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1. Introduction

Let X be a locally compact separable metric space with an extra point A
such that X, =X U {A} is a one point compactification and let m be a positive
Radon measure with supp [m]=X. When X is compact, A is adjoined as an
isolated point. For a subset B of X, we denote B,=BU {A}. We consider a
C,-regular Dirichlet space (£, F) on LY X, m) having a nice core C (see Section 2)
and M=(Q, ¥, X,, P,, x€X) the associated m-symmetric Hunt process. We
say that a subset B of X is & -polar if it is of zero capacity. Let {7, ¢=0} be
the L%semigroup associated with (&, F). We say that a Borel set B of X is T~
invariant if Ty(Iz u)=1I5 T, u for any uc L X, m), and t>0. (€, F) is called ir-
reducible if for any T'-invariant set B, B or X—B is m-negligible. A Borel set
B of X is M-invariant if P,(X,EB,, X,_ €B,, for any t>0)=1, for any x&B.
M. Fukushima-K. Sato-S. Taniguchi [10] investigated the closable part of ge-
neral symmetric bilinear form on a real Hilbert space. They characterized the
closable part of a pre-Dirichlet form under the changes of underlying measures
and gave a necessary and sufficient condition for the closability. They used the
analytic characterization of the time changed Dirichlet space formulated in
K. Kuwae-S. Nakao [12]. In these mentioned articles assumed is that (&, F) is
either transient or irreducible in order to make a reduction to the transient case,
but the irreducibility is not easily checked.

In this paper, we will not assume the irreducibility of (£, &F) nor its tran-
sience. In Section 2 and Section 3 we prepare some quasi-notions and decom-
position theorems of the state space X. In particular, we give a decomposition

X=XO+XDLN,

where X (resp. X) is an M-invariant conservative (resp. dissipative) part of
X, and N is a properly exceptional set. In Section 4 we give a characterization
of the regular Dirichlet space associated with the time changed process using
the above decomposition. In Section 5 we fix a closed set Y and consider the
space C|y={ucsCy(Y); u=1u|y, for some #&C}. We then introduce, for each
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choice of a finely closed Borel set F with FC Y, a pre-Dirichlet form A, with
domain C |y defined by

Ap(u,u) = EHpu, Hp ), ucC|y,

where # is a function appearing in the definition of C |, and Hy #i(x)=E.[2(X, )],
o being the hitting time of F. Suppose p is a positive Radon measure on X
and Y=supp [p]. Using the characterization of time changed Dirichlet space in
Section 4, we prove that the closable part of (Ay, C|y) on LX(Y; u)is (A#, Cly)
where Y, is the quasi-support of the smooth part of p, generalizing a result of
[10]. As a consequence, we can generalize the closability criterion of [10]
(Theorem 5.4).

The author would like to express his thank to Professor M. Fukushima for
helpful advice.

2. Quasi-notions

As in Section 1, let X be a locally compact separable metric space with an
extra point A such that X, is a one point compactification and m be a positive
Radon measure with supp [m]=X. For a Borel measure ¢ on X and Borel func-
tions f and g on X, we denote (f, 2)y=1_x f(x) g(x) v(dx) if this integral makes
sense. Let Cy(X) be the family of continuous functions with compact support.
Consider a dense subalegbra C of Cy(X) satisfying the following two properties:

(C.1) For any compact set K and relatively compact open set G with K C
G C X, there exists f&C such that 0< f<1 and f=1 on K and f=0 on X—G.

(C.2) For any £>0 there exists a real function g,(t) satisfying that @,(t)=¢
for any 1[0, 1], —6= ()< 1+& for any ¢, and 0=<g,(¢)—@,(s) =t—s for s<¢,
and @,(f) €C whenever f €C.

Let (&, &) be a Cy-regular Dirichlet space on L X, m) possessing C as its core,
namely C is dense in (&,, &), where &, is defined by

E(u, v) = E(u, v)+(u, v),,, u,vEF.

Let M=(Q, 9, X,, P,,x€X) be the m-symmetric Hunt process associated
with (€, F). The capacity associated with (€, &) will be called the &,-capacity;
for any open set G,

(2.1) &,-Cap(G) = inf {&,(u, u); ueSF, u>1 m-a.e. on G}
and, for any subset 4 of X,

(2.2) &,-Cap (4) = inf {&,-Cap(G); ACG, open} .

It is well-known that for any compact set K,

(2.3) &,-Cap(K) = inf {€,(u, u); usC, u=1 on K} .
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A set BC X is called & -polar if £,-Cap(B)=0. A statement T depending
on x4 is said to hold £-q.e. on 4 (abbreviated to q.e. on A4) if there exists an
&i-polar set N such that T is true for x€4—N. A function f: X—[— oo, oo]
is called &)-quasi-continuous (abbreviated to quasi-continuous) if for any &>0
there exists an open set G such that &-Cap(G)<& and f| x_¢ is continuous. An
increasing sequence of closed sets {F,} is called &,-nest (abbreviated to nest) if
lim &,-Cap (X—F,)=0. Let ¥ be the space of positive Radon measures on X

and let Hy={vEM; v charges no € -polar set}. As in [9], we use following
notations: For set A, BC X, we denote

