Koiso, N. Osaka J. Math. **33** (1996), 93-98

ON A WAVE EQUATION CORRESPONDING TO GEODESICS

Dedicated to Professor Hideki Ozeki on his 60th birthday

NORIHITO KOISO

(Received September 5, 1994)

0. Introduction

For a closed curve $\gamma(x)$ in a riemannian manifold M we define its energy $E(\gamma)$ by $\|\partial_x \gamma\|^2$. The first variation $(d/dt)_{t=0}E(\gamma(t, *))$ is given by $-2\langle \partial_t \gamma, \nabla_x^2 \gamma \rangle$. Therefore, its Euler-Lagrange equation is the equation of geodesics. We consider a corresponding hyperbolic equation of $\gamma = \gamma(t, x)$:

(H) $\nabla_t^2 \gamma + \mu \partial_t \gamma = \nabla_x^2 \gamma,$

where the coefficient μ represents the resistance and is usually a positive constant. This equation is locally expressed as

$$\partial_t^2 \gamma^i + \Gamma_{jk}^i(\gamma) \partial_t \gamma^j \partial_t \gamma^k + \mu \partial_t \gamma^i = \partial_x^2 \gamma^i + \Gamma_{jk}^i(\gamma) \partial_x \gamma^j \partial_x \gamma^k,$$

which is a semi-linear wave equation.

Eells and Sampson [1] introduced a corresponding heat equation

(P)
$$\partial_t \gamma = \nabla_x^2 \gamma.$$

We know that if the manifold M is compact and real analytic, then the solution of (P) exists for all time and converges to a geodesic [3].

Physically, equation (H) represents the equation of motion of a rubber band in viscous liquid. Therefore, it is likely that results similar to (P) hold. In fact we will prove the following result.

Theorem. Let M be a complete riemannian manifold and μ a constant. Then Cauchy problem (H) for closed curves has a unique solution $\gamma(t, x)$ on $\mathbf{R} \times S^1$. If M is compact and $\mu > 0$, then the solution almost converges to geodesics; that is, $\partial_t \gamma \rightarrow 0$ and $\nabla_x^2 \gamma \rightarrow 0$ when $t \rightarrow \infty$.

However the convergence of γ itself is still open, even on a manifold with negative sectional curvature.

N. KOISO

REMARK. Gu [2, Theorem] proved that equation (H) without resistance (i.e., $\mu = 0$) has an all time solution. He essentially used the equality $(\nabla_t - \nabla_x)(\partial_t - \partial_x)\gamma = 0$, which fails when $\mu = 0$. We will overcome this difficulty by systematic use of covariant derivation.

1. Preliminaries

Throughout this paper, we use the following notation. Let M be a riemannian manifold. We consider closed curves $\gamma = \gamma(x)$ in M and families $\gamma = \gamma(t, x)$ of closed curves. The partial derivation is denoted by ∂ and the riemannian covariant derivation is denoted by ∇ . The pointwise norm |*|, the L_2 norm ||*|| and the L_2 inner product $\langle *, * \rangle$ are defined by $|*|^2 = g(*, *), \langle *, * \rangle = \int_{s_1} g(*, *) dx$ and $||*||^2 = \langle *, * \rangle$.

Let γ be a map: $\mathbf{R}_t \times \mathbf{R}_x \rightarrow M$. A(p+q)-th covariant derivation $\nabla_* \nabla_* \cdots \nabla_*$ with $p \nabla_t$'s and $q \nabla_x$'s is denoted by $P_{p,q}$, regardless of the order of derivations. It is also denoted by P_n (n=p+q), when we do not specify the numbers p and qseparately.

Lemma 1.1. If we denote by Q_{p+q-2} the difference $P_{p,q}\gamma - \nabla_t^p \nabla_x^q \gamma$ for $p+q \ge 2$, then Q_n has the following properties:

a) Q_n can be expressed as a linear combination

 $\sum a_i \cdot (\nabla^k R) (P_{j_1} \gamma, \cdots, P_{j_k} \gamma) (P_{j_{k+1}} \gamma, P_{j_{k+2}} \gamma) P_{j_{k+3}} \gamma.$

b) In the above expression of Q_n , $\sum_{m=1}^{k+3} j_m = n+2$ for each term.

c) Q_n is a polynomial with respect to $P_i\gamma$'s $(i \le n)$. Moreover, each term of Q_n can contain at most one $P_n\gamma$.

