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r-FOLD C-SKEW-SYMMETRIC MULTILINEAR FORMS
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(Received October 16, 1991)

Let R be a commutative ring with identity 1, and for an integer r ^ 2 , ζ an
element of R with ξr=l. For an i?-module M and an r-fold multilinear map
θ on My we shall say that θ is f-skew symmetric, if θ(xly x2y x3y •••, # r )=
ζ θ(x2y x3y •••, xr, Xi) holds for every elements xly x2y x3y " ,xr^M. In this paper,
we investigate the i?-module with r-fold (Γ-skew symmetric multilinear map. In
§1, we prove some fundamental properties on r-fold ?-skew symmetric multi-
linear i?-modules, which include ones on symmetric or cyclically-symmetric
multilinear i?-modules in [H2] or [K2]. In §2, we give two examples of r-fold
ξ'-skew-symmetric multilinear i?-modules, one is the determinants of matrices,
and another is a 3-fold trace form of an i?-algebra. In §3, we shall show that a
finitely generated f-skew symmetric multilinear i?-module is characterized by an
r-fold ^-skew-symmetric matrix, which is an expansion of [KJ. In §4, for a 3-
fold 1-skew symmetric multilinear i?-module <[A]> defined by a 3-fold 1-skew
symmetric matrix Ay we give some conditions for <̂ [.A])> to be an associative
i?-algebra by some multiplication on

1. r-fold C-skew-symmetric multilinear /^-module (M, θ; U)

Let R be a commutative ring with identity 1, r a positive integer (r^2), ζ
an element of R with ? r = l , and U a faithful i?-module.

DEFINITION For an jR-module M, we shall call (M, θ U) an r-fold ζ-skezυ-
symmetric multilinear R-module, simply r-fold ζskew-symmetric R-module, if

θ: MxMx ••• χ M - > U; (xlf x2t x3, •••, xr) AM-) θ(xlJ x2y x3y •••, xr) is an r-fold

multilinear map of M into U satisfying θ(xly x2y x3y •••, xr)=ζ θ(x2y x3y •••, xry xλ).
If ζ== 1, r-fold 1-skew-symmetric i?-module is called an r-fold cyclically symmetric
i?-module. By θ* and θ*y one denotes the following i?-homomorphisms:

θ*: M-+ H o m ^ J f x M , U); x AΛΛ-> θ(x, - ) , and

0*: ®rfι M-> Hom^M, U); Xx®'-® xr

where ®rfλM and θ{xy —) denote ®rfι M=M ®RM®R---®RM: the tensor
product of r-1-copies of M over Ry and θ(xy —): ®R~1 M-+U; «2® ι ι ι®»r iWL)
θ(x, x2y •••, xr). (My θ; U) is said to be regular, if θ* is injective. If 5* is in-
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jective, and if θ* is surjective, then (M, θ\ U) is nondegenerate. Furthermore,
(Λf, θ\ U) is said to be finitely generated, projective, if Mis finitely generated,
projective over Ry respectively. If U=R, (Λf, θ;R)is denoted by (Λf, θ).

Lemma 1. Let (M, Θ U) be an r-fold ζ-skew-symmetric finitely generated
projective R-module. Then, (M, θ U) is nondegenerate if and only if θ* is sur-
jective. In particular, an r-fold ζ-skew-symmetric R-module (M, θ) is nondegenerate
and finitely generated projective over R if and only if there exist x2j, x3tj, •••, xrj,
z ^M\j=\,2} -~,n with # = Σ / - i θ(x,x2tPx3j, •••,̂ r,y)zj for <*H x^M,(cf.
[HJ; Lemma 1.1).

Proof. Let (Λf, θ; U) be an r-fold £-skew-symmetric finitely generated
projective i?-module. We shall show that if θ* is surjective then θ* is injective.
Suppose θ* is surjective and xGKer 0*. Since Λf is finitely generated projective
over R> there are φu ψ2, •••, ψWίeHom/?(M, R) and yx,y2, -~,ym^M such that
#==Σϊli'ψ f (Λ;)(yf . For any u^U, ΦkU=ψk(—)u is contained in Homie(M, U)
= I m θ*, hence there is a 2, ^ 2 ® ^ ® ' " ® ^ ^ ® ! ? ^ M with 0Hί(2t xi2®Xiz® —
®#,v)='ψl*(—) w. 0(x, — ) = 0 implies that ^(Λ?) tt=Σί -i 0(^, #, 2> •••> Λ?, r ) = 0 for
all u^Uy so ^ ( # ) = 0 ; Λ=l, 2, •••, m. Hence we get #=Σ?=i #ψl, (Λ),yl = 0 , and
0* is injective. The second part of the lemma is easy.