AcCB q.e. (resp. A=B q.e.)

if the set A—B(resp. AAB) is &;-polar. Here AAB is the symmetric differ-
ence. Similarly we can define ACB v-a.e. if »(A—B)=0 for v& M. We say
that a set 4 is a q.e. (resp. v-a.e.) version of a set B or 4 is q.e. (resp. v-a.e.)
equivalent to B if A=B q.e. (resp. v-a.e). We call a set ECX quasi-open if

inf {£,-Cap(EAG); G open} = 0

and a set F is called quasi-closed if X—F is quasi-open. It is easy to see that
the notion of quasi-open (resp.-closed) is stable under q.e. equivlaence and a
set E is quasi-open (resp.-closed) if and only if there exists a nest {F,} such that
ENF, is an open (resp. a closed) subset of F, with respect to relative topology of
F,. Any countable union and finite intersection of quasi-open sets are quasi-
open and any countable intersection and finite union of quasi-closed sets are
quasi-closed. A function f: X—[—oo, o] is quasi-continuous if and only if
for any open set [ C[—oo, oo], f~}(I) is quasi-open. In particular, for a quasi-
open and quasi-closed set B, the indicator function I is quasi-continuous (B.
Fuglede [4]). For two outer capacities C™® and C® on X, we write C®<C® if
for any decreasing sequence of relatively compact open sets {4,}
li:g CH(4,) = 0 implies li_’m“ CcM4,)=0.

Then C®-polarity, C®-quasi-open set, C®-quasi-continuity are inherited to
the corresponding notions relative to C®. We say that C® is qeuivalent to C®
if CO<C® and CH<CA.

For v & M, a set Y C X is called a quasi-support of » if ¥ is a quasi-closed
y-a.e. version of X and Y ¥ g.e. for any quasi-closed Y which is a v-a.e. ver-
sion of X. Let Y=supp [] be the topological support of ». Then ¥YCY qe.e..
The existence of quasi-support of v& M, up to &;-polar set is guaranteed
([4],[10]). For v&M,, denote by g-supp[r] the quasi-support of ». We let
HMop={vE My; E,-Cap(X—q-supp [»])=0}. For v& M, there exists a unique
(up to an &j-polar set) positive continuous additive functional (abbreviated to
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PCAF) A, of M characterized by
@ =tim LE[ f(X) 4], fesr ),

where B*(X) denotes the family of all non-negative Borel functions on X and
v, f> stands for [x f(x)v(dx). Ey denotes integration by Py(dw)=/[x P.(dw)
7(dx) for a Borel measure ¥ on X. v is called Revuz measure of 4,. We put
Y,={xeX—N,; P,(4,>0 for any t>>0)=1}, where N, is the defining excep-
tional set for 4,. Y, is called the support of 4,. In[9], Fukushima and LeJan
proved that the support of PCAF associated with » €., is a quasi-support of ».

A set BC X, is called nearly Borel measurable if for any porbability measure
v on X, there exist Borel sets B, B,C X, with BCBCB, such that P,(X,EB,
—B, for some t=0)=0. A set £C X is called finely open if for each x F there
exists nearly Borel set B=B(x) with X—ECBCX such that P,(cp>0)=1.
Here op=inf {t>0; X,EB}. A set F is finely closed if X—F is finely open.
For a set 4 we denote A'={x€X; P,(c,=0)=1} the regular set for 4. A
nearly Borel set F is finely closed if and only if F"CF. We say that a set E is
q.e. finely open (resp. g.e. finely closed) if there exists a finely open (resp. finely
closed) nearly Borel set E with E=E q.e. A function u: X—[—, oo, oo] s called
finely continuous q.e. if there exists an &;-polar finely closed set N such that u is
finely continuous and nearly Borel measurable on X—N. A set N is called
properly exceptional if IV is m-negligible Borel set and X—N is M-invariant. A
function u: X—[—o0, co] is finely continuous q.e. if and only if there exists a
properly exceptional set N such that  is finely continuous an Borel measurable
on X—N (Lemma 4.2.6 in [6]). We collect generalizations of some assertions

in [6].

Lemma 2.1. (i) For a quasi-open set E and a quasi-continuous function
u: X—[—o0, oo],

u=0 m-ae.onE if and onlyif u=0 gq.e.onE.
(ii) For a quasi-open set E,
&,-Cap(E) = inf E\(u,u), where Lp= {u€F;u=1m-ae. onE}.
uE.L’g
(iii) A quasi-open m-negrigible set E is &\-polar.

Proof. (i) The “if” part is trivial. We show the “only if” part. Let
{F} and {F}} be nests such that E N F, is open in ¥, and u| #, 1s continuous.
We put Fy=supp [m|zsnr,]. Then {F;} is an m-regular nest, namely m(U(x) N
F,)>0, for any x € F, and any open neighbourhood U(x) of x. The rest of the
proof is the same as in Lemma 3.1.3 in [6].

