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0. Introduction

Let X be a paracompact complex manifold of dimension n and π : E^>X be
a holomorphic vector bundle. We denote by ΩP(E) the germ of E-valued
holomorphic ί-forms, and by Hq(X, ΩP(E)) the sheaf cohomology group of X of
degree q with coefficients in ΩP(E\ In 1955, Serre showed the following basic
theorem with respect to complex analysis.

Theorem (Serre duality, cf: [15]). // Hq+ί(X, ΩP(E}} (i = Q, 1) are
Hausdorff, then Hq(X, ΩP(E}) is a Frechet space, and its dual space and
HΓq(X, Ωn-p(E*)) are ίsomorphίc. Here, E* denotes the dual of £, and
Hί(X, Ω'(E)) denotes the compactly supported sheaf cohomology group of X
with coefficients in Ω'(E).

If Hq(X, ΩP(E)} is finite dimensional, then it is Hausdorff (cf: [15]). But,
in general Hq(X, ΩP(E}} is not Hausdorff (cf: [8], [15]).

The cohomology groups of open manifolds were studied by Grauert [5] for
solving Levi's problem, and his result played a fundamental role in the theory of
singularities and hyperfunctions. As a natural extension of Grauert's work, it has
been known that the finiteness of the cohomology groups results from on the

convexity of manifolds:
X is called strongly ^-convex (resp. strongly ^-concave) if there exists an

exhaustion function Φ : X—*R of class C°° whose Levi form has at least n — q + 1
positive (resp. n — q + \ negative) eigenvalues outside a compact subset K of X.
We call K an exceptional set. In 1962, Andreotti and Grauert established finiteness
theorems for cohomology groups which include the following theorem as a special

case.
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Theorem A-G (cf : Theoreme 14 in [l]). Let X be a strongly q-convex
(resp. strongly q-concave) manifold of dimension n, and let E be a holomorphic
vector bundle over X. Then

dimHs(X, Ωr(E})<<*> for s>q (resp. s<n-q).

They showed this theorem, using homological algebra and sheaf theory.
Andreotti and Vesentini [3] showed this theorem for ^-complete manifolds (i.e,
# -convex manifolds with K=φ), using so-called "Bochner-technique". Moreover,
they proved that when X is strongly ^-convex (resp. strongly ^-concave), Hk(X,
Ωr(E}} is finite dimensional for s<n — q (resp. s>q) by using the method of [l].
At almost the same time, Hόrmander [7] generalized the method for the d-
Neumann problem by J.J. Kohn, and proved Theorem A-G. Ohsawa [10] general-
ized the method of [3], [7] and gave an alternative proof of Theorem A-G. For
further results, see [12], [13].

Andreotti and Vesentini [3] stated the following.

Theorem A-V. Let X be a strongly q-concave manifold of dimension n,
and let π : E—*X be a holomorphic vector bundle over X. Then

Hn~q(X, Ωr(E}} is Hausdorjf.

This theorem has been extended by Andreotti and Kas [2], and Ramis [14] in
the case where X is a complex space and E is a coherent analytic sheaf, by using
homological algebra and sheaf theory. In 1988, Henkin and Leiterer [6] gave a
proof of Theorem A-V in case X is a ^-concave domain of a compact complex
manifold by integral formula.

In this paper, we use the method of L2 estimate for d and give a straight-
forward proof of Theorem A-V. Moreover we show Hausdorίfness of a certain
cohomology group of a compact complex space by using the method. Particularly,
we utilize not the basic estimate for differential forms satisfying d -Neumann
condition on a relatively compact <?-concave domain with a smooth boundary, but
one with respect to a complete hermitian metric on a strongly ^-concave manifold.
Application of such a method has not been well known since [10].

The L2 method seems to have advantages since infinite dimensional co-
homology groups seem to be better understood in the L2 context. For instance,
Takegoshi showed a harmonic representation theorem for some cohomology group
by using an L2 estimate for the d -operator, and proved the torsion freeness theorem
for higher direct image sheaves of semipositive vector bundle in [16].