For an r-fold £-skew-symmetric i?-module (M, 0; U)y we can define quite
similar notions ''orthogonal sum" and "the center of (M, 0; U)" to ones in [H2].
Let L and iV be i?-submodules of M. If 0(Λ?, y, z3y •••, zr)=θ(y, xy #3, •••, ^ r ) = 0
holds for all ^ G i , jGΛΓ and ar3, •••, zr^M, then L and N are said to be or-
thogonal, and L-\-N is denoted by L_L_N, furthermore, iV"1" denotes { JCGM|

0(*,y, »3, - , *r)=θ(y, x, zZy .-, arr)=O; Vy^Ny V^3, ..., ^ r e M } . Z(M, θ; U)
(Λf, M) I 0(/(Λ?I), Λ?2, Λ̂ 3, —, xt)=θXxiJ{x2)> *3, —, Λ?r) for all ^ , Λ?2,

is called the center of (Λf, 0; Z7).

Lemma 2. Lei (Λf, 0 U) be a regular r-fold ζ-skew-symmetric R-module
with r2^3.
(1) (cf [HJ 2.2, 2.3, 2.4) Let L andN be R-submodules of M such that M=L±N.
Then, (N, θ\NyU) is regular, Lf]N= {0} and L=N^ hold. If L' and Nf are
another R-submodules of M with Λf=L'J_iV/, then L' is decomposed as follows;
L'=(L' Γ\L)J_(L' ΓiN). Therefore, if (M, θ\ U) has an orthogonal decomposition
of a finite number of indecomposable components, then the indecomposable components
are uniquely determined up to isomorphisms. If (M, θ U) is nondegenerate, so is
(N,Θ\N,U).
(2) (cf. [HJ;4.1) Z(M,Θ; U) is a commutative R-algebra, and (M,θ; U) is
orthogonally indecomposable if and only if Z(M, θ U) has no idempotents without
0 and 1.
(3) Let (Mf, Θ' U) another r-fold ζ-skew-symmetric R-module, f: M-+M' an R-



MULTILINEAR FORMS 737

homomorphism satisfying θ' {f{χi),f{χ

2),f{χ

3)> —,f(Xr))=θ(xu X2> X3> ~, xr)f°r all
χi> χ2> χ3> " >xr^M. If {My θ Ϊ7) is regular, then f is injective.

Proof. Some parts of this lemma are similarly proved to the proof of [H2].
(1): Suppose M=L±_N. First, we show M=LφN. For any x^Lf]N and
y2s y3, " ,yr^M, we have y2= yί+y" for some y'2^L and y'2'^N, and
θ(xyy2,y3y —,yr)=θ(x,yf2,yz, —,yr)+θ(x,yί',y3> —,^r)=0, s o x = 0 and Lf]N
= {0}. To see that (N, Θ\N; U) is regular, suppose tf^Ker^l^)*. For any
yi=y'i+yί'GM with y{ε i and y'i'*ΞN;i=2,3,-,r,θ(x9y2,y3,»',yr) =

θ(y/

2

/

iy3, -~,yr>χ)

θ(y'/,x,y'2',yί', -,y'/-i)=θ(x,y'2',y'3', -,y'/)=0,htnczx=0. To see JV^L,
suppose x^N^ and x=x'+x" with x'^L, xf/^N. For any y—y't+yί'^M
withyίeL^ί 'eJV; ί=2, 3, - , r, we have Θ(3ά",y2,y3, -,yr)=θ(x",y'2',y39 — ,jv)
—θfayίi'yys, " yyr)

=®> hence # " = 0 , that is, Λ^Λ ' ^ L . Suppose Z/ and iV' are
another jR-submodules of M with M—L'_i_Nf. Then, from the above statement,
we get N'=LtΛ- and L'=NfA-. To see L'={L' f)L)+(L' ΓlN), suppose x is any
element in L\ and # = # ' + # " with x'^L, x"^N. For any y^N' and ̂  G l
written as y=y'-{-y" and #,•=#*+#" for j ' , 5ί GL and y 7 , z'/^N, i=3, •••, r,
we have 0(*', j>, «8, - , jarr)=tf(Λ?/, j ' + Z ' , «5+*ί /, - , ^ + # " ) = 0 ( * ' , / > * s + ^ 7 ,

* ; / , χ')= - =

y/

>ar3

/, - , ^ ) = ^ ( ^ ^ ^ 3 , - , * 0 = 0 , since flί^y', *5, - , ^ ) = ( ^ y /

ί

*3, - , » 0 = C ^ ( / / ι « 3 , - , » ; , Λ ? / / ) = 0 . Hence Λ?' is in NfA-(=L'), that is, Λ ' S

