ON SOME NEW CLASSES OF SEMIFIELD PLANES

M. CORDERO* and R. FIGUEROA†

(Received October 21, 1991)

1. Introduction

In [9] Hiramine, Matsumoto and Oyama introduced a construction method that associates with any translation plane of order q^2 (q odd) and kernel $K \cong GF(q)$, translation planes of order q^4 and kernel $K' \cong GF(q^2)$. In this article we study the class of semifield planes of order q^4 obtained from this method and show that with a few exceptions, the members of this class are new semi-field planes. This class includes some recently constructed classes of planes; namely the class presented by Boerner-Lantz in [4] and the one by Cordero in [6].

2. Notation and preliminary results

Let $S=(S,+,\cdot)$ be a finite semifield which is not a field. We denote by $\pi(S)$ the semifield plane coordinatized by S with respect to the points $(0), (\infty), (0,0)$ and (1,1). The dual translation plane of $\pi(S)$ is also a semifield plane and it is coordinatized by the semifield $S^*=(S,+,*)$, where $a*b=b\cdot a$. Let q be an odd prime power, $\mathcal{F}=GF(q^2)$ and $x^\tau=\bar{x}=x^q$ for $x\in\mathcal{F}$. Let π be a semifield plane obtained by the construction method of Hiramine, Matsumoto and Oyama. Then π admits a matrix spread set of the form

$$\mathcal{M} = \left\{ M(u, v) = \begin{bmatrix} u & v \\ f(v) & \overline{u} \end{bmatrix} : u, v \in \mathcal{F} \right\}$$

where $f: \mathcal{F} \rightarrow \mathcal{F}$ is an additive function. π is coordinatized by the semifield $\mathcal{P} = \mathcal{P}_f = (\mathcal{P}, +, \cdot)$, where $\mathcal{P} = \mathcal{F} \times \mathcal{F}$ and

$$(x, y) \cdot (u, v) = (x, y) \begin{bmatrix} u & v \\ f(v) & \overline{u} \end{bmatrix}.$$

We shall denote this plane by π_f . We define the following classes:

^{*}Research partially supported by NSF Grant No. DMS-9107372

[†] Research partially supported by NSF Grant No. RII-9014056, EPSCoR of Puerto Rico Grant, and the ARO Grant for Cornell MSI.

 $\Omega(\mathcal{F}) = \{f : \mathcal{F} \rightarrow \mathcal{F} : f \text{ is an additive function and } \mathcal{P}_f \text{ is a proper semifield} \}.$

 $\Lambda(\mathcal{F}) = \{ f \in \Omega(\mathcal{F}) : \text{ either } f(v) = av \text{ for some } a \in \mathcal{F} - GF(q), \text{ or } f(v) = av^{\theta} \text{ for some nonsquare } a \in \mathcal{F} \text{ and } \theta \in \operatorname{Aut}(\mathcal{F}), \theta \neq \tau \}.$

$$\Pi(\mathcal{F}) = \{ \pi_f : f \in \Omega(\mathcal{F}) \}.$$

$$\Sigma(\mathcal{F}) = \{\mathcal{P}_f : \pi(\mathcal{P}_f) \in \Pi(\mathcal{F})\}.$$

Notice that $\Pi(\mathcal{F})$ is the class of semifield planes of order q^4 which are obtained from the construction method of Hiramine, Matsumoto and Oyama applied to translation planes of order q^2 .

Among the known classes of proper finite semifields we have the following:

- (i) Cohen and Ganley commutative semifields [5]
- (ii) Kantor semifields [13]
- (iii) Knuth semifields of characteristic 2 [14]
- (iv) Twisted fields [1] and Generalized twisted fields [2]
- (v) Sandler semifields [15]
- (vi) Knuth four-type semifields [14], these include the Hughes-Kleinfeld semifields [10]
- (vii) Generalized Dickson semifields [8]
- (viii) Boerner-Lantz semifields [4]
- (ix) p-primitive type IV and type V semifields [6]

The semifield planes coordinatized by the semifields on class (viii) belong to the class $\Pi(\mathcal{F})$, see [12], Theorem 4.3, and those coordinatized by semifields on class (ix) belong to $\Pi(F)$ where $F = GF(p^2)$ and p is a prime number, see [6]. The two main results on this paper state that the only known semifields (from classes (i) to (vii)) which belong to $\Sigma(\mathcal{F})$ are the Knuth semifields which are of all four types and the Generalized Dickson semifields.

