Kanenobu, T. and Kazama, K.
Osaka J. Math.
31 (1994), 907-921

THE PERIPHERAL SUBGROUP AND
THE SECOND HOMOLOGY OF THE GROUP
OF A KNOTTED TORUS IN s*

To the memory of Professor Masahisa Adachi

Taizo KANENOBU* and Ken-icHiIRo KAZAMA

(Received April 8, 1993)

1. Introduction

Let F be a torus embedded in S* and X its exterior. The peripheral
subgroup of F is the image of 7,(0X) by the map i, induced by the
inclusion i: 0X s X. So it is isomorphic to the direct sum of the infinite
cyclic group Z, which is generated by a meridian, and some quotient of
1, (F)=Z®Z. We denote by tF the second summand and call it the
type of F; see [10, §3]. If F is unknotted, that is, F bounds a solid torus
in S* (see [7]), then tF=0. If F is a torus constructed by spinning a
non-trivial classical knot, then tF=Z, cf. [3, 10, 11]. Asano [1] and
Litherland [10] constructed examples with tF=Z@®Z. And Boyle [3]
showed that there are tori of type Z, for n=2,5 and 10 by attaching a
2-dimensional 1-handle to the 5-twist-spun trefoil.

We abbreviate the group 7n,(S*—F) of F as nF. It is known that
the second homology of the group H,(nF) is a quotient of H,(S*—F)~Z®
Z, and several authors gave examples having non-trivial second homology
[2, 4], see also [12]. Litherland [10] showed that H,(nF) is a quotient
of ©F and that any quotient of Z@Z is realizable as H,(nF) for some
torus F of type ZDZ.

For abelian groups 4 and B, we write A<B if 4 is a quotient of
B. It is natural to ask

QuEesTiON. For any abelian groups A and B such that AKB<Z®Z,
does there exist a torus F in S* with Hy,(nF)=~ A and tF=B?

As a partial answer to this question, we show

* The author was partially supported by Grant-in-Aid for Encouragement of Young Scientist (No.
04740053), Ministry of Education, Science and Culture.
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Theorem. Suppose that A and B are abelian groups satisfying
A<B<Z®Z and one of the following conditions:
(1) B is either free or finite cyclic;
(2) The rank of B is one, and A is finite.
Then there exists a torus F in S* with H,(nF)~A and tF=B.

Thus the remaining cases are
(3) The ranks of 4 and B are one except for A=B=~Z, and
(4) B is finite and not cyclic.

The proof of Theorem is divided into four lemmas except for the
above mentioned Litherland’s case (B=Z®Z). In Sect. 2, we give a
torus F with H,(nF)=0 and tF=Z,p>0, which is constructed by
attaching a 1-handle to the 6-twist-spun trefoil (Lemma 1). In Sect. 3,
we define Litherland’s satellite torus, and show that the satellite tori X
(Lemma 2) and ¥’ (Lemma 3) with suitable patterns and companion F
satisfy Hy(nX)=Z, and 1= Z,, and H,(n¥)=Z and 1¥'=Z,®Z where
either ¢(>0) divides p(>0) or p=¢=0. Furthermore, we show that the
satellite torus X' with companion X' satisfies H,(nX)=Z ®Z, and
2= Z ®Z with ¢(>0) dividing s(>0) and >0 (Lemma 4).

We work in piecewise-linear or smooth category. Both B" and D"
denote the unit balls and S" denotes the unit sphere. For 0,1€ B" or
D", 0 is the center and 1 is a boundary point.

All the homology groups are taken with integer coefficient. If G is
a group, H,(G)~ H,(X) where X is a K(G,1). If X is any CW-complex
with 7,(X)= G, H,(G) is isomorphic to the cokernel of the Hurewicz
homomorphism 7,(X) - H,(X).

We use {---|---) for the group presentation, and (G|R) means the
group obtained by adding new relations R to G. For a,be G,[a,b] denotes
the commutator of a and b; [a,b]=aba”'b~1. If A,B<G, then [4,B]
denotes the normal closure of {[a,b]|ac4,be B}. We use {:-:|---) for
the presentation of an additively written abelian group.

Z denotes the infinite cyclic group or the integers. Z, denotes the
cyclic group of order n; especially, Z; means the trivial group 0 and
Zy,=2Z. Z{x)and Z,{(x) denote the cyclic groups with generator x. For
integers m(>0) and n(>0), m|n means that m is a divisor of n.