L'ΓiL. Therefore, x"=x—x1 is also in L'ΠN, and we get Lf=(L'ΓiL)±
(Lr ΓiN). In the last, we suppose that (M, θ\ U) is nondegenerate. M=L@N
means that for any /eHom^iV, £/), there is an i?1GHomi?(M, Ϊ7) such that
F\N=f There exists an element Σ, &it2®xi,3®'"®xi,r m Θϊ" 1 -^ such that
F(x)=Έ,i θ(x9 xit2 xitl, •••, Λ;ffr) for every x^M. If Λ G J V and χit2=χ\t2-\-x'\[2 for
Λ?ί f2eL, Λ?{f2eiV, then / ( Λ ? ) = Σ , ^(Λ?, #f.f2, Λ?f.f3, •••, Λrf i r ) = Σ f 5(Λ?, Λ?ίf2, Λ?, ,3, —» ^ ,r)

= S, ζ θ(xί'.2, Xi.3, - , « i i f, * ) = . . = Σ | % , Λίf2, Λίf3, - , Λ?ίίr) = (βU)*(S, Λίf2®Λ?ίfS

® —®Λ?{fr)(Λ?), a n d Σ , ^ ® ^ ® —®Λ?ίfre®J-W. Hence (ΛΓ, 0 |^ , C/)isnon-
degnerate. (2): For any fyg^Z(M, θ; U), Θ(f(g(x1))y x2, x3, •••, Λ?r) is computed
as follows: 0(/(£(*i)), Λ?2, Λ?3, —, Λ?r)=ί (g(^), /(Λ?2), ΛJ3, —, xr)=θ(xu g{f{x2)), χz>
.-, χr) and Θ(g(xύ,f(x2), χ

3, —, * r ) = ? β ( / ( ^ ) , Λ?3, —, Λ?O ^ ( A C 1 ) ) = ? Θ(x2,f(x3), —,

θ(g(xl)> X2> X3> — , Λ?r-l»/(Λ?r)) = ^(Λ?l,^ 2 ) , ^3, — , * r - υ / K ) ) = ?

X3, -,Xr-l) = ζ~lθ(xnf(x1),g(x2),X3y '' ,Xr-i) = θ(f(x1),g(x2)>X3i -,Xr-lyXr) = θ
(g(f(xi))> X2, Λ?3, —, Λ?r-!, xr). Hence, / ^ = ^ / , and/^ is contained in Z(M, θ; U).
If (M, ̂  C7) has non trivial orthogonal decomposition M=LJ_N> the projection
e: N-+M is a non trivial idempotent in Z{M, Θ U). Conversely, if Z(M, θ; U)
has an idempotent e different from 0 and 1, then we get M=e(M)Ji_(l—e) (M).
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(3):/(*)=0 implies that θ(xyx2yx3y -,xr)=θ(f(x)9f(xJJ(xΛ), - , / ( * , ) ) = ( ) for

all x2, Xz> •••> xr-i*=M9 that is, x=0y since θ is regular.

2. Examples

EXAMPLE 1. Let θ: MxMx - χ M - * [ / ; (xly x2y •••, xr)W->θ(xϊ9 x2y •••, xr)

be an r-fold alternative multilinear map, that is, θ{xly x2y ••*, #, , #f +i, •••, xr)=—θ

(xi, X2>'"> xi+i> xi> "'J xr) holds for / = 1 , 2, « , r — 1. Then, for ?=(—I) 1 " 1 " 1 ,

(Λf, 5; C/) is an r-fold f-skew-symmetric i?-module.

For example, for n^r, let Rn be free Z?-module of rank n consisting of n-

rows (aly a2y ••-,#„) for all a{<=R. For o f-=(e< l, α, 2, •-, α ι n ) e i ? n ; i = l , 2, — ,r,

let ^l=(α ίy) be an rXw-matrix with (i,y)-entry αf ;. for / = 1 , 2, •••, r and j = l , 2,

•••, w. Let L be a non-empty set of r-rows (kly k2y •••, &r) of integers with 1 ^ ^

<k2< "<kr^n. For a (klyk2y « , ί ί r ) E i , we denote by det (-*!(&!, k2y * -ykr))

the determinant of an r Xr-submatrix ^L(^χ, &2, •"> K)~(ai,kj) °f -^ consisting of

^-column, Λ2-column, •••, &r-column of -4. Then, the sum 2 L det (-4.(^1, ^2, •••,

kr)) of det (^.(^i, k2y •••, fer)) for all (kly k2y •••, kr)^L defines an r-fold multilinear

form DL:RnχRnχ ~x Rn-*R (α l f α2, —, α r) W^> Σ L det (ΛL (Λlf fe2, , kr)). Then,

