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1. Introduction

Let X be a locally compact separable metric space with an extra point Δ
such that Xά=X U {Δ} is a one point compactification and let m be a positive
Radon measure with supp [m]=X. When X is compact, Δ is adjoined as an
isolated point. For a subset B of X, we denote BA~B\J {Δ}. We consider a
C0-regular Dirichlet space (<?, £F) on L2(X, m) having a nice core C (see Section 2)
and M==(Ω,y ΞFt, Xt, Pχy x^X) the associated m-symmetric Hunt process. We
say that a subset B of X is ^-polar if it is of zero capacity. Let {Tt) t^tO} be
the ZΛsemigroup associated with (c?, £F). We say that a Borel set B of X is Tr

invariant if Tt(IB u)=IB Tt u for any u^L\X, m), and t>0. (<?, 3) is called ir-
reducible if for any jΓrinvariant set B, B or X—B is m-negligible. A Borel set
B of X is Λf-invariant if Px(Xt(=BAy X,_eB Δ , for any f>0) = l, for any x<=B.
M. Fukushima-K. Sato-S. Taniguchi [10] investigated the closable part of ge-
neral symmetric bilinear form on a real Hubert space. They characterized the
closable part of a pre-Dirichlet form under the changes of underlying measures
and gave a necessary and sufficient condition for the closability. They used the
analytic characterization of the time changed Dirichlet space formulated in
K. Kuwae-S. Nakao [12]. In these mentioned articles assumed is that (<?, 3) is
either transient or irreducible in order to make a reduction to the transient case,
but the irreducibility is not easily checked.

In this paper, we will not assume the irreducibility of (G, £F) nor its tran-
sience. In Section 2 and Section 3 we prepare some quasi-notions and decom-
position theorems of the state space X. In particular, we give a decomposition

where X^c) (resp. X^d)) is an iϋf-invariant conservative (resp. dissipative) part of
X, and N is a properly exceptional set. In Section 4 we give a characterization
of the regular Dirichlet space associated with the time changed process using
the above decomposition. In Section 5 we fix a closed set Y and consider the
space C \ γ— {u^.C0(Y); u—u\γ, for some UGC}. We then introduce, for each
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choice of a finely closed Borel set F with Fa Y, a pre-Dirichlet form <AF with
domain C \ γ defined by

Jlju, u) = 6{HF ίz, HF u)yu^C\Y,

where U is a function appearing in the definition of C \ γ and HF U(x)=Ex[u(Xσ.F)]y

σF being the hitting time of F. Suppose μ is a positive Radon measure on X
and Y=supp [μ]. Using the characterization of time changed Dirichlet space in
Section 4, we prove that the closable part of (<Jlγy C \ γ) on L\Y\ μ) is (cJΓro> C \ γ)
where Ϋo is the quasi-support of the smooth part of μ, generalizing a result of
[10]. As a consequence, we can generalize the closability criterion of [10]
(Theorem 5.4).

The author would like to express his thank to Professor M. Fukushima for
helpful advice.

2. Quasi-notions

As in Section 1, let X be a locally compact separable metric space with an
extra point Δ such that XΔ is a one point compactification and wibea positive
Radon measure with supp [m]=X. For a Borel measure γ o n J and Borel func-
tions/ and g on X, we denote (f,g)y=fχf(x)g{x) j(dx) if this integral makes
sense. Let C0(X) be the family of continuous functions with compact support.
Consider a dense subalegbra C of C0(X) satisfying the following two properties:

(C. 1) For any compact set K and relatively compact open set G with K C
G c X , there exists/eC such that 0 ^ / ^ l a n d / = l on K a n d / = 0 on X—G.

(C. 2) For any S>0 there exists a real function ψt(t) satisfying that φz(t)=t
for any Ze[0, 1], —S^φ9(t)^l + 6 for any t, and 0^φt(t)—φ9(s)^t—s for s<Zt,
and φ2(f)^C whenever f^C.
Let (5, 3) be a C0-regular Dirichlet space on L\Xy m) possessing C as its core,
namely C is dense in (6ly £F), where 6λ is defined by

ex(u, v) = β(u, Ό)+(U, Ό)U , ii, v e f f .

Let M=(Ω,3't, XtyPχyx^X) be the m-symmetric Hunt process associated
with (S, £F). The capacity associated with (<?, £F) will be called the ^-capacity;
for any open set G,

(2.1) £ r Cap(G) = inf {S^u, u); M E ? , U>\ m-z.e. on G}

and, for any subset A of X,

(2.2) έ?ΓCap(A) = inf {έ?ΓCap(G) i c G , open} .

It is well-known that for any compact set K,

(2.3) £ΓCap(2Q = inf {<?α(w, M); MGC, W ^ 1 on JSΓ} .
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A set BdX is called <?rρolar if έ?ΓCap(jB)=O. A statement Γ depending
on X^LA is said to hold ^-q.e. on A (abbreviated to q.e. on A) if there exists an
£Γρolar set N such that Γ is true for x&A—N. A function/: X->[— oo, oo]
is called ^-quasi-continuous (abbreviated to quasi-continuous) if for any £>0
there exists an open set G such that 6ι-Cap(G)<G and/1X_G is continuous. An
increasing sequence of closed sets {Fn} is called ^-nest (abbreviated to nest) if
lim S1-Caρ(X— Fn)=Q. Let 31 be the space of positive Radon measures on X