(i) By (i) and Theorem 3.3.1 in [6], (ii) is clear in case &;-Cap(E)<<co.
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We show that &;-Cap (E)=cc implies Lz=¢. Suppose -Ly=+¢ and &,-Cap(E)
=oo. Then there exists unique element ey &Ly which attains the infimum.
Let {G,} be an increasing sequence of relatively compact open sets such that

X= U G,. Then there exists unique element ezne, E-Lzne, satisfying &-

2=l
Cap(ENG,)=CE(ezne, €znc,), because &-Cap(ENG,)<&E-Cap(G,) < oo.
Since &,-Cap is a Choquet capacity, &y(egqe,, €znc,),”E1-Cap (E)=oco as n—>oco.
On the other hand &)(ez, ez)=E\(ez—eznc, ex—exnc,)+E1(€enc, €xnc,), because
Ei(egnc, v)=C(exne, €enc,) for any vEF, D=1 q.e. on ENG,, where 7 is an
m-a.e. quasi-continuous version of v. This is a contradiction. (iii) is a trivial
consequence of (ii). The proof is complete.

Theorem 2.2. (i) A set E is quasi-open if and only if E is q.e. finely open.
(i) A function u: X—[—co, oo] is quasi-continuous if and only if u is finely
continuous q.e.

Proof. By Theorem 4.3.2 in [6], (ii) follows from (i). We show (i). Sup-
pose that E is quasi-open and {F,} is a nest such that ENF, is open in F, for

eachn. There exists a properly exceptional set N D F\l (X—F,) satisfying

P(limoy-p, = 0)=1 forany x€X—N,

by (4.3.5) in [6], E—N is then finely open and Borel measurable. Conversly
suppose E is q.e. finely open. Then there exists a finely open and nearly Borel
set E with E=E q.e.. For a strictly positive bounded f €L X;m), we put

o) = B[ et f(X,) ]

Then v&€S and quasi-continuous by Theorem 4.3.2 in [6]. Further v>>0 on
E and v=0 qe. on X—E. Hence we get E=v"%0, o)) q.e. which implies
that E is quasi-open. The proof is complete.

A universally measurable function 4: X—[0, o] is said to be a-excessive
if e~ p, h(x) /h(x), t\0, x€X (¢=0). It is known that a-excessive function
(a=0) is nearly Borel measurable and finely continuous.

Corollary 2.3. For each a=0, a-excessive function is quasi-continuous.

3. Ergodic decomposition into M-invariant sets

As in Section 2, (€, &F) is a Cy-regular Dirichlet space possessing C as its
core. Let {T,,t=0} be the L?-semigroup associated with (£, &F). In this sec-
tion we give a relation of T-invariant set and M-invarinat set.

Lemma 3.1. If a nearly Borel set B is Ti-invariant and simultaneously
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quasi-open and quasi-closed, then there exists a properly exceptional set N such that
both B—N and X—B—N are M-invariant and quasi-open.

Proof. Denote by p, the transition kernel of M. Since I is a quasi-con-
tinuous function, we get

piIsu= Iz p,u q.e. for uc B*(X) N LY X; m) for each t>0,

where B*(X) is the family of positive Borel functions on X. Approximating 1
by k,=B*(X) N LYX; m) with h, /1, we have

bpelp = Igp, 1 q.e. for each >0,
or equivalently
p: I =0q.e. on X—B and p, Ix_p=0 q.e. on B for each t>0.

Since I is quasi-continuous, the map ¢+ I5(X;) is right continuous and has
left limit I5(X,-) P,-a.s. for q.e. x&X. Thus we have

(3.1) P,X,EB, for any t=0, X,_ B, for any t>0) = 1 q.e. x€B.
Similarly

P,(X,&(X—B), for any t=0, X,_€(X—B),

(3.2)
for any t>0) =1 q.e. x&€ X—B.

By Theorem 4.2.1 in [6] there exists an appropriate properly exceptional set
N such that Bj=B—N and B,=X—B—N are M-invariant. Since quasi-
notions are invariant under q.e. equivalence, B, and B, are also quasi-open and
quasi-closed sets. 'The proof is complete.

The next Corollary was proven in [7] under the local property.

Corollary 3.2. A Borel set B is T\-invariant if and only if there exists a
quasi-open and quasi-closed set B, (resp. B,) which is an M-invariant m-a.e. version

of B (resp. X—B) and a properly exceptional set N such that X=DB,+B,+N.

Proof. The “if” part is trivial. We only show the “only if”’ part. Sup-
pose that B is Ty-invariant. Then there exists an m-a.e. version B of B such
that I3 is quasi-continuous (implications (i)=>(ii)=> (iii) = (vi) = (v) of Theorem
2 in [7]). Since B is also Ty-invariant, we have the assertion by Lemma 3.1.
The proof is complete.

For a strictly positive fEL'X; m), the sets C,={xEX; Gf(x)=oc} and
D;={xeX; Gf(x)<oo} are Ty-invariant (Theorem 1.5.8 in [14]). Here Gf=

S” T,fdt. Further C; and D, are indepdndent of the choice of f up to m-
0
negligible sets. Hence by Corollary 3.2 the whole space X admits a decomposi-
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tion X=X©® 4+ X9 4N, where X© (resp. X) is an M-invariant m-a.e. version
of Cy (resp. Dy) and N is a properly exceptional set.

Lemma 3.3. Let h be an excessive function. Then p, h=Fh q.e. on X for
each t>0.