(Rn, DL) is an r-fold ^-skew-symmetric i?-module. If for every i with ί^i^ny

there is a unique element (&j, k2y •••, Λr) in L with i=ft^ for some l ^ j ^ r , (neces-

sarily, n is a multiple of r), then (jRn, DL) is nondegnerate. Because, for each

i-th projection />,.: i?Λ-^JR (βj, Λ2, •-, an)W^>aiy if (&χ, * 2, •••, Λr) is unique ele-

ment of L with ί=kjy (—iy+1e(kι)®^'®e(krί)®e(kj+1)®'''®e(kr)(G®rΓ1

Rn) satisfies DL(ay(-l)i+1e(k1)y---ye(krl)ye(kj+1)y---ye(kr))=ai for all α =

K ^ , - , an)<=ΞR\ Hence, we get A = ( D x ) * ( ( - l ) y + 1 e{kί)®-®e(krι)®e

(kj+1)®-®e(kr))y where β( l )=( l , 0, . - , 0), β(2)=(0, 1, 0, ..., 0), ..., β(n)=(0,

..., 0, 1) (Gi?Λ). Therefore, (Z)x)#: ®rf1 Rn->UomR(Rn

y R) is surjective, so by

Lemma 1 (Rn

y>DL) is nondegenerate. Particularly, if n=r, (Rr

y D) is nodegenerate.

EXAMPLE 2. Let Abe a non commutative i?-algebra with identity 1 such

that A is a finitely generated projective ϋ-module with a projective dual basis

{b^A and ψ,.GHomff(i4, Λ); ί = l , 2, •••, n}y i.e. Λ:=Σ?βi ^(Λ?) έf for all x^A.

The trace map ΎrA/R of A is defined by T r ^ : A-*R; Λ̂ΛΛ->Σ?.i Ψ Ί C ^ ). Then,

one reminds that the bilinear form 5^: -4χyl->i?: (Λ?, j)yWMTril//?(jcy) is sym-

metric, and it does not depend on choice of projective dual basis. The sym-

metric bilinear i?-module (Ay BA) is denoted by ζA>. Furthermore, the 3-fold

multilinear form ΓA: AχAχA-*R; (x9yy z)W^>TrA/R(xyz) defines a 3-fold

cyclically symmetric i?-module (Ay TA) which is denoted by ζA}.

Proposition 1. Let A be an R-algebra with identity 1 such that A is fini-

tely generated and projective over R.

(1) (Ay is regular if and only if ζA} is regular.

(2) The following conditions are equivalent:
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(1) There exists a Σ, ai®bi^A<g)RA such that Σ, b{ a~\ and Σ, xai®bi=
Σ| &, ®tff xfor all x^A hold,

(2) There exists a ^ a^b^A®^ such that ^Σl.biai=^iaib~l and
Σ, xai®b~Έ4i ai®bi xfor all x^A hold,

(3) <Ay=(A, BA) is nondegenerate,
(4) ((A))=(A, ΓA) is nondegenerate.

(3) // ((A)) is regular, then the center Z((A))) of ((A)) coincides with {fa: A-*A;
xΨ\Mxa\a^Z(A)}, where Z(A) denotes the center of algebra A.
(4) (cf. [W]; Theorem 3) Let B be an another R-algebra with identity 1 which is
finitely generated projective over R, and f: A-*B a surjective and additive R-
hotnomorphism satisfying TB(f(x),f(y),f(z))=ΓA(x,y,z) for all x,y,z^A. If
ζA} or ((5)) is regular, then /(I) is an inversible element in Z(B), and a map g:
A->B\ aW^f(a)f(ί)~1 is an R-algebra homomorphism. In particular, iff(l) — l,
thenf: A->B is an R-algebra homomorphism.

Proof. (1) is obvious: {A} is regular if and only if TrA/R(x — ) = 0 implies
x=0, that is, ζAy is regular. (2): (1)=#>(2): Since Σ, #αl<g)&j=2j&,<g)αj x in
A®RA holds for all x^A, we get Σ, ai®bi=^,i b{®aiy 2, α, #,—Σ, b{ «, (=1) and
Σ, xa^bi = Σ, bi®aix = (Σi bt®a^ (l®x) = (Σt α,.®&.) (l®x) = Σ, a{®bi x for
any x^A. (2)=Φ(3): The condition that Σ, xai®bi=

yΣi β$.®&,. x in A®RA holds
for every x^A, means that Σf a{ Tril/Λ(6ί ^ ^ ^ ( Σ , - 6, αf ) holds for every
Because, Σ, aξ Ύr^bf x) = Xitj a{ ψjfa xbj), and Σ, f i Λ?iy ̂ ®^ y (* i)=S i f y
(δ,. Λ;έy) in ^4®Λi4 implies Σ, )y α, -ψ y(ftf xbj)=Έ,itj xb. a{ ψ y(4f)=Σ|fy xψj(bi) b} a~
Λ?(Σy δ, α, ), Since ΈtJbiai=l> we get x = Σ y αy Tr^/^^ Λ:) and t\lri(x)=Λlri(Σj aj