»->+©»

and let 3ίo= {V^LJM\ V charges no έ^-polar set}. As in [9], we use following
notations: For set A, BdX, we denote

A dB q.e. (resp. A=B q.e.)

if the set A—2?(resp. AAB) is (5^-ρolar. Here AAB is the symmetric differ-
ence. Similarly we can define AczB z/-a.e. if v(A—B)=0 for v&tSH. We say
that a set A is a q.e. (resp. z/-a.e.) version of a set B or A is q.e. (resp. z/-a.e.)
equivalent to B if A=B q.e. (resp. z/-a.e). We call a set EdX quasi-open if

inf {£ r Cap(£ΔG); G open} = 0

and a set F is called quasi-closed if X—F is quasi-open. It is easy to see that
the notion of quasi-open (resp.-closed) is stable under q.e. equivlaence and a
set E is quasi-open (resp.-closed) if and only if there exists a nest {Fn} such that
E f]Fn is an open (resp. a closed) subset of Fn with respect to relative topology of
Fn. Any countable union and finite intersection of quasi-open sets are quasi-
open and any countable intersection and finite union of quasi-closed sets are
quasi-closed. A function /: X->[— oo, oo] is quasi-continuous if and only if
for any open set /Cl[—oo, °°],/~1(/) is quasi-open. In particular, for a quasi-
open and quasi-closed set B, the indicator function IB is quasi-continuous (B.
Fuglede [4]). For two outer capacities C<1} and C<2) on Xy we write C^<C^ if
for any decreasing sequence of relatively compact open sets {An}

lim σ2\An) = 0 implies lim 0™(An) = 0 .

Then C(2)-polarity, C(2)-quasi-open set, C(2)-quasi-continuity are inherited to
the corresponding notions relative to C(1). We say that C(2) is qeuivalent to C (1)

if 0&<CW and σ»<0&.
For v^3ίQy a set ΫdX is called a quasi-support of v if Ϋ is a quasi-closed

i/-a.e. version of X and YczΫ q.e. for any quasi-closed Y which is a z>-a.e. ver-
sion of X. Let y=suρρ \y\ be the topological support of v. Then Yd Y q.e..
The existence of quasi-support of v^<MQ up to 8X-polar set is guaranteed
([4], [10]). For V^LJMQ, denote by q-supρ[z/] the quasi-support of v. We let
<3Hm= {v G 3lQ <?!-Cap (X— q-supp [v])=0}. For v G <3ίo> there exists a unique
(up to an (S -̂polar set) positive continuous additive functional (abbreviated to
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PCAF) At of M characterized by

<vj> = lim i-Em[\'f{X9) dA8], f

where 1B+(X) denotes the family of all non-negative Borel functions on X and
ζv,fy stands for $xf{x)v{dx). EΊ denotes integration by Pf(dω)=fx Px(dω)
γ(dx) for a Borel measure γ on X. v is called Revuz measure of At. We put
YA={x^X—NA; Px(At>0 for any ί > 0 ) = l } , where NA is the defining excep-
tional set for At. YA is called the support of At. In [9], Fukushima and Lejan
proved that the support of PCAF associated with v^c3t0 is a quasi-support of v.

A set BdXA is called nearly Borel measurable if for any porbability measure
v on XA there exist Borel sets Bv B2dXA with Bx(ZBdB2 such that Pv(Xt^B2

—Bλ for some £^0)=0. A set EdX is called finely open if for each x^E there
exists nearly Borel set B=B(x) with X—EdBdX such that Px(σB>0)=l.
Here σB=inί{t>0; Xt^B}. A set F is finely closed if X—F is finely open.
For a set A we denote # = { x G l ; Px(σA=0) = l} the regular set for A. A
nearly Borel set F is finely closed if and only if FrdF. We say that a set E is
q.e. finely open (resp. q.e. finely closed) if there exists a finely open (resp. finely
closed) nearly Borel set E with E=E q.e. A function u: X—*[—, °°, °°] is called
finely continuous q.e. if there exists an (?x-polar finely closed set N such that u is
finely continuous and nearly Borel measurable on X—N. A set N is called
properly exceptional if N is m-negligible Borel set and X—N is M-invariant. A
function u: JK->[— 00, 00] is finely continuous q.e. if and only if there exists a
properly exceptional set N such that u is finely continuous an Borel measurable
on X—N (Lemma 4.2.6 in [6]). We collect generalizations of some assertions
in [6].

Lemma 2.1. (i) For a quasi-open set E and a quasi-continuous function
u:X-+[—oo9 00],

z/̂ >0 m-a.e. on E if and only if u7>0 q.e. on E .

(ii) For a quasi-open set E,

£1-Cap(.E)= inf 6λ{uy u)> where XE= { M G Ϊ W ^ I m-a}e. on E}.

(iii) A quasi-open m-negrigible set E is 8x-polar.

Proof, (i) The "if" part is trivial. We show the "only if" part. Let
{Fk} and {F'k} be nests such that E ΓlFk is open in Fk and u\F'k is continuous.
We put -F^suppjVftl^nF'J. Then {Fk} is an w-regular nest, namely m(U(x) Γ)
Fk)>0, for any x^Fk and any open neighbourhood U(x) of x. The rest of the
proof is the same as in Lemma 3.1.3 in [6].

