuous function. Therefore $\theta_c((K \times V)_c)$ is contained in the Zariski closure of V which is V_c . We know that $(K \times V)_c \subset K_c \times V_c$ because $(K \times V)_c$ is the smallest complex algebraic variety containing $K \times V$. On the other hand

$$
C[(K \times V)_c] \cong R[K \times V] \otimes_R C \cong (R[K] \otimes_R C) \otimes_c (R[V] \otimes_R C) \cong C[K_c \times V_c].
$$

Thus $(K \times V)_c = K_c \times V_c$.

Let X be a real algebraic $G \times H$ variety, and let Z be the variety as defined in the paragraph after Lemma 2.1. Then $C[X_c] \cong R[X] \otimes_R C$. Since X is a real algebraic $G \times H$ variety X_c is a complex algebraic $G_c \times H_c$ variety. As in the real case the C-algebra $C[X_c]$ of complex polynomial functions on X_c has the induced action of $G_c \times H_c$. Let $C[X_c]^H$ *c* be the H_c -invariant polynomials. Then $C[X_c]^H c \cong C[X_c]^H \cong R[X]^H \otimes_R C$, where the first isomorphism follows because *H* is Zariski dense in H_c . Therefore the regular map $p: X \to \mathbb{R}^d$ naturally induces the complex regular map $p_c: X_c \to \mathbb{C}^d$ where $p_c = (p_{1c}, \dots, p_{d_c})$ is the same polynomial map as *p* viewed as a complex polynomial map. The complex variety in C^d defined by the polynomial relations of p_{1c}, \dots, p_{d} is obviously the Zariski closure Z_c of Z. Such constructed variety Z_c is called an *algebraic quotient* of X_c by H_c . The following lemma is well known, see [14].

Lemma 2.2. The map $p_{\mathbf{C}}$: $X_{\mathbf{C}} \to \mathbf{C}^d$ maps $X_{\mathbf{C}}$ onto $Z_{\mathbf{C}}$, and separates $H_{\mathbf{C}}$ -orbits of X_c .

Lemma 2.3. The algebraic action of $G_c \times H_c$ on X_c , which is the complexifi*cation of real algebraic action of* $G \times H$ *on X, induces an algebraic action of* G_c *on Z^c . Moreover this action restricts to a real algebraic action of G on Z.*

Proof. Define an action of G_c on Z_c as follows: Let Φ : $(G_c \times H_c) \times X_c \rightarrow X_c$ be the algebraic action map, and let $\Phi_1: G_c \times X_c \to X_c$ be the restriction of Φ to $G_c \times X_c$. Since Z_c is the algebraic quotient of X_c by H_c the map $p_c: X_c \to Z_c$ satisfies the follwing universal property, see (3.5) of $[14]$ or p123 of $[6]$:

If ϕ : $X_c \rightarrow V$ is a regular map between complex algebraic varieties which is *constant on H_c-orbits, then* ϕ *is the composition* $\psi \circ p_{\mathbf{C}}$ *where* $\psi : Z_{\mathbf{C}} \to V$ *is a regular map between complex algebraic varieties.*

We may consider $G_c \times X_c$ as an algebraic H_c -variety where H_c acts trivially on G_c , and acts on X_c via Φ . Then $Id_{G_c} \times p_c$: $G_c \times X_c \to G_c \times Z_c$ is an algebraic quotient map, and thus above universal property is satisfied. Now consider the composition

$$
p_{\mathbf{C}} \circ \Phi_{\vert} : G_{\mathbf{C}} \times X_{\mathbf{C}} \to X_{\mathbf{C}} \to Z_{\mathbf{C}}.
$$

Since $p_c \circ \Phi_1$ is a regular map we can apply the above universal property to find a regular map θ : $G_c \times Z_c \to Z_c$ such that $\phi_c \circ \Phi_1 = \theta \circ (\text{Id} \times p_c)$. We claim that θ defines an algebraic action of G_c on Z_c . To do this we have to show that

- (1) $\theta(e,z) = z$ for all $z \in Z_c$, and
- (2) $\theta(g, \theta(h,z)) = \theta(gh, z)$ for $g, h \in G$ and $z \in Z_c$.