The author expresses his hearty thanks to Professor T. Ohsawa who led him to
this subject.
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1. Preliminaries

(1) Hermitian Geometry
Let X be a paracompact complex manifold of dimension n and let E be a

holomorphic vector bundle over X with a C°° fiber metric h. Canonically, h
induces metrics along the fibers of E*, E, /\mE, ®mE. We also denote by < , •>
(resp. | |) the pointwise inner product (resp. norm) with respect to the induced
metrics. Let ds2 be a hermitian metric on X and let ω be the fundamental form

associated to ds2 and we denote the volume element by dv= — γθ) Λ ••• Λ ω. Let Λ
be the adjoint of the multiplication L : u ' - *ω/\u with respect to ds2. We call
L the Lefschetz operator with respect to ds2.

We denote by Cp'q(X, E) the space of .E-valued (p, <7)-forms of class C°° on
X and by Co'q(X, E) the space of the forms in Cp'q(X, E) with compact supports.
As usual we denote the exterior differentiation by d and the (1, 0) part of d by 3
and the (0, 1) part_of d by_d"._ We set_ DE : = ϊ)+h-ldh, DΈ: = h~ldh = d

9E: =-* h~ldh *, d : =-*3*.

Theorem 1.1 (cf : [10], [4]). We set τ=[Λ, dω\ and denote its adjoint by
r*. Then

[Dί, Λ} = -S=

We set Tι= r* and T2= r*. Ti and the adjoints T* of Ti (/=!, 2) are called
the torsions of ds2. DE is a multiplication of a Hom(E, £)-valued (1, l)-form. We
set Dl=e(Θh\ &h^Cl'l(X, Hom(E, £)). &h is called the curvature form of E
with respect to h.

(2) Basic estimate
Let H\ and ί/2 be two Hubert spaces and T : Hi—^Hz a closed linear operator

with dense domain. We denote its domain, range and nullity by Dτ9 RT, NT, and

the adjoint of T by T*. We set (/, g)= /"</, g>dv for /, g£ΞC§'q(X, E).
j x

Co'q(X, E) is provided with the structure of a pre-Hilbert space with a norm ||/||
= V (/, /) Lp'q(X, E, h, ds2} denotes the space of integrable E-valued (p,
#)-forms with respect to ds2 and h on X. We denote by d : Lp'q(X, E, h,
ds2)-^Lp>q+l(X, E, h, ds2} the maximal closed extension of the original d . Other
operators are naturally extended to closed linear operators on Lp'q(X, E, h, ds2},
we denote Dd by DY and so on. In general, D^^Dξ'/. But it has been known
due to Gaffney and Andreotti-Vesentini (cf : [3]) that if the hermitian metric ds2

is complete, then d* = dε and D'E = d .
We say that the basic estimate holds at bi-degree (p, q} if ds2 is a complete
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hermitian metric on X and there exists a compact subset K of X and a constant
Co, satisfying

for all

Proposition 1.2 (cf : [?], [lθ]). Assume that the basic estimate holds at
bi-degree (p, q). Then Rpίq and Rpsq+l are closed and dim 7VVAftV<°°.

2. L2 estimate on strongly q-concave manifolds

DEFINITION 2.1. Lei X be a complex manifold of dimension n, and let q be
a positive integer. X is said to be strongly q-concave if there is a real valued C°°
function Φ on X satisfying 1) Xc: ={x^X\Φ(x)<c}<^c:X or =X for any c
^R, 2) the Levi form of Φ has at least n — q + 1 negative eigenvalues outside a
compact subset K of X.

We call Φ an exhaustion function and K an exceptional set. A strongly
^-concave manifold admits a bounded exhaustion function. In fact, if Φ is an
unbounded satisfying 1) and 2), then Φ = — exp(— Φ) is a bounded exhaustion
function satisfying 1) and 2). From now on let X be strongly # -concave, and Φ
be an exhaustion function, and we assume sup Φ(x)= : d< +°o? and inf Φ(x) =

0. Moreover we assume that at least n — q + \ negative eigenvalues of the Levi form
of Φ are smaller than —N, and positive eigenvalues of the Levi form of Φ are
smaller than l/N for a positive integer N>q + 3 with respect to ds2 (cf : [lθ]).