(ii) By (i) and Theorem 3.3.1 in [6], (iί) is clear in case <?1-Cap(JB)<oo.
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We show that β1-Cap(E)=°o implies ~CE=φ. Suppose - i^Φφ and 6x-C2Lp(E)
= 00. Then there exists unique element eE£z~CE which attains the infimum.
Let {Gn} be an increasing sequence of relatively compact open sets such that

oo

X= u Gn. Then there exists unique element eE(XGn^XE(xGn satisfying 8X-

Cap(JBnGll) = έ?i(^πG.» ^ n c j , because βrC^(EnGn)<δrCap(Gn)< oo.
Since (?rCap is a Choquet capacity, Si{eEnGn, eE^Gt)/l6ι-Cz.p{E)=oo as n-^oo.
On the other hand 6x(eE, eB)=β1{eE—eBt[Gny eE—^ΠGJ+A^ΠG,,, **nc.)> because
£i(eE(\Gn,v)=61(eE()Gnj eBnGn) for any ι ι £ Ϊ , # = 1 q.e. on Ef\Gn, where # is an
τn-a.e. quasi-continuous version of v. This is a contradiction, (iii) is a trivial
consequence of (ii). The proof is complete.

Theorem 2.2. (i) A set E is quasi-open if and only if E is q.e. finely open.
(ii) A function u: X->[— oo, oo] is quasi-continuous if and only if u is finely

continuous q.e.

Proof. By Theorem 4.3.2 in [6], (ii) follows from (i). We show (i). Sup-
pose that E is quasi-open and {Fn} is a nest such that E Γi Fn is open in Fn for

oo

each ft. There exists a properly exceptional set NZD Π (X—Fn) satisfying

PΛ(lim σγ-Fn = oo) = 1 for any x&X—N,

by (4.3.5) in [6], E—N is then finely open and Borel measurable. Conversly
suppose E is q.e. finely open. Then there exists a finely open and nearly Borel
set E with E=E q.e.. For a strictly positive bounded / e L 2 ( X ; m), we put

Then ί/G? and quasi-continuous by Theorem 4.3.2 in [6]. Further ί ;>0on
E and v—0 q.e. on X—-E. Hence we get -E^ y-^O, oo)) q.e. which implies
that E is quasi-open. The proof is complete.

A universally measurable function h: X->[0, oo] is said to be α-excessive
if e~Λtpt h(x)fh(x), t\Q, x G l ( α ^ O ) . It is known that α-excessive function
(α^>0) is nearly Borel measurable and finely continuous.

Corollary 2.3. For each a^03 a-excessive function is quasi-continuous.

3. Ergodic decomposition into M-invariant sets

As in Section 2, {6> £F) is a C0-regular Dirichlet space possessing C as its
core. Let {Tu t^O} be the ZΛsemigroup associated with (5 ,3) . In this sec-
tion we give a relation of Γrinvariant set and ϋf-invarinat set.

Lemma 3.1. If a nearly Borel set B is Trίnvariant and simultaneously
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quasi-open and quasi-closed, then there exists a properly exceptional set N such that

both B—N and X—B—N are M-invariant and quasi-open.

Proof. Denote by pt the transition kernel of M. Since IB is a quasi-con-
tinuous function, we get

ptIBu = IBptu q.e. for M G J + ( I ) ΠL2(X; m) for each ί > 0 ,

where *B+(X) is the family of positive Borel functions on X. Approximating 1
by hn <=Ξ$+(X) ΠL\X\ m) with hn/\y we have

pt IB = IBpt 1 q.e. for each t>0 ,

or equivalently

pt IB = 0 q.e. on X—B and pt IX-.B=Q q.e. on B for each t>0 .

Since IB is quasi-continuous, the map t\-+IB(Xt) is right continuous and has
left limit IB(Xt-) PΛ-a.s. for q.e. x^X. Thus we have

(3.1) PΛ(X,e.BΔ for any t^O, Xt-&BA for any t>0) = 1 q.e.

Similarly

Px(Xt<Ξ(X-B)A for any ί^O, Xt-<Ξ(X-£)Δ

^ for any ί>0) = 1 q.e.

By Theorem 4.2.1 in [6] there exists an appropriate properly exceptional set
N such that Bλ=B—N and B2=X—B—N are M-invariant. Since quasi-
notions are invariant under q.e. equivalence, Bλ and B2 are also quasi-open and
quasi-closed sets. The proof is complete.

The next Corollary was proven in [7] under the local property.

Corollary 3.2. A Borel set B is Tx-invariant if and only if there exists a
quasi-open and quasi-closed set Bx (resp. B2) which is an M-invariant m-a.e. version
of B {resp. X—B) and a properly exceptional set N such that X=B1+B2+N.

Proof. The "if" part is trivial. We only show the "only if" part. Sup-
pose that B is Tf-invariant. Then there exists an m-a.e. version S of B such
that IB is quasi-continuous (implications (i) =#> (ii) =#> (iii) =#• (vi) ==> (v) of Theorem
2 in [7]). Since S is also ^-invariant, we have the assertion by Lemma 3.1.
The proof is complete.

For a strictly positive / G ^ Z ; m), the sets Cf={x^X; Gf(x)=oo} and
Df=ix^X; Gf(x)<oo} are ^-invariant (Theorem 1.5.8 in [14]). Here Gf=

Ttfdt. Further Cf and Df are indepdndent of the choice of/ up to m-
o

negligible sets. Hence by Corollary 3.2 the whole space X admits a decomposi-
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tion X=XW+X&+N, where X& (resp. X&) is an M-invariant w-a.e. version
of Cf (resp. Df) and N is a properly exceptional set.

