r-FOLD **C-SKEW-SYMMETRIC MULTILINEAR FORMS**

Teruo KANZAKI

(Received October 16, 1991)

Let R be a commutative ring with identity 1, and for an integer $r \ge 2$, ζ an element of R with $\zeta r = 1$. For an R-module M and an r-fold multilinear map θ on M, we shall say that θ is ζ -skew symmetric, if $\theta(x_1, x_2, x_3, \dots, x_r) =$ $\zeta \theta(x_2, x_3, \dots, x_r, x_1)$ holds for every elements $x_1, x_2, x_3, \dots, x_r \in M$. In this paper, we investigate the *R*-module with *r*-fold ζ -skew symmetric multilinear map. In \$1, we prove some fundamental properties on r-fold ζ -skew symmetric multilinear R-modules, which include ones on symmetric or cyclically-symmetric multilinear R-modules in $[H_2]$ or $[K_2]$. In §2, we give two examples of r-fold ζ -skew-symmetric multilinear *R*-modules, one is the determinants of matrices, and another is a 3-fold trace form of an *R*-algebra. In §3, we shall show that a finitely generated ζ -skew symmetric multilinear *R*-module is characterized by an r-fold ζ -skew-symmetric matrix, which is an expansion of [K₁]. In §4, for a 3fold 1-skew symmetric multilinear R-module $\langle [A] \rangle$ defined by a 3-fold 1-skew symmetric matrix A, we give some conditions for $\langle [A] \rangle$ to be an associative *R*-algebra by some multiplication on $\langle [A] \rangle$.

1. r-fold ζ -skew-symmetric multilinear R-module $(M, \theta; U)$

Let R be a commutative ring with identity 1, r a positive integer ($r \ge 2$), ζ an element of R with $\zeta^r = 1$, and U a faithful R-module.

DEFINITION For an R-module M, we shall call $(M, \theta; U)$ an r-fold ζ -skewsymmetric multilinear R-module, simply r-fold ζ -skew-symmetric R-module, if $\theta: M \times M \times \cdots \times M \to U; (x_1, x_2, x_3, \cdots, x_r) \longrightarrow \theta(x_1, x_2, x_3, \cdots, x_r)$ is an r-fold multilinear map of M into U satisfying $\theta(x_1, x_2, x_3, \cdots, x_r) = \zeta \theta(x_2, x_3, \cdots, x_r, x_1)$. If $\zeta = 1$, r-fold 1-skew-symmetric R-module is called an r-fold cyclically symmetric R-module. By θ^* and θ_* , one denotes the following R-homomorphisms:

$$\begin{array}{l} \theta_* \colon M \to \operatorname{Hom}_{\mathbb{R}}(\otimes_{\mathbb{R}}^{r-1}M, U); \ x \ \rightsquigarrow \to \theta(x, -) \ , \quad \text{and} \\ \theta_* \colon \otimes_{\mathbb{R}}^{r-1}M \to \operatorname{Hom}_{\mathbb{R}}(M, U); \ x_1 \otimes \cdots \otimes x_{r-1} \ \rightsquigarrow \to \theta(-, x_1, \cdots, x_{r-1}) \ , \end{array}$$

where $\otimes_{R}^{r-1} M$ and $\theta(x, -)$ denote $\otimes_{R}^{r-1} M = M \otimes_{R} M \otimes_{R} \cdots \otimes_{R} M$: the tensor product of r-1-copies of M over R, and $\theta(x, -)$: $\otimes_{R}^{r-1} M \to U$; $x_{2} \otimes \cdots \otimes x_{r} \land \lor \to \theta(x, x_{2}, \cdots, x_{r})$. $(M, \theta; U)$ is said to be *regular*, if θ^{*} is injective. If θ^{*} is in-

jective, and if θ_* is surjective, then $(M, \theta; U)$ is *nondegenerate*. Furthermore, $(M, \theta; U)$ is said to be finitely generated, projective, if M is finitely generated, projective over R, respectively. If U=R, $(M, \theta; R)$ is denoted by (M, θ) .

Lemma 1. Let $(M, \theta; U)$ be an r-fold ζ -skew-symmetric finitely generated projective R-module. Then, $(M, \theta; U)$ is nondegenerate if and only if θ_* is surjective. In particular, an r-fold ζ -skew-symmetric R-module (M, θ) is nondegenerate and finitely generated projective over R if and only if there exist $x_{2,j}, x_{3,j}, \dots, x_{r,j},$ $z_j \in M; j=1, 2, \dots, n$ with $x = \sum_{j=1}^n \theta(x, x_{2,j}, x_{3,j}, \dots, x_{r,j}) z_j$ for all $x \in M$, (cf. [H₂]; Lemma 1.1).

Proof. Let $(M, \theta; U)$ be an *r*-fold ζ -skew-symmetric finitely generated projective *R*-module. We shall show that if θ_* is surjective then θ^* is injective. Suppose θ^* is surjective and $x \in \text{Ker } \theta^*$. Since *M* is finitely generated projective over *R*, there are $\psi_1, \psi_2, \dots, \psi_m \in \text{Hom}_R(M, R)$ and $y_1, y_2, \dots, y_m \in M$ such that $x = \sum_{i=1}^m \psi_i(x) y_i$. For any $u \in U$, $\psi_k u = \psi_k(-) u$ is contained in $\text{Hom}_R(M, U)$ $= \text{Im } \theta_*$, hence there is a $\sum_i x_{i2} \otimes x_{i3} \otimes \dots \otimes x_{ir} \in \bigotimes_R^{r-1} M$ with $\theta_*(\sum_i x_{i2} \otimes x_{i3} \otimes \dots \otimes x_{ir}) = \psi_k(-) u$. $\theta(x, -) = 0$ implies that $\psi_k(x) u = \sum_{i=1}^i \theta(x, x_{i2}, \dots, x_{ir}) = 0$ for all $u \in U$, so $\psi_k(x) = 0$; $k = 1, 2, \dots, m$. Hence we get $x = \sum_{i=1}^m \psi_i(x) y_i = 0$, and θ^* is injective. The second part of the lemma is easy.

For an r-fold ζ -skew-symmetric R-module $(M, \theta; U)$, we can define quite similar notions "orthogonal sum" and "the center of $(M, \theta; U)$ " to ones in $[H_2]$. Let L and N be R-submodules of M. If $\theta(x, y, z_3, \dots, z_r) = \theta(y, x, z_3, \dots, z_r) = 0$ holds for all $x \in L$, $y \in N$ and $z_3, \dots, z_r \in M$, then L and N are said to be orthogonal, and L+N is denoted by $L \perp N$, furthermore, N^{\perp} denotes $\{x \in M \mid$ $\theta(x, y, z_3, \dots, z_r) = \theta(y, x, z_3, \dots, z_r) = 0; \forall y \in N, \forall z_3, \dots, z_r \in M\}$. $Z(M, \theta; U)$ $= \{f \in \text{Hom}_R(M, M) \mid \theta(f(x_1), x_2, x_3, \dots, x_t) = \theta(x_1, f(x_2), x_3, \dots, x_r) \text{ for all } x_1, x_2, \dots, x_r \in M\}$ is called the center of $(M, \theta; U)$.

Lemma 2. Let $(M, \theta; U)$ be a regular r-fold ζ -skew-symmetric R-module with $r \geq 3$.

(1) (cf $[H_2]$; 2.2, 2.3, 2.4) Let L and N be R-submodules of M such that $M=L \perp N$. Then, $(N, \theta|_N, U)$ is regular, $L \cap N=\{0\}$ and $L=N^{\perp}$ hold. If L' and N' are another R-submodules of M with $M=L' \perp N'$, then L' is decomposed as follows; $L'=(L' \cap L) \perp (L' \cap N)$. Therefore, if $(M, \theta; U)$ has an orthogonal decomposition of a finite number of indecomposable components, then the indecomposable components are uniquely determined up to isomorphisms. If $(M, \theta; U)$ is nondegenerate, so is $(N, \theta|_N, U)$.

(2) (cf. [H₂]; 4.1) $Z(M, \theta; U)$ is a commutative R-algebra, and $(M, \theta; U)$ is orthogonally indecomposable if and only if $Z(M, \theta; U)$ has no idempotents without 0 and 1.

(3) Let $(M', \theta'; U)$ another r-fold ζ -skew-symmetric R-module, $f: M \rightarrow M'$ an R-

homomorphism satisfying $\theta'(f(x_1), f(x_2), f(x_3), \dots, f(x_r)) = \theta(x_1, x_2, x_3, \dots, x_r)$ for all $x_1, x_2, x_3, \dots, x_r \in M$. If $(M, \theta; U)$ is regular, then f is injective.