for all x&A, so (JB^)*: ^4->HomΛ(^l, i?): xW^>BA(—, #) is surjective, that is,
<(̂ 4> is nondegenerate. (3)=Φ(1): Since (BA)%: A^>HomR(A, R) is surjective,
there is an a^A with ^,.(—)=ΎrA/R(ai —), and x=2fJTrA/R(x*a.)bj hold for
any # e A In particular, we have i = ^ΣirΐrA/R(ai)bi = Ίfitβψj(aibj)bi = Ίlitj

^A/R^i bj a.) bi=ΈtitJ TrA/R(bj a} a{) &, = Σ y fly αy. On the other hand, we have
Σ, xa, ® b~τitj ΎτA/R(xara.) έy ® fty=X,#i fty ® T r ^ a β , . ^ ) 4^=2,^ fry ® T r ^
(βy Λ? Λ,-) 6ί=Σ y Ay®βy Λ? for any x^A. (3)^(4): Since (BA)*: A->HomR(A9 R):

R(— x) is surjective if and only if (Γ^)*: A®RA->HomR(Ay R); x®y
(— xy) is surjective, using (1) we get that (Ay=(A> BA) is nonde-

gnerate if and only if ((A}~(A, TA) is nondegnerate. (3): Suppose that ζA} is
regular and/e5Γ(((yί))). Since ΓA(f(x),y, z)=ΓA(x,f(y)i z) holds for all xy y, z
ϊΞA, f satisfies Tr^(/(xy) zw)=ΎrA/R(xyf(z) w)=ΎτA/R(yf(z) wx)=ΎτA/R(f(y)
zwx)=ΎτA/R(xf(y) zw) and TA(f(xy)—xf(y), z, w)=0 for all x,y, z, w^A, that
is, f(xy)=xf(y) Therefore, f(x)=xf(l) for every x&A. Put /(l)=α, then
f=fa. Therefore, we have ΓA(ay, z, x)=ΎvA/R(ayzx)=ΎrA/R(xayz)=TA(xai y, z)
=ΓΛ(f(x), y, z) = ΓA(x, f(y), z) = ΓΛ(x9 ya, z) = ΎrA/R(xyaz) = ΎrA/R(yazx) = Γ^
(ya,z} x) for every x,y, z&A, so ay=ya for all j G i , hence a^Z(A). The
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converse is easy. (4): Let/: A->B be a surjective and additive i?-homomorphism
satisfying Γβ(f(x), f(y)> f(z))=TA(x, y, z) for all x, y,z^A. There is an element
e in A such that /(*) = 1. Then, we have TrB/R(f(xy)f(z))=TrB/R(f(e)f(xy)f(z))
=TB(f(e),f(xy)J(z))=TA(ef xyy z)=TrA/R(exyz)=TA(ex,y, z)=ΓB(f(ex), f(y),
/(*)) = T r ^ ( / ( * * ) / ^ for all JGΰ.

If ({B} is regular, then so is <£>, and we have f(xy)=f(ex)f(y). Similarly,
Tr,,,(f(xy)f(*)) = ^B/R{f{xy)f{e)f{z)) = TB(f(xy)J(e)9 f(z)) = TA(xy> e, z) =
TrA/R(xyez)=ΓA(x,ye, z)=ΓB(f(x)ff(ye)J(z))=ΎτB/R(f(x)f(ye)f(z))9 we have
f(xy)=f(x)f(ye). Hence, we get f(e2)f(z)=f(z)f(e2) and f(xy)=f(x)f(y)f(e2)
for any ^ j , ^ i , s o / ( l ) - ^ ) G Z ( i ) and f(xy)f(e2)=f(x)f(e2)f(y)f(e2)
hold for any Λ,yeA Therefore, g: A->B: aW^f(a)f(ί)'"1 is an algebra
homomorphism. If ((-4)) is regular, then by Lemma 2: (3), /: ((̂ 4))->«ΰ)) is an
isomorphism, so ((#)) is regular. By the above statement, £: A->B: #MΛ->/(α)
/(I)" 1 is an algebra isomorphism.

REMARK I. 1) The conditions in (2) of Proposition 1 mean that A is strong-
ly separable over R in the meaning of [K2], which is equivalent to that A is sep-
arable over R and A=Z(A)@>[A, A], where [A, A]= {2,(α, 6,-6, aξ) \ ai9 b^A}.
2) For symmetric algebras 4̂ and B over a field, Watanabe [W] proved (4) in
Proposition 1.