Proof. Property c) is a consequence of properties a) and b). Therefore we have to check a) and b). They trivially hold for p+q=2. In fact, $Q_0=0$. Suppose that they hold for $p+q \le n+2$. For induction, assuming p+q=n+2, we have to check the forms $P_{p+1,q}\gamma = \nabla_t P_{p,q}\gamma$ and $P_{p,q+1}\gamma = \nabla_x P_{p,q}\gamma$. For the first form, we have

$$\nabla_t P_{p,q} \gamma = \nabla_t (\nabla_t^p \nabla_x^q \gamma + Q_n) = \nabla_t^{p+1} \nabla_x^q \gamma + \nabla_t Q_n,$$

and the term $Q_{n+1} = \nabla_t Q_n$ has the desired properties.

If the second form $\nabla_x P_{p,q} \gamma$ only contains ∇_x , the claim holds. If it contains ∇_t , we have

$$\begin{aligned} \nabla_{x} P_{p,q} \gamma = \nabla_{x} (\nabla_{t}^{p} \nabla_{x}^{q} \gamma + Q_{n}) = \nabla_{x} \nabla_{t} \nabla_{t}^{p-1} \nabla_{x}^{q} \gamma + \nabla_{x} Q_{n} \\ = \nabla_{t} \nabla_{x} \nabla_{t}^{p-1} \nabla_{x}^{q} \gamma + R(\partial_{x} \gamma, \ \partial_{t} \gamma) \nabla_{t}^{p-1} \nabla_{x}^{q} \gamma + \nabla_{x} Q_{n} \\ = \nabla_{t} (\nabla_{t}^{p-1} \nabla_{x}^{q+1} \gamma + Q_{n}) + \{ R(\partial_{x} \gamma, \ \partial_{t} \gamma) \nabla_{t}^{p-1} \nabla_{x}^{q} \gamma + \nabla_{x} Q_{n} \} \end{aligned}$$

$$= \nabla_t^p \nabla_x^{q+1} \gamma + \{ R(\partial_x \gamma, \ \partial_t \gamma) \nabla_t^{p-1} \nabla_x^q \gamma + \nabla_x Q_n + \nabla_t Q_n \}.$$

Q.E.D.

Lemma 1.2. Let γ be a solution of (H) and φ a $P_n\gamma$. Then we have $\nabla_t^2 \varphi + \mu \nabla_t \varphi - \nabla_x^2 \varphi = Q_n + Q_{n-1}.$

where Q_n has properties a)—c) in Lemma 1.1.

Proof. let
$$\varphi$$
 be a $P_{p,q}\gamma$ $(p+q=n)$. Then,

$$\nabla_t^2 \varphi = P_{p+2,q}\gamma = P_{p,q}\nabla_t^2\gamma + Q_n = P_{p,q}(\mu\partial_t\gamma + \nabla_x^2\gamma) + Q_n$$

$$= -\mu P_{p+1,q}\gamma + P_{p,q+2}\gamma + Q_n$$

$$= -(\mu \nabla_t \varphi + Q_{n-1}) + (\nabla_x^2 \varphi + Q_n) + Q_n.$$
Q.E.D.

2. All time existence

We start from a standard short time existence result in [4].

Theorem 2.1 [4, Theorem 7.5]. For any closed C^3 curve $\gamma_0(x)$ and any C^2 vector field $\gamma_1(x)$ along γ_0 , there is a positive constant T such that equation (H) with initial data $\gamma(0, x) = \gamma_0(x)$ and $\partial_t \gamma(0, x) = \gamma_1(x)$ has a unique solution $\gamma(t, x)$ on $0 \le t \le T$.