Proof. Some parts of this lemma are similarly proved to the proof of [H₂]. (1): Suppose $M = L \perp N$. First, we show $M = L \oplus N$. For any $x \in L \cap N$ and $y_2, y_3, \dots, y_r \in M$, we have $y_2 = y'_2 + y''_2$ for some $y'_2 \in L$ and $y''_2 \in N$, and $\theta(x, y_2, y_3, \dots, y_r) = \theta(x, y'_2, y_3, \dots, y_r) + \theta(x, y''_2, y_3, \dots, y_r) = 0$, so x = 0 and $L \cap N$ = {0}. To see that $(N, \theta|_N; U)$ is regular, suppose $x \in \text{Ker}(\theta|_N)^*$. For any $y_i = y'_i + y''_i \in M$ with $y'_i \in L$ and $y''_i \in N$; $i = 2, 3, \dots, r, \theta(x, y_2, y_3, \dots, y_r) =$ $\theta(x, y'_{2}, y_{3}, \dots, y_{t}) + \theta(x, y''_{2}, y_{3}, \dots, y_{t}) = \theta(x, y''_{2}, y_{3}, \dots, y_{t}) = \zeta \ \theta(y''_{2}, y_{3}, \dots, y_{t}, x)$ $= \zeta \theta(y_2'', y_3', \dots, y_r, x) + \zeta \theta(y_2'', y_3'', \dots, y_r, x) = \zeta \theta(y_2'', y_3'', \dots, y_r, x) = \dots = \zeta^{r-1}$ $\theta(y_r'', x, y_2'', y_3'', \dots, y_{r-1}') = \theta(x, y_2'', y_3'', \dots, y_r'') = 0$, hence x = 0. To see $N^{\perp} = L$, suppose $x \in N^{\perp}$ and x = x' + x'' with $x' \in L$, $x'' \in N$. For any $y_i = y'_i + y''_i \in M$ with $y'_i \in L, y''_i \in N; i=2, 3, \dots, r$, we have $\theta(x'', y_2, y_3, \dots, y_r) = \theta(x'', y''_2, y_3, \dots, y_r)$ $=\theta(x, y_2'', y_3, \dots, y_r)=0$, hence x''=0, that is, $x=x'\in L$. Suppose L' and N' are another R-submodules of M with $M = L' \perp N'$. Then, from the above statement, we get $N' = L'^{\perp}$ and $L' = N'^{\perp}$. To see $L' = (L' \cap L) + (L' \cap N)$, suppose x is any element in L', and x=x'+x'' with $x'\in L$, $x''\in N$. For any $y\in N'$ and $z_i\in M$ written as y=y'+y'' and $z_i=z'_i+z''_i$ for $y', z'_i\in L$ and $y'', z''_i\in N$, $i=3, \dots, r$, we have $\theta(x', y, z_3, \dots, z_r) = \theta(x', y' + y'', z'_3 + z''_3, \dots, z'_r + z''_r) = \theta(x', y', z'_3 + z''_3, \dots, z'_r + z''_r)$ $\cdots, z'_r + z''_r) = \zeta \ \theta(y', z'_3 + z''_3, \cdots, z'_r + z''_r, x') = \zeta \ \theta(y', z'_3, \cdots, z'_r + z''_r, x') = \cdots =$ $\theta(x', y', z'_3, \dots, z'_r) = \theta(x', y', z'_3, \dots, z'_r) + \theta(x'', y', z'_3, \dots, z'_r) + \theta(x', y'', z'_3, \dots, z'_r)$ $z'_3, \dots, z'_r = \zeta \theta(y'', z'_3, \dots, z'_r, x'') = 0.$ Hence x' is in $N'^{\perp}(=L')$, that is, $x' \in \mathcal{I}$ $L' \cap L$. Therefore, x'' = x - x' is also in $L' \cap N$, and we get $L' = (L' \cap L) \perp$ $(L' \cap N)$. In the last, we suppose that $(M, \theta; U)$ is nondegenerate. $M = L \oplus N$ means that for any $f \in \operatorname{Hom}_{\mathbb{R}}(N, U)$, there is an $F \in \operatorname{Hom}_{\mathbb{R}}(M, U)$ such that $F|_N = f$. There exists an element $\sum_i x_{i,2} \otimes x_{i,3} \otimes \cdots \otimes x_{i,r}$ in $\bigotimes_R^{r-1} M$ such that $F(x) = \sum_{i} \theta(x, x_{i,2}, x_{i,1}, \dots, x_{i,r})$ for every $x \in M$. If $x \in N$ and $x_{i,2} = x'_{i,2} + x''_{1,2}$ for $x'_{i,2} \in L, x''_{i,2} \in N$, then $f(x) = \sum_i \theta(x, x_{i,2}, x_{i,3}, \cdots, x_{i,r}) = \sum_i \theta(x, x''_{i,2}, x_{i,3}, \cdots, x_{i,r})$ $= \sum_{i} \zeta \ \theta(x_{i,2}', x_{i,3}, \cdots, x_{i,r}, x) = \cdots = \sum_{i} \theta(x, x_{1,2}', x_{1,3}', \cdots, x_{1,r}') = (\theta \mid_{N})_{*} (\sum_{i} x_{1,2}' \otimes x_{i,3}')$ $\otimes \cdots \otimes x'_{i,r}(x)$, and $\sum_{i} x'_{i,2} \otimes x'_{i,3} \otimes \cdots \otimes x'_{i,r} \in \bigotimes_{R}^{r-1} N$. Hence $(N, \theta|_{N}, U)$ is nondegnerate. (2): For any $f, g \in \mathbb{Z}(M, \theta; U), \theta(f(g(x_1)), x_2, x_3, \dots, x_r)$ is computed as follows: $\theta(f(g(x_1)), x_2, x_3, \dots, x_r) = \theta(g(x_1), f(x_2), x_3, \dots, x_r) = \theta(x_1, g(f(x_2)), x_3, \dots, x_r)$..., x_r) and $\theta(g(x_1), f(x_2), x_3, \dots, x_r) = \zeta \theta(f(x_2), x_3, \dots, x_r, g(x_1)) = \zeta \theta(x_2, f(x_3), \dots, x_r)$ $x_r, g(x_1) = \zeta^2 \theta(f(x_3), \dots, x_r, g(x_1), x_2) = \dots = \zeta^{r-1} \theta(f(x_r), g(x_1), x_2, \dots, x_{r-1}) = \zeta^r$ $\theta(g(x_1), x_2, x_3, \cdots, x_{r-1}, f(x_r)) = \theta(x_1, g(x_2), x_3, \cdots, x_{r-1}, f(x_r)) = \zeta^{-1} \theta(f(x_r), x_1, g(x_2), x_1, y_1, y_2, y_2)$ $(x_3, \dots, x_{r-1}) = \zeta^{-1} \theta(x_r, f(x_1), g(x_2), x_3, \dots, x_{r-1}) = \theta(f(x_1), g(x_2), x_3, \dots, x_{r-1}, x_r) = \theta$ $(g(f(x_1)), x_2, x_3, \dots, x_{r-1}, x_r)$. Hence, fg=gf, and fg is contained in $\mathbb{Z}(M, \theta; U)$. If $(M, \theta; U)$ has non trivial orthogonal decomposition $M = L \perp N$, the projection $e: N \rightarrow M$ is a non trivial idempotent in $Z(M, \theta; U)$. Conversely, if $Z(M, \theta; U)$ has an idempotent e different from 0 and 1, then we get $M = e(M) \perp (1-e)(M)$.

(3): f(x)=0 implies that $\theta(x, x_2, x_3, \dots, x_r)=\theta(f(x), f(x_2), f(x_3), \dots, f(x_r))=0$ for all $x_2, x_3, \dots, x_{r-1} \in M$, that is, x=0, since θ is regular.

2. Examples

EXAMPLE 1. Let $\theta: M \times M \times \cdots \times M \rightarrow U$; $(x_1, x_2, \cdots, x_r) \longrightarrow \theta(x_1, x_2, \cdots, x_r)$ be an *r*-fold alternative multilinear map, that is, $\theta(x_1, x_2, \cdots, x_i, x_{i+1}, \cdots, x_r) = -\theta(x_1, x_2, \cdots, x_{i+1}, x_i, \cdots, x_r)$ holds for $i = 1, 2, \cdots, r-1$. Then, for $\zeta = (-1)^{r-1}$, $(M, \theta; U)$ is an *r*-fold ζ -skew-symmetric *R*-module.

For example, for $n \ge r$, let \mathbb{R}^n be free R-module of rank n consisting of nrows (a_1, a_2, \dots, a_n) for all $a_i \in \mathbb{R}$. For $a_i = (a_{i1}, a_{i2}, \dots, a_{in}) \in \mathbb{R}^n$; $i = 1, 2, \dots, r$, let $A = (a_{ij})$ be an $r \times n$ -matrix with (i, j)-entry a_{ij} for $i=1, 2, \dots, r$ and $j=1, 2, \dots$..., n. Let L be a non-empty set of r-rows (k_1, k_2, \dots, k_r) of integers with $1 \leq k_1$ $< k_2 < \cdots < k_r \leq n$. For a $(k_1, k_2, \cdots, k_r) \in L$, we denote by det $(A(k_1, k_2, \cdots, k_r))$ the determinant of an $r \times r$ -submatrix $A(k_1, k_2, \dots, k_r) = (a_{i,k_i})$ of A consisting of k_1 -column, k_2 -column, \cdots , k_r -column of A. Then, the sum $\Sigma_L \det(A(k_1, k_2, \cdots, k_r))$ (k_r) of det $(A(k_1, k_2, \dots, k_r))$ for all $(k_1, k_2, \dots, k_r) \in L$ defines an r-fold multilinear form $D_L: \mathbb{R}^n \times \mathbb{R}^n \times \cdots \times \mathbb{R}^n \to \mathbb{R}; (a_1, a_2, \cdots, a_r) \land \to \Sigma_L \det(\mathbb{A}(k_1, k_2, \cdots, k_r))$. Then, (R^n, D_L) is an r-fold ζ -skew-symmetric R-module. If for every i with $1 \leq i \leq n$, there is a unique element (k_1, k_2, \dots, k_r) in L with $i = k_i$ for some $1 \le j \le r$, (necessarily, *n* is a multiple of *r*), then (R^*, D_L) is nondegnerate. Because, for each *i*-th projection $p_i: \mathbb{R}^n \to \mathbb{R}; (a_1, a_2, \dots, a_n) \to a_i$, if (k_1, k_2, \dots, k_r) is unique element of L with $i=k_i$, $(-1)^{j+1}e(k_1)\otimes\cdots\otimes e(k_{j-1})\otimes e(k_{j+1})\otimes\cdots\otimes e(k_r)$ $(\in \otimes_R^{r-1})$ R^{n}) satisfies $D_{L}(a, (-1)^{j+1} e(k_{1}), \dots, e(k_{j-1}), e(k_{j+1}), \dots, e(k_{r})) = a_{i}$ for all a = $(a_1, a_2, \dots, a_n) \in \mathbb{R}^n$. Hence, we get $p_i = (D_L)_* ((-1)^{j+1} e(k_1) \otimes \dots \otimes e(k_{j-1}) \otimes e$ $(k_{i+1}) \otimes \cdots \otimes e(k_r)$, where $e(1) = (1, 0, \dots, 0), e(2) = (0, 1, 0, \dots, 0), \dots, e(n) = (0, 1, 0, \dots, 0)$..., 0, 1) ($\in \mathbb{R}^n$). Therefore, $(D_L)_* : \bigotimes_R^{r-1} \mathbb{R}^n \to \operatorname{Hom}_R(\mathbb{R}^n, \mathbb{R})$ is surjective, so by Lemma 1 (\mathbb{R}^n, D_L) is nondegenerate. Particularly, if $n = r, (\mathbb{R}^r, D)$ is nodegenerate.

EXAMPLE 2. Let A be a non commutative R-algebra with identity 1 such that A is a finitely generated projective R-module with a projective dual basis $\{b_i \in A \text{ and } \psi_i \in \operatorname{Hom}_R(A, R); i=1, 2, \dots, n\}$, i.e. $x = \sum_{i=1}^n \psi_i(x) b_i$ for all $x \in A$. The trace map $\operatorname{Tr}_{A/R}$ of A is defined by $\operatorname{Tr}_{B/R}: A \to R; x \to \sum_{i=1}^n \psi_i(x)$. Then, one reminds that the bilinear form $B_A: A \times A \to R: (x, y) \to \operatorname{Tr}_{A/R}(xy)$ is symmetric, and it does not depend on choice of projective dual basis. The symmetric bilinear R-module (A, B_A) is denoted by $\langle A \rangle$. Furthermore, the 3-fold multilinear form $\Gamma_A: A \times A \to R; (x, y, z) \to \operatorname{Tr}_{A/R}(xyz)$ defines a 3-fold cyclically symmetric R-module (A, Γ_A) which is denoted by $\langle A \rangle$.