Let $x \in p^{-1}(z)$. Then

$$
\theta(e, z) = \theta \circ (\text{Id} \times p_c)(e, x)
$$

$$
= p_c \circ \Phi_1(e, x)
$$

$$
= p_c(x) = z.
$$

For $g, h \in G$ and $z \in Z_c$

$$
\theta(gh, z) = \theta \circ (\text{Id} \times p_c)(gh, x)
$$

$$
= p_c((gh)x).
$$

On the other hand

$$
\theta(g, \theta(h, z)) = \theta(g, \theta \circ (\text{Id} \times p_c)(h, x))
$$

= $\theta(g, p_c(hx))$
= $\theta \circ (\text{Id} \times p_c)(g, hx)$
= $p_c(g(h(x)))$
= $p_c((gh)x)$
= $\theta(gh, z).$

This proves that the map θ is actually an action map. Therefore if we take the real part of θ : $G_c \times Z_c \rightarrow Z_c$, then it defines a real algebraic action of *G* on *Z*. \Box

By Lemma 2.2 the map $p_c: X_c \to Z_c$ is surjective, but as we have mentioned before $p: X \to Z$ is not surjective in general. Next lemma gives a sufficient condition for $p: X \to Z$ to be surjective.

Lemma 2.4. If H is an odd order group, then the map $p: X \rightarrow Z$ is surjective *and* $\bar{p}: X/H \rightarrow Z$ *is a G homeomorphism. Therefore the quotient space* X/H *can be given a real algebraic G variety structure by Z.*

404 D.Y. SUM

Proof. Let $Z_0 := p(X)$. Suppose there exists a point $x \in Z - Z_0$. Note that since *H* is a finite group $H_c = H$. Since p_c : $X_c \rightarrow Z_c$ is surjective the preimage $p_c^{-1}(x)$ of the point x is non-empty and consists of at most |H| points by Lemma 2.2. Since $x \in Z - Z_0$ none of the points in the preimage are contained in the real part $X_c \cap \Omega$ of X_c because $X_c \cap \Omega = X$ and X is mapped onto Z_0 .

On the other hand p_c is a polynomial with real coefficients, and X_c is defined by real polynomials because $\mathcal{I}(X_c) = \mathcal{I}(X) \otimes_R C$. Therefore if $a \in X_c$ then its complex conjegate $\bar{a} \in X_c$, and if $p_c(a)$ is real then both *a* and \bar{a} are mapped to the same point by p_c . This implies that the cardinality of the preimage $p_c^{-1}(x)$ is an even number. On the other hand since the map p_c separates orbits, the cardinality of $p_c^{-1}(x)$ is the same as the order of a quotient group of *H*. This is a contradiction because $|H|$ is odd the order of any quotient group of H is odd. This proves that $Z_0 = Z$. Thus Lemma 2.3 implies that X/H can be endowed with a real algebraic *G* variety structure by Z.

Proof of Theorem A. From Lemma 2.4 the quotient space *X/H* has a real algebraic *G* variety structure. In fact the real algebraic *G* variety Z is the desired variety structure on *X/H.* It remains to prove that if *X* is nonsingular and *H* acts freely, then Z is nonsingular.

For a complex algebraic varieties non-singularity at a point *x* is equivalent to smoothness around x, see $[10]$. Also note that a real algebraic variety V is nonsingular at *x* if and only if the complexification *X^c* is non-singular at *x.*

Let $X_{C_{(1)}}$ denote the set of points of the principal isotropy type, and let $Z_{C_{(1)}}$ Let $X_{C_{(1)}}$ denote the set of points of the principal isotropy type, and let Z_{C_1} denote the image $p_C(X_{C_{(1)}}) \subset Z_C$. Then $Z_{C_{(1)}}$ is an open smooth manifold c dimension $2n$, where *n* is the complex dinension of the variety Z_c , [9 III.2.4].