The authors would like to thank the referee for his valuable comments.

2. Tori obtained by attaching 1-handles to 2-knots

Lemma 1. For any non-negative integer p, there is a torus F such
that H,(nF)=0 and 1F=Z,.
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For p=0, such an example is given by a spun torus; see [3, 10]. In
this section, we construct a torus by attaching a 1-handle to the 6-twist-spun
trefoil. We give a brief summary of what we need. The readers are
referred to Boyle’s paper [3] for the details.

Let K be a 2-knot in S*, and % a 1-handle on K. We denote by
K +h the resulting torus. We can assume that the attaching disks of 4
are very near on K, and that the core of & represents an element g of
n=mn,(S*—K). There exists an element g’ of 7', the commutator subgroup
of m, such that g=t"g’, where t is a meridian of n. We set
T(h)={t"g't "|neZ}, and call it the orbit of h. Conversely, for any
element g'en’, there exists a 1-handle 2 such that g'e T(h), and two
1-handles 4, and A, are equivalent iff T(h,)=T(h,).

From [3, Lemmas 9 and 10], we have

Proposition 1. The fundamental group of the complement of
K+h, n(K+h), is isomorphic to n/(t,T(h)]. The peripheral subgroup of
K+h is generated by t and T(h) in n(K+h), and thus the type of K+h
is Z,, where p is the order of g'€ T(h) in n/[t, T(h)].

For the remainder of this section, K denotes the 6-twist-spun
trefoil. The group 7 is presented by

Cx,y | xyx=yxy, [x%,3]1=1),
where x and y are meridians; see [14]. Letting a=yx~!, this becomes

'=a(x?ax~2),x%x " %=a).

{x,a|xax”
Putting a;=x'ax ', the commutator subgroup 7’ is presented by
{ag,ay,"",as|ap=asay, a;=aoay, -, as=asa, ).
Letting b=a,, we have
a2=a“1b,a3=b—1a_lb,a4=ab_1a_1,a5=ab—1,
from which, we see that n’ becomes

(a,b,c|la,c]=[b,c]=1,c=[a,b]), 6]

which is given in [13, p. 307] as a presentation of the fundamental group
of the 6-fold covering space of S branched over the trefoil knot. It is
easy to see the second commutator subgroup n” of 7 is just the center of
7’ and is the infinite cyclic group generated by ¢. The abelianized group
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n'/n" is the free abelian group of rank 2. For the group (1), see also [8,
p. 60]. The following are easy.

Claim 1. Any element of n' is uniquely expressible in the form a*b'c™ k, 1,
meZ.
Claim 2. In 7', for any k,m,ne Z, the following holds:

(bman)k — ankbmkc ~ mnk(k + 1)/2.

We denote by 4, the 1-handle on K corresponding to wew'.
Claim 3. The orbit of h.m,me Z, has length one:
T(hom)={c"},
and each of the other one has length six:
T(hy)={w,wy, -, ws},

where w=a"b'c™, (k1) #(0,0), and w; = x'wx ", which are written as follows:

w, =a—1bk+lckl+l(l—1)/2+m;

w2=a—k—lbkc(k—l)l+k(k—l)/2+m;

waza—kb—lc—k—l+m; (2)

w4=alb—k—lckl—k+l(l—1)/2+m;

ws =ak+lb—kckl+k(k— 1)/2+m.

Denote G(k,I,m) by the group of K+h,, where w=a"b'c". Then
G(0,0,m)=m=n, and G(k,I,m),(k,])#(0,0), is presented by

{x,a,b,c|xax” ' =b,xbx ' =a"'b,[a,c]=[b,c]=1,c=[a,b]l,w=w; =" =ws).
Thus the commutator subgroup G'(k,l,m) of G(k,I,m) is presented by
{a,b,c|la,c]=[b,c]=1,c=[a,bl,w=w, =+ =ws ).

Claim 4. In G'(k,m),c*=c'=1.

