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Intoroduction

The aim of this paper is to construct a universal R-matirix for a certain
quotient of the quantized universal enveloping algebra U(s(N+1,C)) in the sense
of Drinfel'd [2] and Jimbo [5][6] at roots of unity. The notion of universal
R-matrix is due to Drinfel'd. A universal R-matrix for a Hopf algebra 4 over C
is an invertible element Re A® A with the following properties: (1) RA(@)R ™! = A(a),
for ae A, 2) (A®id(R)=R3R;,3, (id®A)YR)=R,3R,,. Here A:4 - AR A is the
comultiplication, and A is the opposite comultiplication A= P A for the permutation
P in A®RA, Pa®b)=b®a. The map A is not in general symmetric in the sense
that A#A, but from the property (1) of this universal R-matrix, there arises an
A-module isomorphism VQ W — W®V for A-modules V and W. It follows from
two properties (1) and (2) that it satisfies the Yang-Baxter equation: R,,R,3R,;
=R,3R 3R,,, where R;; is the embedding of R into the i-th and j-th factor of
ARAR®A.

In [14], Rosso gave an explicit formula of universal R-matrix for
U/(s(N+1,C)) for generic g, and in [15], he obtained a universal R-matrix for a
quotient of U, (s((N+1,C)) when ¢ is a primitive r-th root of unity for an integer
r satisfying that r>N+1 and that » and N+1 are coprime. The result was
independently obtained in [17]. In [23],[24],[25], and [26], Yamane introduced
quasi-triangular Hopf algebras associated to complex simple Lie superalgebras of
types A-G, and gave explicit formulas of their universal R-matrices, both in generic
and non-generic cases. In particular, he got an explicit formula of a universal
R-matrix for a quotient of U(s(N+1,C)).

In the present paper, we give an explicit formula of a universal R-matrix for
a quotient of U (s((N + 1,C)) for a primitive r-th root of g of unity,r #1,24. Let E;, F;,
and K,, 1<i<N, be the generators of the Hopf algebra U s(N+1,C)). Let U*
be the Hopf subalgebra U (sN + 1,C)) generated by E;, K;, 1 <i<Nand U~ the Hopf
subalgebra generated by F;, K;, 1<i<N. The construction of the universal R-matrix
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is based on the quantum double construction due to Drinfel'd [2]. An essential
point of this construction is the existence of a non-degenerate pairing Ut x U™ —» C
compatible with the Hopf algebra structures of U* and U~. Since a pairing
naturally defined degenerates when g is a root of unity, we consider, following
Yamane [25], a certain quotient of U (s(N+1,C)).

For NeNand 1<reN, we put d=(r,N+1),a=} F=3" Let { be a primitive
r-th root of unity with ((+{}¢{—{)#0. We remark that {"*! is a primitive a-th
root of unity, and’ {2 is a primitive 7-th root of unity. Let (@)1 <ij<n be the
Cartan matrix for s{N+1,C). In the present paper, we consider the Hopf algebra
U, which is a quotient Hopf algebra of Ug(s(N+1,C)).

As an algebra U, is generated by E, F, K, K, ', A=TI\_ K] for 1<i<N with
the relations:

KK;=KK, KK '=K'K;=1,
KiEj={""EK, KF;={"*"FK,

-1
[EiaF j] =5i,’%;
E2E;—({+{ EEE+EE?*=0 (i—jl=1),
EE;=EE; (li—j|=2),
FH—(+{WEFFAFF} =0 (i—jl=1),
FFi=FF; (i—jl=2),
Ej=F},;=0,
K'=1, A*=1,

where (x,0)=0;, and for 1<i<j<N+1 and X=E or F, the element X;; is
inductively defined by

X

ij=

{Xi if j=i+1,
Xij—lXj—l_CXj"‘lXij—l ifj>i+1.

Let U;* be the Hopf subalgebra of U, generated by E, K*, 1<i<N, U the
Hopf subalgebra of U, generated by F,, K;*, 1<i<N, and (U;")’ the dual algebra
of U with the opposite comultiplication. We construct a Hopf algebra
isomorphism ¢: U, — (U;")’, and give an explicit formula of an orthonormal basis
with respect to the pairing ®.

Applying the quantum double construction to the Hopf algebra U, we see
that the Hopf algebra isomorphism ¢ induces a Hopf algebra epimorphism y from the
quantum double D(U;*) to the Hopf algebra U,. The image of the universal R of
D(U;") under Y ®y is a universal R of U,
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As well-known, a universal R can be used in producing tangle invariants
obtained from the representations of the quantized universal enveloping algebras
for classical simple Lie algebras (see for example [11][12][13][18][19]). As an
application of our universal R, we can calculate some tangle invariants, which are
essential in the construction of Witten’s 3-manifold invariants [21].

For any positive integer K, let P,(K) be the set of the dominant integral
weights 4 with 0<(4,0)<K, where 6 denotes the longest root. We consider the
family of finite dimensional irreducible representations of U, whose highest weight
A is contained in P,(K), in the case F/=K+N+1. For an oriented framed link
L, we denote by J(L) the tangle invariant obtained by using these irreducible
representations. Using our explicit formula of universal R for U, in the case
F=K+N+1, one can calculate J(H,,), where H,, denotes Hopf link with two
components assigned with ¥, and V;

Ewsw(det w)q(l +p,w(p+p))

J(H,;,)=
R S

Here p is half the sum of positive roots. Let S=(S;,) be the modular transformation
S matrix for characters of the integrable highest weight modules due to Kac and
Peterson [7]. Using the equality S,,=S,,J/(H,,), we show Verlinde’s formula for
the fusion algebra of type A{). The fusion algebra is an associative commutative
ring with basis labelled by P (K) and the product w, - w, of two basis elements can be
written as a sum TN, w, with structure constants N}, € N called the fusion rule. The
modular transfomation S-matrix and the fusion rules N},’s are related by Verlinde’s
formula [20]:

*

Nv _ S).sSueSw:

Ap— Z .
&P + (K) So:

The paper is organized as follows: In §1, we recall the quantum double
construction due to Drinfel'd and define the Hopf algebra U,. In §2, a universal
R for U, is obtained, applying the quantum double construction to the Hopf
subalgebra U of U, In §3, we state tangle operators derived from irreducible
representations of Uy, and calculate some tangle invariants. As an application of
the tangle invariants, we prove Verlinde’s formula for the fusion algebra of type A{.

ACKNOWLEDGEMENT. The author would like to thank H.Yamane for his
lectures and conversations on his work. She wishes to express her deepest gratitude
to Professor T. Kohno and M. Wakui for all of their help and useful advice.