3. Matrix representation of C-skew-symmetric multilinear
Λ-module

For any positive integer m, Um(or Rm) denotes an i?-module consisting of
w-rows (uv u2, •••, um) with u^U, (or u^R).

DEFINITION. For integers n and r ( ^ 2 ) , let F(ryn) be the set of all
mappings of {1,2,—,r> into {1, 2, •••, n}. Then, a set ^=(#/)/e=F(r,n)=
(Λ(/(i), »,/(r)))/eF(r,») of elements af^U which suffixed by elements / = ( / ( I ) , •••,
/(r)) of F(r,«), is called an r-fold matrix of degree n, or simply say nr-matrix,
over Uy (in the case U=R, it was defined in [K, W]). We shall say that A=
(a/)/eF(r,») is ζ-skew-symmetric, if it satisfies Λ(/(i)i/(2),/(3),...f/(r))=δ' Λ/(2),/(3).. ,/(r),/(i))
for every/-(/(I), -J(r))eF(r, n). If f = l , "1-skew-symmetric" will be said
"cyclically symmetric". Let A=(af)fξΞF(rn) be an nr-matrix, and let b=(bu b2>

-• ,bn) be any element in Rn. For l^k^r, bfoA denotes an w^-matrix
(cg)geF(r-itH) with ^=Σi-i&,α^(i),...iί(ifc-1)fι^(ik)f...^(r-1)), and 6(ί)^l is denoted by
bA. If 4̂ is regarded as an ordinary hXnr~^matrix, bA is an element of U"''1.
RnA={bA\b£=Rn} becomes a finitely generated i?-submodule of U"r . We
note that for any b~(bn, bi2f •••, bin)^Rn (i=l, 2, •••, r) and an //-marrix A=
(«/)/eF(r,n), we can define a product 6ici) (62(2) (—(6r(ό-4))) = Σ/6iί'(r.ι.) *i/(2)

For a given f-skew-symmetric 72r-matrix A=(a/)f(ΞF(rn) over Γ7, we can de-
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fine a £-skew-symmetric multilinear map ΘA: R
nAxRnAX" xRnA-*'U as

follows: For (bγAy b2A, - , brA)<=RnAxRnAx ••• xRnA, Θ^A, b2A, - , brA)
=6i(i) (&2(2) (•• δr(ό A))) = Σ/SFCΓ.*) blfω &2/(2) ••• brf(r) af ( = Σ,tyf...fϊ-i bιt b2j-- brk
aUj," ,ti)- This *s w e ^ defined. Because, if bhA=b'kA for bk=(bkv bk2, •••, &An)
and b'k=(b'kUb'k2,—,b'kn) in /?*, then Σΐ-i* ik i<έi(^tt+i) i...^(r)^(1),...^( ik-1))=Σ<.i
bk,'i ^(itg(k+i)),-,g(r)tg(i)r'fg^-i)) for everyg^F(r, ή), hence we get bH\) (62(2)

b2g(2y~bkg(ky brg(r

The r-fold ^-skew-symmetric i?-modlue (RnA,θA; U) defined by a f-skew-
symmetric wr-matrix A will be denoted

L e m m a 3. For any ζ-skew-symmetric rί-matrix A over U, <f-^]^ is always
regular.

Proof. To show that (ΘΛ)*: Rn A-+HomR(®r

IΓ
1 Rn A, U); bAMMθA(bA,

—) is injective, suppose 6 A ^ K e r ( ^ ) * , that is, ζ 6i(i) (62(2) (—6r-i(r-i) (*(o A)))
=>0 for all bJ^Rn; i—l,2, •••, r— 1. We can check that for any w*-matrix JEΓ=
(«/)/6F(*,β)> cH=O for every c^i? Λ implies H=O, that is, ̂ = 0 for every
(^, »). Therefore, ft^ (6ik+i(ik+i) (6(ό ^L))=O for every bk^Rn implies
•••(6(;) A)=0. Hence, we get bA=ζ btf) A=O.

Let (My θ; U) be any finitely generated r-fold f-skew-symmetric i?-module
with M = Σ ? - i Rmr B=(θ(mf(l), mf(2), •••, mf(r)))fGF(rn) is a f-skew-symmetric
nr-matrix over U. We consider a relation between r-fold f-skew-symmetric iϊ-
modules (M,Θ;U) and <[#]>. For any Λ? = Σ ? - I f. ^ GM, (^(Λ:, m / ( l ), •••,
m/(r-i)))/eF(r-itn)—cB^RnB holds, where c=(^! , 2̂> •"*> c « ) e ^ n Hence, we
can define an i?-epimorphism

Ψ : M — RnB:xW^> (θ(x, w / ω , - , ̂ /( r-i))W(r-i,n).