Proof. This lemma follows from Corollary 2.3 and Theorem 1 in [1].
For the convenience of readers we give a direct proof. Suppose that feL{(X; m)

is m-a.e. strictly positive on X. Then Rf(ac)=E,‘[Sg° f(X,) dt]=0oo q.e. on X©®
0

by Lemma 2.1 (i) and Corollary 2.3. Put k,=hAmn. Then k, is an excessive
function. By resolvent equation R, k,—R, k,+(p—q) R, R, h,=0, we get

(ta—Rq Iy, Rf Y1 xS i (1y—R¢ s R, f)m
= lim (b, —pR, htpy Ry f)m
N0
é (hn’ qu)m
é ﬁ' <m:f>< oo
q

Hence we have ¢R,h,=h, q.e. on X©. Letting n— oo, we have gR,h=h q.e.
on X©®, The proof is complete.

We say that the Dirichlet space (€, F) is transient if there eixsts a bounded
g€ L(X; m) with g>0 m-a.e. such that Gg<<co m-a.e. and (&, &) is recurrent if
it is non-transient and irreducible ([8],[14]). The restricted process M| x>
(resp. M| x) is transient (resp. conservative). (&, F) is transient if and only if
m(X©)=0. If (&,F) is irreducible then m(X©@)=0 or m(X?)=0, namely
(E,F) is transinet or recurrent. X© (resp. X@) is called the conservative
(resp. dissipative) part of M ([1], [3], [5], [11]).

Without loss of generality, we shall assume that the space & consists of &;-
quasi-continuous functions, two functions which equal &€)-q.e. being identified.
For each non-trivial v& H,, the symmetric form (£*, ¥”) on LY X; m) defined
by

33 F*=FNLYX;v),

(3:3) {8"(u, v) = E(u, v)+(u, v),

is a Cy-regular Dirichlet form having C as its core (see the proof of Lemma 3.1
in [10]). (&, <) is called v-killed Dirichlet space. Denote by M” the m-
symmetric Hunt process associated with (€Y, F"). Let A} be the PCAF as-

sociated with ». The set Cr={xEX; E,[r ¢4 f(X,) dt]=oo} and Dj=
o0 0

{reX; E,[g e # f|X,) df]<oo} are T}-invariant set for f €LY X; m), f>0 m-
0
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a.e. on X. Since &1-Cap is equivalent to &;-Cap (Lemma 2.3 in [12]), we can
denote by X, X*@ the M"-invariant &;-quasi-open and &,-quasi-closed m-a.e.
version of C7, Dy respectively. Put B*={xeX; P (4.>0)>0}.

Proposition 3.4. (i) For ve M,, X*OCB" q.e. if and only if the v-killed
Dirichlet space (£, F*) on LA X ; m) is transient.

(ii) In the above case the v-killed extended Dirichlet space F, is complete by
E¥-norm. E”-capacity is equivalent to E,-capacity.

Proof. The proof of (ii) is the same as in Lemma 2.3 in [12]. We show
(1). The “if” part is trivial. We show the “only if”” part. Applying Lemma
3.3 to M" with =1, we have

EJe %] =1 q.e. x€ X" for each >0,
namely
(3.4) P (AL =0)=1q.e x€X,

which, combined with the assumtion X*©@CB® q.e., implies X*©@=¢ q.e..
The proof is complete.

Corollary 3.5. If (€, F) is irreducible, (E¥, F") is transient.

Proof. Suppose (&, F) is irreducible. Then (&Y, ") is irreducible.
Hence X*@=¢ q.e. or X*@=X q.e.. Suppose X"9=X q.e.. Then by (3.4)

P (AL =0)=1qe. x,
which contradicts the non-triviality of ». The proof is complete.
Corollary 3.6. If vE My, (¥, F7) is transient.
Proof. By Corollary 3.5 in [9], q-supp[v]CB" q.e.. Hence B*=X q.e..

The proof is complete.

4. Time changed Dirichlet space

In this section we give a characterization of the time changed Dirichlet
space without irreducibility as in Fitzsimmons [2]. Fix u& %, Let 4¥ be the
associated PCAF with x. Put B*={xE X; P,(4%>0)>0} and ¥=q-supp [x].

Lemma 4.1. B* and X—B" have M-invariant q.e. versions.

Proof. It is easy to see that the function u(x)=P,(A4%>0) is excessive
and hence B* is finely open and nearly Borel. Put By ={xEX; P,(Ai>0)gl} .
n

Then By, is a finely closed and nearly Borel set. For each » and x& X—B*, we
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have

1=P, (4% =0)
= P(4% = 0; opr<0)+P, (AL = 0; g5t = )
= ,(Ai(e,,sf;) =0; G'B‘,,‘<°°)‘|‘Pz(Ai =0; ol = o)
= z[PXo-Bf(Ai = 0; opr<<oo]+P, (AL = 0; opt = o)

< (1—%) P,(0 56 <00)+-P,(o58 = o)
—1—L P (rp<oeo).
n

Letting n /o0, we get P,(op+<<o0)=0 for any x&X—B*. In particular,
X—B"* is T,-invariant and finely open. Since B* is also finely open, we can
find by Theorme 2.2 and Lemma 3.1 a properly exceptional set N such that
X—B*—N and B*—N are M-invariant. The proof is complete.