Proposition 1. Let A be an R-algebra with identity 1 such that A is finitely generated and projective over R.

(1) $\langle A \rangle$ is regular if and only if $\langle A \rangle$ is regular.

(2) The following conditions are equivalent:

(1) There exists a $\Sigma_i a_i \otimes b_i \in A \otimes_{\mathbb{R}} A$ such that $\Sigma_i b_i a_i = 1$ and $\Sigma_i x a_i \otimes b_i = \Sigma_i b_i \otimes a_i x$ for all $x \in A$ hold,

(2) There exists a $\sum_i a_i \otimes b_i \in A \otimes_R A$ such that $\sum_i b_i a_i = \sum_i a_i b_i = 1$ and $\sum_i x a_i \otimes b_i = \sum_i a_i \otimes b_i x$ for all $x \in A$ hold,

(3) $\langle A \rangle = (A, B_A)$ is nondegenerate,

(4) $\langle\!\langle A \rangle\!\rangle = (A, \Gamma_A)$ is nondegenerate.

(3) If $\langle\!\langle A \rangle\!\rangle$ is regular, then the center $\mathbf{Z}(\langle\!\langle A \rangle\!\rangle)$ of $\langle\!\langle A \rangle\!\rangle$ coincides with $\{f_a : A \to A; x \land \land \land \to xa \mid a \in \mathbf{Z}(A)\}$, where $\mathbf{Z}(A)$ denotes the center of algebra A.

(4) (cf. [W]; Theorem 3) Let B be an another R-algebra with identity 1 which is finitely generated projective over R, and f: $A \rightarrow B$ a surjective and additive Rhomomorphism satisfying $\Gamma_B(f(x), f(y), f(z)) = \Gamma_A(x, y, z)$ for all $x, y, z \in A$. If $\langle A \rangle$ or $\langle B \rangle$ is regular, then f(1) is an inversible element in $\mathbb{Z}(B)$, and a map g: $A \rightarrow B$; $a \wedge N \rightarrow f(a) f(1)^{-1}$ is an R-algebra homomorphism. In particular, if f(1)=1, then f: $A \rightarrow B$ is an R-algebra homomorphism.

Proof. (1) is obvious: $\langle\!\langle A \rangle\!\rangle$ is regular if and only if $\operatorname{Tr}_{A/R}(x \cdot -) = 0$ implies x=0, that is, $\langle A \rangle$ is regular. (2): (1) \Rightarrow (2): Since $\sum_i xa_i \otimes b_i = \sum_i b_i \otimes a_i x$ in $A \otimes_{\mathbb{R}} A$ holds for all $x \in A$, we get $\sum_i a_i \otimes b_i = \sum_i b_i \otimes a_i$, $\sum_i a_i b_i = \sum_i b_i a_i (=1)$ and $\Sigma_i x a_i \otimes b_i = \Sigma_i b_i \otimes a_i x = (\Sigma_i b_i \otimes a_i) (1 \otimes x) = (\Sigma_i a_i \otimes b_i) (1 \otimes x) = \Sigma_i a_i \otimes b_i x$ for any $x \in A$. (2) \Rightarrow (3): The condition that $\sum_i xa_i \otimes b_i = \sum_i a_i \otimes b_i x$ in $A \otimes_R A$ holds for every $x \in A$, means that $\sum_i a_i \operatorname{Tr}_{A/R}(b_i x) = x(\sum_i b_i a_i)$ holds for every $x \in A$. Because, $\sum_{i} a_i \operatorname{Tr}_{A/R}(b_i x) = \sum_{i,j} a_i \psi_j(b_i x b_j)$, and $\sum_{i,j} x b_j a_i \otimes \psi_j(b_i) = \sum_{i,j} a_i \otimes \psi_j$ $(b_i x b_j)$ in $A \otimes_{\mathbb{R}} A$ implies $\sum_{i,j} a_i \psi_j(b_i x b_j) = \sum_{i,j} x b_j a_i \psi_j(b_i) = \sum_{i,j} x \psi_j(b_i) b_j a_i =$ $x(\Sigma_i, b_i, a_i)$, Since $\Sigma_j, b_i, a_i=1$, we get $x=\Sigma_j, a_j$ $\operatorname{Tr}_{A/R}(b_j, x)$ and $\psi_i(x)=\psi_i(\Sigma_j, a_j)$ $\operatorname{Tr}_{A/R}(b_j x) = \sum_j \psi_i(a_j) \operatorname{Tr}_{A/R}(b_j x) = \operatorname{Tr}_{A/R}((\sum_j \psi_i(a_j) b_j) \cdot x) = B_A((\sum_j \psi_i(a_j) b_j), x)$ for all $x \in A$, so $(B_A)_*$: $A \to \operatorname{Hom}_R(A, R)$: $x \leftrightarrow \to B_A(-, x)$ is surjective, that is, $\langle A \rangle$ is nondegenerate. (3) \Rightarrow (1): Since $(B_A)_*: A \rightarrow \operatorname{Hom}_{\mathbb{R}}(A, \mathbb{R})$ is surjective, there is an $a_i \in A$ with $\psi_i(-) = \operatorname{Tr}_{A/R}(a_i \cdot -)$, and $x = \sum_j \operatorname{Tr}_{A/R}(x \cdot a_j) b_j$ hold for any $x \in A$. In particular, we have $1 = \sum_i \operatorname{Tr}_{A/R}(a_i) b_i = \sum_{i,j} \psi_j(a_i, b_j) b_j = \sum_{i,j} \psi_i(a_i, b_j) b_j = \sum_{i,j} \psi_i(a_i,$ $\operatorname{Tr}_{A/R}(a_i b_j a_j) b_i = \sum_{i,j} \operatorname{Tr}_{A/R}(b_j a_j a_i) b_i = \sum_j b_j a_j$. On the other hand, we have $\sum_{i} x a_{i} \otimes b_{i} = \sum_{i,j} \operatorname{Tr}_{A/R}(x a_{i} \cdot a_{j}) b_{j} \otimes b_{j} = \sum_{i,j} b_{j} \otimes \operatorname{Tr}_{A/R}(x a_{i} \cdot a_{j}) b_{i} = \sum_{i,j} b_{j} \otimes \operatorname{Tr}_{A/R}(x a_{j} \cdot a_{j}) b_{j} \otimes \operatorname{Tr}_{A/R}$ $(a_j \cdot x \cdot a_i) \cdot b_i = \sum_j b_j \otimes a_j \cdot x \text{ for any } x \in A.$ (3) \Leftrightarrow (4): Since $(B_A)_*: A \rightarrow \operatorname{Hom}_{\mathbb{R}}(A, \mathbb{R}):$ $x \longrightarrow \operatorname{Tr}_{A/R}(-\cdot x)$ is surjective if and only if $(\Gamma_A)_* : A \otimes_R A \to \operatorname{Hom}_R(A, R); x \otimes y$ $\longrightarrow \operatorname{Tr}_{A/R}(-\cdot xy)$ is surjective, using (1) we get that $\langle A \rangle = (A, B_A)$ is nondegnerate if and only if $\langle\!\langle A \rangle\!\rangle = (A, \Gamma_A)$ is nondegnerate. (3): Suppose that $\langle\!\langle A \rangle\!\rangle$ is regular and $f \in \mathbb{Z}(\langle\!\langle A \rangle\!\rangle)$. Since $\Gamma_A(f(x), y, z) = \Gamma_A(x, f(y), z)$ holds for all x, y, z $\in A$, f satisfies $\operatorname{Tr}_{A/R}(f(xy) zw) = \operatorname{Tr}_{A/R}(xyf(z) w) = \operatorname{Tr}_{A/R}(yf(z) wx) = \operatorname{Tr}_{A/R}(f(y))$ zwx)=Tr_{A/R}(xf(y) zw) and $\Gamma_A(f(xy)-xf(y), z, w)=0$ for all $x, y, z, w \in A$, that is, f(xy) = xf(y). Therefore, f(x) = xf(1) for every $x \in A$. Put f(1) = a, then $f=f_a$. Therefore, we have $\Gamma_A(ay, z, x) = \operatorname{Tr}_{A/R}(ayzx) = \operatorname{Tr}_{A/R}(xayz) = \Gamma_A(xa, y, z)$ $=\Gamma_{A}(f(x), y, z) = \Gamma_{A}(x, f(y), z) = \Gamma_{A}(x, ya, z) = \operatorname{Tr}_{A/R}(xyaz) = \operatorname{Tr}_{A/R}(yazx) = \Gamma_{A}(x, ya, z) = \Gamma_{A}(x, ya, z) = \operatorname{Tr}_{A/R}(xyaz) = \Gamma_{A}(x, ya, z) =$ (ya, z, x) for every $x, y, z \in A$, so ay = ya for all $y \in A$, hence $a \in \mathbb{Z}(A)$. The

converse is easy. (4): Let $f: A \to B$ be a surjective and additive *R*-homomorphism satisfying $\Gamma_B(f(x), f(y), f(z)) = \Gamma_A(x, y, z)$ for all $x, y, z \in A$. There is an element e in A such that f(e)=1. Then, we have $\operatorname{Tr}_{B/R}(f(xy)f(z)) = \operatorname{Tr}_{B/R}(f(e)f(xy)f(z))$ $= \Gamma_B(f(e), f(xy), f(z)) = \Gamma_A(e, xy, z) = \operatorname{Tr}_{A/R}(exyz) = \Gamma_A(ex, y, z) = \Gamma_B(f(ex), f(y), f(z)) = \operatorname{Tr}_{B/R}(f(ex)f(y)f(z))$, so $\operatorname{Tr}_{B/R}(\{f(ex)f(y)-f(xy)\}\}) = 0$ for all $b \in B$. If $\langle B \rangle$ is regular, then so is $\langle B \rangle$, and we have f(xy)=f(ex)f(y). Similarly, $\operatorname{Tr}_{B/R}(f(xy)f(z)) = \operatorname{Tr}_{B/R}(f(xy)f(e)f(z)) = \Gamma_B(f(xy), f(e), f(z)) = \Gamma_A(xy, e, z) = \operatorname{Tr}_{A/R}(xyez) = \Gamma_A(x, ye, z) = \Gamma_B(f(x), f(ye), f(z)) = \operatorname{Tr}_{B/R}(f(x)f(ye)f(z))$, we have f(xy)=f(x)f(ye). Hence, we get $f(e^2)f(z)=f(z)f(e^2)$ and $f(xy)=f(x)f(y)f(e^2)$ for any $x, y, z \in A$, so $f(1)^{-1}=f(e^2) \in \mathbb{Z}(A)$ and $f(xy)f(e^2)=f(x)f(e^2)f(y)f(e^2)$ hold for any $x, y \in A$. Therefore, $g: A \to B$: $a \lor \to f(a)f(1)^{-1}$ is an algebra homomorphism. If $\langle A \rangle$ is regular, then by Lemma 2: (3), $f: \langle A \rangle \to \langle B \rangle$ is an isomorphism. By the above statement, $g: A \to B$: $a \lor \to f(a)f(1)^{-1}$ is an algebra.