1. Hopf algebra U, and quantum double construction

In this section, we define the Hopf algebra and recall the quantum double



962 T. TAKATA

construction due to Drinfel’d [2].
Let 4 be a Hopf algebra over C. A universal R-matrix for 4 is an invertible
element Re A®A such that

1 RA(a)R"‘:A(a) forae A, (L.1)
2 (A®id)(R)=R13R23’ (id@A)(R)=R13R12, (1.2)

where A is the comultiplication and A= Po A for the permutation P,P(a®b)=bQ®a.
Here R,,=X4,0b;®1, R,;=%4a,®1®b, and R,;=X;1®aq;®b; where the
components of the universal R are given by R=X,a,®b,. The pair (4,R) is called
a quasitriangular Hopf algebra.

The so-called quantum double construction due to Drinfel'd allows us to
produce quasitriangular Hopf algebras from Hopf algebras. It can be used to
construct a univeasal R. The method can be sketched as follows. Let 4 be a
finite dimensional Hopf algebra and A° its dual with opposite comultiplication.
Then, the quantum double D(4) is isomorphic to A® A° as a vector space, and
it contains 4 and A° as Hopf subalgebras via the natural embeddings, and the
universal R of D(A) is the image of the canonical element of A®A4°i.e. .2, 1R 1®¢',
if {e;} is a basis of 4 and {e'} the dual basis in 4* which is the dual space of 4.

For NeN and 1<reN, we put d=(r,N+1), a=}, and 7=535;
Let ((a3%); <ij<n be the Cartan matrix of type Ay:

(.. 0

(o0t ,)) =
2 —1

\ O -"_1 2

Let { be a primitive r-th root of unity with ({+{}{—{)#0. We remark that
¢N*1is a primitive a-th root of unity, and that {? is a primitive 7-th root of unity.

We define the Hopf algebra U, which is a quotient Hopf algebra of
UdsN +1,C)).

The algebra U, is generated by E, F, K, K;”', A=II\., for 1<i<N with
the relations:

KiK;=KK, KK ' =K. 'K;=1, (1.3)

KE;= C(ai.aj)EjKi’ K.Fj= ¢ (a:,a,)FjKi, (1.4)
K—K!

[E,F]=0;—1+ (L.5)
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E2E;—((+({ YWEE;E+EE}=0 (i—jl=1), (1.6)
EE;=EE; (i—jl>2), (1.7)
FIFj—(C+ U WEFFA+FFE =0 (i—j=1), (1.8)
FF;=FF; (i—jl=2), (1.9)
Ef,=F};=0, (1.10)
K=1,A"=1, (1.11)

where, for integers i and j with 1<i<j<N+1 and X=E or F, the element X;; is
inductively defined by

X. =

tJ

{Xz‘ if j=i+1,
Xii—IXj—l_ch—11Yij-1 lfj>l+1

The algebra U, has a Hopf algebra structure with comultiplication A, counit ¢, and
antipode S given by

AE)=EQ®1+K,Q®E, AF)=F,QK;'+1Q®F,
AK*)=K* @K,
oE)=e(F)=0, e(K")=1,
S(E)=—K;~ 1Eia S(F)= —FK, S(Kii) = Ki:F'
Let us show that the definitions of A and S are compatible with (1.10). We

prove some Lemmas.
We put

[X,Y]),=XY—(YX, [X,Y);=XY—-{"'YX.

Lemma 1.1. Let M be the C-algebra generated by A and B with the relations:
A*B—({+{ ")ABA +BA*=0, (1.12)
B2A—({+{"")BAB+ AB*=0. (1.13)

We put
C=[A,B],, C'=[A4,B];
Then it holds:

-1;‘2- 1)

CP'=C"+(1-{"Y ("7 AF.
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Proof. When C'=AB—{"'BA, we have, for any positive integer n,
(CYy=("*C+(1-({"%4B)y

i( )(1 ¢ 2)'(“(!‘—11“"_2)("_i)AiC"-iBi, (1.14)

where

(n)_[n]---[n——i—i—l] [n]_l—C"z"
i@y T 1=

The equality is shown as follows. We have the following equalities for any
non-negative integer n:

B"AB={""AB={""AB"*'—{""2[n]CB", (1.15)
(A= Hm]=1-¢", (1.16)

(,fl) ()C "= (njl)c' (1.17)

We show the equality (1.14) by induction on n. We suppose that the equality
(1.14) holds for n, and then it follows from (1.15),(1.16),(1.17) that

(Cr)n+1
=(CP(¢~*C+(1-{"%4B)

I
-

i 1

(n>c(l 2)"{“m—5~“+(:‘—2)(n—i)+.'—zA.-C,,+1_,~B,-

+y

i=0

(”) (11— 1C—i(%l1+(i— V=i gi+1cm=ipi+1
i e

IIM;

( >(1 C 2)l+1C—l'2—u+(i-—2)(n—i+l)[i]Aicn+l—iBi

=C-2(n+l)cn+l+(1_c—2)n+1c—""+1An+1Bn+1
n n PN (=5 ) PP —
+ 1__ 2 3 +@{@—-2)n+1-i)

+(n>§(1 _C—Z)ic—m—g——u+(i—2)(n+l—i)(l _(1 —C_z)[l])}AiC"+ 1-ipi
1

="y 1("? 1);(1 _ ¢y - et 1= giont 1 -igi,
i=0
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So the equality (1.14) holds. As {? is a primitive #-th root of unity, we obtain the
claim, putting n=7 in the equality (1.14).

For 1<i<j<N+1, the elements E;; and Ej; are inductively defined by

_{E,- if j=i+1,
YO[B - E-y), i il

, _{E,. if j=i+1,
R U W P (I i P R

Lemma 1.2. (i) For i<p<j, we put A=E,, and B=E,; Then these A and
B satisfy the relations (1.12) and (1.13).
(il) We have that [Eip’E[I)j]§=[El'p+l’E;+lj]E'

Proof. (i) We show by induction on p that [E,E;,];=0, for p>i+2. It follows
from relation (1.6) that [E,E;,,];=0. We suppose that [E,E; J;=0. Then we
obtain from the relation (1.7),

[EiaEip + l]f"_' [EbEip]ZEp - CEp[EiaEip]Z= 0.
Similarly, using the relation (1.7) and the equality
LEp-1pEj-11c=Ep—[EppEj— 11— L Ep B JiEp -1,

we obtain by induction on p that [E,,E; ,],=0 for p<j-2.
LEi- LLEi- 1,X]2), [XEjJe [[Y.E;]p.E;] and [E;_,Y], we prove that E;, and E,;
satisfy the relations (1.12) and (1.13). Noting that [E,E;,];=0 and