Let T be the largest number such that a solution $\gamma(t, x)$ with C^{∞} initial data $\gamma_0(x)$ exists on $0 \le t < T$. If we can prove that the solution $\gamma(t, x)$ is uniformly bounded on $[0, T) \times S^1$ in C^n -norm for each n, then we can extend the solution beyond the time T. This implies that the maximal existence time is infinite. To consider negative time interval (-T, 0], we change the time variable t to $-\tau$, and get the same equation with resistance $-\mu$. Therefore, the proof of all time existence is reduced to the following

Proposition 2.2. Let $\gamma_0(x)$ be a C^{∞} closed curve on M and $\gamma_1(x)$ a C^{∞} vector field along γ_0 . Let $\gamma(t, x)$ be a solution of (H) with initial data $\gamma(0, x) = \gamma_0(x)$ and $\partial_t \gamma(0, x) = \gamma_1(x)$ on $0 \le t < T$, where T is a finite positive number. Then, any $|P_n\gamma|$ is uniformly bounded on $[0, T) \times S^1$.

Proof. To prove this, we change the coordinate system $\{t, x\}$ to $\{\xi = t + x, \eta = t - x\}$. Then we have $\partial_t = \partial_{\xi} + \partial_{\eta}$ and $\partial_x = \partial_{\xi} - \partial_{\eta}$. Therefore, for $\varphi = P_n \gamma$,

$$\begin{aligned} \nabla_t^2 \varphi = & \nabla_{\delta \epsilon} + \partial_\eta (\nabla_{\epsilon} \varphi + \nabla_{\eta} \varphi) = \nabla_{\epsilon}^2 \varphi + \nabla_{\epsilon} \nabla_{\eta} \varphi + \nabla_{\eta} \nabla_{\epsilon} \varphi + \nabla_{\eta}^2 \varphi \\ = & \nabla_{\epsilon}^2 \varphi + 2 \nabla_{\epsilon} \nabla_{\eta} \varphi + \nabla_{\eta}^2 \varphi + Q_n, \\ \nabla_x^2 \varphi = & \nabla_{\epsilon}^2 \varphi - 2 \nabla_{\epsilon} \nabla_{\eta} \varphi + \nabla_{\eta}^2 \varphi + Q_n. \end{aligned}$$

N. KOISO

Hence, by Lemma 1.2,

$$4\nabla_{\boldsymbol{\varepsilon}}\nabla_{\boldsymbol{\eta}}\varphi \!=\! \nabla_{t}^{2}\varphi \!-\! \nabla_{x}^{2}\varphi \!+\! Q_{n} \!=\! -\mu(\nabla_{\boldsymbol{\varepsilon}}\varphi \!+\! \nabla_{\boldsymbol{\eta}}\varphi) \!+\! Q_{n}',$$

where Q'_n denotes a form $Q_n + Q_{n-1}$. Note that $Q'_0 = 0$. From this equation, we have

$$\begin{aligned} 2\partial_{\boldsymbol{\epsilon}} |\nabla_{\eta}\varphi|^2 &= 4(\nabla_{\eta}\varphi, \, \nabla_{\boldsymbol{\epsilon}}\nabla_{\eta}\varphi) \\ &= -\mu(\nabla_{\eta}\varphi, \, \nabla_{\boldsymbol{\epsilon}}\varphi + \nabla_{\eta}\varphi) + (\nabla_{\eta}\varphi, \, Q'_{n}) \\ &\leq |\mu| |\nabla_{\eta}\varphi|^2 + |\mu| |\nabla_{\boldsymbol{\epsilon}}\varphi| |\nabla_{\eta}\varphi| + |\nabla_{\eta}\varphi| |Q'_{n}|. \end{aligned}$$

Fix a time t and take a maximal point (t, x) of $|\nabla_{\eta}\varphi|^2$. Then, at that point,

$$\partial_t |\nabla_\eta \varphi|^2 = (\partial_t + \partial_x) |\nabla_\eta \varphi|^2 = 2 \partial_{\xi} |\nabla_\eta \varphi|^2 \\ \leq |\mu| |\nabla_\eta \varphi|^2 + |\mu| |\nabla_{\xi} \varphi| |\nabla_\eta \varphi| + |\nabla_\eta \varphi| |Q'_{\eta}|.$$