We now state some properties of \mathcal{P}_f and π_f .

Lemma 1. Let $f \in \Omega(\mathcal{F})$ and $\mathcal{P} = \mathcal{P}_f$. The nuclei of \mathcal{P} are:

- (i) $\mathcal{I}_{l}(\mathcal{Q}) = \{(x, 0) : x \in \mathcal{T}\},$
- (ii) $\mathcal{H}_m(\mathcal{P}) = \mathcal{H}_r(\mathcal{P}) = \{(x, 0) : f(xy) = \overline{x}f(y), \text{ for any } y \in \mathcal{F}\}$

Proof. For a=(x, y), b=(u, v) and c=(r, s) in \mathcal{P} the condition $(a \cdot b) \cdot c=a \cdot (b \cdot c)$ is equivalent to the two equations

$$y(rf(v)+\overline{u}f(s))=yf(us+v\overline{r})$$
 (2.1)

and

$$ys f(v) = yv \overline{f(s)}. (2.2)$$

Clearly, from 2.1 and 2.2, $(x, 0) \in \mathcal{D}_l(\mathcal{P})$ for $x \in \mathcal{F}$ and since \mathcal{P} is not a field, (i) follows.

Assume now that $(u, v) \in \mathcal{I}_m(\mathcal{L})$. If $v \neq 0$, then from 2.2 with y=1 we

have that $f(s) = \frac{sf(v)}{v}$, for any $s \in \mathcal{F}$, which implies that $c = \frac{f(v)}{v} \in GF(q)$ and f(s)

 $=c\bar{s}$. This implies that \mathcal{P} is a field, which is not the case. Thus, v=0 and from 2.1 we get that $\mathcal{N}_m(\mathcal{P}) = \{(u, 0): f(us) = \overline{u}f(s), \text{ for any } s \in \mathcal{F}\}$.

Let $(r, s) \in \mathcal{N}_r(\mathcal{P})$. Then, as above, s=0 and from 2.1 we get that $rf(v) = f(v\overline{r})$, for any $v \in \mathcal{F}$. By taking $x = \overline{r}$ (so $\overline{x} = r$), we have $\overline{x}f(v) = f(vx)$, for any $v \in \mathcal{F}$. This completes the proof of (ii).

The following lemma is a consequence of the previous one.

Lemma 2. Let $f \in \Omega(\mathcal{F})$. Then f(v) = av for some $a \in \mathcal{F} - GF(q)$ if and only if $\mathcal{N}_{l}(\mathcal{P}) = \mathcal{N}_{m}(\mathcal{P}) = \mathcal{N}_{r}(\mathcal{P}) \cong \mathcal{F}$.

3. On the class $\Pi(\mathcal{F})$

Let $f \in \Omega(\mathcal{F})$ and let π_f^* denote the dual translation plane of π_f with respect to (∞) . We begin this section by showing that the semifields on classes (i)-(v) above do not coordinatize planes in $\Pi(\mathcal{F})$.

Lemma 3. Let $f \in \Omega(\mathcal{F})$ and let S be a semifield belonging to any one of the classes (i)-(v) above. Then neither π_f nor π_f^* is isomorphic to $\pi(S)$.

Proof. If $\mathcal{P}(\mathcal{P}^*)$ is a semifield which coordinatizes $\pi_f(\pi_f^*)$, then $\mathcal{P}(\mathcal{P}^*)$ has characteristic ≈ 2 . On the other hand, if S belongs to classes (ii) or (iii), then the characteristic of S is 2 and therefore S is not isotopic to $\mathcal{P}(\text{or }\mathcal{P}^*)$. If S belongs to class (i), then S is commutative and by using Exercise 8.10 in [11] we conclude that $\mathcal{P}(\text{or }\mathcal{P}^*)$ is not isotopic to S. Thus in these cases $\pi_f \approx \pi(S) \approx \pi_f^*$. In [3] it is shown that a generalized twisted field plane of order p^n , p an odd prime, $n \geq 3$, admits an autotopism g whose order is a p-primitive divisor of p^n-1 , i.e. $|g| | p^n-1$ but $|g| \not p^i-1$ for $1 \leq i \leq n-1$. From Propositions 6.3 and 6.4 in [9] it follows that if g is an autotopism of π_f then $|g| | 4(q^2-1)$. Therefore if S is a generalized twisted field plane then $\pi_f \approx \pi(S) \approx \pi_f^*$. (Recall that every twisted field palne is a generalized twisted field plane, [2].)