Lemma 2.2. Let μ be a C°° function on [0, d) with μ(0) = 0, //(0>0, and

limμ(t)=oo, ί ' μ(s)ds>Cι, limί Γμ(s)ds/μ(m = Q. Then one can find a C°°
t^d JO t^d 1^0 J

function μ, on [0, d) satisfying μι(t}>μ(t} on [0, d) , μ2(t)>μι(t) on [di, d\

2 on [di, d) for /=!, 2. Here, we can take μ2(t)=-^~J

r

I
Jo

{μ\(s)}2ds + L, where L is a constant.

Proof. See [9].

(1) Basic estimate for f'-valued (0, p)-form
Given a C°° function μ on [0, d) satisfying the conditions of Lemma 2.2, we

set
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( f ) : =
dsl: =

rφ(χ)
-B/

Jo

where B is a positive number. We denote by Cϋλ the fundamental form associated
to dsl. As for the curvature form with respect to /ZΛ, we have Θhλ=Θh

Lemma 2.3. Let Γι>~ >Γn be the eigenvalues of
dΦ at x^X with respect to dsl. We assume Xd^K, Cι = 2 in Lemma 2.2. Then

2) ^(ΘΛ) β/iί/ e(dcϋλ) are locally bounded with respect to hλ and dsl.

Proof. 1) : See [10], Theorem 4.2.
2) : By Schwartz's inequality,

\h,,ds^ for

As induced metric on Hom(E, E) — E®E* with respect to dsl is hλ®thλl =

^/Γ1, we have \&h\h^dsi—\&h\h,dsi^\&h\h,ds^. Therefore, we have

sui-F M »'^^sup|@^U.dS2<oo for any compact set KdX.

On the other hand, we have for any #?<

is2rim,<tf

Therefore, we have

sup I—[2 A | t f e l ^sup{|ύfω|i,ds2 + 2nλ(Φ)\ d dΦ^h,ds^}< °°.

q.e.d.

The following proposition is basic for our purpose.

Proposition 2.4. Given a C°° function μ on [0, d) such that

1) μ satisfies the conditions of Lemma 2.3

2) sup I \ \\h*'dsl<μ(t}2for an]

3) sup [ ^yPl*'.*'1 <μ(t}2 for any
7 *eΦ-Tm C7 1 Λ?
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4) / Jμ(t)dt = QQ

then the basic estimate holds at (0, p) (p<n — q — Ϋ) with respect to hλ and ds2

for sufficiently large B, where λ(t) = μ\(t) in Lemma 2.2.
Proof. See [10], Theorem 4.2.

(2) L2 convergence for unvalued (0, p)-forms
We denote by Lpbq

c(X, E] the space of locally square integrable ^-valued (p,
#)-forms on X. Lpbq

c(X, E) is a Frechet space under the ordinary topology.

Proposition 2.5. Given //, /eLfe?(X, E) with //->/ in Ll£(X, E\ we can
find a real valued C°° function v(t] on [0, d) such that there exists a subsequence

{/*} with /*->/ in Lp>q(X, E, ds\ hv). Here AΊ, = Aexp(-ι/(Φ)).

Proof. For any measurable set FcX, we denote by INI^ the norm with
respect to ds2 and h exp(— v(Φ}} on Y. We fix any sequence [dι^R\l = l, 2, •••}
with

We can find a real valued C°° function Vj on [0, d) with \fj—f\xtυ)<—

Consider a real valued C°° function v on [0, d) with j/(^c)^max{yX^)} on
l<.j<.l

[0, di) (/ = !, 2, •••), and ||/|U,ι/<oo. We can select subsequences {/JD{/M}:>
{/Λ_ι f£}Z){/Λf£}Z) such that

Then we have

Therefore, Λ* : =Λ.*-^/ in L^^X, £, ώ2, A*).
q.e.d.