Lemma 3.3. Let h be an excessive function. Then pt h=h q.e. on X(c) for
each t>0.

Proof. This lemma follows from Corollary 2.3 and Theorem 1 in [1],
For the convenience of readers we give a direct proof. Suppose that f€zL\X; rri)

is w-a.e. strictly positive on X Then Rf(x)=Ex[[~ f(Xt) dt]= oo q.e. on X&
Jo

by Lemma 2.1 (i) and Corollary 2.3. Put hn=h/\n. Then hn is an excessive

function. By resolvent equation Rphn—Rqhn+(p—q)RpRqhn=O, we get

(hn-qRqhn> Rf)m{xω^ l im(h n -qR q h n y Rpf)m

= Um(hn-pRphn,Rqf)m

p\o

Hence we have qRqhn=hn q.e. on X(CK Letting n->ooy we have qRqh=h q.e.
on X(c\ The proof is complete.

We say that the Dirichlet space (δ, £F) is transient if there eixsts a bounded
g^L\X; m) with<§f>0 m-a.e. such that Gg<oo m-a.e. and (<?, £F) is recurrent if
it is non-transient and irreducible ([8], [14]). The restricted process M\xw
(resp. M\xdcΫ) is transient (resp. conservative), (<?, £F) is transient if and only if
m(X<e>)=0. If (6,3) is irreducible then m(X^)=0 or m(XW)=0, namely
(<?, £F) is transinet or recurrent. X^c) (resp. X(d)) is called the conservative
(resp. dissipative) part of M ([1], [3], [5], [11]).

Without loss of generality, we shall assume that the space £F consists of δx-
quasi-continuous functions, two functions which equal ^-q.e. being identified.
For each non-trivial v^<3ίOy the symmetric form (£ v , £P) on L\X; rri) defined
by

(3-3) [^u

is a C0-regular Dirichlet form having C as its core (see the proof of Lemma 3.1

in [10]). (<?v, £P) is called u-killed Dirichlet space. Denote by Mv the m-

symmetric Hunt process associated with (£ v , £FV). Let A) be the PCAF as-

sociated with v. The set C} = {x(=X; Ex[[°° e~A*ϊ f(Xt) dt] = 00} and Z>} =

{Λ?eX; £' jC[f00^-^v//^)^]<00} a r e Π-invariant set for f^L\X; m),f>0 m-
Jo
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a.e. on X. Since <?Ϊ-Cap is equivalent to έ^-Cap (Lemma 2.3 in [12]), we can
denote by X^c\ X^d) the Mv-invariant ^-quasi-open and ^-quasi-closed w-a.e.
version of C}, D} respectively. Put Bv= { x G l ; Px(Al>0)>0}.

Proposition 3.4. (i) For v(ΞJH0, P ( C ) C F q.e. if and only if the vΉlled
Dίrichlet space (β\ £P) on L\X\ m) is transient.

(ii) In the above case the v-killed extended Dirichlet space £?* is complete by
6^-norm. Q^-capacity is equivalent to &\-capacity.

Proof. The proof of (ii) is the same as in Lemma 2.3 in [12]. We show
(i). The "if" part is trivial. We show the "only if" part. Applying Lemma
3.3 to M* with λ = l , we have

namely

(3.4)

Ex[e -A'] =

PJLAL

1 q.e. xί

= 0) = 1 q.e

:>for each t>0,

which, combined with the assumtion Z V ( c ) c 5 v q.e., implies X^c)=φ q.e..
The proof is complete.

Corollary 3.5. // (£, 3) is irreducible, (β\ £FV) is transient.

Proof. Suppose (8,3) is irreducible. Then (δ\ ffv) is irreducible.
Hence X*ω=φ q.e. or X^=X q.e.. Suppose X^=X q.e.. Then by (3.4)

Px(Al = 0) = 1 q.e. x,

which contradicts the non-triviality of v. The proof is complete.

Corollary 3.6. If v e= JH00, (8\ ffv) is transient.

Proof. By Corollary 3.5 in [9], q-supp [z/]C.Bv q.e.. Hence BV=X q.e..
The proof is complete.

4. Time changed Dirichlet space

In this section we give a characterization of the time changed Dirichlet
space without irreducibility as in Fitzsimmons [2]. Fix μ€Ξc5J/0 Let A*i be the
associated PCAF with μ. Put B μ = {x^X; Px(Aί>0)>0} and F=q-supp [μ].

Lemma 4.1. jBμ and X—Bμ have M-invariant q.e. versions.

Proof. It is easy to see that the function u(x)=Px(A^>0) is excessive

and hence Bμ is finely open and nearly Borel. Put B£ = {x^X; Px(Aί>0)^—}.
n

Then Bζ is a finely closed and nearly Borel set. For each n and x^X— B1*, we
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have

1 = PX{AL = 0)

= PX(AZ = 0; σBζ<oo)+Px(Aί = 0; σB* = oo)

= Px(Aί(θ^) = 0; σBς<oo)+P^Aί = 0; σBς = oo)

= Ex[Px<{Al = 0; σB^<oo]+Px(Aί = 0; σ B Ϊ = oo)

n

Letting W/̂ oo, we get P*(<rsf*<oo)=0 for any ^ G l - J B μ . In particular,
X—Bμ is !Frinvariant and finely open. Since Bμ is also finely open, we can
find by Theorme 2.2 and Lemma 3.1 a properly exceptional set N such that
X—Bμ—N and Bμ—N are ilf-invariant. The proof is complete.