Assume now that S belongs to class (v) above. Then the dimension of S over $\mathcal{H}_l(S)$ is ≥ 4 and $\mathcal{H}_m(S) = \mathcal{H}_r(S)$ ([15], Theorem 1). Since \mathcal{L} is a 2-dimensional vector space over $\mathcal{H}_l(\mathcal{L})$, we have that $\pi_f \cong \pi(S)$. If $\pi_f^* \cong \pi(S)$, then by Theorem 8.2 in [11] we would have $\mathcal{L} \cong \mathcal{H}_l(\mathcal{L}) \cong \mathcal{H}_r(S) = \mathcal{H}_m(S) \cong \mathcal{H}_m(\mathcal{L}) = \mathcal{H}_r(\mathcal{L}) \cong \mathcal{H}_l(S)$. From here we conclude that S is a 2-dimensional vector space over $\mathcal{H}_l(S)$ which is a contradiction. Thus $\pi_f^* \cong \pi(S)$.

Next we deal with the Knuth four-type semifields. These semifields were defined in [14]. The semifields of type II, III and IV are characterized by their nuclei; type II: $\mathcal{N}_r = \mathcal{N}_m \cong \mathcal{F}$; type III: $\mathcal{N}_l = \mathcal{N}_m \cong \mathcal{F}$ and type IV: $\mathcal{N}_l = \mathcal{N}_r \cong \mathcal{F}$. A semifield of type I has multiplication given by:

$$(x,y)\cdot(u,v) = (xu+y^{\sigma^{-2}}v^{\sigma}h, xv+yu^{\sigma}+y^{\sigma^{-1}}v^{\sigma}g)$$
(3.3)

where (x, y), $(u, v) \in \mathcal{F} \times \mathcal{F}$, $1 \neq \sigma \in \text{Aut}(\mathcal{F})$ and h and g are elements in \mathcal{F} such that the polynomial $x^{\sigma+1} + gx - h$ is irreducible in \mathcal{F} . The next lemma gives the condition under which a semifield plane coordinatized by a Knuth semifield plane belongs to the class $\Pi(\mathcal{F})$.

Lemma 4. Let $f \in \Omega(\mathcal{F})$ and let K be a Knuth four-type semifield. Then π_f or π_f^* is isomorphic to $\pi(K)$ if and only if f(v) = av for some $a \in \mathcal{F} - GF(q)$.

Proof. Assume that $f(v)=a\overline{v}$. Then by Lemma 2 and Corollary 7.4.2 in [14] we have that \mathcal{L}_f is of all four types I, II, III, IV where $\sigma^2=1$ and g=0.

Let K be a Knuth four-type semifield. If K is of type II, III, or IV and if $\pi_f \cong \pi(K)$ or $\pi_f^* \cong \pi(K)$ then by ([11], Theorem 8.2) and Lemmas 1 and 2 it follows that f(v) = av. Suppose that K is of type I. If g = 0 and $\sigma^2 = 1$ then from 3.3 we get that $K = \mathcal{P}_{f_1}$ where $f_1(v) = hv^{\sigma} = hv$. Hence, by Lemma 2, $\mathcal{F} \cong \mathcal{I}_l(K) = \mathcal{I}_m(K) = \mathcal{I}_r(K)$. Now if $\pi_f \cong \pi(K)$ or $\pi_f^* \cong \pi(K)$, then by ([11], Theorem 8.2) and Lemma 2 we have that f(v) = av. We now show that the case when g = 0 and $\sigma^2 \cong 1$ and the case when $g \cong 0$ are not possible.