Suppose Z is singular at $z \in Z$. Then Z_c is singular at z. Therefore Z_c is not a smooth manifold around z. On the other hand since *H* acts freely on *X* it is clear that $p(X) = Z$ is contained in the smooth manifold $Z_{C_{(1)}}$. This is a contradiction. Therefore Z is nonsingular.

By a similar but easier argument we can show that every compact homogeneous space *GIH* of compact Lie group *G* and a closed subgroup *H* has a non-singular real algebraic variety structure, see [4, p54].

3. Algebraic Realization of close smooth *G* manifolds.

The main result of this section is the following theorem.

Theorem B. *Let G be a compact Lie group acting smoothly on a closed manifold M with one orbit type. Then M can be algebraically realized.*

The rest of the section is devoted to the proof of Theorem B. Let M be a smooth closed *G* manifold with the unique orbit type *G/ H.* Let

 $K=N/H$, where *N* is the normalizer of *H*. From 2.5.11 and 6.2.5 of [2] or 4.8 of [7] there is a G diffeomorphism

$$
(G/H) \times_K M^H \to M
$$

$$
[gH, x] \mapsto g(x).
$$

We consider two cases.

Case 1. $|K| \neq odd$. Note that the induced action of *K* on *M^H* is free because there is only one orbit type. Since $|K| \neq$ odd and *K* acts freely on M^H Proposition 4.1 of [3] implies that *M^H* bounds *K* equivariantly. Namely, there exists a smooth *K* manifold *W* with $\partial W = M^H$. Then $(G/H) \times_K W$ is a smooth *G* manifold *(G* acts on *G / H* as a left translation) with $\partial((G/H) \times_K W) = (G/H) \times_K \partial(W) = (G/H) \times_K$ $M^H \cong M$. Therefore we have proved that M is a G equivariant boundary.

Case 2. $|K| = odd$. In this case it is proved in [3] that every smooth closed *K* manifold is *K* equivariantly cobordant to a non-singular real algebraic *K* variety. Therefore there exists a K manifold W with $\partial W = M^H$ II Z where Z is a nonsingular real algebraic *K* variety. Here II denotes disjoint union.

Consider the manifold $G/H \times W$. This is a $G \times K$ manifold with the following action. The action of *G* is the left translation on *G/ H,* and the action of *K* is $kH \cdot (gH,w) = (gk^{-1}H, kw)$. Note that the action of *K* on $G/H \times W$ is free. The orbit space $G/H \times_K W$ of the *K* action on $G/H \times W$ is a smooth *G* manifold with $\partial(G/H\times_K W) = G/H \times_K M^H$ **II** $G/H \times_K Z$.

Since every orbit *G/ H* has a canonical non-singular real algebraic *G* variety structure, $G/H \times Z$ is a non-singular real algebraic $G \times K$ variety with free K action. Thus Theorem A implies that the quotient space $G/H \times_K Z$ is a nonsingular real algebraic *G* variety.

In both cases $M \cong (G/H\times {}_K M^H)$ is G equivariantly cobordant to a non-singular algebraic G variety V including the case $V=0$. Now Theorem B follows from the following theorem.