E} [EipEpli—C+OE; \[EipEp L Ei o —[EipEy ) EE 1 =0,
it follows that
LB 1, Ei-1,X]2]
=Bl Ey[EipEy )i — (B \[EipEy L

—0E;_ V\E[Eip By L Ei- 1 +LEi ([Eip,Ep 1 EipEi -

—E;,_ lE,-I,[E,-p,E",j]§+fEi_ 1\LEipEpi) EipEi—

+EJEipEp EL \ —{[EipEy ) EipE?
=((+{)E;- V\EipEi 1[EipEpili— EipEiz— 1LEipE,];
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~QC+OE\[EipEL ) Ei -1~ [EipEp ) EX 1} Ey
—(C+VE,(\E[EEp ) Ei 1+ +E; - \[EipEp 1 EipEi -y
+E{(C+DE;- I[Etp’E’}](Ei 1 —EL\[EE,L)
—EpEy 1 {(C+DE;\EE;_ —EX \E;}
=(+EE[E; 1 [Ey ,-];];+(C+f LE:- uLEipEpil ) EipEi-
— L+ DEWE [Ei- 1 [EipEy 1=+ OLE - 1L Eip Ep I )i 1 By
= +OLEi - 1pLEi- 1 pEpiddz
Here we have used [E;_,,E, ], =[E;_[EE,;]]. So, when {+{#0 and X=0,
it turns out that [E;_,,[E;_,E,]J;=0. From the formula [E,E,;, ],
=[[E,E,;],.E;]; and the relation (1. 7) we have
[(X.EJ;=E,[E,E) ) Ei—[EipE) 1 Ei E;
—{E;E [E;.E, )+ *[Ei,Ep ) Esp
= Ey[EipEpidoE ) — (LEip By )0 E JEsy
=[EiplEipEpj+ 11z
So, if [E;p,[EipE,1 =0, then [E;,[E;pE,;+1]J;=0. Thus the elements E;, and

E,; satisfy the relations (1.12).
From the equalities [E,;E;_;]=0 and

[EpEy ) E} —(+DE[E ,EpJEj+ EIEp,Ep], =0.

ip? ip>

it follows that

[[Y.E]zE;]

=[E,E} ) EyE? —CE, [Eip L) E?
—02E[[E, E, ) EviE;+ CEE, [EipEp L E;
—E[E,E,] E;,JE,+(E . [E,E).E;
+CENE,E) ) Eyi—CEPE, [EipEsil

ip> ip?

=[EipE1{(+ C)E E;,,E, E?E,}
CE A+ DELE . Ey ) Ei— EJLEipEy e}
— (0% + DE|[Ep,E} Y EpE;+ (T + DEE, [ EypEy 1 E;
+ L+ OELE pEp 1 Ej— [EipEy 1. EF)Ey;
— O+ DEELELE  Ep ]~ Ep;EXEpE) 1)

pJ J ip»



UNIVERSAL R-MATRICES FOR QUANTUM GROUP U,(s(N +1,C)) 967

=+ {)E[EipsE;j](’Ej]ZE"rjEj +{C+ f)EjE;j[[Ein;j]gan]Z
=+ ()[[Eip’E;)j]C’Ej]ijE;;j -{c+ E)E;;jEj[[EipE;;j]{’Ej]f
=+ ()[[Eip’E;Jj+ oEpi+1 1

Here we have used the equality [E;,E,;,],=[[E:,E,]1.E]z
SO, if c+c§é0 and [[EIP’E;]]C’EII)}.]Z=O’ then [[Eip’EIIJ]+ I]C’EP]+ 1]220. From
the equality [E;_,,[E;,E,;] . =[Ei-1,E,;], we have
[Ei - 15 Y]g = E.'— 1 [Eip’E;vj]gE;;j - 5Ei— IEI,)j[EipaE;vj]{
—EipEp ) EpiE;i -1+ E [ EipEf ) E:
=LE;_ 1,[Ei,,,E,',j]§]§E,’,j - EEI’!J'[E" - vEEinz':j]z]c
=[LEi- 1, pEpiloEplz

If [[E.,E,;1E;p);=0, then [[E;_,E,1.E,iJr=0. Thus the elements E;, and E,;

p>*pJ.
satisfy the relations (1.13).
(ii) Let us show that [E,,E,;],=[E;,+1,Ep+ 1]z
We have

LEii+ 1’Ei’+1i+3]§=EiEi+1Ei+2"CEi+1EiEi+2_fEi+2EiEi+l+Ei+2Ei+1Ei
=[Ei+ 2aEi + 2]2-
We suppose that [E;,E,;],=[E;,+1,E,+1;]z Then we obtain
CEipsEpse1 )= [EipEy ) E;— CELE:p B,
=[Eip+l9E;)+ lj]ZEj_ij[Eip+lsE;+ 1j]Z
= ip+1(E;Iu+1jEj_{EjEll)+1j)'_Z(EI,)+lej_(EjE‘,z+1j)Eip+1
=[Eip+1’E;)+1j+1]Z
and
LEi- 1pEpilc
= Ei— I[Eip’Ellrj]C_C[Eip’E;Jj]CEi— 1
= i—I[Eip+I’E;I;+lj]f_C[Eip+1’E;:+1j]ZEi-'1
=(Ei—1Eip+l—CEip+lEi—I)E;;+1j—CE1’;+1j(Ei—lEip+l—CEip+1Ei—1)
=[Ei—1p+l’E1’7+1j]Z'

So the claim holds.

By Lemma 1.1 and Lemma 1.2, we have the equality
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Eilj;=([Eii+1’ i,+1j]Z)F
o o _FF—1) _ .
=([Eii+1> i,+1j]§)r+(1_c_2)rc_ T Ei 1 Eivyy

/ F -2y, -HEZL) P F
=([Eii+2Ei+ 2509 +(1=( (T2 EyiEly
Lemma 1.3. We have the formula

'F F N T = P 7
Ej;=E; + Y (A=("3¢ 2 E,, - E,}.
i<py<--<ps<j

Proof. From the equality stated just before the lemma repeatedly, we have that

i1 .
P F N N I
Ef=E;+ Y (1-¢ B ELE.

k=it+1

By induction on j—i, we get the claim.

By Lemma 1.3, we obtain Ej/=0 and similarly, F};/=0.