Let $\mathcal{P}=\mathcal{P}_f$ and suppose that $\pi_f \simeq \pi(K)$. Then $\mathcal{F}\simeq \mathcal{H}_l(\mathcal{P})\simeq \mathcal{H}_l(K)$. Let $(x,y)\in \mathcal{H}_l(K)$. The condition $((x,y)\cdot (0,1))\cdot (0,s)=(x,y)\cdot ((0,1)\cdot (0,s))$, for all s is \mathcal{F} is equivalent to

$$(x+y^{\sigma^{-1}}g)^{\sigma^{-2}}s^{\sigma}h = xs^{\sigma}h + y^{\sigma^{-2}}s^{\sigma^{2}}g^{\sigma}h,$$
 (3.4)

and

$$y^{\sigma^{-2}}hs + (x + y^{\sigma^{-1}}g)^{\sigma^{-1}}s^{\sigma}g = xs^{\sigma}g + ys^{\sigma^{2}}h^{\sigma} + y^{\sigma^{-1}}s^{\sigma^{2}}g^{\sigma}g$$
, (3.5)

for any s in \mathcal{F} . If g=0 and $\sigma^2 = 1 = \sigma$, then 3.5 implies that y=0 and from 3.4 we get that $x^{\sigma^{-2}} = x$. Therefore $\mathcal{F} \cong \mathcal{P}_l(K) \subset \{(x,0) \ x \in \mathcal{F} \ \text{and} \ x^{\sigma^2} = x\}$ which implies that $\sigma^2 = 1$, but $\sigma^2 = 1$. If g = 0 then from 3.4 we get that y=0, and from 3.5 we have that $x^{\sigma^{-1}} s^{\sigma} g = x s^{\sigma} g$. Hence $\mathcal{F} \cong \mathcal{P}_l(K) \subset \{(x,0) : x \in \mathcal{F} \ \text{and} \ x^{\sigma} = x\}$ and therefore $\sigma = 1$, which is a contradiction. A similar argument shows that $\pi_f^* \cong \pi(K)$ is not possible.

The last class to consider is the class of generalized Dickson semifields. Let $\pi(\mathcal{D})$ be a generalized Dickson semifield plane of order q^4 which is coordinatized by the semifield $\mathcal{D}=(\mathcal{D},+,\cdot)$ where $\mathcal{D}=\mathcal{F}\times\mathcal{F}$ and the product is given by (cf [8])

$$(x,y)\cdot(r,s)=(xr+y^{\omega}s^{\beta}\omega,\,xs+yr^{\sigma}) \qquad (3.6)$$

where α, β, σ are arbitrary automorphisms of \mathcal{F} but not all the identity, and ω is a nonsquare in \mathcal{F} . If $(u, v) \cdot ((x, y) \cdot (r, s)) = ((u, v) \cdot (x, y)) \cdot (r, s)$ then the following two conditions must be satisfied:

$$uy^{\alpha}s^{\beta}\omega + v^{\alpha}(xs + yr^{\sigma})^{\beta}\omega = v^{\alpha}y^{\beta}r\omega + (uy + vx^{\sigma})^{\alpha}s^{\beta}\omega, \qquad (3.7)$$

and

$$v \gamma^{\alpha \sigma} s^{\beta \sigma} \omega^{\sigma} = v^{\alpha} \gamma^{\beta} s \omega \tag{3.8}$$

From now on \mathcal{D} will denote a generalized Dickson semifield plane of order q^4 with multiplication given by (3.6).

Under certain conditions a generalized Dickson semifield is a Knuth fourtype semifield. In the next lemma we give the necessary conditions on the automorphisms α, β, σ under which \mathcal{D} is a Knuth four-type semifield.

Lemma 5. If any of the following conditions are satisfied:

- (i) $\beta = \alpha \sigma$ and $\beta \sigma = 1$, or
- (ii) $\alpha = 1$ and $\sigma = \beta$, or
- (iii) $\alpha = 1$ and $\sigma \beta = 1$

then \mathcal{D} is a Knuth four-type semifield.