Theorem 3.1. ([4]) *A smooth closed G manifold M is algebraically realized if and only if it is G equivariantly cobordant to a non-singular real algebraic G variety.*

4. Algebraic Realization of *G* **Vector Bundles.**

A *strongly algebraic G* vector bundle *ξ* over a non-singular real algebraic *G* variety *V* is a *G* vector bundle whose equivariant classifying map $\mu_{\xi}: V \to G_{R}(\Xi, k)$ is an equivariant entire rational map, i.e., if $V \subset \mathbb{R}^n$ and $G_{\mathbb{R}}(\Xi, k) \subset \mathbb{R}^m$, then there exist polynomials $P: \mathbb{R}^n \to \mathbb{R}^m$ and $Q: \mathbb{R}^n \to \mathbb{R}$ with $Q^{-1}(0) \cap V = \emptyset$ such that $\mu_{\xi} = P/Q$

406 D.Y. SUH

on *V*. Remember that a set $\mathcal F$ of G vector bundles over a closed smooth G manifold *M* is *algebraically realized* if there are a non-singular real algebraic *G* variety V, a G diffeomorphism $\phi: M \to V$, and a set \mathcal{F}' of strongly algebraic G vector bundles over *V* such that for each $\xi \in \mathscr{F}$ there exists $\eta \in \mathscr{F}'$ such that ξ and ϕ^* *n* are *G* isomorphic, or equivalently an equivariant classifying map *μ*_{*ξ*}: *M* → *G*_{*R*}(Ξ,*k*) of *ξ* is *G* homotopic to $μ$ ^{*η*} ϕ where $μ$ ^{*η*} is an equivariant classifying map of *η.*

The question we are interested in here is whether any set of *G* vector bundles over a closed smooth *G* manifold is algebraically realized. This bundle realization problem is treated in [5] and we refer the reader to the cited paper for details on the subject. One of the fundamental result of [5] is the following theorem 4.1 which reduces the bundle realization problem to a non-oriented equivariant bordism theoretic problem. For this we need some terminology. Let $f: M^n \to Y$ be a G map from a closed smooth G manifold to a G space Y. Let $g: N^n \to Y$ be another *G* map. They are equivalent if they are corbodant, i.e., there exist a smooth *G* manifold W^{n+1} with $\partial W = M$ *N* and a *G* map $F: W \rightarrow Y$ such that $F|_M = f$ and $F|_N = g$. The collection of all equvalent classes of pairs (M, f) forms an abelian group with addition induced from disjoint union. This group is called the (non-oriented) G equivariant bordism group of Y, and is denoted by $\mathcal{N}_r^G(Y)$. The class of the pair (M, f) is denoted by $[M, f]$. The identity element of the bordism group is represented by a pair (M, f) which is an equivariant boundary, i.e., there exists a smooth G manifold W and a smooth G map $F: W \to Y$ such that $\partial W =$ *M* and $F|_M = f$.

Let *Y* be a non-singular real algebraic *G* variety. An equivariant bordism class $[M, f] \in \mathcal{N}_*^G(Y)$ is said to be *algebraic* if $[M, f] = [V, g]$ where V is a non-singular real algebraic G variety and $g: V \rightarrow Y$ is an enitre rational G map including the case when (M, f) is an equivariant boundary. A pair (M, f) of a closed smooth G manifold and a smooth G map $f: M \to Y$ is said to be *algebraically realized* if there are a non-singular real algebraic *G* variety K, an entire rational *G* map $g: V \to Y$ and a G diffeomorphism $\phi: V \to M$ such that $f \circ \phi$ and g are G homotopic.

The following theorem gives a necessary and sufficient condition for a pair (M, f) to be algebraically realized.

Theorem 4.1. ([5]) Lei *G be a compact Lie group and Y a non-singular real algebraic G variety. Let M be a closed smooth G manifold and* $f: M \rightarrow Y$ *a smooth G* map. Then (M, f) is algebraically realized if and only if its bordism class $[M, f]$ *is algebraic.* \Box

Another needed result from [5] is the following.

Lemma 4.2. *Let G be an odd order group acting freely on a closed smooth manifold M. Let Y be a non-singular real algebraic G variety such that Y^L has*

totally algebraic homology for every subgroup $L \subset G$. Then for a smooth G map $f: M \to Y$ the bordism class $[M, f] \in \mathcal{N}^{\mathbb{G}}_{*}(Y)$ is algebraic. In fact, every $[M, f]$ is *represented by* $g: Z \rightarrow Y$ *where Z is a non-singular real algebraic G variety and g is a G-regular map.*

We do not give the definition of totally algebraic homology because it is not an essential concept in this paper. We refer the reader to $\lceil 1 \rceil$ or $\lceil 5 \rceil$ for details.