REMARK I. 1) The conditions in (2) of Proposition 1 mean that A is strongly separable over R in the meaning of $[K_2]$, which is equivalent to that A is separable over R and $A = \mathbb{Z}(A) \oplus [A, A]$, where $[A, A] = \{\sum_i (a_i \ b_i - b_i \ a_i) | a_i, \ b_i \in A\}$. 2) For symmetric algebras A and B over a field, Watanabe [W] proved (4) in Proposition 1.

3. Matrix representation of ζ -skew-symmetric multilinear *R*-module

For any positive integer m, $U^{m}(\text{or } R^{m})$ denotes an R-module consisting of m-rows (u_1, u_2, \dots, u_m) with $u_i \in U$, $(\text{or } u_i \in R)$.

DEFINITION. For integers n and $r (\geq 2)$, let F(r, n) be the set of all mappings of $\{1, 2, \dots, r\}$ into $\{1, 2, \dots, n\}$. Then, a set $A = (a_f)_{f \in F(r,n)} = (a_{(f(1),\dots,f(r))})_{f \in F(r,n)}$ of elements $a_f \in U$ which suffixed by elements $f = (f(1), \dots, f(r))$ of F(r, n), is called an *r*-fold matrix of degree n, or simply say n'-matrix, over U, (in the case U = R, it was defined in [K, W]). We shall say that $A = (a_f)_{f \in F(r,n)}$ is ζ -skew-symmetric, if it satisfies $a_{(f(1),f(2),f(3),\dots,f(r))} = \zeta a_{f(2),f(3),\dots,f(r),f(1)}$) for every $f = (f(1), \dots, f(r)) \in F(r, n)$. If $\zeta = 1$, "1-skew-symmetric" will be said "cyclically symmetric". Let $A = (a_f)_{f \in F(r,n)}$ be an n'-matrix, and let $b = (b_1, b_2, \dots, b_n)$ be any element in R^n . For $1 \leq k \leq r, b_{(k)}A$ denotes an n^{r-1} -matrix $(c_g)_{g \in F(r-1,n)}$ with $c_g = \sum_{i=1}^n b_i a_{(g(1),\dots,g(k-1),i,g(k),\dots,g(r-1))}$, and $b_{(1)}A$ is denoted by bA. If A is regarded as an ordinary $h \times n^{r-1}$ -matrix, bA is an element of $U^{n^{r-1}}$. Rⁿ $A = \{bA \mid b \in R^n\}$ becomes a finitely generated R-submodule of $U^{n^{r-1}}$. We note that for any $b_i = (b_{i1}, b_{i2}, \dots, b_{in}) \in R^n (i=1, 2, \dots, r)$ and an n^r -matrix $A = (a_f)_{f \in F(r,n)}, we can define a product <math>b_{1(1)}(b_{2(2)}(\dots(b_{r(r)}A))) = \sum_{f \in F(r,n)} b_{1f(2)} b_{2f(2)} \dots b_{r(r)} a_f$.

For a given ζ -skew-symmetric *n'*-matrix $A = (a_f)_{f \in F(r,n)}$ over U, we can de-

fine a ζ -skew-symmetric multilinear map θ_A : $\mathbb{R}^n A \times \mathbb{R}^n A \times \cdots \times \mathbb{R}^n A \to U$ as follows: For $(b_1A, b_2A, \dots, b_rA) \in \mathbb{R}^n A \times \mathbb{R}^n A \times \cdots \times \mathbb{R}^n A, \theta_A(b_1A, b_2A, \dots, b_rA)$ $= b_{1(1)} (b_{2(2)} (\cdots b_{r(r)} A))) = \sum_{f \in F(r,n)} b_{1f(1)} b_{2f(2)} \cdots b_{rf(r)} a_f (= \sum_{i,j,\dots,i^{n-1}} b_{1i} b_{2j} \cdots b_{rk} \cdot a_{(i,j,\dots,k)})$. This is well defined. Because, if $b_A A = b'_A A$ for $b_k = (b_{k1}, b_{k2}, \dots, b_{kn})$ and $b'_k = (b'_{k1}, b'_{k2}, \dots, b'_{kn})$ in \mathbb{R}^n , then $\sum_{i=1}^{n-1} b_{k,i} a_{(i,g(k+1)),\dots,g(r),g(1),\dots,g(k-1))} = \sum_{i=1}^{n-1} b_{k,i} a_{(i,g(k+1)),\dots,g(r),g(1),\dots,g(k-1))}$ for every $g \in F(r, n)$, hence we get $b_{1(1)} (b_{2(2)} (\cdots (b_{k(k)} (\cdots b_{r(r)} A))) =$ $\sum_{g \in F(r,n)} b_{1g(1)} b_{2g(2)} \cdots b_{kg(k)} \cdots b_{rg(r)} a_{(g(1),\dots,g(r),g(1),\dots,g(k-1))} = \sum_{g \in F(r,n)} b_{1g(1)} b_{2g(2)} \cdots b'_{kg(k)} \cdots b_{rg(r)} a_{(g(k),\dots,g(r),g(1),\dots,g(k-1))} =$ $\sum_{g \in F(r,n)} b_{1g(1)} b_{2g(2)} \cdots b'_{kg(k)} \cdots b_{rg(r)} a_{(g(k),\dots,g(r),g(1),\dots,g(k-1))} =$ $\sum_{g \in F(r,n)} b_{1g(1)} b_{2g(2)} \cdots b'_{kg(k)} \cdots b_{rg(r)} a_{(g(1),\dots,g(r),g(1),\dots,g(k-1))} =$ $\sum_{g \in F(r,n)} b_{1g(1)} b_{2g(2)} \cdots b'_{kg(k)} \cdots b_{rg(r)} a_{(g(1),\dots,g(r),g(1),\dots,g(r))} =$ $\sum_{g \in F(r,n)} b_{1g(1)} b_{2g(2)} \cdots b'_{kg(k)} \cdots b_{rg(r)} a_{(g(1),\dots,g(r),g(1),\dots,g(r))} =$ $\sum_{g \in F(r,n)} b_{1g(1)} b_{2g(2)} \cdots b'_{kg(k)} \cdots b_{rg(r)} a_{(g(1),\dots,g(r),g(1),\dots,g(r))} =$ $\sum_{g \in F(r,n)} b_{1g(1)} b_{2g(2)} \cdots b'_{kg(k)} \cdots b_{rg(r)} a_{(g(1),\dots,g(r),g(1),\dots,g(r))} =$ $\sum_{g \in F(r,n)} b_{1g(1)} b_{2g(2)} \cdots b'_{kg(k)} \cdots b_{rg(r)} a_{(g(1),\dots,g(r),g(1),\dots,g(r))} =$ $\sum_{g \in F(r,n)} b_{1g(1)} b_{2g(2)} \cdots b'_{kg(k)} \cdots b_{rg(r)} a_{(g(1),\dots,g(r),g(1),\dots,g(r))} =$ $\sum_{g \in F(r,n)} b_{1g(1)} b_{2g(2)} \cdots b'_{kg(k)} \cdots b_{rg(r)} a_{(g(1),\dots,g(r),g(r),\dots,g(r))} =$ $\sum_{g \in F(r,n)} b_{1g(1)} b_{2g(2)} \cdots b'_{kg(k)} \cdots b_{rg(r)} a_{(g(1),\dots,g(r),g(1),\dots,g(r))} =$ $\sum_{g \in F(r,n)} b_{1g(1)} b_{2g(2)} \cdots b'_{kg(k)} \cdots b_{rg(r)} a_{(g(1),\dots,g(r),g(r),\dots,g(r))} =$ $\sum_{g \in F(r,n)} b_{1g(1)} b_{2g(2)} \cdots b'_{kg(k)} \cdots b_{rg(r)} a_{(g(1),\dots,g(r),g(r))} =$ $\sum_{g \in F(r,n)} b$

The *r*-fold ζ -skew-symmetric *R*-module (*R*^{*}*A*, θ_A ; *U*) defined by a ζ -skew-symmetric *n'*-matrix *A* will be denoted by $\langle [A] \rangle$.

Lemma 3. For any ζ -skew-symmetric n^r-matrix A over U, $\langle [A] \rangle$ is always regular.

Proof. To show that $(\theta_A)^* \colon \mathbb{R}^n A \to \operatorname{Hom}_{\mathbb{R}}(\bigotimes_{\mathbb{R}}^{r-1} \mathbb{R}^n A, U); bA \mapsto \theta_A(bA, -)$ is injective, suppose $bA \in \operatorname{Ker}(\theta_A)^*$, that is, $\zeta b_{1(1)}(b_{2(2)}(\cdots b_{r-1(r-1)}(b_{r}, A))) = 0$ for all $b_j \in \mathbb{R}^n; i=1, 2, \cdots, r-1$. We can check that for any n^k -matrix $H=(u_f)_{f\in F(k,n)}, cH=0$ for every $c\in \mathbb{R}^n$ implies H=O, that is, $u_f=0$ for every $f\in F(k,n)$. Therefore, $b_{k(k)}(b_{k+1(k+1)}\cdots(b_{r}, A))=O$ for every $b_k\in \mathbb{R}^n$ implies $b_{k+1(k+1)}\cdots(b_{r}, A)=0$.