Therefore, we have

$$\frac{d}{dt} \max |\nabla_{\eta}\varphi|^{2} \leq |\mu| \max |\nabla_{\eta}\varphi|^{2} + |\mu| \max |\nabla_{\xi}\varphi| \max |\nabla_{\eta}\varphi| + \max |\nabla_{\eta}\varphi| \max |Q'_{n}|.$$

Adding a symmetric formula for $|\nabla_{\mathfrak{E}}\varphi|$ to this, we get

$$\frac{d}{dt} \{ \max |\nabla_{\varepsilon}\varphi|^{2} + \max |\nabla_{\eta}\varphi|^{2} \}$$

$$\leq |\mu| \{ \max |\nabla_{\varepsilon}\varphi| + \max |\nabla_{\eta}\varphi|\}^{2} + \max |Q'_{n}| \{ \max |\nabla_{\varepsilon}\varphi| + \max |\nabla_{\eta}\varphi|\}$$

$$\leq 2(|\mu|+1) \{ \max |\nabla_{\varepsilon}\varphi|^{2} + \max |\nabla_{\eta}\varphi|^{2} \} + \max |Q'_{n}|^{2}$$

Here, the derivation (d/dt)u(t) means

$$\limsup_{h\to+\infty}\frac{u(t)-u(t-h)}{h}.$$

Now we can prove our claim by induction. Noting that $Q'_0=0$ in the above inequality, we see that the C^1 norm of γ is bounded by the initial data. In particular, the norm of any covariant derivatives of curvature tensor of M is bounded on the image of γ . Thus the claim holds for n=1. Suppose that the claim holds up to n. Then, φ and Q'_n in the above inequality are uniformly bounded on $[0, T) \times S^1$. Therefore, the above inequality implies that $\max |\nabla_{\mathbf{f}}\varphi|^2 + \max |\nabla_{\mathbf{\eta}}\varphi|^2$ is bounded on [0, T), hence $\nabla \varphi = P_{n+1}\gamma$ is uniformly bounded on $[0, T) \times S^1$.

Q.E.D.

3. Convergence

Now, we suppose that $\mu > 0$ and show the convergence. Let γ be the solution of (H) and put $\varphi = P_n \gamma$. We use an energy inequality for wave equations. Using Lemma 1.2, we have

96

A WAVE EQUATION

$$\frac{d}{dt} (\|\nabla_t \varphi\|^2 + \|\nabla_x \varphi\|^2) + 2\mu \|\nabla_t \varphi\|^2
= 2 \langle \nabla_t \varphi, \nabla_t^2 \varphi \rangle + 2 \langle \nabla_x \varphi, \nabla_t \nabla_x \varphi \rangle + 2\mu \|\nabla_t \varphi\|^2
= 2 \langle \nabla_t \varphi, \nabla_x^2 \varphi - \mu \nabla_t \varphi + Q'_n \rangle + 2 \langle \nabla_x \varphi, \nabla_t \nabla_x \varphi \rangle + 2\mu \|\nabla_t \varphi\|^2
= -2 \langle \nabla_x \nabla_t \varphi, \nabla_x \varphi \rangle + 2 \langle \nabla_x \varphi, \nabla_t \nabla_x \varphi \rangle + 2 \langle Q'_n, \nabla_t \varphi \rangle
= 2 \langle Q_n, \nabla_x \varphi \rangle + 2 \langle Q'_n, \nabla_t \varphi \rangle
\leq C \|Q'_n\| (\|\nabla_x \varphi\| + \|\nabla_t \varphi\|),$$

where Q'_n denotes a form $Q_n + Q_{n-1}$. Note that $Q'_0 = 0$. We show the following proposition by induction.

Proposition 3.1.