Now we prove that the definition of the coproduct A is compatible with the
relation (1.10). We can prove the following formula

A(Eij)=Eij®1+(1—C2) Z KyEiQEy+ K;QE;,
i<k<j
where K;;=K;---K;_;. We put
u1=EU~®1,
Uy =Kii 4 1B 1 1j®Eji 41,

Ui =K E;_,®E;;_y,
Uj—i+1 =Kij®Eij'

J

It follows that if k>/, then wu={’uu,. As we can write that A(E,)
=uy +(1 = uy+ - ;) ui g, WE have

bmll?)
my + --~+§;-i+ 1 =m¢m1(C2) o ¢"'J-i+ l(CZ)

(L= mmag ey,

A(Ei j)m =

where ¢,(()=(1—-3)(1—{*---(1=¢?>™) (see [14]). Putting m=7, we can obtain
the equality A(E;)) =0.
By induction, it follows that S(E;)= —K;j 'Ej; and S(F;))= —{*""VF,, We
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recall that E;f=F;{=0 and so one can obtain that S(E,) =S(F,y =0.

2. A construction of a universal R-matrix for U,

In this section, we construct a universal R-matrix for U,, using the quantum
. double construction due to Drinfel'd [2]. Our method is similar to that of the
construction of the universal R-matrix in [23] and [26].

Let U be the Hopf subalgebra of U, generated by E, K, 1 <i<N and U-
the Hopf subalgebra of U, generated by F, K, 1<i<N and (U;")’ be the dual
algebra of U;" with the opposite comultiplication.

First we fix some notations. Let {o;|1 <i<N} be the system of simple roots
and II, the set of positive roots a;+ -+ +a;_, with 1<i<j<N+1 of sN+1,
C). We denote by Q=®Zn; the root lattice and let (,):Q@xQ— Z be the
pairing defined by («;,x;)=a;;, where (a;); <; j<n is the Cartan matrix of type Ay.

We shall put on the set {E;j|l <i<j<N+1} a total order < defining E,,<E;;
if k<i, or k=i and [I<j. We also denote E; by E, for aecll, if
a=o;+ -+ +a;_;. Thefollowing notation will be used in describing a C-basis of U;':

I= {(ma)ael'h I0sma <f}’

J= {(Ui)lsisN|050p<raP= 1)""N— I’OSDN<a}a

P={vjp= i v,0(v;) € J}.
i=1

Moreover, we denote by I, E,™ for (m,) el ordered monomials of the E,’s
according to the total order defined above, ET$2ETy3--- EF4V 1Y, and for v =2 v,
with (v);<i<n€J, set K,=TI'_ K. In a way similar to Lemma 4.2 in [22], we
can derive a system of generators of U".

Proposition 2.1. The algebra U is generated by {Il,., E,™K [(m,) € I(v) e J}
as a C-vector space.

Proof. Using ths relations (1.3),(1.4) and (1.11), any element x of U can be
written as a C-lenear combination of the elements E; ---E; K, with 1<i <N and
0<uy;<r. Let L be the subalgebra generated by K, 0<i<N. We remark that
L is generated by {K,|Ae P} as a C-vector space. In fact, it follows, from the
relations (M. ,K})*=1, Ki=1, that Ky=('Kj)". So we can write K}
for a<b<r—1 as a product of elements in {K,|()eJ}. Let Py={((i},/y) "> (ixsJi))
ipj)eNXN, 1<i,<j,<N+1}u{p}. For Z=((i1,jy), " (iwji)) € Py, We put Ey
=F E We define a map #: Py — Z given by

i1 Mijee
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NE)=i,(,—i)+ - +iljix—i) for Ze Py, n(¢)=0.

We consider the subspace W, generated by {Egn(X)<m}. A sequence
2=((i1,)1)s (i) € Py is called increasing if (i;,/,)<(ij,)< - (iJji). In parti-
cular, ¢ is increasing. From [22], for a pair (s,f)<(x,y), we can show

ExyEst = CJ“ "= Oyt 6ytEstExy + Z cin

ME) <n(((s,1),(x,y)))
E=((i1,J1)s"**s(insn))

E, ;. O]

T/

for some czeC. By induction on m, we can show that for any m, any element
in W, is written as a C-linear combination of the elements in the set {Eg|n(Z)<
m, X is increasing} (see [22]).

We give a triangular decomposition of U,, using a way similar to one in [22].

Let us prepare some notations.

. 174 is the algebra over C generated by E, F, K*, 1<i<N with relations
(1.3), (1.4), (L.5).

- N, (resp. #,) is the subalgebra of U, (resp. Ug) generated by E, 1<i<N
along with 1.

- A _ (resp. A/ _) is the subalgebra of Uy (resp. (7;) generated by F, 1<i<N
along with 1.

- T (resp. T) is the subalgebra of U, (resp. l7€) generated by K*, 1<i<N
along with I

¢, @i, 1<i#j<N are the elements of (7;, defined

ijo

. {EiEj—EjEi if i—jl=2,
N EizEj—(C+C_l)EiEjEi+EiEj2 if li—jl=1,
b — {FiFj—FjF,. if |i—j122,
VORI —(H+ U EFFAFFE O li—jl=1.

- S, (resp. £_) is the two sided ideal of N, (resp. A _) generated by b
1<i#j<N, Ef, 1<i<j<N+1 (resp. ¢, 1<i#j<N, F;, 1<i<j<N+1).

- S, is the two sided ideal of T generated by K/ —1, 1 <i<N, A“—1.

- 4 is the two sided ideal of (7; generated by ¢5, 1 <i#j<N, E[, 1<i<j<N+1,
#;, 1<i#j<N, Fj, 1<i<j<N+1, K]—1, 1<i<N, A"—1.

We investigate the structute of l7< as a vector space, in a way similar to the
proof in Lemma 2.1 and 2.2 in [22].

Let &, (resp. ¥_) be the free associative C-algebra with 1 generators e,
1<i<N (resp. f;, 1<i<N). Let C[k{,---,k§¥] be the C-algebra of Laurent
polynomials in indeterminates k,,--,ky. Let #/ =% _Q®Clk{, - ki]l®cZ,. The

elements f; ---f, ky'---ky¥e;, - e, vy, un € Z,1 <y, iy, J, < N, form an C-basis
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of A.
M has a left U-module structure defined by

K, fiy o fide ke, e,
=C—(ap'a“+m+a"‘)fi1'”f;,k'il"'k;pﬂ"'k;;VNejl'”ejg!
Fyfiyefikor ke, e,
= Pf;l-/;s 'i’l...k"NNejl...ejt,
E, fi, - fi ]t kipe, e,

=C‘(¢pv”111 + ~--+uzvau\r)fi1 . 'fi,k’il .. 'k?VNepejl e,

C (Z{C (ap.af,,“+~~+a«s>fil...f'_u‘..ﬁ’k-;x...k;pﬂ ke, - e,
1,

_C—(ﬂp»'liu”+m+ais)f“...fiu...f;_sk’il...k;p_l kN e, J'c}’

where f;“ means that f; is omitted.
By this fact, it follows that the elements F; - F, K7'---KR¥E; - E;, v,,---,uy€ Z,1

Je>
<iy, e igfiy i <N, form a basis of U;. In fact, we have the left Uc-module
isomorphism t: Ug—n/ll defined by

WFy - F K+ K E;, - E;)=F,, - F K- K{'E,, - E, - (1®1®1)
=ﬁl.../‘is 'il...k;’vNeh...ejt'

So we have U~/ _®T®./, as a vector space, 4, (resp. A _) is a free
algebra in the variables E; (resp. F)), and T is the Laurent polynomial ring in the
variables K;*.