Let $(M, \theta; U)$ be any finitely generated *r*-fold ζ -skew-symmetric *R*-module with $M = \sum_{i=1}^{n} Rm_i$. $B = (\theta(m_{f(1)}, m_{f(2)}, \dots, m_{f(r)}))_{f \in F(r,n)}$ is a ζ -skew-symmetric *n'*-matrix over *U*. We consider a relation between *r*-fold ζ -skew-symmetric *R*modules $(M, \theta; U)$ and $\langle [B] \rangle$. For any $x = \sum_{i=1}^{n} c_i m_i \in M$, $(\theta(x, m_{f(1)}, \dots, m_{f(r-1)}))_{f \in F(r-1,n)} = cB \in R^n B$ holds, where $c = (c_1, c_2, \dots, c_n) \in R^n$. Hence, we can define an *R*-epimorphism

$$\Psi: M \longrightarrow R^n \mathbf{B}: x \longleftrightarrow (\theta(x, m_{f(1)}, \cdots, m_{f(r-1)}))_{f \in F(r-1, n)}$$

Then, Ψ becomes a morphism of ζ -skew-symmetric R-modules of $(M, \theta; U)$ onto $\langle [B] \rangle = (R^n B, \theta_B; U)$, that is, for any $x_i = \sum_{j=1}^n c_{ij} m_j \in M$; $i = 1, 2, \cdots$, $r, \theta_B(\Psi(x_1), \Psi(x_2), \cdots, \Psi(x_r)) = \theta_B(c_1 B, c_2 B, \cdots, c_r B) = c_{1(1)}(c_{2(2)}(\cdots c_{r(r)} B))) =$ $\theta(x_1, x_2, \cdots, x_r)$, where $c_i = (c_{i1}, c_{i2}, \cdots, c_{ir}) \in R^n$. On the other hand, if one regards $B = (b_f)_{f \in F(r,n)}$ as an $n^{r-1} \times n$ -matrix, then for any n^{r-1} -row $c = (c_g)_{g \in F(r-1,n)}$ $\in R^{n^{r-1}}$, $c \cdot B = (\sum_{g \in F(r-1,n)} c_g b_{(g-1)}, \cdots, \sum_{g \in F(r-1,n)} c_g b_{(g,n)}) \in U^n$, so $R^{n^{r-1}} \cdot B =$ $\{c \cdot B \mid c \in R^{n^{r-1}}\}$ is an R-submodule of U^n . If $x_1 \otimes x_2 \otimes \cdots \otimes x_{r-1} (\in \otimes_{R}^{r-1} M)$ is expressed as $\sum_{f \in F(r-1,n)} c_f m_{f(1)} \otimes m_{f(2)} \otimes \cdots \otimes m_{f(r-1)}$ for $c_f \in R$, then $(\theta(x_1, \cdots, x_{r-1}, m_1), \theta(x_1, \cdots, x_{r-1}, m_2), \cdots, \theta(x_1, \cdots, x_{r-1}, m_n))$ can be expressed as $c \cdot B$ with $c = (c_f)_{f \in F(r-1,n)}$. Hence, Ψ is surjective. **Lemma 4.** For a generator $\{m_i; i=1, 2, \dots, n\}$ of M, one can define R-homomorphisms

 $\begin{array}{l} \nabla \colon \otimes_{R}^{r-1} M \to U^{n} \ and \ \Delta \colon \operatorname{Hom}_{R}(M, U) \to U^{n} \ as \ follows \colon \\ \nabla \colon \otimes_{R}^{r-1} M \to U^{n}; \ x_{1} \otimes x_{2} \otimes \cdots \otimes x_{r-1} & \wedge \mapsto (\theta(m_{1}, x_{1}, \cdots, x_{r-1}), \theta(m_{2}, x_{1}, \cdots, x_{r-1}), \cdots, \\ \theta(m_{n}, x_{1}, \cdots, x_{r-1})), \ and \ \Delta \colon \operatorname{Hom}_{R}(M, U) \to U^{n}; \ f & \wedge \mapsto (f(m_{1}), \cdots, f(m_{r})). \\ Their \ images \ are \ \operatorname{Im} \nabla = R^{n^{r-1}} \cdot B \ and \ \operatorname{Im} \ \Delta = \{(u_{1}, u_{2}, \cdots, u_{n}) \in U^{n} \mid \sum_{i=1}^{n} c_{i} u_{i} = 0 \\ for \ all \ (c_{1}, c_{2}, \cdots, c_{n}) \in \operatorname{Rel} \ (\{m_{i}\}), \ where \ \operatorname{Rel} \ (\{m_{i}\}) = \{(c_{1}, c_{2}, \cdots, c_{n}) \in R^{n} \mid \sum_{i=1}^{n} c_{i} m_{i} \\ = 0 \}. \ Furthermore, \ \Delta \ is \ injective, \ and \ the \ following \ diagram \ is \ commutative : \end{array}$

Proof. One has an exact sequence $0 \rightarrow \operatorname{Rel}(\{m_i\}) \rightarrow R^n \rightarrow M \rightarrow 0$, so $\operatorname{Im} \Delta = \operatorname{Ker}(U^n \rightarrow \operatorname{Hom}_R(\operatorname{Rel}(\{m_i\}), U))$ follows from that $0 \rightarrow \operatorname{Hom}_R(M, U) \rightarrow \operatorname{Hom}_R(R^n, U) = U^n \rightarrow \operatorname{Hom}_R(\operatorname{Rel}(\{m_i\}), U)$ is exact. Since $\Delta \cdot \theta_*(x_1 \otimes x_2 \otimes \cdots \otimes x_{r-1}) = \Delta(\theta(-, x_1, x_2, \cdots, x_{r-1})) = \nabla(x_1 \otimes x_2 \otimes \cdots \otimes x_{r-1})$ hold for any $x_1 \otimes x_2 \otimes \cdots \otimes x_{r-1} \in \bigotimes_R^{r-1} M$, the diagram (\sharp) is commutative.

Proposition 2. Let (M, θ, U) be an r-fold ζ -skew-symmetric R-module with a generator $\{m_1, m_2, \dots, m_n\}$ as an R-module, i.e. $M = \sum_{i=1}^n Rm_i$, and let $B = (\theta(m_{f(1)}, m_{f(2)}, \dots, m_{f(r)}))_{f \in F(r, n)}$. Then the following statements fold:

- 1) $(M, \theta; U)$ is regular if and only if $\Psi: M \rightarrow R^n B$ is bijective.
- 2) θ_* is surjective if and only if $\operatorname{Im} \Delta = \operatorname{Im} \nabla$.

Proof. 1) follows from that θ^* is injective if and only if Ψ is injective. 2) immediately follows from the diagram (#).

DEFINITION. By $U_{n,m}$ (or $R_{n,m}$), we denote the set of all $n \times m$ -matirces with entries in U (or R). Let $A = (a_f)_{f \in F(r,n)}$ be an r-fold ζ -skew-symmetric n^r -matrix over U, and $B = (b_{ij}) (\in R_{n,n})$ an ordinary $n \times n$ -matrix over R. When one regards A as an $n \times n^{r-1}$ -matrix over U, a subset Ann (A) of $R_{n,n}$ and a subset Ann (B) of $U_{n,n}$ are defined as follows; Ann (A): = { $D \in R_{n,n} | D \cdot A = O$ } and Ann (B): = { $V \in U_{n,n} | B \cdot V = O$ }, where $D \cdot A$ or $B \cdot V$ means an ordinary product of matrices. For a subset $b \subseteq R_{n,n}$, Ann (b) denotes the intersection of Ann (B) for all $B \in b$. On the other nand, one car regard A as an $n^{r-1} \times n$ -matrix over U, then for any $n \times n^{r-1}$ -matrix C over R, the ordinary product $C \cdot A$ is an $n \times n$ -matrix over U. We put $R_{n,n^{r-1}} \cdot A = \{C \cdot A \in U_{n,n} | C \in R_{n,n^{r-1}}\}$. For a set a of $U_{n,n}$, ⁱa denotes the set of transpose matrices ⁱH's for all $H \in a$.

Proposition 3. Let $A = (a_f)_{f \in F(r,n)}$ be an ζ -skew-symmetric n^r-matrix over U. Then $\langle [A] \rangle$ is nondegenerate if and only if ${}^t(Ann(Ann)A)) = R_{n,n^{r-1}} \cdot A$

holds.

Proof. Let $e_1 = (1, 0, \dots, 0)$, $e_2 = (0, 1, 0, \dots, 0)$, \dots , $e_n = (0, \dots, 0, 1)$ be elements of \mathbb{R}^n . $\mathbb{R}^n A$ is generated by $\{e_i A; i=1, 2, \dots, n\}$ as an \mathbb{R} -module. For the \mathbb{R} -homomorphisms ∇ and Δ defined by the generator $\{e_i A; i=1, 2, \dots, n\}$ in Lemma 4, we have $\operatorname{Im} \nabla = \mathbb{R}^{n^{r-1}} \cdot A$, because of $\theta_A(e_{f(1)} A, e_{f(2)} A, \dots, e_{f(r)} A) = e_{f(1)(1)}(e_{f(2)(2)}(\dots e_{f(r)(r)} A))) = a_f$ for every $f \in \mathbb{F}(r, n)$. On the other hand, it follows that Rel $(\{e_i A\}) = \{b = (b_1, b_2, \dots, b_n\} \in \mathbb{R}^n \mid \sum_{i=1}^n b_i e_i A = bA = 0\}$ and Im Δ is the set of elements $(u_1, u_2, \dots, u_n) \in U^n$ such that $\sum_{i=1}^n b_i u_i = 0$ holds for all $b = (b_1, b_2, \dots, b_n) \in \mathbb{R}^n$ with bA = O. Hence, Im $\nabla \supseteq \operatorname{Im} \Delta$, (or Im $\nabla \subseteq \operatorname{Im} \Delta$), holds if and only if $\mathbb{R}^{n^{r-1}} \cdot A \supseteq$, (or \subseteq), $\{(u_1, u_2, \dots, u_n) \in U^n \mid \sum_{i=1}^n b_i u_i = 0$ for all $b = (b_1, b_2, \dots, b_n) \in \mathbb{R}^n$ with bA = O. The latter condition is equivalent to that $\mathbb{R}_{n,n^{r-1}} \cdot A \supseteq$, (or \subseteq), $\{(u_{i,j}) \in U_{n,n} \mid \sum_{j=1}^n b_{i,j} u_{kj} = 0; i, k=1, 2, \dots, n,$ for all $B = (b_{i,j}) \in \mathbb{R}_n$ with $B \cdot A = O\} = {}^t(\operatorname{Ann}(\operatorname{Ann}(A)))$. Hence, By Proposition 2, $(\theta_A)_*$ is surjective if and only if $\mathbb{R}_{n,n^{r-1}} \cdot A = {}^t(\operatorname{Ann}(\operatorname{Ann}(A)))$. Since $\langle [A] \rangle$ is regular, the proof finished.