- 1) Any $||P_n\gamma||$ is bounded on $[0, \infty)$.
- 2) Any $\int_0^{\infty} ||P_n\gamma||^2 dt$ is finite except $P_n\gamma = \partial_x\gamma$ (and $P_0\gamma$).

Proof. Nothing that $Q'_0=0$ in the above inequality, we have

$$\frac{d}{dt}(\|\partial_t \gamma\|^2 + \|\partial_x \gamma\|^2) = -2\mu \|\partial_t \gamma\|^2 \le 0.$$

Intergrating both hand sides by t, we see that the claim holds for n=1. Suppose that the claim holds up to n. In the above inequality, if the factor $\nabla_x \varphi = \nabla_x P_n \gamma$ contains ∇_t , then

$$\nabla_x \varphi = \nabla_t P_n \gamma + Q_{n-1}.$$

And if not,

$$\nabla_x \varphi = \nabla_x^{n+1} \gamma = \nabla_x^{n-1} (\nabla_t^2 \gamma + \mu \partial_t \gamma) = \nabla_t P_n \gamma + Q_{n-1} + \mu P_n \gamma.$$

In both cases, we have

$$\frac{d}{dt} (\|\nabla_t \varphi\|^2 + \|\nabla_x \varphi\|^2) + 2\mu \|\nabla_t \varphi\|^2
\leq C \|Q'_n\| (2\|\nabla_t P_n \gamma\| + \|Q_{n-1}\| + \|P_n \gamma\|)$$

Summing up this inequality for all $\varphi = P_n \gamma$, we have

$$\frac{d}{dt}\sum_{P_n}(\|\nabla_t P_n \gamma\|^2 + \|\nabla_x P_n \gamma\|^2) + 2\mu \sum_{P_n} \|\nabla_t P_n \gamma\|^2$$

$$\leq C\{\sum \|Q'_n\|^2 + \sum \|Q_{n-1}\|^2 + \sum \|P_n \gamma\|^2\} + \varepsilon \sum \|\nabla_t P_n \gamma\|^2,$$

where ε can be taken arbitrarily small. Here, \sum_{P_n} means summation \sum_{φ} with respect to all φ of form $P_n \gamma$. Take $\varepsilon = \mu$. Then we see that

$$\frac{d}{dt}\sum_{P_n}(\|\nabla_t P_n \gamma\|^2 + \|\nabla_x P_n \gamma\|^2) + \mu \sum_{P_n} \|\nabla_t P_n \gamma\|^2$$

is dominated by a bounded L_1 function, because at least one $P_i\gamma$ is not $\partial_x\gamma$ in each

term of Q'_n . Thus, integrating by t, we see that any $||P_{n+1}\gamma||^2$ is uniformly bounded and that any $||\nabla_t P_n \gamma||$ is L_2 . Then, also any $||\nabla_x P_n \gamma||$ is L_2 , because it can be expressed by a $||\nabla_t P_n \gamma||$ and Q'_n 's. Therefore, the claim holds for n+1. Q.E.D.

End of the proof of Theorem. Finally, we remark that the derivative $(d/dt) \|P_n\gamma\|^2$ is expressed by $P_{n+1}\gamma$, and hence is uniformly bounded on $[0, \infty)$ by Lemma 3.1. Therefore, any $\|P_n\gamma\|^2$ (except $\partial_x\gamma$) converges to 0 when $t \to \infty$.

References

- [1] J. Eells, Jr. and J.H. Sampsom : Harmonic mappings of riemannian manifolds, Amer. J. Math. 86 (1964), 109-160.
- [2] C.H. Gu: On the Cauchy problem for harmonic maps defined on two-dimensional Minkowski space, Comm. Pure Appl. Math. 33 (1980), 727-737.
- [3] N. Koiso: Convergence to a geodesic, Osaka J. Math. 30 (1993), 559-565.
- S. Mizohata: Henbibun-houteisiki-ron (in Japanese), Iwanami-shoten 1965 (English translation: The theory of partial differential equations, Cambridge University Press, 1973).

Department of Mathematics Osaka University Toyonaka, Osaka 560 Japan