By the above lemma we may asume that X —B* and X NB* are M-
invariant. For each >0, we let v,=au-+Iyw_gem. Then v, & M, Ato=
adyf +$: Iyo_pu(X,) ds and X O C XY B q.e.. By Proposition 3.4, we see
that the extended Dirichlet space (€*#, F,) can be defined as the &Ys-completion
of & and that &Y»-capacity is equivalent to &)-capacity. Note that the spaces
GYa and F = is independent of a>0. We denote & (resp. &) instead of F=
(resp. F,#). Without loss of generality, we shall assume that every element of
F is E;-quasi-continuous. We let Fox_y={uEF); u=0 q.e. on ¥Y}. This is
a closed subspace of &, and the Hilbert space (s, &) admits the orthogonal
decomposition

Tt = For 3 DI,
where ,_4[;‘” is the orthogonal complement of &, x_g with respect to &Y. Denote

by P'= the orthogonal projection on J(;“. Note that the space ﬂ;" and the pro-
jection PYs are independent of ®>>0. Indeed for any uE .9 ;: and 8>0,

E¥8(u, v) = E%(u, v)+H(B—a) (4, v)u =0, veEF.x 3,

because p(X—Y)=0 ([6]). Hence uej{;f‘. Conseqeuntly %' is also inde-

pendent of &>0. We may omit the index @ from »,. We notice that, for
f,eEF, P f=P" g if and only if f=g q.e. on Y.

We assume that g is non-trivial. Put Y=supp[u]. Define a symmetric
bilinear form on LA Y; u) by

G4 = {usIXY; p); u=v|y p-a.e. on Y for some veEF}
Y(u, u) = &~ PY v, P' ), for ucFs, vEF), s.taus = v|y p-ace. ,

(4.1) {
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where |y is the restriction of function v to ¥ and &'~*(v, v)=E""(v, v)—

(0, V)gn for vEF,. (E%, FY) is a well defined closed symmetric form on
LXY; p).

Theorem 4.2. (E%,F%) is the Dirichlet space on LAY u) associated with
the time changed process M'=(X,,, P,).cv. Here r,=inf {s>0; As>1}. (€%, FY%)
is Cy-regular and has the core C | y={usCy(Y); for some vEC, u=v|y}.

Proof. First we show that C|, is a core of (%, F%). For uc <y, there

exists v €S, such that u=o|, p.a.e.. Since C is a core of (€Y, F), there exists
{v,} CC such that lim &*(v,—v, v,—v)=0. By (4.1) we get

lirg Chu(u—v, |y, u—v,|y) = 111'3 E(P(v—w,), P'(v—1,))

< lim &(v—v,,v—v,)=0.

nyo0

For ue Cy(Y), there exists w ECy(X) such that u=w|y. Since w is uniformly
approximated by an element of C, % is uniformly approximated by an element

of Cly.
Next we show that, for u€ B,(Y) N LYY; p) and vEFY,
{R,, ueFy

(4.2) E ‘},(R, u, v) = (4, ),

where R, u(x)=E,,[S°° e~*4% u(X,) dA4], x€Y, is the reslovent kernel for M.
0
We introduce the kernel ¥, on X by

(4.3) Vaf(x) = E[S: e f(X)) dAY), € X, fEBY(X) .

Take now u€B,(Y)NLYY; ) and let # be any bounded Borel extension of u
to X. Then R,u=V,u|z. Applying Theorem 2.4 and Corollary 2.7 in [12]

to A} and A%, E,[S e 4 (X,)dAY], x€X is seen to be a quasi-continuous
0

version of 0-order potential U¥(#u) with respect to (£¥, F*). Note that only
the transience of (£, F*) is used and the irreducibility condition is irrelevant in
the proof of Theorem 2.4 and Corollary 2.7 in [12]. By Lemma 4.1 and the
identity P,(A%=0, for any t>0)=1 q.e. x&X—B", we conclude that V,# is a
quasi-continuous version of U¥(#y), and accordingly R, u€FY% and moreover
Vyd=P"'V,u8E9 ;. Let © be an element of F) such that v=0|y p-a.c..
Noting that " f=f p-a.e. on Y for each f €, we have

bR, u,v) = EYR, u, v)+a(R, u, v)u
= &MV, 1, P O)+a(P Valt, P O)u
= &'V, u, P 0) = E(U(mp), " 0)
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= (11, Py ﬁ)p. = (u, 'Z))y. .
The proof is complete.
For each v 3, (X), we denote Hy u(x)=E [u(Xoz)].

Corollary 4.3. Hyd is a quasi-continuous version of P* v for each vEF,
and the time changed Dirichlet space (T, E%) is given by

{ Y= {ucsL Y; p);u=v|y p-a.e on Y for some vEF}
¥(u, u) = E(Hyv, Hyv), for uc &%, vEF, s.t.u = v|y p-ae..

Proof. Since YCB* qe., we get Hyov(x)=E,[v(X.)]=0 g.e. x€X—B*.
Therefore the latter assertion holds. Next we show the first assertion. We may
assume that vE€SF, is non-negative. Put v,=vAmn. Noting that oy(w)=inf
{t>0; A%(w0)>0}, we get from (4.3)

Hypv,(x) = lim mV,, v,(x) .