Then, Ψ becomes a morphism of f-skew-symmetric i?-modules of (M, θ U)
onto ζ[B]y = (RnB, ΘB\ U)f that is, for any xi='Σ%iCijmj^M; z = 1, 2, •••,

5(^,^2, •• ,Λ?r), where c~(cilyci2, ~,cir)^Rn. On the other hand, if one re-
gards B—(bf)fGF(rn) as an w^Xft-matrix, then for any wr~1-row c—(cg)g€=F(r-i,n)
CER»r-\ C.2? = ( Σ ? e f ( r M ) ^ ( r l ) , - , ^g,F(r-lfn)Cgb(gtn))^U\ SO R'^ B^
ic-B\c<^R"r~1} is an Λ-submodule of Un. If Λ?1(g)Λ?2® ®Λ?r-.1(e®i-1 M) is
expressed as 2/e=F(r-i,«) c/ ™f(i)®mf(2)®'"®mf(r-i) f° r ^ / e ^ > then (^(^, •••,
Λ?r_!, mj), ^(Λ?!, •••, Λ;r_!, m2), •••, ^(Λ:!, •••, Λ:r_!, mn)) can be expressed as c B with

( r_ l t n). Hence, Ψ is surjective.
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Lemma 4. For a generator {m.; i—l,2y ,n} of M, one can define R-
hotnomorphisms
V: ®rfι M~-*Un and A: HomΛ(M, U) -* U" as follows:
V: ®rfι M^»Un\ xι®x2®
θ(mn, xly.... * r-0), and Δ:
Their images are Im τj=R*r B and Im Δ = {{uly u2, •••, wn)G Un | Σ?-i £, w,—

for all{cλ> c2> —, crt)GRel ({%}), wAβrβ Rel ({wf.})= {(^, c2> - , ί J e J ί " ! Σϊ.i ,̂ w
= 0 } . Furthermore, Δ w irtjective, and the following diagram is commutative:

®rfι M — * Un

(#) ^ * II
, U) ^ C/n.

Proof. One has an exact sequence 0-+Rel ({mi})->Rn-+M->0, so I m Δ =
Ker(C/n->Hom/?(Rel({m|.}), U)) follows from that O-^Hom^ίM, U)->HomR

(Rtt, C7)=C7ll->Homie(Rel({»!,», J7) is exact. Since Δ 5 # ( Λ ? 1 ® ^ ® — ®Λ? Γ - 1 )=

Δ(5(—, Λj, #2> "•> «^r-i))=V(Λ:1®^2® '®Λ;r«i) n°ld for any ^ ( g ) ^ ® - * - ® ^ - ^
®^"1 M, the diagram (#) is commutative.

Proposition 2. Let {M, θ} U) be an r-fold ζ-skew-symmetric R-module
with a generator {mι,m2," ,mn} as an R-module, i.e. M=Έt

n

i*siRmo and let
5=(^(w/(1), mf(2), •••, w/(r)))/eF(r>M). Then the following statements fold:

1) (M, θ U) is regular if and only if Ψ: M-+R" B is bijective.
2) θ* is surjective if and only if Im Δ = I m V.

Proof. 1) follows from that θ* is injective if and only if Ψ is injective.
2) immediately follows from the diagram (#).

DEFINITION. By Unttn (or i?M>w), we denote the set of all n x m-matirces with
entries in U (or R). Let A=(af)fζΞF(rn) be an r-fold £-skew-symmetric wr-matrix
over Uy and B=(bij) (Gi? n Λ ) an ordinary wXn-matrix over R. When one re-
gards A as an wXΛ^-matrix over U, a subset Ann (A) of Rn n and a subset
Ann(J?) of Unn are defined as follows; Ann (A): = {D^Rntn \D*A=O} and
Ann (B): = {7G Unn \ B V=O}, where D A or JB F means an ordinary prod-
uct of matrices. For a subset b^Rnny Ann (b) denotes the intersection of Ann
(B) for all i?eb. On the other nand, one car regard A as an nr~ιX w-matrix
over £/, then for any nX wr~1-matrix C over jf?, the ordinary product C A is an
wXtt-matrixover £/. We ρuti? Λ r t r-i.^l={C 4 e ί 7 n f M |CejRΛ Mr-i}. For a set
α of £/rt Λ, *a denotes the set of transpose matrices '^ ' s for all H^a.

Proposition 3. Let A=(af)/eF(rn) be an ζ-skew-symmetric nr-matrix over
U. Then ζ[A]y is nondegenerate if and only if '(Ann (Ann )A)))=Rn$nr-i A
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holds.