By the above lemma we may asume that X ( c )—Bμ and X^f]Bμ are M-
invariant. For each α > 0 , we let vo6=aμ+Ixce^^Bμm. Then z^

and I W c I ( c ) c ΰ v « q.e.. By Proposition 3.4, we see

that the extended Dirichlet space (Sv<*, 3ϊv

e<*) can be defined as the <?v*-comρletion
of £P* and that δ^-capacity is equivalent to ^-capacity. Note that the spaces
£P* and £?]> is independent of a>0. We denote £FV (resp. £?«) instead of ffv«»
(resp. 3Ί!*). Without loss of generality, we shall assume that every element of
£Fί is (S^-quasi-continuous. We let ^eX_γ=(u^EFl; u=0 q.e. on Ϋ}. This is
a closed subspace of £?* and the Hubert space (£v«, £F̂ ) admits the orthogonal
decomposition

where c^~Λ is the orthogonal complement of 3fv

eχ-γ with respect to <?v«. Denote

by 3** the orthogonal projection on SC~ . Note that the space SC~ and the pro-

jection 5*^ are independent of a>0. Indeed for any u^M~ and /3>0,

because μ(X— Ϋ)=0 ([6]). Hence M G Λ | . Conseqeuntly ^ ^ is also inde-

pendent of α > 0 . We may omit the index a from vΛ. We notice that, for

/,^effϊ, 3>vf=@'vg if and only if/=£ q.e. on F.
We assume that ^ is non-trivial. Put Y=supp[μ]. Define a symmetric

bilinear form on L2(Y; μ) by

f £F? = {ί/GL2(7; ^ ) ; w-=z;|r /^-a.e. on Ffor some
( ' * 1 5?(tt, «) - ev-»(£y v, ^ υ), for ί ί G Ϊ f , ϋ e ? ί j.ίΛ = o | r μ-a.e.
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where v\γ is the restriction of function v to Y and <5v""*μ(s>, v)=6**(vy v)—
(v,v)Λμ. for αe£F*. (6Y, 3ϊγ) is a well defined closed symmetric form on

Theorem 4.2. {6Yi £?£) is the Dίrichlet space on L\ Y; μ) associated with
the time changed process M<=(Xτι, Px)x<=γ. Here τt=inf {s>0; A*>t}. (<?£, £F£)
is CQ-regular and has the core C \ γ= {u e Co( Y) for some v^C, u=v | γ}.

Proof. First we show that C\γ is a core of (<£?, EFY). For wGff^, there
exists ΐ eΞFΪ such that «=t; | r μ.a.e.. Since C is a core of (<?v, SF )̂, there exists
{̂ n} aC such that lim <5*(vn— v, vn—v)=0. By (4.1) we get

Urn e%Λiμ-v% I y , u-vn \ γ) = lk

^ lim < ? V ( Ϊ ; — v n j v—vn) = 0 .

For u^C0(Y)> there exists w^C0(X) such that u=w\γ. Since ^ is uniformly
approximated by an element of C, u is uniformly approximated by an element
oiC\γ.

Next we show that, for u<=$b(Y) ΠL\Y; μ) and v

2

where RΛu{x)=E$° e~*A*u(Xt)dA% χ(=Ϋ, is the reslovent kernel for MK
Jo

We introduce the kernel VΛ on X by

(4.3) F r t/(*) = E

Take now M E ^ Y ) ΠL^J 7; μ) and let ίZ be any bounded Borel extension of u
to X. Then £ Λ t t=-V Λ π\ Y . Applying Theorem 2.4 and Corollary 2.7 in [12]

to A) and -4?, i?Λ[\ e~A* UζX^dA1}], x&X is seen to be a quasi-continuous
Jo

version of 0-order potential Uv(uμ) with respect to (<?v, £?v) . Note that only
the transience of (<?v, £P) is used and the irreducibility condition is irrelevant in
the proof of Theorem 2.4 and Corollary 2.7 in [12], By Lemma 4.1 and the
identity PX(A^=O9 for any * > 0 ) = l q.e. x G l - B μ , we conclude that VΛU is a
quasi-continuous version of U*(ttμ)> and accordingly RΛu^3Y and moreover
Γ ^ ^ ^ F ^ G ^ . Let ϋ be an element of ΞFv

e such that ϋ = f l | r μ-a.e..
Noting that £P* f=f μ-a.e. on Y for each/e£Fo we have

€f Λ uy υ) = β$(RΛ u, v)+a(RΛ u, υ)μ

π, &" v) =
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The proof is complete.

For each « G 5 + ( I ) , we denote Hγ u(x)=Ex[u(Xσγ)].

Corollary 4.3. Hγϋ is a quasi-continuous version of ί P v v for each o

and the time changed Dirichlet space (3ίγ, 6γ) is given by

3Y = {tt<=L2(y; μ);u = v\γ μ-a.e. on Yfor some v

6Y(u, u) = 6(Hfv, HΫV), for M G ( S ^ e S ? s.t. u = v\γ μ-a.e..

Proof. Since ΫdBμ q.e., we get HYv(x)=Ex[v(Xoo)]=0 q.e.
Therefore the latter assertion holds. Next we show the first assertion. We may
assume that v^3\ is non-negative. Put vn~v/\n. Noting that σj?(ω)=inf
{t>0; ^4?(ω)>0}, we get from (4.3)

HγVn(x) = lim mVm vJx).