We set hμ = hexv(-μ(Φ(x))), and ds2

μ=ds2 + μ(Φ(x}}dΦ® ~dΦ. By the
diagonalization for ώ2 and <&2, one can choose a basis {<7ι, •••, (7«} of T ,̂ which
denotes the holomorphic cotangent space to X at #, so that

i and ds2

μ=ds2 + μ(Φ)β(x)σι® άi at

where {(Ti, •••, (T«) are the orthonormal basis of T£χ with respect to ώ2, and β(x)
is the non-negative C°° function on X.
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Proposition 2.6. Let μ(t}, μ\(t\ μ2(0 be as Lemma 2.2, satisfying μ(Φ(x)}

>max{l, £(*)}. Then we have ||/||Lw /r(2,2)<2 sup{^ι(02 exp(-^ι(0)} |l/ll2^ r,
Q<.t<d

<°o. Here, || lUw A(2^) denotes the norm with respect to ds2

μι and hiμ2

Proof. For f<=L^p(X, E, ds2, hμ) with f=0 on Xdl,

<: 2 sup>ι( Φ(*))2 exp( -
X

where ofe (resp. fife/ui) is the volume element with respect to ds2 (resp. ds2

μι\
In view of Lemma 2.2, μ2(t)>μι(t}>μ(t) for [di, d). Therefore,

q.e.d.

3. Proof of Theorem A-V

For u^Lpώq

c(X, E) and v<^Lpώq

c

+l(X, E\ we denote du = v if the equation

(&, dεφ) = (v, φ) holds for any £>^ Co>'<7+1(X, £). In view of Chapter 2, Proposi-
tion 3.1 in [10] and Proposition 4.5 in [17], we have only to show that for any g

^Lniocq(X, E) such that there exists a sequence {/, }cL%rς^(X E) with d'fr^g

in L%rς(X, El there exists fSΞL«&-q-l(X, E) such that 5/=0.
In view of Proposition 2.5, there exists a real valued C°° function v on [0, d)

such that there exists a sequence {3/,-J with d/»—>0 in L0'""9!^ £, ώ2, /z^),
where hv = h exp(— v(Φ(x))\

Consider a real valued C°° function /^ on [0, d) with

sup \Θh\h,ds* for
Λ:eΦ-i(ί)

sup {|ί/ω|lΛ. + 2»Xί)|35"ί>|J>Λ.} for te[dι, d)
xeΦ-i(ί)

X/)>max{l, ySW) for χ(ΞX

μ(t}>v(t} for ίe[0, </)

fdlμ(s}ds>2, fdjμζsϊds = co, limί Γμ(s)ds/μ(t)\ = Q
Jθ Jo ί-»d WO J

where β(#) is the eigenvalue of 3Φ ® 3 Φ with respect to ώ2 at #.
We set /ί(0: =^ι(0, and dsl : =-ώ2 + /ί(Φ)3Φ® 5"φ. fe

( — Bμ2(Φ(x))):= hBμ2, where //ι(ί) and Afe(ί) are in Lemma 2.2 and β is a constant.
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Then there exists a subsequence {/Λ} with dfjk-*g in LQ'n~q(X, E, dsl, hλ) in view
of Proposition 2.6, and the basic estimate holds at (0, n — q — ϊ) with respect to dsl
and hλ for sufficiently large B in view of Proposition 2.4. Therefore, there exists
fG:L* n-q-l(X, E, dsl hλ] with Jf=g by Proposition 1.2.

q.e.d.

4. Application

In this section, by using the basic estimate with respect to a complete hermitian
metric we show Hausdorίfness of a certain cohomology group.

Let X be a compact complex space of pure dimension > n whose singular
points are isolated and X* be the nonsingular part of X. Let π : E—*X* be a
holomorphic vector bundle over X* with a C°° fiber metric h. We denote the
canonical bundle of X* by Kx*. Suppose that the singular points consist of
nonempty sets Si and 82. Let Φ be a family of closed subsets of X* defined by Φ
= {C^X* there exists a neighborhood U of Si such that C/Π C = 0}.

For any pk^Sι (!<#< /) we have a holomorphic embedding of the germ (X,
Pkγ-*(CN, 0). We fix in the folio wings a holomorphic coordinate z( = z(p*^ = (zι,
..., zN)^CN and the euclidian norm \z\ of z. We set XC* = XΠ IW/{0<|*(/")|<
c} for 0<c<l. We set FcU)=-log((c-k|2) (log(c/kJ))) and F(z)=Fι(z).
Then X* is a complete Kahler manifold with respect to 3 3 Fc.