Proof. Assume that (i) is true. Then 3.7 and 3.8 become, respectively,

$$uy^{\alpha}s^{\beta}\omega = u^{\alpha}y^{\alpha}s^{\beta}\omega , \qquad (3.9)$$

and,

$$vy^{\beta}s\omega^{\sigma} = v^{\alpha}y^{\beta}s\omega \tag{3.10}$$

From these equations we get that $(x,0) \in \mathcal{I}_m(\mathcal{D})$ for any $x \in \mathcal{F}$ and $(r,0) \in \mathcal{I}_r(\mathcal{D})$ for any $r \in \mathcal{F}$. Since \mathcal{D} is not a field we have that $\mathcal{I}_m(\mathcal{D}) = \mathcal{I}_r(\mathcal{D}) \cong \mathcal{F}$ and \mathcal{D} is a Knuth semifield of type II. In a similar way if (ii) or (iii) occur then \mathcal{D} is a Knuth semifield of type III or IV, respectively.

In the following lemma the nuclei of \mathcal{D} are given.

Lemma 6. Assume that \mathcal{D} is not a Knuth four-type semifield. Then the nuclei of \mathcal{D} are:

- (i) $\mathcal{I}_{l}(\mathcal{Q}) = \{(u, 0) \in \mathcal{Q} : u^{\alpha} = u\},$
- (ii) $\mathcal{H}_m(\mathcal{Q}) = \{(x, 0) \in \mathcal{Q} : x^{\beta} = x^{\sigma \alpha}\}, \text{ and }$
- (iii) $\mathcal{I}_r(\mathcal{Q}) = \{(r, 0) \in \mathcal{Q}: r^{\sigma\beta} = r\}$.

Proof. Let $(u, v) \in \mathcal{H}_l(\mathcal{D})$ and suppose that $v \neq 0$. Then from 3.8 we get that $v\omega^{\sigma} = v^{\alpha}\omega$, $y^{\alpha\sigma} = y^{\beta}$ and $s^{\beta\sigma} = s$, for all $y, s \in \mathcal{F}$. Hence, $\alpha\sigma = \beta$ and $\beta\sigma = 1$, which is a contradiction by Lemma 5 (i). Thus, v = 0 and from 3.8 we have that $uy^{\alpha}s^{\beta}\omega = u^{\alpha}y^{\alpha}s^{\beta}\omega$ for all $y, s \in \mathcal{F}$; from this (i) follows. (ii) and (iii) are proved similarly.

In the next two lemmas the question of when a generalized Dickson semi-field plane belongs to the class $\Pi(\mathcal{F})$ is answered.

Lemma 7. Let $f \in \Omega(\mathcal{F})$ and $\mathcal{P} = \mathcal{P}_f$. Assume that \mathcal{U} is a non-

desarguesian semifield plane that admits a matrix spread set of the form

$$\mathcal{M}_1 = \left\{ Q(x, y) = \begin{pmatrix} x & y \\ k y^{\theta} & x^{\theta} \end{pmatrix} : x, y \in \mathcal{F} \right\}$$

where θ , φ are automorphisms of \mathcal{F} and k is a nonsquare in \mathcal{F} . Then, if $\pi_f \cong \mathcal{U}$, one of the following must be true:

- (i) $\theta = \varphi = \tau$, where $x^{\tau} = \overline{x}$, and $f(v) = c\overline{v}$ for some $c \in \mathcal{F} GF(q)$.
- (ii) $f(v)=cv^{\psi}$, for some $\psi \in Aut(\mathcal{F})$ and some nonsquare c in \mathcal{F} .