On the other hand mV,, v,=%P" mV, v, is £’-convergent to P* v, EF, as m—>co
because mR,,(v,|y) is E%,-convergent to v, |, EFY as m—>oo. We get Hyv,=
P*v, q.e.. Since P v, is E¥-convergent to P*vE Hy as n—>oo, we have
Hzv = lim Hyv,
L gad

= lim Pv, = P’ v q.e..

The proof is complete.

By Theorem 4.2 we can get next result in the similar manner as in Section

4 in [12].
Theorem 4.4. (i) For a Borel set BCY,
% o-Cap(BNY) = 0 if and only if €,-Cap(BNY) = 0.

(ii) For any decreasing sequence of open sets A, €,-Cap(A,)\O implies E% ,-
Cap(A,NY)NO. Incase p< My E,-Cap is equivalent to Y ,-Cap.

(i) &¥-Cap(Y—T)=0.

(iii) There exists a Borel set N with u(N)=0 such that Y—Y CN and Y —N
is M*-invariant. And further the restricted process M*|y_x of the time changed
process M* is a Hunt process on Y-N associated with the rgeular Dirichlet space

(8;:: ;) M

5. Closable part of a pre-Dirichlet form on C|,

A non-negative definite symmetric bilinear form £ on C is called a pre-
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Dirichlet form if there exists a function ¢, satisfying condition (C.2) and
A (@e(), @e(#)) = A (u, u) for any ucC. For a closed set YV, Cly={uEC(Y);
u=t|y for some #EC} satisfies (C.2) and (C.1) with respect to the relative
topology on Y. A pre-Dirichlet form (A, C|y) is said to be closable on L¥Y; 1)
for a positive Radon measure y on Y with Y=supp [u] if A(u,,u,)—0, n—>0c0
whenever {u,} CC|y is A-Cauchy and #,—0 in L¥Y; ). A pre-Dirichlet
form (A° C|y) is said to be the closable part of (A, C|y) on LX(Y; p) if (A,°Cly)
is closable on LA(Y; p) and A%u, u) < A(u, u), uEC |y, and B(u, u) = A(u, u),
#EC( |y for any other pre-Dirichlet form (B, C|y) which is closable on L(Y; u)
and satisfies B(u, u) <A (4, u), uSC|y. In this section we study the closable
part of a pre-Dirichlet form on C |, when Y is the support of a measure p & M.

Let (£, F) ba a Cy-regular Dirichlet space as in Section 2. In general, a
function u defined m-a.e. is said to belong to the extended Dirichlet space &, if
there exists an €-Cauchy sequence {u,} CF such that u,—u, m-a.e. as n—oco.
In this case we define €(u, u):li_’rp“ E(uy,u,). E(u,u) does not depend on the

choice of {u,} ([16]). It is easy to see that u=<F, if and only if there exists an
&-Cauchy sequence {v,} CC such that v,—>u, m-a.e. as n—> oo, and that & («, )=

lim €(v,, v,) in this case.
n->o0

Lemma 5.1. (i) uE<, has quasi-continuous version @.

(ii) Ewvery normal contraction operates on (Z,, £).

(iii) For a Borel set B, let Hp ti(x)=E [#(X,5)]. Then Hy #EZF, for any
usSF, Furthermore

(5.1) E(u,v) = E(Hpit, Hy®)+E((I—Hj) &, (I—Hp) D), for any u,vEZF, .

Proof. For each geL)(X;m) with g>0 m-a.e., the finite measure gm
belongs to Hy,. Hence the gm-killed Dirichlet space (£4", F¢™) is transient by
Corollary 3.6. Denote by F¢" its extended Dirichlet space. By (4.1) the time

changed Dirichlet space (&€, &) on L X;gm) associated with the time changed
process M* by the PCAF A%’:St 2(X,) dt is given by
0

(5.2) {g il

E(u,v) = Ew,v), forany u,veF

and C is a core of (£, F). Now the extended Dirichlet space &F, of this time
changed Dirichlet space coincides with F,. We therefore get &F, N L¥(X; gm)=
F,NLAX; gm)=F=F" by [16]. For each uF, choose gEL(X; m), g>0
m-a.e. such that uL*(X; gm). Then ucF —=F¢* with this choice of g. Thus
(i) follows from C-regularity of (&, &) and (ii) follows from that every normal
contraction operates on (&, & ).
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Next we show (iii). For each Borel set B, we denote Gy py={usF; d=
0 q.e. on B}. Then & admits the orthogonal decomposition as follows: For
each p>0,
g' = g‘ X—B@ﬂ% )

where 4[4 is the orghogonal complement of Fx_, with respect to é ,=é +
p(*y *)gm- For each ucF4™ we denote H} #(x)=E,[e 45 6 (X,,)]. Letting
M!=(Y,, P,) and denoting by & its hitting time, we see that H% d(x)=
E,[e"";” %#(Y ;)] and hence H% 7 is the quasi-continuous version of P 43 u, where
P iy is the projection to Ji% ([6]). Hence we have