We have U, = (7; /# as an algebra over C.

We obtain-a triangular decomposition of U,. It follows that U= A4 _@TQ A",
as a vector space, /' , =4 ,/F, and T=T/F, as an algebra over C. It is
proved in the following way, which is analogous to the proof of Proposition 2.3
in [22]. It suffices to prove:

j=./V_TJ++-/V‘_Jo.A7++j_Tg/T/+.

To prove it, we show that N _TF,, N_FIoN,, and S _TW, are ideals of
U, Firstly, we consider # _T.#,. The argument for #' _T.#, is analogous. Let
Y=A _T#,. Itisclear that K*Y< Y, YK c Y, FYc Y, YF,c Y, YE,c Y.
Let us show that E;Y < Y. We define the two C-linear maps Ei* : /' _ — ¥ _ by
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Eii(Fi; o F )= Z gi"th "‘Fiu"'Fw

where a,=(x%;,,,+ -+ +a;), so that

Ei'Fii"'FisKil"'KllVNEj;”'Ejg

=£_(a|‘,'1411 *"“‘Hz\ﬂlzv)ﬁ‘il "'Fi,Kil '”KI'VNEiEh ”'Ej:

1 _
s DB Py FOKY K KB B,

_Ei+pil...Fis)K;1 "‘Ki"—l"‘K)'v"Ej,“'Ej.}-

+

We can show
Eii(Fil---F,.p¢,;,Fi_‘-~~Fim)ef_
(see Proposition 2.3 in [22]). Moreover we have
E,,F.',"'Fi,Fi;jFik"'Fik+1K{’"'Kﬁr"Ejl"'Ej,
=Fi1"'Fi,EprfFik"'FikﬂKil"'Kz'vNEj,"‘Ej.

1 _ _
+C—C—1'Z {Ep (Fi1"'Fi,)KijFik"'Fik+1Kil”'KIIVNEh'”EJ}
lu=p
_E;(Fl'l”'Fis)KP_ 1Fi;fFik“‘Fik+1Kil‘“K;VNEjl‘“EJI:}’

for 1<p<N and 1<i<j<N+1.
Let us show that [E,Fj;]=0, for 1<p<N and 1<i<j<N+1.

J.
If i<p<j—1, then we can obtain

EFj=E/F;,— F,;—(F,;F;)
= FipEpFpj— CEFy
=Fipr+CEpK;1Fp+lj_czKp_ "Fys1iFip
—F.E

urp

using the equality E,F,;=F,E,+(K, 'F,.,; and so it follows that [E,F};]=0.
We consider the case p=i. We have

EiFi;j=(EiFiFi+1j_CFi+leiFi)FiFj_l
=(FijEi+CKi_1Fi+1j)Fi;j‘l
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= :j(F ElFr 2+CK l171+11 ij 2)+CK 1I:z+1F"— .
Here we used the equality F;;+ F; ., j=("'F;, y; By induction, we can obtain that
EF=FE+{(1+{"7+ - +€'2‘F‘ V)=FE;

Similarly, we can prove that [Ej_,,Ffj]=0.

Thus, we obtain that E;Y < Y.

Nextly, we consider 4 _#,4 ,. It suffices to prove that for X=E or F and
1<ij<N,

[X,K;—1]=0 and [X,A’—1]=0.
Let us show the formulas for E;. Indeed, we have

EK;=UKJE,=K}E,

< ﬁ })a a(ak EJa;)( l—[ K))a
Jj= j=1

=€6(na(N+ I)AaEi

and

— EB”WL;_‘A“EA
= ABE".
Similarly, we can prove the formulas [F,K]—1]=0 and [F,A*—1]=0.

The following map ¢: U, — (U;)° plays an important role.

Proposition 2.2. There is a Hopf algebra homomorphism ¢ : U — (U;")° such
that for X=E, ---E; K,

b l.fX =E iKm
FXX)=
o(EN) {0 otherwise,
(Fee) ifX=K,
(KF)X)= { .
otherwise,

— 1
where b= —r=¢=1.

Proof. We put o(F)=¢,0(K)=n"* and n;=n;--n;_,. We define ¢;
inductively by
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fij={¢i ?fj:=l:+ L
Eyrlior =L oy > it1,
We remark that if {i,--,i,} # {j;,---,j.}, then
&by & (B E), - E;)=0. (%)

Let us prove the fact by induction on. We assume that it holds for m—1. Then
we have

éilﬁlz élm( 1 Jz in)
= fi, fi,,._ 1®éim(A(Ej1) "‘A(Ej,.))

=€il£‘m—1®£im( 2 E EJp IKJpEJp+1 : EJnEJp)

1<p<n

= Z imjp {(a1P+l+ +aj " )éu&lz * éim_l(Ejl“'EAjP“.Ej")éim(Eip)‘

1<p<n
By the hypothesis of induction, if {iy, *,im—1} # {1, *sp=1dp+1>""*Ju)> then
fnfz‘z“'f:‘m-l(En"'Ej,,"'Ej..)zo-

We consider the pair (i’j) satisfying that (i/')<(ij) and that there is no pair (i"j")
with (i'/)<(@"j")<(ij). It follows that

Sréry - & (Ey) =0, (1)
SAETHETS? - Efy7)=0. @

In fact, 7428742 &M (Ey) and & (ETS2ETS? -+ ElMi)are C-linear combinations of

the elements in ().
We note that

ME)=E;@1+(1~0) T KuEy®Fu+K,®E,,

i<k<j

Ai)=¢&:;i®n;; H(1-0%) Y Eu®na lékj"' 1®¢&;;

i<k<j
From these facts, it follows that if m,>n, and for any f with E,<Es m;=0 or
ng=0, then