REMARK II. 1) In the above proof, we showed that $R_{n,n^{r-1}} \cdot A \subseteq {}^t(Ann (Ann (A)))$ holds for any ζ -skew-symmetric n^r -matrix A over U, since the commutative diagram (\sharp) in Lemma 4 means Im $\nabla \subseteq \text{Im } \Delta$.

2) If U is an inversible R-module, that is, U is finitely generated projective and rank 1 over R. Then for any $f, g \in \operatorname{Hom}_{\mathbb{R}}(U, \mathbb{R}), f(x)g(y)=f(y)g(x)$ holds for every $x, y \in U$, so f(x) y=f(y) x for all $x, y \in U$.

DEFINITION. Any element **D** in $\operatorname{Hom}_{R}(U^{n^{r-1}}, \mathbb{R}^{n})$ will be able to regard as an $n^{r-1} \times n$ -matrix $(d_{i,j})$ with (i, j)-entry $d_{i,j} \in U^{*} = \operatorname{Hom}_{R}(U, \mathbb{R})$. For an $n^{r-1} \times n$ -matrix $\mathbf{A} = (a_{i,j})$ over U and $\mathbf{D} = (d_{i,j}) \in \operatorname{Hom}_{R}(U^{n^{r-1}}, \mathbb{R}^{n})$, \mathbf{AD} means an $n \times n$ -matrix with (i, j)-entry $\sum_{k=1}^{n^{r-1}} d_{k,j}(a_{i,k}) \in \mathbb{R}$.

Lemma 5. Let U be an inversible R-module, and A a ζ -skew-symmetric n^r -matrix over U. If there exists a $D \in \operatorname{Hom}_R(U^{n^{r-1}}, R^n)$ such that $(AD) \cdot A = A$ regarding A as $n \times n^{r-1}$ -matrix, then the $n^{r-1} \times n$ -matrix A satisfies the condition $R_{n,n^{r-1}} \cdot A = {}^t(\operatorname{Ann}(\operatorname{Ann}(A)))$, hence $\langle [A] \rangle$ is nondegenerate and R-projective.

Proof. By 1) in Remark II, $R_{n,n^{r-1}} \cdot A \subseteq {}^{t}(\operatorname{Ann}(\operatorname{Ann}(A)))$ always holds. Since $(AD) \cdot A = A$, if I_n denotes the identity matrix in $R_{n,n}$, $(AD - I_n) \cdot A = O$ and $AD - I_n \in \operatorname{Ann}(A)$ hold. Hence, $H \in {}^{t}(\operatorname{Ann}(\operatorname{Ann}(A)))$ implies $(AD - I_n) \cdot I_n = O$ ${}^{t}H = O$, so $(AD) \cdot {}^{t}H = {}^{t}H$ holds. By 2) in Remark II, we get $H = H \cdot {}^{t}(AD) = \zeta (H^{t}D) \cdot A$. Because, if $h_{i,j}(\operatorname{or} a_{i,j})$ is (i,j)-entry of H (or A), then $(AD) \cdot {}^{t}H = {}^{t}H$ implies that $h_{j,i} = \sum_{k} (\sum_{k} d_{k,k}(a_{i,k})) h_{j,k} = \sum_{k} (\sum_{k} d_{k,k}(h_{j,k})) a_{i,k} = \zeta \sum_{k} (\sum_{k} d_{k,k}(h_{j,k})) a_{k,i}$ is (j, i)-entry of $\zeta (H^{t}D) \cdot A$. Hence, we get $H \in R_{n,n^{r-1}} \cdot A$ and $R_{n,n^{r-1}} \cdot A = {}^{t}(\operatorname{Ann}(\operatorname{Ann}(A)))$. By Proposition 3, $\langle [A] \rangle$ is nondegenerate, and using Proposition A in Appendix, we get the R-projectity of $\langle [A] \rangle$.

Proposition 4. Let U=R, and let A be a ζ -skew-symmetric n^r -matrix over R. Then, $\langle [A] \rangle$ is nondegenerate and R-projective if and only if there is an $n^{r-1} \times n$ -matrix D over R such that $A \cdot D \cdot A = A$ holds, where the product \cdot means an ordinary product of matrices regarding A as an $n \times n^{r-1}$ -matrix.

Proof. The "if" part is obtained from Lemma 4. Suppose $\langle [A] \rangle$ is nondegenerate and *R*-projective. By Lemma 5, $R_{n,n^{r-1}} \cdot A = {}^t(\text{Ann}(\text{Ann}(A)))$ holds. By Proposition A in Appendix, there is an $n^{r-1} \times n$ -matrix F over an injective hull of R as an R-molule such that every entry of the product $A \cdot F$ is in R and $(A \cdot F) \cdot A = A$ holds. Since $B \cdot (A \cdot F) = (B \cdot A) \cdot F = O \cdot F = O$ hold for all $B \in$ Ann (A), ${}^t(A \cdot F)$ is contained in ${}^t(\text{Ann}(\text{Ann}(A))) = R_{n,n^{r-1}} \cdot A$, that is, ${}^t(A \cdot F) =$ $D \cdot A$ for some $D \in R_{n,n^{r-1}}$. Since $A \cdot F = {}^t(D \cdot A) = {}^t(A) \cdot {}^tD$ and ${}^tA = \zeta A$, we get that there is an $n^{r+1} \times n$ -matrix $\zeta {}^tD$ satisfying $A \cdot (\zeta {}^tD) \cdot A = A$.

From Lemma 5 and Proposition 4, we get the following theorem:

Theorem 1. Let (M, θ) be a finitely generated ζ -skew-symmetric R-module, and $M = \sum_{i=1}^{n} Rm_i$. $A = \theta (m_{f(1)}, m_{f(2)}, \dots, m_{f(r)})_{f \in F(r, n)}$ is a ζ -skew-symmetric n^r matrix over R. The following conditions are equivalent:

1) (M, θ) is non degenerate and R-projective,

2) $\Psi: (M, \theta) \rightarrow \langle [A] \rangle$ is an isomorphism, and there is an $n^{r-1} \times n$ -matrix **D** over **R** such that $A \cdot D \cdot A = A$ holds as a product of matrices $n^{r-1} \times n$ -matrix **D** and $n^{r-1} \times n^{r-1}$ -matrix **A**.

REMARK III. Let R be a field or a Von Neumann regular ring, and A any n^r -matrix over R. One can show that there exists an $n^{r-1} \times n$ -matrix D over R such that $A \cdot D \cdot A = A$ holds, regarding A as an $n \times n^{r-1}$ -matrix. Let A regard as an $n \times n^{r-1}$ -matrix, and for an $n(n^{r-1}-1) \times n^{r-1}$ -zero matrix O,

put
$$\boldsymbol{B}:=\left(\begin{array}{c}\boldsymbol{A}\\\boldsymbol{O}\end{array}\right):\boldsymbol{n}^{r-1}\times\boldsymbol{n}^{r-1}$$
-matrix.

Since the $n^{r-1} \times n^{r-1}$ -matrix ring $R_{n^{r-1}}$ over R is a Von Neumann regular ring, there is an $n^{r-1} \times n^{r-1}$ -matrix D with B D B = B. Let D_1 be an $n^{r-1} \times n$ -matrix and D_2 an $n^{r-1} \times n (n^{r-2}-1)$ -matrix satisfying $D = (D_1, D_2)$. By a computation, $A \cdot D_1 \cdot A = A$ follows.

Corollary 1. Let R be a field or a Von Neumann regular commutative ring. If A is a ζ -skew-symmetric n^r-matrix over R, then $\langle [A] \rangle$ is always non-degenerate.

4. 3-fold cyclically symmetric *R*-modules

Let $(M, \theta; U)$ be a 3-fold cyclically symmetric *R*-module, that is, $\theta(x, y, z) = \theta(y, z, x)$ holds for all $x, y, z \in M$.

DEFINITION. For $e \in M$, e is called a regular element of $(M, \theta; U)$, if

 $\theta(-, -, e): M \times M \rightarrow U; (x, y) \leftrightarrow \theta(x, y, e)$ is a nondegenerate symmetric bilinear form.

REMARK IV; If there is a reglar element e of $(M, \theta; U)$, then $(M, \theta; U)$ is nondegenerate, and a multiplication $M \times M \to M$; $(x, y) \leftrightarrow x \cdot y$, satisfying $\theta(x, y, z) = \theta(x \cdot y, z, e)$ for all $x, y, z \in M$, is defined on M, and M becomes a non commutative and non associative R-algebra with identity e, this R-lagebra denote by $((M, \theta; U), \cdot; e)$. If θ is symmetric and U = R is a field, these was defined in [H₁].

Proposition 5. Let $(M, \theta; U)$ be a cyclically symmetric R-module, and e and e' regular elements of $(M, \theta; U)$. For R-algebras $((M, \theta; U), \cdot; e)$ and $((M, \theta; U), *; e')$ defined by e and e', if $((M, \theta; U), \cdot; e)$ is an associative algebra, then the following statements hold:

(1) $(x*y) \cdot e' = x \cdot y$ and $(x \cdot y) * e = x*y$ hold every $x, y \in M$.

(2) e' is an inversible element in the center $\mathbf{Z}((M, \theta; U), \cdot; e)$ of $((M, \theta; U), \cdot; e)$

•; e), and $e' \cdot (e*e) = e$ holds. e is inversible in $\mathbb{Z}((M, \theta; U), *; e')$ and $e*(e' \cdot e') = e'$. (3) $\psi: M \to M; x \land \to x \cdot e'$ is a bijection with the inverse $\phi: M \to M; x \land \to \to w$

x*e, and satisfies $\phi(x \cdot y) = x * y$ for all x, $y \in M$.

(4) $(x \cdot y) * z = x * (y \cdot z)$ holds for all $x, y, z \in M$.

(5) $\psi(x \cdot y) = \psi(x) * \psi(y)$ holds for all $x, y \in M$, so

 ψ : $((M, \theta; U), \cdot; e) \rightarrow ((M, \theta; U), *; e')$ is an R-algebra isomorphism. $((M, \theta; U), *; e)$ is also an associative algebra.