Proof. From w=w,, we get b*=a"*'c"M 71" 12 which commutes

with a. On the other hand, by Claim 2, ab*a ‘b *=aa 16" ~*=c*,
which is trivial. In the same way, w, =w, implies ¢'=1, completing the
proof. []
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Thus (2) are rewritten as follows:
w, =a~ I Dz m,

w, =a—k—lbkck(k— 1)/2 +m;

wy=a " 'c™; (3)
w, = a'b k1= DIz +m,

ws =k FIp Tk Kk D2 +m,

Let C be the subgroup of G'(k,l,m) generated by ¢c. 'Then C is just
the commutator subgroup, and G'(k,/,m)/C is an abelian group of order
k2 +ki+1>. Thus we have

Claim 5. If (k,0)#(0,0), then G'(k,l,m) is a finite group.

It is easy to see that G'(k,0,m) is isomorphic to G'(0,k,m). In
G'(k,0,m), w and (3) are as follows:

w=a"c™,
w, =bkc™;
w2=a_kb"c"("_1)/2+"';
wy=a"k";
w,=b"kc™,
ws = akh k- DI2+m

and so G'(k,0,m) is presented by
{a,b,c|[a,c]=[b,c]=1,c=[a,b],d*=b*=cF*"V12 k=1
whose abelianized group is
{a,b|d*=b"=[a,b]=1 );ZMG-)ZM.

Since it is easy to see that G'(k,0,m) and G'(—k,0,m) are isomorphic, we
shall consider G'(k,0,m) only for k>0 in Claims 6-8 below.

Claim 6. If k is odd, then G'(k,0,m) is presented by
{a,b,c|[a,c]=[b,c]=1,c=[a,b],d =b\=c*=1),
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whose commutator subgroup C is

(el =1);
and thus the order of G'(k,0,m) is k* and that of w=c" is |k/gcd(k,m)|.

Proof. There is a representation ¢ of G(k,0,m) onto the group of the
matrices

1 7 s
t 7,8,t€Z,
001
defined by
110 100 101
o@=] 010}, b)={ 01 1 ],and p(c)={ 0 1 0 |;
001 001 001

cf. [8, Chapter 5, Exercise 4]. Thus the order of ¢ is k. [

Claim 7. If k is even, say 2r, then G'(k,0,m) is presented by
{a,b,c|[a,c]=[b,c]=1,c=[a,b],a* =b*" =", c*=1),
which is an extension of
N={b,c|[b,c]=1,>"=c",c*=1)

by the cyclic group of order 2r, and thus the order of G'(k,0,m) is k* and that
of w=c"*" is 2v/|gcd(2r,m+7)|.

Proof. First, notice that
N=<(b,d|[b,d]=b*"=d"=1)
=Z,9Z,
where ¢=b%d"!. We define an automorphism ¢ of N by
o(b)=bc and a(c)=c,

and thus
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o(b)=b%d"! and a(d)=b*d" .

Since 6% is the identity mapping and o(c")=¢", by [5, Theorem 15.3.1],
there exists an extension G of N by the cyclic group {a|a* =1), and G has
the same presentation as that of G'(k,0,m); cf. [8, Chapter 10, Proposition
1]. This completes the proof. []

REMARK. G'(2,0,m) is the quarternion group of order 8.
Claim 8. The second homology of the group G(k,0,m) is trivial.
Proof. We only prove for k=2r. Let H be the subgroup of =n

generated by a*¢™", b*¢ ™" and ¢*", which we put a,f, and y, respectively.
Then we have:

xox =P, ana” '=a, bab t=0ay~t,  cac l=a,
xfx~t=aTlBy? TN, aBaTi=Py,  bpbT'=, cpe™' =B,
xyx~ =y, aya =y, byb~ 1=y, cye =y,

from which we see that H is a normal closure of {a,fB,y} in =, and
n/H=G(k,0,m). Since m is a 2-knot group, H,(n)=0 [9], and clearly
Hcn'. Thus by [2, Lemma 1.4.1], Hy,(n/H)~ H/[H,n]. In this group
from the above formulas, we have a=f=y=1. This completes the proof.

(]
Combining Claims 6-8, we obtain Lemma 1 and also we have:

Corollary 1. For any positive integer n, there exist infinitely many
1-handles h;,i=1,2,---, on the 6-twise-spun trefoil K such that the group G;
of the knotted torus K+ h; satisfy the following:

(i) the peripheral subgroup of K+h; is ZDZ,;
(i) G; and G; are not isomorphic if i#j; and
(iii) the second homology of G; is trivial.

For the 1-handle h.. whose orbit has length one, we have the
following; cf. [11; 3, Theorem 13].