( I1 éa""lw)( [1 E.™K, ) Y@ (XE @ 1)K, ®K,))

ell + ell +
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=YL *®(XE,"K,)n.(K,)
= Y‘fanu(XEama)”w(Kv)’

where X =TIy, g Ef* and Y=T1I;, ; £*. By theequality K;;E;;={?E,K,;, we obtain

YCAXES™)
=Y ®LUX®DAE)™)
= Y&~ MXEP" ) (E)Im,]

= T Omune Sl E[m,]\,

aell 4

where [m]=%=~. Here we have used the formula (x). Similarly, for m,<n,, the
similar equality holds. Thus, we compute

( [1 é:m)( [1 E;""‘K.,)= [T S EmIm 21T,

aell 4+ aell 4+ aell 4
It follows that any element I1,.;, &, is zero on ¢, 1 <i#j< N, E[, 1 <i<j<N+1,
Ki—1, 1<i<N, and A°—1, and from the triangular decomposition of U, ¢ is
well-defined.
Moreover, the elements ¢; and #;* satisfy the following relations:

() nnj=nmen ‘ni=nni ' =¢, 2.1)
Q) n&=L"wepy, (2.2)
(3 éizéj—(C""C_l)éiéjéi""éiéj?:o (li=f=1), (2.3)
@ &&=¢¢ (i—j1=2), (2.4)
(5 & =0, (2.5)
N a
© n'=s ljlni‘) =5, 2.6)
7 A(éi)=£i®r’i-1+1®£iaA(’7ii)='1ii®nii’ 2.7
(B &£)=0,¢n*)=1, (2.8)
Q) SE)=—&mns St*)=n;". 29

One can prove these formulas by easy computations. In the following, we show
only the formulas (2.2), (2.5), (2.6) and (2.7). For (2.2), n,{; is non-zero only on E;K,
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where its value is {®*?b{®" and &, is non-zero only on E;K, where its value
is b{®".  For (2.5), it follows from the above equality that & /(I , ErK,)=O0.

For (2.6), (II)_,n/)* is non-zero only on K, We have that for 1<p<N,
(I)_,n)*(K,)=1. In fact, by the definition of n,, we have

N a
j=1

For (2.7), A(¢) is non-zero only on E,K,®K, and K,® E;K,,, where their values are
respectively 5{®** and b. On the other hand, ¢;®#; is non-zero only on EK,®K,,
where its value is ("), and 5 '®¢; is non-zero only on K,®EK,, where its
value is b. The map ¢ is a Hopf algebra homomorphism.

Proposition 2.3. We define ®:U x U - C by ®(x,p)=¢(yXx) for (xy)
eUf xU;. Then ® is non-degenerate. Moreover, {Il,., E, K |m,)el, (v)eJ}

in proposition 2.1 is a C-basis of U, and the Hopf algebra homomorphism ¢ is an
isomorphism.

Proof. By the discussion in the proof of Proposition 2.2, it follows that

‘D< [1E™K, ] Fa”“Kw)= [T Sman ELEY™m I,

aell + aell + aell+

where [m]=%"'_;l‘, and [m]'=[m][m—1]---[1].

For v,we P, we put

hv—w= ZC("'”_W)

ueP
and
V—w=x,0 + - +Xy_ 8y_ 1 Xnoy () =(0)— W0 (w) e ).
We have that

h — Z C2P=,u.-(—x;_1+2xi—xa+l)

N-1r-1 a-1
=(H Z C“i(_xi—l+21i_xi+l)> Z Cun(—xn—1+2xn)_

i=1ui=0 uN=0

We assume h,_,, #0. Then [T} ,'E;f (- xi-1+2x-x+02£0, Hence we have that

—X;_1+2x;—x;,,=0(mod r), 2<i<N-—1and x,=2x, (mod r). So, it follows that
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Xig 1 =2—x;_ 1 =2ix;— ([ —Dx;=(i+ 1)x, (mod 7).

Thus we obtain x;=ix, (mod r), 1<i<N. From the equality

a—1 a—1 a-1

Z C“N(_XN—1+23‘N)= Z C“N(N+1)xl= Z LNt £,

un=0 un=0 un=0

we obtain that x, =0, (mod a), noting that {" is a primitive a-th root unity. While
xy=Nx,; (mod r) and ad=r, we have that xy=0 (mod a). As |xy|<a, it follows
that xy=0. From the formulas x;=ix; (mod r) and x, =0 (mod ), we have that
—Xy-1+2xy=(N+1)x;=0, (mod r) and so xy_, =2xy (mod r). From the equality
X;_1=2x;—X;4+, (mod r), by induction, we have that x;=(N—i+ l)xy=0, (mod
r). As |x]<r for 1<i<N-—1, we obtain that x;=0 for 1<i<N—1. Thus we
obtain that A,_,#0 if and only if y=w. Let L=|J], and then

4><1 ) 4‘"’"’KM,KW)=6W

(ui)eJ

For m=(my),,, We put

en= T] GBI Tm = T] (—%;(—o‘"m—‘)m[ma]!,

aell + acll + C C

where c,, is non-zero. From the above discussion,

{5 oo ] Bk} AN e,
(mg)el (vi)eJ

Lcm(ui)el aell + aell + }(n,)el,(w;)e]

is a basis for U and U, and they are orthonormal for the pairing ®. Thus ®
is non-degenerate and {1y, E,"K,}(moer,wpes 18 @ C-basis of U, by Proposition

2.1. From the definition of ®, the homomorphism ¢ is an isomorphism.

Now we apply the quantum double construction to the Hopf algebra U,". By
the definition of the multiplication of the quantum double, one can derive the
following Lemma.

Lemma 2.4. Let e,=EQ®1, k} =KX ®]1, fi=1Q¢(F), and hif =1®@¢o(K;*) in
the quantum double D(U"). These elements satisfy the following commutation
relations:

(1) kihj=hjkiskihi—l=kihlhi=1, (2.11)
(2) he;=t"ehk fi=0" "k, (2.12)
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k,—hi !
B [enf]=8, 00

Sy 2.13)

Proof. For (2.13), we have

Jei=SENE) hi ' -ni (1) +SUNK) - eifj nj (1) + SUNK) k- EAE)

o _grtedimd

k;
t-¢r
where ;= ¢(F;) and n,=¢(K;). The other relations are also immediately obtained.

The Hopf algebra strucrture on D(U;") induces the one on U,

Proposition 2.5. Let us define a map : D(U;") - U, by Y(x®y)=x¢~'(y) for
x®@ye U QU}Y = D(U;*). Then the map { is a Hopf algebra epimorphism.