Proof. (1): From the definition of multiplications \cdot and *, it follows that $\theta((x*y) \cdot e', z, e) = \theta((x*y), e', z) = \theta(z, (x*y), e') = \theta(x, y, z) = \theta(x \cdot y, z, e)$ imply $(x*y) \cdot e' = x \cdot y$. Similarly, we get $(x \cdot y) * e = x * y$. (2): For any $x \in M$, e' * x = x implies $x \cdot e' = (e' * x) \cdot e' = e' \cdot x$, and $(e*e) \cdot e' = e \cdot e = e$, hence $e' \in \mathbb{Z}((M, \theta; U), \cdot; e)$. Similarly, $e \in \mathbb{Z}((M, \theta; U), *; e')$ and $e*(e' \cdot e') = e'$. (3): From (1), we have $\psi(\phi(x)) = (x*e) \cdot e' = x \cdot e = x$, and $\phi(\psi(x)) = (x \cdot e') * e = x * e' = x$ and $\phi(x \cdot y) = (x \cdot y) * e = x * y$ hold for all $x, y \in M$. (4): Since $((M, \theta; U), \cdot; e)$ is associative, $(x \cdot y) * z = \phi((x \cdot y) \cdot z) = \phi(x \cdot (y \cdot z)) = x * (y \cdot z)$ hold for all $x, y, z \in M$. (5): Using (4) and $e' \in \mathbb{Z}((M, \theta; U), \cdot; e)$, we get $\psi(x) * \psi(y) = (x \cdot e') * (y \cdot e') = ((x \cdot e') \cdot y) * e') = (e' \cdot x) \cdot y = e' \cdot (x \cdot y) = (x \cdot y) \cdot e' = \psi(x \cdot y)$.

DEFINITION. Let $(M, \theta; U)$ be a 3-fold cyclically symmetric *R*-module. If there is a regular element e of $(M, \theta; U)$ such that $((M, \theta; U), \cdot; e)$ is an associative algebra, then we shall say that $(M, \theta; U)$ is *associative*.

In the following, we consider the case U=R.

DEFINITION. Let $A = (a_{i,j,k}; 1 \leq i, j, k \leq n)$ be a cyclically symmetric n^3 matrix over R, and $e = (e_1, e_2, \dots, e_n)$ an element in R^n . We shall say that e is regular with respect to A, if for any $\mathbf{x} = (x_1, \dots, x_n) \in R^n$, $\mathbf{x}_{(1)}(e_{(3)}A) = (\sum_{i,k=1}^n x_i e_k a_{i,k,k}; 1 \leq j \leq n) = 0$ implies $\mathbf{x}A = (\sum_{i=1}^n x_i a_{i,j,k}; 1 \leq j, k \leq n) = 0$. REMARK V. If $eA = (\sum_{k=1}^{n} e_k a_{k,i,j}; 1 \le i, j \le n)$ is an inversible $n \times n$ -matrix, then e is regular with respect to A.

Theorem 2. Let $A = (a_{i,j,k}; 1 \le i, j, k \le n)$ be a cyclically symmetric n^3 matrix, and $e = (e_1, e_2, \dots, e_n)$ be regular with respect to A. (1) $\langle [A] \rangle$ is R-projective and eA is a regular element of $\langle [A] \rangle$ if and only if $eA = (\sum_{k=1}^{n} e_k a_{k,i,j}; 1 \le i, j \le n)$ is a symmetric and Von Neumann regular $n \times n$ matrix, i.e. there is an $n \times n$ -matrix $C = (c_{i,j}; 1 \le i, j \le n)$ with $(eA) \cdot C \cdot (eA) = eA$. (2) Assume the latter condition in (1), that is, eA is symmetric, and there is an $n \times n$ -matrix $C = (c_{i,j}; 1 \le i, j \le n)$ with $(eA) \cdot C \cdot (eA) = eA$. Then, $\langle [A] \rangle$ is associative if and only if an n^4 -matrix $(\sum_{s,t=1}^{n} a_{h,i,s} c_{s,t} a_{t,j,k}; 1 \le h, i, j, k \le n)$ is cyclically symmetric.

Proof. Let $A = (a_{i,j,k}; 1 \le i, j, k \le n)$ be a cyclically symmetric n^3 -matrix, and $e = (e_1, e_2, \dots, e_n)$ an element in R^n . (1): Put $B(\mathbf{x}\mathbf{A}, \mathbf{y}\mathbf{A}) = \theta_A(\mathbf{x}\mathbf{A}, \mathbf{y}\mathbf{A}, \mathbf{e}\mathbf{A})$ for xA, $yA \in \mathbb{R}^n A$. The bilinear form B is symmetric if and only if $n \times n$ -matrix $eA = (\sum_{k=1}^{n} e_k a_{i,j,k}; 1 \le i, j \le n)$ is symmetric. Suppose that eA is symmetric. By Theorem 1, (R^*A, B) is nondegenerate and R-projective if and only if $\Psi: (R^{"}A, B) \rightarrow \langle [eA] \rangle; vA \land \land \land \land (eA) (= x_{(1)} (e_{(3)}A))$ is an isomorphism and eAis a Von Neumann regular $n \times n$ -matrix. Hence, we get that eA is a regular element of $\langle [A] \rangle$ and $\langle [A] \rangle (= (R^{n}A, \theta_{A})$ is *R*-projective, if and only if *e* is regular with respect to **A** and **eA** is a symmetric and Von Neumann regular $n \times n$ matrix. (2): Suppose that eA is a regular element of $\langle [A] \rangle$ and there is an $n \times n$ -matrix $C = (c_{i,i})$ with $(eA) \cdot C \cdot (eA) = eA$. A multiplication * on R^*A is defined by $\theta_A(\mathbf{x}A * \mathbf{y}A, \mathbf{z}A, \mathbf{e}A) = \theta_A(\mathbf{x}A, \mathbf{y}A, \mathbf{z}A)$. Since $\langle [A] \rangle$ is associative if and only if $\theta_A(\mathbf{x}A * \mathbf{y}A, \mathbf{z}A, \mathbf{w}A) = \theta_A(\mathbf{x}A, \mathbf{y}A * \mathbf{z}A, \mathbf{w}A)$ holds for every $\mathbf{x}A, \mathbf{y}A$, $zA, wA \in \mathbb{R}^nA$, it is sufficient to show that $\theta_A(xA * yA, zA, wA) = \sum_{s,t,i,j,k=1}^n \mathbb{E}_{s,t,i,j,k=1}^n$ $x_i y_j z_k w_h a_{k,h,s} c_{s,t} a_{t,i,j}$ and $\theta_A(\mathbf{x}A, \mathbf{y}A * \mathbf{z}A, \mathbf{w}A) = \sum_{s,t,i,j,k=1}^n x_i y_j z_k w_h a_{h,i,s} c_{s,t}$ $a_{t,j,k}$ hold for avery $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_n), \mathbf{z} = (z_1, \dots, z_n)$ and $\mathbf{w} = (z_1, \dots, z_n)$ $(w_1, \dots, w_n) \in \mathbb{R}^n$. We put xA * yA = uA and yA * zA = vA for $u = (u_1, \dots, u_n)$ and $v = (v_1, \dots, v_n) \in \mathbb{R}^n$. First we shall show the following identity: (#); $\theta_A(\mathbf{x}\mathbf{A}, \mathbf{y}\mathbf{A}, \mathbf{z}\mathbf{A}) (= \sum_{i,j,k=1}^n x_i y_j z_k a_{i,j,k}) =$ $\sum_{i,j,k,s,t,m=1}^{n} x_i y_j z_k a_{i,j,s} c_{s,t} e_m a_{m,t,k} \text{ for any } \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}^n.$ Using identities $\sum_{i,j,k=1}^{n} x_i y_j z_k a_{i,j,k} (= \theta_A(\mathbf{x}A, \mathbf{y}A, \mathbf{z}A) = \theta_A(\mathbf{u}A, \mathbf{z}A, \mathbf{e}A)) =$ $\sum_{j,t,m=1}^{n} u_j z_t e_m a_{j,t,m}$ and $\sum_{m=1}^{n} e_m a_{m,j,t} (= eA = (eA) \cdot C \cdot (eA)) =$ $\sum_{i,p,q,m=1}^{n} e_i a_{i,j,p} c_{p,q} e_m a_{m,q,t}$, we have $\sum_{i,j=1}^{n} x_i y_j a_{i,j,k} = \sum_{j,m=1}^{n} u_j e_m a_{j,k,m} =$ $\sum_{i,j,p,q,m=1}^{n} u_{j} e_{i} a_{i,j,p} c_{p,q} e_{m} a_{m,q,k} = \sum_{p,q,m=1}^{n} \left(\sum_{i,j=1}^{n} u_{j} e_{i} a_{i,j,p} \right) c_{p,q} e_{m} a_{m,q,k} =$ $\sum_{j,q,m=1}^{n} \left(\sum_{i,j=1}^{n} x_{i} y_{j} a_{i,j,p} \right) c_{j,q} e_{m} a_{m,q,k} = \sum_{i,j,p,q,m=1}^{n} x_{i} y_{j} a_{i,j,p} c_{p,q} e_{m} a_{,q,k} \text{ for }$ $k=1, 2, \dots, n.$ Hence, we get $\sum_{i,j=1}^{n} x_i y_j a_{i,j,k} = \sum_{i,j,k=1}^{n} x_i y_j a_{i,j,k} c_{j,q} e_m a_{m,q,k};$ $k=1, 2, \dots, n$, and the identity (#). Using (#), we get $\theta_A(\mathbf{x}A*\mathbf{y}A, \mathbf{z}A, \mathbf{w}A) =$ $\theta_A(\boldsymbol{u}\boldsymbol{A},\,\boldsymbol{z}\boldsymbol{A},\,\boldsymbol{w}\boldsymbol{A}) = \theta_A(\boldsymbol{z}\boldsymbol{A},\,\boldsymbol{w}\boldsymbol{A},\,\boldsymbol{u}\boldsymbol{A}) = \sum_{k,\,g,\,i\,,\,s,\,t\,,m=1}^n z_k \, w_h \, u_i \, a_{k,h,s} \, c_{s,t} \, e_m \, a_{m,t,j}.$ Since $\theta_A(zA, uA, eA) (= \theta_A(xA, yA, zA)) = \theta_A(xA, yA, zA)$ means