Proof. Let $\mathcal{X} = \mathcal{F} \times \mathcal{F}$. Then $\mathcal{M}^* = \{(X, XM(u, v)) : M(u, v) \in \mathcal{M}\} \cup \{(0, X)\}$ is a spread for π_f in $\mathcal{X} \oplus \mathcal{X}$. Let \mathcal{M}_1^* be the spread for \mathcal{U} in $\mathcal{X} \oplus \mathcal{X}$ associated with \mathcal{M}_1 . Since $\pi_f \cong \mathcal{U}$, there is a semilinear transformation T from the \mathcal{F} -vector space $\mathcal{X} \oplus \mathcal{X}$ into itself that maps \mathcal{M}^* onto \mathcal{M}_1^* . We may assume that $(X, 0)^T = (X, 0)$ and $(0, X)^T = (0, X)$, so the linear part of T has the form $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$, for some $A, B \in GL(2, q^2)$. Let δ be the automorphism of \mathcal{F} associated with T. Since T maps $(X, XM(u, v)) \in \mathcal{M}^*$ onto $(X, XA^{-1}M(u, v)^{\delta}B) \in \mathcal{M}_1^*$, where $(a_{ij})^{\delta} = (a_{ij}^{\delta})$, we have that for each $M(u, v) \in \mathcal{M}$ there is a unique $Q(x, y) \in \mathcal{M}_1$ such that

$$A^{-1}M(u,v)^{\delta}B = Q(x,y). \tag{3.11}$$

Let $Q(a, b) = A^{-1}M(1, 0)^{\delta}B = A^{-1}B$, $u \in GF(q) - \{0\}$ and $u' = u^{\delta}$. Then $A^{-1}M(u, 0)^{\delta}B = u'A^{-1}B = u'Q(a, b) \in \mathcal{M}_1$, for all $u' \in GF(q) - \{0\}$. Thus, if $a \neq 0$, then $u' = (u')^{\varphi}$, which implies that $\varphi \in \{1, \tau\}$. Similarly, if $b \neq 1$, then $\theta \in \{1, \tau\}$. Since $A^{-1} = Q(a, b)B^{-1}$, 3.11 becomes

$$B^{-1}M(u,v)^{8}B = Q(a,b)^{-1}Q(x,y).$$
 (3.12)

Let $\Delta = \det Q(a, b)^{-1}$ and $\operatorname{tr}(N) = \operatorname{trace}$ of a matrix N. Since $\operatorname{tr}(B^{-1}M(u, v)^{\delta}B) = (u+\overline{u})^{\delta} \in GF(q)$, from 3.12 we have that $\operatorname{tr}(Q(a, b)^{-1}Q(x, 0)) = \Delta(a^{\varphi}x + ax^{\varphi}) \in GF(q)$, for all $x \in \mathcal{F}$. If $\varphi = 1$, then we have that $2ax\Delta \in GF(q)$, for any $x \in \mathcal{F}$, which implies that a=0. Therefore if $a \neq 0$ then $\varphi = \tau$. Likewise, considering $Q(0, \gamma)$ we get that if $b \neq 0$ then $\theta = \tau$.

First we assume that $a \neq 0$ and $b \neq 0$. Then $\theta = \varphi = \tau$ and $\mathcal{U} = \pi(\mathcal{L}_g)$, where $g(y) = k\bar{y}$. By Lemma 2 the three nuclei of \mathcal{L}_g are equal and isomorphic to \mathcal{L}_g . Now (i) follows from Lemma 2. Assume that a = 0 and $b \neq 0$. Then $\theta = \tau$ and we may assume that $\varphi \neq \tau$. Letting $r = (yb^{-1})^{\tau}$, $s = x^{\varphi}(kb^{\tau})$, $g(s) = ds^{\varphi^{-1}}$ where $d = (k\bar{b})^{\varphi^{-1}}b^{-1}$ is a nonsquare in \mathcal{L}_g and $Q_1(r,s) = \begin{pmatrix} r & s \\ g(s) & \bar{r} \end{pmatrix}$ we have that $Q(0,b)^{-1}Q(x,y) = Q_1(r,s)$. Now 3.12 becomes

$$M(u, v)^{\delta} = BO_1(r, s)B^{-1}$$
. (3.13)