On the other hand mVm vn=3?* mVm vn is (?v-convergent to ίPv vn e ^ as m->oo
because mRm(vn \ γ) is 5^-convergent to vn \ γ G Ϊ f as m->oo. We get Hγvn =
3?yvn q.e.. Since ίP v ϋ n is <?v-convergent to 5> v^ec^j? as w->oo, we have

= lim5> vι; ί l = &VΌ q.e..

The proof is complete.

By Theorem 4.2 we can get next result in the similar manner as in Section
4 in [12].

Theorem 4.4. (i) For a Borel set BdY3

€$«-Cap(BΠΫ) = 0if and only if 8ΓCap{B ΠΫ) = 0 .

(ii) For any decreasing sequence of open sets An, S1-Oap(An)\0 implies 6fΛ-
Cap(An Π 30\0. In case μ^3ίw 6λ-Cap is equivalent to 8^^-Cap.

(iii) δ^-Cap(Y-Ϋ)=0.
(iii) There exists a Borel set N with μ(ff)=0 such that Y—ΫczN and Y—N

is M*-invariant. And further the restricted process M* \ Y-N of the time changed
process M* is a Hunt process on Ϋ-N associated with the rgeular Dirichlet space

5. Closable part of a pre-Dirichlet form on C \ γ

A non-negative definite symmetric bilinear form Jl on C is called a pre-
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Dirichlet form if there exists a function φz satisfying condition (C. 2) and
<Jl(φ9(u)>φz(ύ))^<Jl(uy u) for any MGC. For a closed set Y, C\γ={u^C0(Y);
u=u\γ for some U^C} satisfies (C. 2) and (ύ\ 1) with respect to the relative
topology on Y. A pre-Dirichlet form {Jl, C\ γ) is said to be closable on L2(Y; μ)
for a positive Radon measure μ on Y with Y=supp[μ] if <Jl(un9 wn)—>0j /&—>oo
whenever {wΛ}cCΊr is c^?-Cauchy and z/n->0 in L\Y\ μ). A pre-Dirichlet
form (oϊ°, CI r ) is said to be the closable part of {JLy C \ γ) on L2( Y; μ) if (c^?,0 £ | γ)
is closable on L2( Y; μ) and ̂ ?°(w, u)^Jl{uy u), u&C\γ, and iδ(tt, u)^JL\uy u),
u^C I y for any other pre-Dirichlet form (.3, C \ γ) which is closable on L2( Y; μ)
and satisfies <B(u, u)-ξ^Jfl(μ, u), u^C\γ. In this section we study the closable
part of a pre-Dirichlet form on C\ γ when Y is the support of a measure μ^JM.

Let (<?, £F) ba a C0-regular Dirichlet space as in Section 2. In general, a
function u defined m-a.e. is said to belong to the extended Dirichlet space £Fβ if
there exists an <?-Cauchy sequence {un}<z3! such that un->u, w-a.e. as n->oo.
In this case we define £(u, u)—lim 6(uny un). G(u, u) does not depend on the

choice of {un} ([16]). It is easy to see that M G ^ if and only if there exists an
<?-Cauchy sequence {vn} (ZC such that vn-*u, m-a.e. as w-»<χ>, and that 6(u, u)=
lim 6(vni vn) in this case.

Lemma 5.1. (i) u^ΞFe has quasi-continuous version u.
(ii) Every normal contraction operates on (3ϊe, S).
(iii) For a Borel set By let HB u(x)=Ex[u(XσB)]. Then HBu^3e for any

Furthermore

(5.1) e(u, v) = e(flBuy HBϋ)+S((I-HB) u, (I-HB) ϋ)Jor any u,

Proof. For each g^L\X;m) with £ > 0 w-a.e., the finite measure gm
belongs to c5K00. Hence the ^w-killed Dirichlet space (βgtn, 3gm) is transient by
Corollary 3.6. Denote by fff its extended Dirichlet space. By (4.1) the time
changed Dirichlet space {Sy3) on L2(X;gm) associated with the time changed

process M* by the PCAF Ag

t=\ϊg(Xt) dt is given by
Jo

\6(u,v) = S(u,v), for any M ^ E S 1

and C is a core of (<?, 3). Now the extended Dirichlet space Se of this time

changed Dirichlet space coincides with 2%. We therefore get 3eΠL2(X; gm)=

3eΠL\X;gm)=3=3g

e

m by [16]. For each u(=3e choose g<=L\X;m), g>0

m-a.e. such that u^L\X;gm). Then u^3=3gut with this choice of g. Thus

(i) follows from C0-regularity of (£, 3) and (ii) follows from that every normal

contraction operates on (6, 3).



PRE-DIRICHLET FORMS BY HITTING DISTRIBUTIONS 783

Next we show (iii). For each Borel set B, we denote 3ίx-B={u&3ϊ; u—

0 q.e. on B}. Then £F admits the orthogonal decomposition as follows: For

where MP

B is the orghogonal complement of 3X-B with respect to 6p=8-\-

/>(•, •)*«• For each i i e S T we denote HP

B u(x)=Ex[e-pA^ u(XσB)]. Letting

Mt=(YtyPx) and denoting by ## its hitting time, we see that HB u(x)—

Ex\eΓp*B w(Fί s)] and hence HP

B u is the quasi-continuous version of PJkb u, where

PJί& is the projection to MP

B ([6]). Hence we have

εp(u9 v) = ep(m a, m ϋ)+εp((i-m) a, (i-m) »), for a n y u,

Fix non-negative w, ̂ G Ϊ , . Choose g^L\X\ m), g>0, m-a.e. such that u> v^

3!g

e

m. Consider the time changed Dirichlet space (<£, 3) with this choice of g.