Corollary 2. The knotted tori K+hm, m=1,2,---, sharing the same
group m are mutually inequivalent.
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Proof. We have remarked before Claim 1 that the center of 7’ is the
infinite cyclic group generated by ¢. Thus any automorphism of 7 sends
¢ to ¢*!. In other words, there is no automorphism of 7 taking ¢™ to ¢*"

if m#n. 'This completes the proof. []

3. Satellite tori

Following [10], we define a satellite torus. Let us regard S as the
union of two standard solid tori: S3=D?x0B?>UdD?x B%. Let k be a
knot contained in a solid torus D?xdB?. We set T=x x S' c D? x0B?
x S'. Let F be a torus in S*, and let ¢: dB? x S! - F be a homeomorph-
ism, and : D* x dB*> x S' - S* its canonical extension, that is, ¥ is an
extension of ¢ by identifying dB? x S' with 0 x dB? x.S! such that the
restriction Y|: 1 x B2 x S! - S*—F induces the zero map on the first
homology. Then Y(T) is called a satellite of F patterned on T and denoted
by X(¢,k, F).

We compute the group nX(¢,k,F) using the van Kampen theorem to
the exterior of F and D?x0B*x S'—T. We set

G=n,(D*x0B*x S'—T)=n,(D? x 0B*—«) x Z{t),
where ¢ is represented by 1x1x.S*, and
A=7,(0D*x0B>x SN)=Z{x)DZ{y)DZ{2),

where x,y and z are represented by 0D*>x1x1,1x0B?*x1 and 1 x1x S*,
respectively. The fundamental groups take 1 x1x 1 as the base points.
Let ¢, : A - nF be the map induced by the restriction /|(6D* x 0B* x S*)
of Y, and i,: 4 — G the map induced by the inclusion i: dD? x 0B? x S' G
D?x 0B?*xS*—T. Then we have

nZ(¢,k, F)={nF+G | ¢ ,(a)=i(a)(ac 4)).

Note that if the type of F is not Z@Z, that is, ¢, is not injective, then
this does not display an amalgamated free product of nF and G.

Let p and g be positive integers with ¢|p or p=g=0. There exists a
torus F with H,(nF)=0 and tF~Z,by Lemma 1. Let ¢ be a homeomor-
phism such that

Z{yy®Z(RP)y  ifp>0;
Z{y> if p=0.

Let x be a knot contained in a solid torus D? x dB? such that the following
conditions are satisfied:

ker ¢ . (A —»nF)={
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(i) K represents g times a generator of H,(D?x 0B?).
(ii) x is trivial in S°.
(i) @D?*x 1 is homotopically essential in S®—k, so the map i, is injective.

If ¢>0, then (iii) follows from (i). An example of such « is given in Figure
1, which indicates a (g,1)-torus knot for ¢>1.

q=0 g=3
Figure 1
Lemma 2. Let X=%(¢,k,F). Then Hy(nX)=Z, and 1X=Z,.
Proof. Let G and A be the groups defined by:
G=(Gli=i(z")=1),
A=A/ker ¢, 2 Z{x)DZ (z),

and let ¢, and 7, be the maps such that the following diagram is
commutative:

where the vertical arrows are canonical projections. We use the same
letters x,y,z and t for their image by the canonical projections. Since
{n,(D*x dB*—k)|i,(y)=1) is the fundamental group of the space obtained
from D?x dB*—«k by attaching a 2-cell along the loop 1xdB?, we see
that G=mn,(S*—x) x {t|tP=1)=Z{uYDZ (t), where p is a meridian of
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7,(S®—x). On the other hand 7, maps x to u%,z to t. Then ¢, and i,
are injective, and so nX is an amalgamated free product of nF and G
along A4.