Let $B=\begin{pmatrix}b_1&b_2\\b_3&b_4\end{pmatrix}$ and $e=\det B$. Then $u^{\delta}=e^{-1}(b_1b_4r+b_4b_2g(s)-b_1b_3s-b_2b_3r)$ and $u^{\delta}=e^{-1}(-b_2b_3r-b_2b_4g(s)+b_1b_3s+b_1b_4r)$. Since $u^{\delta}=u^{\delta}$, with s=0 we get $\overline{b_1b_4e^{-1}}=b_1b_4e^{-1}$ and $\overline{b_2b_3e^{-1}}=b_2b_3e^{-1}$. Thus $b_1b_4e^{-1}$ and $b_2b_3e^{-1}$ are in GF(q). Taking r=0 we get $\overline{b_4b_2e^{-1}ds^{\varphi^{-1}}}-(\overline{b_1b_3e^{-1}})\bar{s}=b_1b_3e^{-1}s-b_2b_4e^{-1}ds^{\varphi^{-1}}$. If $\varphi^{-1}=1$ (also $\varphi^{-1}=1$), then $b_1b_3=0$ and $b_2b_4=0$. If $\varphi^{-1}=1$ then $b_1b_3=b_2b_4d$ and $(b_1b_3e^{-1})^2=zd$ where $z=b_1b_2b_3b_4e^{-2}$. Since $z\in GF(q)$, z is a square in $GF(q^2)$, then since d is a nonsquare in $GF(q^2)$ we must have $b_1b_3=0$ and $b_3b_4=0$. So for any $\varphi=\tau$ we conclude that $b_1b_3=0$ and $b_2b_4=0$. Since e=0, then $b_2=b_3=0$ or $b_1=b_4=0$. If $b_2=b_3=0$, then from 3.13 we have $v^{\delta}=b_1b_4^{-1}s$ abd $f(v)^{\delta}=e^{-1}b_4^2g(s)$. From these equations it follows that $f(v)=cv^{\varphi^{-1}}$ where c is a nonsquare in \mathcal{F} . If $b_1=b_4=0$, then a similar argument shows that $f(v)=cv^{\varphi}$ where again c is a nonsquare in \mathcal{F} . Thus in either case (ii) follows. The case when a=0 and b=0 is handled similarly.

Lemma 8. Let $f \in \Omega(\mathcal{F})$ and assume that \mathcal{D} is not a Knuth four-type semifield. If either π_f or π_f^* is isomorphic to $\pi(\mathcal{D})$, then $f(v)=cv^{\psi}$ for some nonsquare c in \mathcal{F} and $\psi \in \operatorname{Aut}(\mathcal{F})$, $\psi = \tau$.

Proof. Assume that $\pi_f \cong \pi(\mathcal{D})$. Then from Lemmas 1 (i) and 6 (i) we have that $\mathcal{F} \cong \mathcal{I}_l(\mathcal{D}_f) \cong \mathcal{I}_l(\mathcal{D})$; this implies that $u^{\alpha} = u$ for all $u \in \mathcal{F}$. Hence $\alpha = 1$ and 3.6 becomes $(x, y) \cdot (r, s) = (x, y) \binom{r}{s} = x^{\sigma}$. Let $Q(r, s) = \binom{r}{s} = x^{\sigma}$. Then $\{Q(r, s) : r, s \in \mathcal{F}\}$ is a matrix spread set for $\pi(\mathcal{D})$. Suppose now that $\pi_f^* \cong \pi(\mathcal{D})$. Then $\pi_f \cong \pi(\mathcal{D}^*)$ and $\mathcal{F} \cong \mathcal{I}_l(\mathcal{D}_f) \cong \mathcal{I}_l(\mathcal{D}^*)$, so \mathcal{D}^* is a 2-dimensional vector space over $\mathcal{I}_l(\mathcal{D}^*)$. Since $\mathcal{I}_l(\mathcal{D}^*) = \mathcal{I}_r(\mathcal{D})$, from Lemma 6 (iii) we get that $\sigma \beta = 1$. Let $z \in \mathcal{D}^*$ and let (u, v)' be the coordinates of z with respect to the basis (0, 1), (1, 0) of \mathcal{D}^* over $\mathcal{I}_l(\mathcal{D}^*)$, i.e. (u, v)' = (u, 0) *(1, 0) + (v, 0) *(0, 1) where * is the product in \mathcal{D}^* . Then $(u, v)' = (u, v^{\sigma})$. Now $(r, s)' * (x, y)' = (r, s^{\sigma}) * (x, y^{\sigma}) = (x, y^{\sigma}) * (r, s^{\sigma}) = (xr + y^{\alpha\sigma} s^{\sigma\beta} \omega, xs^{\sigma} + y^{\sigma} r^{\sigma}) = (xr + y^{\alpha\sigma} s\omega, x^{\sigma^{-1}} s + yr)'$. Letting $Q'(x, y) = \binom{x}{y^{\alpha\sigma} \omega} \frac{y}{x^{\sigma^{-1}}}$ we have that (r, s)' * (x, y)' = (r, s) Q'(x, y). Hence, $\{Q'(x, y) : x, y \in \mathcal{F}\}$ is a matrix spread set for $\pi(\mathcal{D}^*)$. Therefore in either case $((\pi_f \cong \pi(\mathcal{D}) \text{ or } \pi_f^* \cong \pi(\mathcal{D}^*)$ we may apply Lemma 7. Since \mathcal{D} (and therefore \mathcal{D}^*) is not a Knuth four-type semifield, by Lemmas 2 and 4, case (i) of Lemma 7 does not occur; therefore the proof is complete.