E(u,v) = E(HY 4, HY 0)+E((I—H}) &, (I—H%) 9), forany u,veFe".
Fix non-negative u, vEZ,. Choose g&L(X; m), g>>0, m-a.e. such that u, v E
5", Consider the time changed Dirichlet space (€, &) with this choice of g.
Put u,=uAn, v,=vAn. Then u,, v, €9 and U,—U, V>0, i—>c0 in 5’1.
Since B—B' is &-polar, H} u,—H% u, EF x_;. Hence we have

EHY %,—HS 4, Hy u,—H% @,)<E(H% 4,—H% 4,, H% @t,—H% 4,)
= EH} @,, Hb #,—HY @,)—E(HS i, H} #,—H$ @)
+(p—q) (HS @y, Hy G,—H% ) pm
= (¢—p) (H} #,, Hb @,—H% A)em— 0, 0,40,
namely, H% @, is £-Cauchy. We have H, #,€9 and
E(u,v,) = E(Hp i, Hy 0,)+E(I—Hp) B, (I—H;) D)

Since u, and v, are él-convergent to u, v as n—>oo, we arrive at (5.1). 'The proof
is complete.

For a finely closed Borel set F and a closed set Y with FCYCX, we in-
troduce a symmetric bilinear form (A, C|y) by

L)41"(1‘:‘2)) = 6>(}I}“u‘v}-ll"v) u,vEC[Y, u,QEC, u :uly,'l) =0Iy.

Suppose u;, u,&C and w;=u, on Y. Then Hpuy(x)=E,[u(X,,)]|=E.[u(X,,)]
=Hpuy(x). Hence (Af, C|y) is well-defined.

Lemma 5.2.
Ap(u, u) = inf {€(v,v); vEF,,u =D qe.on F},ucC|y.

Proof. For each u&C|y, we take vEF, such that u=> q.e. on F. Then
there exists a properly exceptional set N auch that u(x)=9(x) for x&F—N.
Since F—N is again finely closed Borel set of M|x-y, we have Hpf(x)=
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E[2(X,, )]=E:[0(X;,_,)]=Hp ?(x) for any x&X—N. Hence we get A
(u,u)=E(Hp 0, Hy D) <E(v,v). Moreover Hy #€ZF, attains the infimum, be-
case Hp @ is a bounded quasi-continuous function by virtue of Corollary 2.3.
The proof is complete.

Theorem 5.3. (Ar,Cly) is a pre-Dirichlet form.
Proof. Let @, be the function described in (C. 2). It suffices to show that
Ar(@e(®), pe()) = Ap(u, u), forany uelly.
For each u<C |y,

Ap(@e(18), pe(u)) = inf {E (v, v); vEF,, @e(1) = D q.c. on F}
< inf {€(@e(w), @e(w)); WEL,, @o(4) = @e(W) q.¢. on F}
=< inf {€(@e(w), @e(w)); wEF,, u = W q.e. on F}
< inf {€(w, w); wEZ,, u = W q.e. on F}
= Ap(u, u) .

The proof is complete.
Each & M is uniquely decomposed as follows:
u= potu wE My, py = Iyp for some & -polar set N .

1o is called the smooth part of g, (cf. Fukushima-Sato-Taniguchi [10]). We let
Y=supp [x], Yo=supp [u] and ¥Y;=q-supp[u,]. The &,-polar set N is unique
upto a p-negligible set. We may assume that NCY. Hence Y,UNCY.
We state the main theorem in this section.

Theorem 5.4. (i) (Agz,,Cly) is the closable part of (Ay, C|y) on L{Y; p).

(ii) Suppose that E,-Cap(Y—Yy)=0. Then (Ay,Cly) is closable on
LXY; p) and ¥ 0 (X©—B™) =6 q..

(i) Suppose (Ay, C|y) is closable on LY ; u) and X© —B*=¢ gq.e.. Then
&,-Cap(Y—7,)=0.

(iv) The closure (Aw,,C|y) on L*(Y; u) is associated with the Hunt process
M'=(X%, P%),cy such that

(@) “‘the law of X*. under P}’ ="the law of X*o. under P for any x€
Y,—N,
(6) Pi(X%=x, for any t=0)=1, for any xEN,

(¢) Y—Y,—N is an exceptional set for M*,
where M #g:(X’,‘ o, P) is the Hunt process associated with the time changed regular
Dirichlet space (Fy3, F¥9) on L (Y5 po)-

REMARK. By Theorem 4.4 the condition (a) and (c) can be replaced by
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(@) “‘the law of X" under P5”="the law of X" under P,” for any x< Y,—
N O—N >

(¢) Y—Yy—Ny,—N is an exceptional set of M*,

where M'=(X ¥, P,).c7, is the time changed process by the PCAF Ao and N, is

a properly exceptional set of My?.

To prove this theorem we prepare several lemmas as in [10].

Lemma 5.5. For a closed set XC X, we let & M with X=supp [#] and

(3, o ) be another Dirichlet form on LZ(X ; ™) with C| §CF.  Assume that & (u,u)
<Eé@,n),ucC|s,8C,u=n|%. Then for any E,-polar set N,

Cullyrng 4) = 1 Inayu, #-ae. on X for any ucLi(X; ),
a

where G, is the resolvent on LZ(X ; M) associated with é.
Proof. The proof is the same as in Lemma 4.1 in [10].