Proof. Comparing Lemma 2.4 with the commutation relations between E;, F;
and K;, 1 <i<N, one can easily show that i is an algebra homomorphism. From
the fact that ¢ ~' is a Hopf algebra isomorphism, due to the Hopf algebra structure
of D(U), it follows that y is a Hopf algebra homomorphism. The surjectivity
of Y follows from the fact that any element X,---X,, X,e{E,F,K*|1<i<N} is
written as a C-linear combination of the elements X, Y_, X, € Uc+’ Y_eU,, using
the relations (1.4) and (1.5).

Now, we obtain an explicit formula for a universal R of U, as the image of
the universal R of D(U;") under y®y.

Theorem 2.6. A universal R-matirx for U, is given by

1
R=— % C(v " [] EK,® [] F.™K.,, (2.14)
L( (madel JC aell 4 aell

where
I= {(ma)aen+|0 Sma< F}’
J= {(Ui)lsisN|OSUp<r’P= 11""N_ laost<a}a

L=r""1q,

Cpm= a!:][ < C_C_( C)ht(a] 1) [ma]! for m=(ma)ael'[+‘
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Proof. Since the universal R of D(U;") satisfies (1.1) and (1.2), and ¢ is a Hopf
algebra epimorphism, R also satisfies (1.1) and (1.2).

3. Results from the universal R-matrix for U,

We recall how one can obtain tangle operators from representations of the
quasitriangulra Hopf algebra (U,R), where R is the universal R-matrix for U, in
the previous section [13].

For non negative integers k and /, a (k,/)-tangle T is a smooth 1-manifold in
R? x [0,1] such that its boundary 7= {(i,0,0)]1 <i<k}U{(i, 0,1 <j<I}. We put
T, ={(i,0,0)0<i<k} and oT_={(;0,1)[1<j<I}. All tangles are assumed to be
oriented.

It is well-known that every tangle diagram can be reconstructed from the
elementary diagrams in Fig.3.1, using the composition o (when defined) ant the tensor
product ® in the Fig.3.2.

A coloring of a tangle T is defined to be an assignment of a U,-module to
each component of 7.  According to a coloring, we assign U,-modules T, to 0T, as
follows: if an arc S of T has a color V, then to each boundary point in R*x {0,1}
associaté V if the orientation is downwards and associate V'* if it is upwards. Then
the U-module T, (resp. 7_) is the tensor product from left to right of the
U,-modules associated to 07, (resp. 0T_). By convention, T, =C if T is a link.

In this paper, we consider the following family of irreducible representations
of U, with F=K+ N+1 for a positive integer K. Let a,,---,ay be the simple roots
of s{(N+1,C) and we put

P (K)y={Aeb*(La)e ZO<(La)i=1,---,N, 0<(1,0)<K},

where 0 is the longest root, b is the Cartan subalgebra of s{N+1,C). Let A,,---, 4y
be the fundamental dominant integral weight: each A; satisfies (4,0 =4d;; for any
a; We see that A=X,mJ,; for integers m,,---,my. For each Ae P (K), there
exists an irreducible highest weight module V; of U, with highest weigth A and

T
/ / 7 o] Ty |22
)
N\
Tl ® TZ = Tl T2
elementary diagrams

Fig. 3.1 Fig. 3.2
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highest weight vector e, such that
JV+e,1=0, VA=A/_61, Kve1=f(l'v)e;..

Here 4", is the subalgebra of U, generated by E, 1<i<N and A"_ is the
subalgebra of U, generated by F;, 1<i<N.

Let T be a colored tangle such that each color of a component of T is
contained in the set {V,|Jle P,(K)}. When S,,---,S, are the components of 7, a
coloring of T can be viewed as the map {1,---,n} - P, (K). As is shown in [13],

there exists a U-linear map Fr:T_ — T, such that it satisfies Fy.;.=Fpo Fr. and
Frer=Fr®Fr, and for elementary diagrams,

Fy =idy,, F|=idy,,

Fx(x®y)=Y By ®@x, where R=Y 0, ®p;,
k k

Fx(x®y)=Y By®ax, where R™'=Y o, ® B,
k k
Fn(f®x)=/(x), Fn(x®f)=f(K, 'x),

FU(1)=Ze,-®e‘, FU(I)———Zei@K,,e,., (for any basis {e,}),

where K,=1Il,.;,K,. If L is a colored oriented link with coloring v, F is a scalar

map. We denote this scalar by J(L,v).

In the following proposition, using the explicit formula (2.14) of the universal
R for U, we shall compute two values, which are essential in the construction of
3-manifold invariants. We put g=_2

Proposition 3.1. (1) Let H,, be a colored Hopf link such that the colors of
the two components are V, and V, drawn in Fig.3.3. Then we have

A @ —exp 27y —14,

Fig. 3.3 Fig. 3.4
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ZweW(det w)q(l +p,w(n+p))

M= entdet e o7

, (3.1)

where p is half the sum of positive roots and W is the Weyl group.
(2) Let T be a colored (1,1)-tangle such that the one component has a color

V, in Fig.3.4. Then Fr is the multiplication by exp2n./—1A,, where A, =%420)

Proof. (1) We conside the colored (1,1)-tangle in Fig3.5. Since V, is
irreducible, Fr- is a scalar map. We denote this scalar by b,,, To compute b,,,
it is enough to evaluate Fr(e;) for the highest weight vector ¢,. If R=X,0,®p,,
then we see R™!=(id®S)R). From the definitions of tangle operators, one can
obtain

Fr{e;)= bxue 2= kZS(Bk)alTru(Kp— 1aks(ﬁl))e}.-

By the formula (2.14), one has

buer=ps T s 1 £ (Lo 11 £

(M) (na)el aecll 4 m aell +
(vi)(ui)(wi)(ui)eJ

Tr,,(K; e E,"“K,,S( I F;"*K,,))el.
C

n aell + aell +

Since e, is the highest weight vector, the only terms with m,=n,=0 for any aeIl,
are non zero. Thus one can get

1
— 1, —1p(wu’ -1
buei=— 3y KUK KKK, ey
L* wouyiwowies

= %ZC(W'A)C(U‘H)E(M‘A)Try(Kp_ 1c(w,u’)K“,Kv— l)e}.-
Noting that Z,,.,(“*~”#0 if and only if A=», we can compute
1 - w,u’ -
bluel ='ZZC(W’1)Tru(Kp 1C( ’ )Ku'Kv l)e}.

= Zc(us,/1)4(2;’4&){(%/’t)e/1
Bs

~(A+p,
- Zq( 4 Ms)eb
Hs
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/

where {y,} is the set of weights of ¥, with multiplicity and {?=gq. It follows from
the character formula of Weyl (see for example [10]) that

Fig. 3.5 Fig. 3.6

T, epldet w)gaHemt e
e zweW(dCt w)q(l+p,w(p)) .