We can now state our main results; their proofs follow from the lemmas.

Theorem 3.1. Let $f \in \Omega(\mathcal{F}) - \Lambda(\mathcal{F})$. Then neither π_f nor π_f^* is isomorphic to a semifield plane coordinatized by a semifield belonging to any one of the classes (i)-(vii).

Theorem 3.2. Let $f \in \Lambda(\mathcal{F})$. Then

- (i) f(v)=av for some $a \in \mathcal{F}-GF(q)$ if and only if π_f or π_f^* is isomorphic to a semifield plane coordinatized by a Knuth four-type semifield.
- (ii) $f(v)=av^{\theta}$ for some nonsquare $a \in \mathcal{F}$ and $\theta \in \operatorname{Aut}(\mathcal{F})$, $\theta = \tau$ if and only if π_f or π_f^* is isomorphic to a semifield plane coordinatized by a generalized Dickson semifield.

References

- [1] A.A. Albert: Finite non-commutative division algebras, Proc. Amer. Math. Soc. 9 (1958), 928-932.
- [2] A.A. Albert: Generalized twisted field planes, Pacific J. Math. 11 (1961), 1-8.
- [3] A.A. Albert: Isotopy for generalized twisted fields, Anais da Adad. Bras. Ciencias 33 (1961), 265-275.
- [4] V. Boerner-Lantz: A class of semifields of order q4, J. Geometry 27 (1986) 11-118.
- [5] S.D. Cohen and M.J. Ganley: Commutative semifields, two dimensional over their middle nuclei, J. Algebra 75 (1982), 373-385.
- [6] M. Cordero: Semifield planes of order p⁴ that admit a p-primitive Baer collineation, Osaka J. Math. 28 (1991), 305-321.
- [7] M. Cordero and R. Figueroa: On semifield planes of order q^n that admit a collineation whose order is a p-primitive divisor of q^n-1 , submitted.
- [8] P. Dembowski: Finite Geometries, Springer, New York, 1968.
- [9] Y. Hiramine, M. Matsumoto and T. Oyama: On some extension of 1 spread sets, Osaka J. Math. 24 (1987), 123-137.
- [10] D.R. Hughes and E. Kleinfeld: Seminuclear extensions of galois fields, Amer. J. Math. 82 (1960), 315-318.
- [11] D.R. Hughes and F.C. Piper: Projective planes, Springer, New York, 1973.
- [12] N.L. Johnson: Sequences of derivable translation planes, Osaka J. Math. 25 (1988), 519-530.
- [13] W.M. Kantor: Expanded, sliced and spread sets, in Finite Geometries (N.L. Johnson, M.J. Kallaher and C.T. Long, eds), Marcel Dekker, New York, 1983, 251-261.
- [14] D.E. Knuth: Finite semifields and projective planes, J. Algebra 2 (1965), 182-217.
- [15] R. Sandler: Autotopism groups of some finite non-associative algebras, Amer. J. Math. 84 (1962), 239-264.

M. Cordero
Department of Mathematics
Texas Tech University
Lubbock, Texas 79409

R. Figueroa
Department of Mathematics
University of Puerto Rico
Rio Piedras, Puerto Rico 00931