Proof of Lemma 4.2. All others are proved in [5] except for the last sentence. For the last claim we can examine the proof in [5], and show that the algebraic representative (Z,g) can be chosen so that g is a G-regular map instead of an entire rational *G* map. This can actually be done so. Here, however, instead of doing so, we prove the last claim by proving a generalized version. The last claim follows immediately from the following proposition. \Box

Proposition 4.3. *Let G be a compact Lie group. Let M be a closed smooth G* manifold and *Y* a non-singular real algebraic *G* variety. Let $f: M \rightarrow Y$ be a *smooth G-map.* If $[M, f] \in \mathcal{N}^G_*(Y)$ is algebraic, then $[M, f]$ can be represented by *a G*-regular map g' : $Z' \rightarrow Y$, where Z' is a nonsingular real algebraic *G* variety.

Proof. Since $[M, f] \in \mathcal{N}^{\mathbb{C}}(Y)$ is algebraic there exists a nonsingular real algebraic *G* variety *Z* and a *G*-entire rational map $g:Z\to Y$ which represents the bordism class $[M, f]$. Now consider the graph

$$
\Gamma(g) = \{(x, g(x)) \in Z \times Y | x \in Z\}
$$

and the projection map $\pi_2 : \Gamma(g) \to Y$, $\pi_2(x,g(x)) = g(x)$. Then it is elementary to see that $\Gamma(g)$ is a nonsingular real algebraic G variety, and π_2 is a G-regular map. Moreover, $(\Gamma(g), \pi_2)$ is clearly G-cobordant to (Z,g) . Therefore (Z', g') := $(\Gamma(g), \pi_2)$ is a desired representative of the bordism class $[M, f]$.

From now on we assume that M is a closed smooth G manifold with one orbit type, and let G/H be the unique orbit type of M. As noted in section 3 there is a G diffeomorphism $G/H \times_K M^H \to M$ is defined by $[gH,x] \mapsto g(x)$. Here $(G/H) \times_K M^H$ is the orbit space of $(G/H) \times M^H$ by the *K* action $kH \cdot (gH,m)$ $=(gk^{-1}H,km)$. Here $K=N/H$ and N is the normalizer of H in G. Note that any G-equivariant map $f: G/H \times_K M \to Y$ is of the form Ind h for the K-equivariant map $h = f^H$. Here Indh is defined by Ind $h[gh,m] = g \cdot h(m)$ for $gH \in G/H$ and *mεM^H .*

Lemma 4.4. *Let H and K be as above. Assume that Z is a non-singular real algebraic K variety and* $h: Z \to Y^H \subset Y$ a K equivariant regular map. If K is an *odd order group, then G/ HxκZ has a non-singular real algebraic G variety structure such that* Indλ *is a G equivariant regular map.*