We use the Mayer-Vietoris exact sequence for the amalgamated free
product of groups; see [10, Lemma 7]. It is easy to see that
(T, —d,): Hi(A) » H(G)®H (nF) is injective, and thus

Hy(A) » Hy(G)®H,y(nF) » Hy(1Z) - 0

is exact. For any group H, K(Hx Z,1) is homotopy equivalent to
K(H,1)xS'. So the Kiinneth formula implies H,(H x Z)~H,(H)®
Hy(Z)®H,(H)®H((Z). Thus both H,(A) and H,(G) split into H,(Z)®
H\(Z,)=Z®Z,, and i, also splits into the product of maps on each factor,
multiplication by g on Z and the identity on Z,. For the homology of the
cyclic group, see for example [6, p. 76]. Since H,(nF)=0,H,(nX) is
isomorphic to the cokernel of 7,, and thus H,(nX)=Z .4, = Z,-

q= =1

q=3

Figure 2
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The peripheral subgroup of X is generated by the images of y,t, and
the longitude of k. Since k is trivial in S3, the image of the longitude
is trivial, and so the type of X is a cyclic subgroup generated by t, which
has order p in G, obtaining t¥=Z, This completes the proof. (]

ReEMARK. A torus F with H,(nF)~tF~Z is already constructed:
There is a ribbon torus F with H,(nF)=~Z by [4, Theorem 1]. However
such a torus must be of type Z by [10, Lemmas 2 and 3].

Let k' be a knot contained in a solid torus D? x 0B? satisfying the
above conditions (i), (iii) and
(i’) ¥’ is non-trivial in S>.
An example of such k' is given in Figure 2, which indicates a (g,2)-torus
knot for ¢>2. See [10, pp. 429-430].

Lemma3. LetY' =%(¢,x,F). ThenH,(n¥)=Z , and X' =Z ®Z.

Proof. The calculation for H,(nX') is the same as that in the proof
of Lemma 2. However, the longitude of k' injects to 7X’, and so X’
has the factor Z. [

For the sake of Lemma 4 below, we observe the generators of H,(nX')
and the peripheral subgroup of £’ in more detail. Let U be a tubular
neighbourhood of k¥' in D?x0B?, and g and A be a meridian and a
preferred longitude of k' in dU. Let G'=mn,(ExS'), where E=D?x
0B%?—intU, and so G'=mn,(E) x Z{z). Leti,: A— G’ be the map induced
by the inclusion i: 0D?>x 0B?*x S'GEx S!. Letting G'={G'|i(y) =i.(=P)
=1), we define 7,: 4 > G’ as 7, in Lemma 2.

By the sphere theorem, E is aspherical. So H,(G')=H,(E x S"),
which has generators a',b’, and ¢ represented by p' xA’, u'xS' and
M xS, If we attach a 2-cell ¢ to E along a curve 1x0B?, then ¢ is
trivialized. Identifying Eue? with D®—«’, and then attaching a 3-cell
&3, we obtain S®—«’. Then 4 is trivialized in H,((S*—«x")x S'). The
fundamental groups of (D> —«") x S* and (S*—«') x S* are both isomorpic
to G'=(G'|i(y)=1). Consider the following commutative diagram:

HZ(E X Sl) = Hz(GI)
l l
Hy(D’~K)xSY) — Hy(G)
| I

Hy(S*—K)xSY) = Hy(G) — H,y(G)
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Each vertical arrow is induced by the inclusion of the space, and each
left horizontal arrow is a natural map from the second homology group
of the space to that of the fundamental group of the space. These are
all surjective. The right horizontal arrow is induced by the natural
projection of the group, which is surjective by [2, Lemma 1.4]; notice
that G'=n,(S*—«')x Z{z) and C—;’=7£1(S3—K')XZP<Z>. So only the
generator of H,(G') corresponding to b survives and generates
H,(G'). Since H,(nF)=0, the image of this generator of H,(G') generates
H,(nX").

As was already seen, the peripheral subgroup of Z' is Z{ ' YD Z{A DD
Z t'>, where 7(2)=t.

Fix three positive integers q,7, and s with ¢|s and let p=7s. Since
qlp, by Lemma 3, the satellite torus ¥'=2%(¢,«’,F) satisfies H,(nX)=Z,
and tX'=Z,®Z. Let k, be the (r,1)-torus knot contained in a solid
torus D? x dB%. Let i,: A — n,((D*x 0B?—x,) x S!) be the map induced
by the inclusion. Let ¢*: 0B?x S! - ¥’ be a homeomorphism such that
¢ : A—>n¥’ maps x,y, and z to p,t, and A, respectively, and thus

ker ¢ = Z{yP).

Lemma 4. Let X*'=%(¢"x,,X"). Then Hy(nZ)=Z D Z,, and 1"
ZDZ.

Proof. We set
A*=A/ker ¢ =Z{x)DZ K y)DZ{2)
and
G'={n,(D*xdB*—k,) x SY) |i,()")=1).