Lemma 5.6. Let (B,C|y) be a closable pre-Dirichlet form on LY ; ) such
that Bu,u)<EM,B),usC|y,8EC, u=u|y. Then (B,C|y) is well-defined on
LX(Y,; wo) and closable on L*(Yy; wy).

Proof. The proof is same as in Lemma 4.2 in [10].
Lemma 5.7. (Ay,,Cly) is the closable part of (Ay, Cly) on L(Y; u).

Proof. This follows from the description of Corollary 4.3 of the time
changed Dirichlet space as the proof of Lemma 4.3 in [10]. We give the proof
for completeness. We let vy=py+Ixc>-5% m. Then the py-killed Dirichlet
space (F%,E%) is transient. Let F,0 be the extended Dirichlet space of
(G, EM). We let Fx_y,={UEF,; u=0q.e. on Y. Let P% be the pro-
jection operator on the orthogonal complement of F,%_p, with respect to &%.
Since &%-Cauchy sequence is an &-Cauchy sequence, P ucF, for any ucF 2.
Note that

(5.3) Az, (u, u) = E(PYn, Pon), ucC|y, 8€C, u=1u|y .

Indeed if u, is non-trivial, (5.3) follows from Corollary 4.3. Suppose that yu, is
trivial. Then ¥Y,=¢ q.e.. We have F'%_y,=F* and E%(P u, P* #)=0. On
the other hand, P (op,=)=1 q.e. x€X. We get Hy u=0q.e.. Thus we
have (5.3).

If o is trivial, the closability of (Ag, C|y) on LAY; ) is clear. If g, is
non-trivial, the closability follows from (5.3) and Theorem 4.2. The inequality
Az (u, u) < Ay(u, u), uEC|y follows from (5.1) and Hy, Hy u=Hz,u, ucC|y.
Let (B, Cly) is a closable pre-Dirichlet form with B(u, u) < Ay(u, u) for u&C|y.
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Fix an f&C|y. Then there exists f €C such that f=f|y. Since C is dense in
G, there exists a sequence {f,} CC such that

lim £%(f,~ % f, fo—P% ) = 0.
We have
(5.4) {f.} is an &-Cauchy sequence and f, — f in LYYy} po) -
By (5.3), we see that
Az (f,f) = E(@* f, P* f) = lim E(f,, fa) -

It follows from (5.3) and (5.1) that {f,|,—f} CC|y is an B-Cauchy sequence
and f,—f—0 in LA Yy; wy). By Lemma 5.6, we have that B(f, |y—f,fs|lv—f)
—0. Therefore it holds that

B ) = im B(ful ful)S EmE(fun f) = Ar ().
The proof is complete.
Lemma 5.8. Suppose (Ay, C |y) is closable on LX(Y; u). Then
E(Hyu—Hy u, Hy #—Hy, 8) =0, forany ueC.
Proof. By Lemma 5.7 we have
E(Hyu,Hy)<E(Hy,u, Hy,8) forany #eC.
Hence by (5.1)

&(Hy u—Hgy, u, Hy a—Hy, )
= E(Hyu, Hy 8)—2E(Hy u, Hy, 0)+&(Hy, 8, Hy, 1)
=&(Hyu, Hy 0)—E(Hy, 8, Hy, 8)<0.
Lemma 5.9. Denote the closure of (Az,,Cly) on LX(Y; p) by (Az,,Cly).
Let {G5™+, a>0} (resp. {G%, a>>0}) be the resolvent on LYY ; ) (resp. LAY o} uo))
associated with (Ag,, C|y) (resp. (€43, F4)). Then

() GHo(lyu)=-LIyu, p-ae. foranyucI(Y; u).
a
(i) Gsou=G%u, upae. onY,forany ucI¥Y; p).
(iii) Ag,1-Cap(¥Y—Y,—N)=0.

Proof. (i) follows from Lemma 5.5. The proof of (ii) is same as in Lem-
ma 4.5 in [10]. For compact set K C Y—Y, in Y, there exists a relatively com-
pact open set G in Y and fE€(C|y such that GCY—Y, and 0= f<1, f=1 on
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K, f=0on Y—G. Then JAz(f,f)=0. By Lemma 5.7 we have

Az,1-Cap(K) = inf {Ag,1(4, u); uEC|y,u=1 on K}
= (L e=u(G).

Hence we can get Ap,1-Cap(B)< w(B) for any Borel set BC(Y—Y,), which
implies (iii). The proof is complete.

Proof of Theorem 5.4. (i) follows from Lemma 5.7 (iv) follows from
Lemma 5.9. We show (ii). Suppose &-Cap(Y—¥,)=0. Then (Ay,Cly)=
(A7, Cly). Hence (Ay,Cly) is closable on L Y; p) and ¥ N(X©—B*)=Y,N
(X©—B*)=¢ q.e., because ¥,CB*. Next we show (iii). Suppose X©— Bt
=¢ q.e. and (Ay, C|y) is closable on LA Y; u). Then vy=p, We get Hy #—
Hy, @, vpae.. By Lemma 5.8 we have &%(Hy, #—Hy, @, Hy #—Hy, #)=0 for
any #<C, namely Hy #=Hy, @ q.e. for any #€(. Hence we have that Y—Y,
is &;-polar. The proof is complete.
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