408 D.Y. SUH

Proof. Consider the space $G/H \times Z$ with $G \times K$ action defined as follows : the action of G is the left multiplication on G/H , and the action of K is defined by $kH \cdot (gH, z) = (gk^{-1}H, kz)$. Since every orbit G/H has a canonical non-singular real algebraic *G* variety structure *G/HxZ* is non-singular real algebraic *GxK* variety with free *K* action. Since $|K|$ = odd Theorem B implies that $G/H \times_K Z$ is non-singular real algebraic *G* variety. It remains to show that Indλ is a regular map. Let θ : $G \times Y \to Y$ be the algebraic action map of *G* on *Y*. Let Φ : $G \times Z \to Y$ be the map defined by $\Phi(g, z) = \theta(g, h(z))$ for $g \in G$ and $z \in Z$. Then Φ is clearly a regular map. Let $H \times K$ act on $G \times Z$ as follows: *H* acts on *G* by the right multiplication, trivially on Z, and K acts on $G \times Z$ by $k(g,z) = (gk^{-1}, kz)$ for $k \in K$, $g \in G$, and $z \in Z$. Let $p: G \times Z \rightarrow (G \times Z)/(H \times K) = G/H \times_K Z$ be the orbit map. We may assume that $G/H \times_K Z$ is a real algebraic G variety and p is a G-regular map. It is clear that Φ is constant on $H \times K$ orbits of $G \times Z$. Thus Φ factors through $G/H \times_{\kappa} Z$ and $\Phi = \text{Ind } h \circ p$. We now complexify the above argument. We note that the ring of polynomial functions of the algebraic quotient of $(G \times Z)_c$ by the action of $(H \times K)_c$ is isomorphic to $C[(G \times Z)_c]^{(H \times K)_c}$ which is isomorphic to $C[(G \times Z)_c]^{H \times K}$ because $H \times K$ is Zariski dense in $(H \times K)_c$. On the other hand

$$
C[(G\times Z)_c]^{H\times K}\cong R[G\times Z]^{H\times K}\otimes_R C\cong R[G/H\times_K Z]\otimes_R C\cong C[(G/H\times_K Z)_c].
$$

Thus $(G/H \times_K Z)_c$ can be identified with the algebraic quotient of $(G \times Z)_c$ by the action of $(H \times K)_c$. As in the proof of Lemma 2.3 the universal property of algebraic quotients implies that there is a complex regular map ρ : $(G/H \times_K Z)_c$ $\rightarrow Y_c$ such that $\Phi_c = \rho \circ p_c$. Therefore the restriction of ρ to the real part, which is in fact Ind *h*, is a regular map. \Box

The following theorem is the main result of this section.

Theorem C. *Let G be a compact Lie group acting smoothly on a colsed manifold M with one orbit type. Let G/H be the unique orbit type, and let K:=N/H where N is the normalizer of H in G. If K is an odd order group, then the set of all G vector bundles over M can be algebraically realized.*

Proof. By Proposition 2.13 of [5] algebraic realization of the set of all G vector bundles is equivalent to algebraic realization of arbitrary finite set of G vector bundles. Therefore it is enough to realize a given finite collection $\mathscr{F} = \{\xi_i | i = 1, \dots, n\}$ of G vector bundles algebraically. Let $\mu_i : M \to G_R(\Xi_i, k_i)$ be equivariant classifying maps of ξ_i for $i=1,\dots,n$. Set $\mu:=\prod_{i=1}^n \mu_i: M \to G(\mathscr{F})$ where $G(\mathscr{F}) := \prod_{i=1}^{n} G_{R}(\Xi_i, k_i)$. Then $\mu = \text{Ind } h$ where $h = \mu^H : M^H \to G(\mathscr{F})^H$. The pair *(M^H,h)* defines an element of the bordism group $\mathcal{N}_{*}^{K}(G(\mathcal{F})^{H})$. It is proved in [5] that $(G(\mathscr{F})^H)^L$ has totally algebraic homology for every subgroup $L \subset K$. By Lemma 4.2 there exist a smooth *K* manifold *W* with $\partial W = M^H$ II Z and a smooth