Put un=uf\n,vn=v/\n* Then M Λ , ί ) s G? and un->u, v1-^v} n-*oo in 6V

Since B—Br is <?rpolar, i/& un—Hq

B unGffj^. Hence we have

«„ m un-H% un)^εp{m un-H% un> m an-m un)
un, m un-H% un)-εq(H% un> m un-m un)

{H% un, m un-m un)pm

= (q-p) (HB Uny Hp

B Un-H% Un)gm - 0, p,q -* 0 ,

namely, HP

B un is <?rCauchy. We have HB ^ G ? and

S{un, vn) = §(HB un> HB ϋn)+ε((I-HB) un> (I-HB) ϋn)

Since uM and vn are ^-convergent to u, v as n—>oo, we arrive at (5.1). The proof
is complete.

For a finely closed Borel set F and a closed set Y with FczYdX, we in-
troduce a symmetric bilinear form {JlF, C \ γ) by

JLF{u, v) = <?(#*. a, HF v) u, v<=C \γ, u,

Suppose ulfu2^C and u1=u2 on Y. Then HFuι{x)^Ex\uι{Xσ^]==Ex[tί2{X(TF)'\
=HF u2(x). Hence {JtFy C | γ) is well-defined.

Lemma 5.2.

H) = inf {8(vy v) ϋ

Proof. For each u^C\γ> we take v^3ίe such that u=ϋ q.e. on F. Then
there exists a properly exceptional set N auch that */(#)=£>(#) for x^F—N.
Since F—N is again finely closed Borel set of M\x-N, we have HFU{x)=
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Ex[n{XσF_N)]=Ex[ϋ(XσF_M)]==HF ϋ(x) for any χ(=X-N. Hence we get JLF

(uy u)=έ(HF ϋ, HF ϋ)^£(v, v). Moreover HFU^3e attains the infimum, be-
case HFU is a bounded quasi-continuous function by virtue of Corollary 2.3.
The proof is complete.

Theorem 5.3. (JlF, C \ γ) is a pre-Dirichlet form.

Proof. Let φ9 be the function described in (C. 2). It suffices to show that

JlF(φe(u), φ9{u))^JlF(uy u) , for any u^C \ γ .

For each u^C\γ,

ΛF(ΦW(V), <pζ(u)) = inf {S(υy υ); v(B3ey φt(u) = ϋ q.e. on F}

^ inf {β(φt(ϊv), φt{w))\ w^3e, φz{u) = φt(ϋf) q.e. on F}

^ inf {6{φz{w), φt(w)); w^3ϊey u = ti) q.e. on F}

^ inf {6(w, to); w^3e, u = tΰ q.e. on F}

- JlF(u, u).

The proof is complete.

Each μG JM is uniquely decomposed as follows:

μ = μQ+μχ μo^3ίOi μλ = INμ for some <?rpolar set N.

μ0 is called the smooth part of μ, (cf. Fukushima-Sato-Taniguchi [10]). We let
y=suρp [μ], y o=supρ [μ0] and ? 0=q-supp [μo] The <?rpolar set N is unique
upto a μ-negligible set. We may assume that NdY. Hence Y0\jNczY.
We state the main theorem in this section.

Theorem 5.4. (i) {JLγQi C \ γ) is the closablepart of (Jlγ, C\γ) on L\ Y; μ).
(ii) Suppose that £ r C a p ( Y - Ϋ0) = 0. Then (Jίγ,C\γ) is closable on

L2(Y; μ) and Y Π ( ^ ( c ) - ^ ° ) = φ q.e.
(iii) Suppose {Jlγ> C \ γ) is closable on L\ Y\ μ) and X(c)^Bμo=φ q,e.. Then

(iv) The closure {<JlγQ,C\γ) on L\Y\ μ) is associated with the Hunt process
^iX^ P$)xeγ such that

(a) "the law of X*. under P*"="the law of i>o. under Py for any xZΞ

(b) P ϊ ( J ? ? = Λ , for anyt^ϋ)=ly for any X<EΞN,

(c) Y— Yo—N is an exceptional set for Mμ,
where Mrg=(A?°, rv>) is the Hunt process associated with the time changed regular
Dirtchlei space (&^ g^o) m L\Y0; μ,).

REMARK. By Theorem 4.4 the condition (a) and (c) can be replaced by
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(a') "the law of X* under P*"="the law of Xτ^ under Px" for any x£Ξ Ϋo-
No-N,

(cr) Y—Ϋo—No—N is an exceptional set of Mμ,

where Mt={Xτ^> PX)X^Ϋ0 is the time changed process by the PCAF At* and No is
a properly exceptional set of Mγ°.

To prove this theorem we prepare several lemmas as in [10].

Lemma 5.5. For a closed set AdX, we letfh&JM with Jt=supp[fh] and

(έ, 3) be another Dirichlet form on L2(£; nι) with C\ i C ? . Assume that β{u, u)
^6(U, U), u^C\k, U^C, u=u\x. Then for any Grpolar set N',

i k u m-a.e. on it for any u(=L2(Jt; fh),
Cί

where όΛ is the resolvent on L2(X; fh) associated with 6.

Proof. The proof is the same as in Lemma 4.1 in [10].