We set Lί\q(X*9 E, d~9F, h) : = {f<=Lpιbqc(X*, E) there exists a neighbor-
hood U of Si such that f \ij\s, is square integrable with respect to ddF and h}. A
sequence {/JcLS'W, £, 33F, h} converges to f£ΞLp

s\
q(X*, E, 33F, A) if

/r^/ in Lfe?(^f *, £) and there exists a neighborhood C7 of Si such that fj-^f in
L^^CΛSi, E,33F, A), and we write /^/ in LS'W, F^33F, A). We set_H
fiς(X*, F, 33F, A) : =Kerd Γ(Lί\q(X*, F, 33F, ti)/lmd Γ\Lp

s\
q(X*, F, <5<9F,

A). //|'ς denotes the cohomology with supports in Φ. Then the sequence

-+H$ q(X*, E)-*Hs

p;q(X*, F, 33F, h}-+Iim Hf;q(U\Sι, F, 33~F, A)->

is exact. We set

X?, F, 33Fc, h): =Ker3 Γ\Lp q(X?, F, 33FC, A)/Im3 nLp'9(^c*, F,

Proposition 4.1 (cf : [ 1 1 ] ). Assume that Kχl ® F is extendable to X\S2 as
a holomorphic vector bundle. Then

ι, F, 53F,A exp(-mF))-0

/or sufficiently large m.
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Proof. We may assume Sι = {p}. We set c = l. As the curvature form of Kχl
® E is, by the assumption, bounded with respect to the euclidian induced metric
and h, there exists an integer m\ such that the curvature form of Kχl ® E is Nakano
positive with respect to Aexp( — m\F). We set m — mι + 1. Then

Here, Θ/zm denotes the curvature form of Kχl®E and /tm : = /zexp( — wF) and
IHU, (*, *)m, /I denote the norm, the inner product, the adjoint of Lefschetz
operator with respect to ddF and hm. Then we have

\dufm+\\9hmu\2

m>\\u\2

m for u*=Cg'q(Xf, Kxl ® E)

by Kodaira-Nakano inequality. Therefore H(i?(Xf, E, dJF, /z exp(- wF)) = 0
for q>\. Similarly we have H(i)q(Xc, E, 33FC, h exp( — wcFc)) = 0 for q>l and
any 0<c<l and sufficiently large integer mc. Since ddFc and /zexp( — wcFc) is

quasi-isometric near Si to ddF and Am, we obtain lim Hs[q(X?, E, ddF, h exp

(-wF)) = 0 for <?>!.
q.e.d.

Theorem 4.2. Assume that Kχl®E is extendable to X\Sz as a holomorphic
vector bundle. Then H$"-1(X*, E) is Hausdorff.

Proof. By Proposition 4.1, we have only to show that for any
E, 35"F, hm) such that there exists a sequence {/, }eL°5'Γ

2(X*, E, dd_F, hm) with

dfr+g in L%Γl(X*> E, 33F, hm\ there exists fe=L%?-2(X*, E, 35F, A^) such
that df=g.

Let p be a C°° function such that p = l on X| and p = 0 on X*\X*. Then

there exists a complete hermitian metric d~s2 on X* and a fiber metric h of E such
that

1) df»-*g in L0'"-1^*, F, dJ 2, λ).
2) there exists a compact subset ίC of X* and a constant Co, satisfying

\\(l-p}uf<C,(\ufκ+\\duf + \ \ d , u f ] for ^^Co°'ς(X*, E\ n~2>q

3) there exists a constant Ci, satisfying

ll«^||2) for

where || || denotes the norm with respect to dH~2 and h.
Indeed, we set d~s2 = ddF and h=hm near Si in Proposition 4.1. Then we

define d~s2 and h near 52 in the same way as in the construction of dsl and h\ in
Section 3 because X* is strongly 1-concave (cf : [l]). By patching these metrics
defined near Si and 82 with any metric inbetween we obtain a complete hermitian
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metric d~s2 on X* and a fiber metric h of E enjoying the above mentioned
properties. In fact, condition 1) and 2) are satisfied because supp[(l — p)u]dX*\

X±* and, by the assumption and Proposition 4.1 in [ll], condition 3) is satisfied,

too.
Therefore the basic estimate holds at bi-degree (0, n — 2).

q.e.d.
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