K map $F: W \to G(\mathcal{F})^H$ such that Z is a non-singular real algebraic *K* variety, $F|_{M^H} = h$, and $F|_{Z} = \psi$ is a regular *K* map. Consider the manifold $G/H \times W$. This is a $G \times K$ manifold with the following action: the action of G is the left multiplication on G/H , and the action of K is defined by $kH \cdot (gH,w) = (gk^{-1}H, kw)$. Therefore the orbit space $G/H \times_K W$ of the *K* action on $G/H \times W$ is a smooth G manifold with $\partial(G/H\times_K W) = (G/H\times_K M^H)$ $(G/H\times_K Z)$. Moreover the *G* equivariant map Ind $F: G/H \times_K W \to G(\mathcal{F})$ is well defined. By the remark after Theorem B $G/H \times_K M^H$ is *G* diffeomorphic to *M*. Therefore if we identify *M* with $G/H \times_K M^H$, then $\mu: M \to G(\mathcal{F})$ is identified with Indh which is equal to Ind $F|_{G/H \times_K M}$. This is one end of the cobordism. On the other end of the cobordism we have $G/H\times_KZ$ which is a non-singular real algebraic *G* variety by Theorem A and a G map Ind $F|_{G/H \times_K Z}$ = Ind ψ which is regular, thus an entire rational G map by Lemma 4.4. This shows that the bordism class $[M,\mu]$ is algebraically realized. Therefore by Theorem 4.1 (M, μ) is algebraically realized, say by (V, v) . Let p_i : $G(\mathcal{F}) \to G_R(\Xi_i, k_i)$ be the projection. Then the set of G vector bundles corresponding to the classifying map $p_i \circ v$ over *V* realizes \mathscr{F} algebraically. This proves the theorem. \Box

References

- [1] S. Akbulut and H. King: *The Topology of Real Algebraic Sets with Isolated Singularities,* Ann. of Math. **113** (1981), 425-446.
- [2] G. Bredon: Introduction to Compact Transformation Groups, Acakemic Press, New York, 1972.
- [3] K.H. Dovermann and M. Masuda: *Algebraic Realization of Manifolds with Group Actions,* Advances in Mathematics **113** (1995), 304-338.
- [4] K.H. Dovermann, M. Masuda, and T. Petrie: *Fixed Point Free Algebraic Actions on Varieties Diffeomorphic to Rⁿ ,* Topological Methods in Algebraic Transformation Groups (H. Kraft, T.Petrie, and G. Schwarz, eds.), Progress in Mathematics, Vol.80, Birkhauser, Basel, Berlin, 1989, pp.49-80.
- [5] K.H. Dovermann, M. Masuda, and D.Y. Suh: *Algebraic Relization of Equivariant Vector Bundles,* Jour, fur die Reine und Angewante Mathematik **448** (1994), 33-64.
- [6] *J.* Harris: Algebraic Geometry a First Course, GTM series 133, Springer Verlag, 1993.
- [7] K.Kawakubo: The Theory of Transformation Groups, Oxford University Press, Oxford, New York, Tokyo, 1991.
- [8] H. Kraft: Geometrische Methoden in der Invariantentheorie, Friedrich Vieweg & Sohn, 1985.
- [9] D. Luna: *Slices Etales,* Bull. Soc. math. France Memoire **33** (1973), 81-105.
- [10] *ί.* Milnor: Singular Points of Comoplex Hypersurfaces. Ann. of Mathematics Studies, Vol.61, Prenceton University Press, Princeton, N.J., 1968.
- [11] Y. Ozan: *Quotients of Algebraic Sets via Finite Groups,* preprint (1992).
- [12] C. Procesi and G. Schwarz: *Inequalities Defining Orbit Spaces,* Inv. Math. (1985), 539-554.
- [13] G. Schwarz: *Smooth Functions Invariant under the Action of a Compact Lie Group,* Topology **14** (1975), 63-68.
- [14] G. Schwarz: *The Topology of Algebraic Quotients,* Topological Methods in Algebraic Transformatin Groups (H. Kraft, T. Petrie, and G. Schwarz, eds.), Progress in Mathematics, Vol. 80, Birkhauser, Boston, Basel, Berlin, 1989, pp. 135-151.
- [15] H. Weyl: The Classical Groups (2nd ed., eds.), Princeton University Press, Princeton, 1946.

410 D.Y. SUM

Department of Mathematics KAIST Taejon 305-701, Korea E-mail address: dysuh@math.kaist.ac.kr