Let L, be a colored unknot with a color A in Fig.3.6. Then we see

ZweW(det W)q(l *o-wie)
T, w(det w)q(p,ww)) ’

J(LA)=

which is called the quantum dimension of V; and we write it by dim,V;. Since
J(H,,)=b,,dim,V; according to [13, Lemma 2.6], the formula (3.1) holds.

(2) As the representation V, is irreducible, the tangle operator Fy is a scalar
map. We denote this scalar by »,, To compute v,, it is enough to evaluate
Fy(e;) for the highest weight vector e, of V;,, When R=Xa,®f,, one can see

Frle)= ockae l(ﬂke Ve

From computations similar to the one made in the proof of (1), it follows that

1
V6,=— Z C(D,W)KvaeA(Kwe).)el

(vi)(wi)eJ

=_1_ Z C(v.w)f(v.l)((l,Zp)el(g(l,w)el)el
(vi)(wi)eJ

R TIEN

_ A A,2+2
— qi( p)e‘1

Thus the claim holds.
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Let $=(S,,) be the so-called S-matrix due to Kac [7], which is given by

N+ 12
SPEVELAES e 42

ST e

Comparing (3.1) with (3.2), one easily sees that S;,=Sy0b,,.
By the discussion in [9], for any closed oriented connected 3-manifold M,

Zr(M)= ce Z SOv(l)"' SOv(n)J(L9v)

vecol(L)

is a topological invariant of M, where C=(exp2mn,/—155) 3, c=Kdimsin+1.0 1
is a framed link with » components such that M is obtained by Dehn surgery of
S? along L, o is the signature of the linking matrix of L, and col(L) means the
set of colorings of L.

We denote by Rep(sl(N+1,C)) the representation ring of s{N+1,C)). It is
well-known that the representations of s{N+ 1,C) with fundamental weight 1,
1<i<N, generate Rep(si(N+1,C)). We put 6P (K)=P  (K+1)\P,(K). Let I be
the ideal of Rep(s(N + 1,C)) generated by the representations W,, AedP,(K). We
put Ryx=Rep(siN+1,C))/ Ix.

In [4], Goodman-Wenzl showed that the algebra Ry is a free Z- module with
basis w, corresponding to 1€ P, (K) and that

. p— v
Wi w, =Y Njw,

for non-negative integers N;,, which are called the fusion rule.
In Rep(U,), the irreducible representation V,, 1€ P,(K), can be written as a
formal sum of monomials in the fundamental representations V,, 1<i<N such

that the monomials are in the span of {V,weP,(K)}. This follows from the
induction on the lexicographic order of Young diagrams, applying Littlewood-
Richardson rule to the decomposition of the tensor products of V; and V,. Using
the formal expressions, we can obtain the decomposition V,®@V, =X p, ki Vs
+Z,,, for 4, u, where nj, are integers and Z,, is contained in the ideal generated
by the irreducible representations V,, for we 0P, (K). Since in decomposing tensor
products of the fundamental representations and V,, ieP,.(K), we can apply
Littlewood-Richardson rule, in a way similar to the proof in Lemma 3.1 in [4],
we get n},=Nj,. It follows that for Ave P, (K),

V,QV,= PZ(K)N;u Vi+Z,, (3.3)

We recall that the quantum dimension means the trace of the representation matrix
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of K, and denote the quantum dimension of U, module by dim,/. One can extend
the definition of the quantum dimension to a C-linear map from Rep(U,) to C.  As the
quantum dimension of V,, for we P, (K), is equal to 0 from the equality [7]=0
(also see [3]), that of the tensor product of V,, and any representation of U, is
alsoequal to 0. From these two facts, the extended quantum dimension of Z;, is 0.

ReMARK. It is shown in [1] that for A, u, we have a decomposition
V}.® Vu = ®(M/‘1,v® Vv)@zlw
where the dimension of C-module M}, is equal to N}, and the quantum dimension of

Z,, is 0. Although, we don’t need the fact.

As is shown in [13] for s/(2,C) by Reshetikhin and Turaev, we extend Z,(M) to
Z(M,T) for M which contains a colored framed link L. Let T be a colored framed
link in S and we suppose that M is obtained by Dehn surgery on L. Then we
think of TUL as a framed link in S3, and we put

Z'(M,T)=Cd Z SOv(l)"'SOv(n)J(LUT’v)'

vecol(L)

From the above observation, one can get Verlinde’s formula for the fusion
algebra Ry with the fusion rule due to Goodman-Wenzl.

Proposition 3.2. The S-matrix (S;,); .cp,x) and the fusion rule N3, satisfy
Verlinde’s formula:
‘Slﬂsuﬂgi

Nj= Yy —=F=,
£eP + (K) SO;

53
(§2x SY L

Aou
@A # V‘

Fig. 3.7 Fig. 3.8
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where for Aue P (K),

/ _{N(N+1)/2
S, = 1 Z (det w)q(‘ +owlntp)

M JINT O e

Proof. Let us consider S?x S! containing the 3-component link L,,,. with
colors 4, p, v* drawn in Fig.3.7, where for the longest element w, in the Weyl group,
A¥=—wy(4). Let L be an unknotted circle with the zero framing which links
L,;,.drawn in Fig.3.8. By the Dehn surgery on S* along the circle L, one can
obtain (S?xS',L,,,). In a way similar to the proof in [16, §3], we prove the
assertion, evaluating Z,(S*>x S',L,,,,) in two ways.

We note that for 1edP (K), V, is irreducible and the quantum dimension
dim,V;=0, and that a colored link with a component assigned with the tensor
product of V,, wedP ,(K) and the fundamental representations can be regarded
as a colored link with a component assigned V,,, we dP . (K). Then, by the formula
(3.3) and the unitarity of the S-matrix (S;,) [7], we can compute

Sere Spve S, .
Z,-(Szxsl’L}.uw)= Z Sao< Z _ﬁsgw eome)

£eP + (K) a‘eP+(K)SgO Sao SOO
1
= Z N §u<—6£"’
e'eP +(K) SOO
1
SOONXII

On the other hand, a link L,,,,u L can be regarded as the result of connecting 3 Hopf
links in a way analogous to the proof in [16], and so we can directly compute
from Proposition 3.1 (1)

S).cSueS\:

1
Z(S?*x S, L,,,)=—7) " H
: o) Soozs: Soe

Thus the claim follows from the comparison of these two evaluations.
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