Lemma 5.6. Let (βy C\γ) be a closablepre-Dirichlet form on L2(Y; μ) such
that SB(u,u)<ί6(u,u),ueC\γ,ueC,u=n\γ. Then (<B,C\Y) is well-defined on
L2(Y0; μ0) and closable on L2(Y0; μ0).

Proof. The proof is same as in Lemma 4.2 in [10].

Lemma 5.7. {<JLγQ> C | γ) is the closable part of (cJtYy C\γ) on L2( Y; μ).

Proof. This follows from the description of Corollary 4.3 of the time
changed Dirichlet space as the proof of Lemma 4.3 in [10]. We give the proof
for completeness. We let VQ=μ^-\-IXie^BVΌ m. Then the z/0-killed Dirichlet
space (£Fvo, £v<>) is transient. Let 3?]o be the extended Dirichlet space of
(yo, £vo). We let ^ ^ ^ { M G ^ 0 ; U=0 q.e. on YQ}. Let ^ v o be the pro-

jection operator on the orthogonal complement of 3fv

e°χ-γ0 with respect to <?V
Since <?VCauchy sequence is an <?-Cauchy sequence, 3**0 u^3?e for any
Note that

(5.3) Jlγo(uyu) = ε(&vou,&*on)9 u<=C\Yyπ<=C,u=u\γ.

Indeed if μ0 is non-trivial, (5.3) follows from Corollary 4.3. Suppose that μ0 is
trivial. Then Ϋ0=Φ q.e.. We have 3l°X-Yo=&l0 and β ^ o β , a>voβ)=O. On
the other hand, Px(σγ0 = oo)=l q.e. Λ G X We get HYQU=0 q.e.. Thus we
have (5.3).

If μ0 is trivial, the closability of (<Jlγ0, C\γ) on L2(Y; μ) is clear. If μ0 is
non-trivial, the closability follows from (5.3) and Theorem 4.2. The inequality
JLγo{uy u)<Jίγ{uy u), u^C\γ follows from (5.1) and HYOHYU=HYQU,U^C\Y.

Let (J2, C\ Y ) is a closable pre-Dirichlet form with J2(w, u)^<Jlγ(u, u) for
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Fix a n / e C | r . Then there exists f^C such t h a t / = / 1 y. Since C is dense in
?, there exists a sequence {/„} c C such that

lim &<{f.-g» f,f.-SE»*J) = 0 .

We have

(5.4) •{/„} is an <?-Cauchy sequence and/Λ -»/ in L2( Y(>;

By (5.3), we see that

It follows from (5.3) and (5.1) that {fn\γ—f}cC\γ is an .S-Cauchy sequence
a n d / . - / — 0 in L 2(F 0; /„). By Lemma 5.6, we have that ^ ( / n | r - / , / . | r - f )
-»0. Therefore it holds that

The proof is complete.

Lemma 5.8. Suppose {JLYi C \ γ) is closable on L\ Y; μ). Then

S(Hγπ-HYoπ,Hγu-HYoπ) = O, for any u<=C .

Proof. By Lemma 5.7 we have

ε^Y^Hγn^ε^^U.HY^U) for any U^C.

Hence by (5.1)

e(Hγπ-HYou,Hγu-HYou)

= 6{HY u, Hγ u)—2S(Hγ u, HYo u)+6(HYo u, HYo n)

Lemma 5.9. Denote the closure of (<-AYo, C\γ) on L\ Y; μ) by (JίYo, C | γ).

Let {€&*', α>0} (resp. {(%?, a>0})be the resolvent on L\Y; μ) (resp. L\Y0; j

associated with (Jίγ0,C\Y) (resp. (€$l S"?")). Then

(i) Gs«β(/W «) = — Jκ u, μ-a.e.foranyuς=L%Y;μ).

(ii) G^o u=G%0u, μo-a.e. on Y0for any u^L\Y; μ).

(iii) aYa

Proof, (i) follows from Lemma 5.5. The proof of (ii) is same as in Lem-
ma 4.5 in [10]. For compact set Kd Y— Yo in Y, there exists a relatively com-
pact open set G in Y and f^C\γ such that GdY—Y0 and 0 ^ / ^ l , / = l on
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K,f=0 on Y—G. Then ^?? 0(/,/)=0. By Lemma 5.7 we have

cI?0i-Cap(i<0 = inf {JLf^u, u);u(ΞC\Yy u^l on K}

Hence we can get <JLγoi-Cap(B)iS>μ(B) for any Borel set B(Z(Y—Y0), which

implies (iii). The proof is complete.

Proof of Theorem 5.4. (i) follows from Lemma 5.7 (iv) follows from

Lemma 5.9. We show (ii). Suppose £X-Cap(Y-Ϋ0)=0. Then (JlYy C\γ)=

{JLΫ0, CI r ) . Hence (JίYi C\γ)is closable on L\ Y\ μ) and Y Π (X^-Bμ'o)=γo n

(X<c>—£μo)=φ q.e., because ? o Cβ μ o. Next we show (iii). Suppose X^—Bμo

=φ q.e. and (Jlγ, C\ γ) is closable on L2(Y; μ). Then vo=μo. We get Hγ U=

Hγ0U, i/0-a.e.. By Lemma 5.8 we have β\Hγa—HγQU,HγU—HγoU)=O for

any U^C, namely Hγ U=HYo U q.e. for any U^C. Hence we have that Y—Ϋo

is ^-polar. The proof is complete.
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