$$\begin{split} & \sum_{i,m-1}^{n} u_{i} e_{m} a_{m,t,i} \left(= \sum_{i,m-1}^{n} u_{i} e_{m} a_{t,i,m} \right) = \sum_{i,j-1}^{n} x_{i} y_{j} a_{i,j,t} \text{ for } t = 1, 2, \cdots, n, \text{ we get} \\ & \sum_{k,k,i,s,t,m-1}^{n} z_{k} w_{k} u_{i} a_{k,h,s} c_{s,t} e_{m} a_{m,t,i} = \sum_{k,k,i,j,s,t-1}^{n} z_{k} w_{k} a_{k,h,s} c_{s,t} \left(u_{i} e_{m} a_{m,t,i} \right) = \\ & \sum_{k,k,i,j,s,t-1}^{n} z_{k} w_{h} a_{k,h,s} c_{s,t} (x_{i} y_{j} a_{i,j,t}) = \sum_{k,k,i,j,s,t-1}^{n} x_{i} y_{j} z_{k} w_{h} a_{k,h,s} c_{s,t} a_{i,j,t} = \\ & \sum_{k,i,j,k,s,t-1}^{n} z_{k} w_{h} a_{k,h,s} c_{s,t} a_{t,i,j}, \text{ So we have } \theta_{A}(\mathbf{x}A*\mathbf{y}A, \mathbf{z}A, \mathbf{w}A) = \\ & \sum_{k,i,j,k,s,t-1}^{n} x_{i} y_{j} z_{k} w_{h} a_{k,h,s} c_{s,t} a_{t,i,j}, \text{ Similarly, since } \theta_{A}(\mathbf{v}A, \mathbf{x}A, \mathbf{e}A) \left(= \\ & \theta_{A}(\mathbf{y}A, \mathbf{z}A, \mathbf{x}A) \right) = \theta_{A}(\mathbf{x}A, \mathbf{y}A, \mathbf{z}A) \text{ means } \sum_{j,m-1}^{n} v_{j} e_{m} a_{m,t,j} \left(= \sum_{j,m-1}^{n} v_{j} e_{m} a_{t,j,m} \right) \\ & = \sum_{j,k+1}^{n} y_{j} z_{k} a_{t,j,k} \text{ for } t = 1, 2, \cdots, n, \text{ we get } \theta_{A}(\mathbf{x}A, \mathbf{y}A*\mathbf{z}A, \mathbf{w}A) = \\ & \theta_{A}(\mathbf{w}A, \mathbf{x}A, \mathbf{v}A) = \sum_{h,i,j,s,t,m-1}^{n} w_{h} x_{i} v_{j} a_{h,i,s} c_{s,t} e_{m} a_{m,t,j} \left(= \sum_{j,m-1}^{n} v_{j} e_{m} a_{t,j,m} \right) \\ & = \sum_{h,i,j,s,t,m-1}^{n} y_{j} z_{k} a_{t,j,k} \text{ for } t = 1, 2, \cdots, n, \text{ we get } \theta_{A}(\mathbf{x}A, \mathbf{y}A*\mathbf{z}A, \mathbf{w}A) = \\ & \theta_{A}(\mathbf{w}A, \mathbf{x}A, \mathbf{v}A) = \sum_{h,i,j,s,t,m-1}^{n} w_{h} x_{i} v_{j} a_{h,i,s} c_{s,t} e_{m} a_{m,t,j} = \\ & \sum_{h,i,j,k,s,t-1}^{n} w_{h} x_{i} a_{h,i,s} c_{s,t} \left(v_{j} e_{m} a_{m,t,j} \right) = \sum_{h,i,j,k,s,t-1}^{n} w_{h} x_{i} a_{h,i,s} c_{s,t} \left(y_{j} z_{h} a_{t,j,k} \right) = \\ & \sum_{h,i,j,k,s,t-1}^{n} x_{j} y_{j} z_{k} w_{h} a_{h,i,s} c_{s,t} a_{t,j,k}, \text{ using } (\#). \end{array}$$

5. Appendix: Projectivity of $R^n A$

Let R be, in general, a non commutative ring with identity 1, and U a left R-module. Then, $U^m = \{(u_1, u_2, \dots, u_m) | u_i \in U\}$ and the set $U_{n,m}$ of all $n \times m$ matrices $(u_{i,j})$ with (i,j)-entry $u_{i,j}$ in U become left R-modules. For any $H = (u_{i,j}) \in U_{n,m}$, $\mathbb{R}^n H = \{aH = (\sum_{i=1}^n a_i u_{i1}, \sum_{i=1}^n a_i u_{i2}, \dots, \sum_{i=1}^n a_i u_{im}) | a = (a_1, a_2, \dots, a_n) \in \mathbb{R}^n\}$ is a finitely generated R-submodule of U^m . By E = E(R), one denotes an injective hull of left R-module R, and put $U^* = \operatorname{Hom}_R(U, E)$. Every element F in $\operatorname{Hom}_R(U^m, E^n)$ can be regarded as an $m \times n$ -matrix $(f_{i,j})$ with (i, j)entry $f_{i,j} \in U^*$, that is, $\operatorname{Hom}_R(U^m, E^n) = U^*_{m,n}$. For $F = (f_{i,j}) \in \operatorname{Hom}_R(U^m, E^n)$ and $H = (u_{i,j}) \in U_{n,m}$, HF denotes an $n \times n$ -matrix with (i, j)-entry $\sum_{k=1}^{m} f_{k,j}(u_{i,k})$ $(\in E)$. For an $n \times s$ -matrix C with entries in R and an $s \times t$ -matrix D with entries in U (or R), the ordinary product of matrices C and D will be denoted by $C \cdot D$. Furthermore, by R_n one denotes the ring of $n \times n$ -matrices over R.

Proposition A. Let $H \in U_{n,m}$. R^*H is R-projective if and only if there exists an $F \in U^*_{m,n}$ such that $HF \in R_n$ and $(HF) \cdot H = H$.

Proof. Suppose $\mathbb{R}^n H$ is projective over \mathbb{R} . An epimorphism $h: \mathbb{R}^n \to \mathbb{R}^n H$; $a \leftrightarrow \to aH$ is split, that is, there is an \mathbb{R} -homomorphism $g: \mathbb{R}^n H \to \mathbb{R}^n$ with $h \cdot g = I$. Since \mathbb{E}^n is injective over \mathbb{R} , an \mathbb{R} -homomorphism $\iota \cdot g: \mathbb{R}^n H \to \mathbb{R}^n \hookrightarrow \mathbb{E}^n$ is extended to an \mathbb{R} -homomorphism $f: U^m \to \mathbb{E}^n$. Then, there exist $f_{i,j} \in U^* (= \operatorname{Hom}_{\mathbb{R}}(U, \mathbb{E})); i=1, \dots, m, j=1, \dots, n$, such that, for any $(u_1, u_2, \dots, u_m) \in U^m, f(u_1, \dots, u_m) = (\sum_{i=1}^m f_{i,1}(u_i), \sum_{i=1}^m f_{i,2}(u_i), \dots, \sum_{i=1}^m f_{i,n}(u_i))$ holds. $F = (f_{i,j})$ is in $U^*_{m,n}$. It is easy to see that $f(\mathbb{R}^n H) = g(\mathbb{R}^n H)$ and $g(\mathbb{R}^n H) \subseteq \mathbb{R}^n$ mean $HF \in \mathbb{R}_n$. From the fact that $f|_{\mathbb{R}^n H} = \iota \cdot g$ and $h \cdot g = I$, it follows that $h \cdot f|_{\mathbb{R}^n H} = I$, and $h \cdot f|_{\mathbb{R}^n H} = I$ means $(HF) \cdot H = H$. Because, the *i*-th row of $(HF) \cdot H$ is

$$\begin{aligned} & (\Sigma_{j,k}^{m,n} = f_{j,k}(u_{i,j}) \, u_{k,1}, \, \Sigma_{j,k}^{m,u} = f_{j,k}(u_{i,j}) \, u_{k,2}, \, \cdots, \, \Sigma_{j,k-1}^{m,n} f_{j,k}(u_{i,j}) \, u_{k,m}) = \\ & h(\Sigma_{j-1}^{m} f_{j,1}(u_{i,j}), \, \Sigma_{j-1}^{m} f_{j,2}(u_{i,j}), \, \cdots, \, \Sigma_{j-1}^{m} f_{j,n}(u_{i,j})) = \\ & h \cdot f(u_{i,1}, \, u_{i,2}, \, \cdots, \, u_{i,m}) = (u_{i,1}, \, u_{i,2}, \, \cdots, \, u_{i,m}) \end{aligned}$$

which is *i*-th row of **H**. Conversely, suppose that there is an $F \in U_{m,n}^*$ such that

 $HE \in R_n$ and $(HF) \cdot H = H$. Then, the epimorphism $h: R^n \to R^n H$ is split, that is, there is an *R*-homomorphism $f': R^n H \to R^n$; $aH \lor \lor \lor (aH) F$ with $h \cdot f' = I$. Because, $h \cdot f'(aH) = (a (FH)) \cdot H = a((FH) \cdot H) = aH$ for every $aH \in R^n H$, since (aH)F = a(FH) for $a \in R^n$. Hence $R^n H$ is projective over *R*. Thus, the proof finished.

Especially, if U=R, one can regard $R_{m,n}^*(=\operatorname{Hom}_{\mathbb{R}}(R^m, E^n))$ as $E_{m,n}$ by a natural isomorphism $\operatorname{Hom}_{\mathbb{R}}(R^m, E^n) \to E_{m,n}$; $(f_{i,j}) \to (f_{i,j}(1))$. Then, for $\mathbf{H} \in R_{n,m}$ and $\mathbf{F} \in E_{m,n}$, the product \mathbf{HF} coincides with the ordinary product of matrices \mathbf{H} and \mathbf{F} .

Corollary A. Let A be an $n \times m$ -matrix over R. Then, $R^n A$ is projective over R if and only if there exists an $F \in E_{m,n}$ such that $A \cdot F \in R_n$ and $(A \cdot F) \cdot A = A$.

References

- [H₁] D.K. Harrison: Commutative nonassociative and cubic forms, J. Algebra 32 (1974), 518-528.
- [H₂] D.K. Harrison: A Grothendick ring of higher degree forms, J. Algebra 35 (1975) 123-138.
- [K₁] T. Kanzaki: Notes on hermitian forms over a ring, J. Math Soc. Japan 30 (1978) 723-735
- [K₂] T. Kanzaki: r-fold cyclically symmetric multilinear forms, preprint.
- [K₃] T. Kanzaki: 3-fold cyclically symmetric multilinear forms and trace forms, in preparation.
- [K₄] T. Kanzaki: Special type of separable algebra over a commutative ring, Proc. Japan Acad. 40 (1964) 781-786.
- [K.W] T. Kanzaki and Y. Watanabe: Determinants of r-fold symmetric multilinear forms, J. Algebra 124 (1989) 219-229.
- [W] Y. Watanabe: Symmetric algebras and 3-fold multilinear forms, Communications in Alegbra 20 (1992) 563-571.

Department of Mathematics and Physics Faculty of Science and Technology Kinki University Higasi-Osaka, Osaka, 577 Japan