Putting I'={ n,;(D?* x 0B?—x,)|i,(y?)=1), we have G*=T x Z{t). n,(D?
x 0B?—k,) has a presentation {u,u|u uu""=p), where u is a meridian of x,
and u is represented by the core of the solid torus. T is the fundamental
group of the space obtained from D? x dB?—k, by attaching a 2-cell e?
along the loop 1 x 0B? by a map of degree p: ['=mn,((D? x 8BZ—K,)UP e?).
Since uyu is represented by this loop, putting uu=y, we have

I={u,plv'pu™"=p, up)P=1)

r

=Cu,y|u'yu""=y,y7=1).

Thus H(T)=Z{uy®Z,().
We define the injections ¢* : A* > nX’ and 7,: A*— G in the same
way. Then nX* is an amalgamated free product of 7¥’ and G* along A4*.
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Since (7, —¢%): H{(4*) » H (G)@H,(zX') is injective, we have an

exact sequence:
H,(A") = Hy(G)Y®H,(nX") —» Hy(nX") — 0.

Now H,(A)=H,(0D*x 0B*x S')={a,b,c|), where a,b, and ¢ are
represented by dD*x B2 x1,0D*>x1x S! and 1 x0B%x S!, respectively.

Let a'b',and ¢* be the images of a,b, and ¢ by the canonical map
H,(A) - H,(A"). By the Kinneth formula, we have

Hy(A)=H,(Z®Z,DZ)
=H,(Z®Z,)QH(Z)DH (ZDZ,)QH,(Z)
=L a" b, ¢’ | pa’=pc’=0),

where 4" and ¢* correspond to x and y, the generators of H(Z®Z)).
We first determine the map 17,: H,(4") » H,(G"). As we will see in
Claim 9, H,(I')=Z,, and so we have

Hy(G)=H,(I' x Z{t))
=H2(F)®H0(Z)®H1(F)®H1(Z)
=<< a, ﬁ’y |P0‘=P)’=0>>,

where o is the generator of H,(I') and f, y correspond to u,y, the
generators of H,(I'). Let 7; and 7, be the maps which are the restrictions
of 7, to the first and the second factors of H,(A4"), respectively. Consider
the following commutative diagram:

H,(dD* x 0B*U,e*) — H,((D*x 0B*—k,)u,€?)
l !
H,(Z®Z),) - H,(')

Each vertiacal arrow is a natural map, which is surjective. The top
horizontal arrow is induced by the inclusion, and is surjective. Therefore
iy is surjective. The first factors are both isomorphic to Z,, and so i,
is an isomorphism. Thus we may write 7,(a*)=a.

For the second factor, 7, maps x to u" and y to y. So we have
1,(b)=7f and i,(c") =Y.

Next we must determine the map ¢*, : H,(A*) » Hy(nX'). This maps
a',b* and ¢* to b',a’, and ¢/, respectively, the generators of H,(E x S'). As
was already observed, only & survives and generates H,(nX’), and therefore
we have ¢*.(a*)=b" and @*, (b")=¢" (c")=0.
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Hence we obtain
H,(nZ")={ a,B,y,b" | pa=py=0,rf=0,y=0,a =05, gb' =0)
={o,Blgr=rf=0}
~Z,®Z,

The peripheral subgroup of X* is generated by u and A, a meridian
and a longitude of k,, and ¢t. By the choice of ¢*, ¢ injects to nX*. We
can choose A=xy" and x=y" in n,(D*x0B*—k,), where x and y are
represented by the loops 0D*x 1 and 1 x dB?, respectively. Thus 1Z* is
generated by »" and ¢. The order of y is p=rs, and so that of y" is
s. This completes the proof. []

Claim 9. H,N=2Z,

Proof. Let
Gy =Z(0dDZ, (v,
G,=2Z{u),
H=Z(v),

and ¢;: H—- G;, i=1,2, be the injections defined by ¢,(v)=v and
@,(v)=u". Then

I={v,ylvyv~ ' =y,yP=1,0=u")
={G*G,|v=u")

is an amalgamated free product of G; and G, along H. Since
(@10 — @22 Hy(H) > H (G))®H (G,) is injective and H,(H)=H,(G,)=
0, using the Mayer-Vietoris exact sequence, we have H,(I')~ H,(G,). The
result follows from the Kiinneth formula. [
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