Proof. Let ^ = ( 1 , 0, •-, 0), e2=(0, 1, 0, , 0), — , en=(Q, —, 0,1) be ele-

ments of Rn. RnA is generated by {e{A; i = l , 2, •••, n} as an i?-module. For

the 2?-homomorρhisms V and Δ defined by the generator {e4A; i=l,2, •••, n}

in Lemma 4, we have Im V=iί* r" A, because oίθA(efd) A, ef(2) A> •••, ef(r) A)=

^/(i)(Ί)(^/(2)(2)(—«/(r)(r)^i)))=«/ for every f(ΞF(r,n). On the other hand, it

follows that Rel (ieiA})={b=(bly b2y -,bn)eίRn\Έt

n

t_1bieiA=bA=O} and Im

Δ is the set of elements (uuu2, •••, un)^Un such that Sϊ-i b§ % = 0 holds for all

b==-(bl9b29 ~-,bn)^Rn with bA = O. Hence, I m V 2 l m Δ , ( o r I m V C l m Δ ) ,

holds if and only if R^^A^, (or £ ) , {(uly u2ί - , un)(=Un\2Ui *,«,=<) for all

b=(bl9 b2y~ , bn)^Rn with bA=O}. The latter condition is equivalent to that

Rny-ιΆ^ (or c ) , {(t t^et/,^ 1 2 3 - 1 * ^ ^ = 0 ; i, ft=l, 2, ..., n, for all B=

(bij)^Rn with Je ^L=O}=ί(Ann (Ann (A))). Hence, By Proposition 2, (0^)* is

surjective if and only if jRnnr-i.-4.= '(Ann(Ann(^l))). Since <[̂ 4]> is regular,

the proof finished.

REMARK II. 1) In the above proof, we showed that l?JlfJlr-i .Ac:'(Ann

(Ann (A))) holds for any ξ'-skew-symmetric rar-matrix A over U, since the

commutative diagram (#) in Lemma 4 means I m V £ l m Δ ,

2) If U is an inversible i?-module, that is, U is finitely generated projective

and rank 1 over R. Then for any/,#eHornet/, R), f(x)g(y)=f(y)g(χ) holds

for every xyy&U, so f(x)y==f(y) x for all Λ

DEFINITION. Any element D in HomΛ(C7nΓ"1, Rn) will be able to regard as

an ΛΓ"1X»-matrix {ditJ) with (i,y)-entry ditJ^ ?7*=Homff(ί7, R). For an wr"1χ

w-matrix A=(aitj) over U and Z>=(J#.;.)GHom/?(ί7nf~1, i?n), AD means an nX

w-matrix with (*',j)-entry S?!"/ dktj(aifk) (GJR).

Lemma 5. Let U be an inversible R-module, and A a ζ-skew-symmetric

nr-matrix over U. If there exists a D^HomR(Unr~ > Rn) such that (AD) A=A

regarding A as nXnr~]^-matrix, then the nr~ιXn-matrix A satisfies the condition

Rnnr-i*A=*(Ann (Ann (A))), hence <([A]> is nondegenerate and R-projective.

Proof. By 1) in Remark II, i?Λ>nr-i AQ'(Ann (Ann (A))) always holds.

Since (AD) A=A, if In denotes the identity matrix in i?ΛfΛ, (AD—In) A=O

and AD—In e Ann (A) hold. Hence, H^ '(Ann (Ann (A))) implies (AD—In)

Ή=O, so (AD)'tH=tH holds. By 2) in Remark II, we get H=H \AD)=

ζ{H*D) A. Because, if hiwj{pr aitj) is (ί,y)-entry of H(or A)9 then (AD)-*H=

*H implies that A i f f=Σ*(Σ* i*.*K*)) hJtk=τk(τk dkth(hjyh)) aitk=ζ ΣA(2A dkfh(hJth))

aki is (j, z)-entry of ζ (H*D)Ά. Hence, we get H^Rnnr-i A and Rn y-ι A=

'(Ann (Ann (A))). By Proposition 3, <[A]> is nondegenerate, and using Proposi-

tion A in Appendix, we get the jR-projectity of
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Proposition 4. Let U=R, and let A be a ζ-skew-symmetric nr-matrix over

R. Then, <[^]> is nondegenerate and R-projective if and only if there is an

nr~ιXn-matrix D over R such that A DΆ=A holds, where the product means an

ordinary product of matrices regarding A as an nχnr~ι-matrix.

Proof. The "if" part is obtained from Lemma 4. Suppose <([yl])> is non-

degenerate and i?-ρrojective. By Lemma 5, Rny-i»A=\Aim (Ann (A))) holds.

By Proposition A in Appendix, there is an wr"1Xw-matrix F over an injective

hull of R as an i?-molule such that every entry of the product A F is in R and

(A'F)Ά=A holds. Since B-(A-F)=(B A)-F=O-F=O hold for all B(Ξ

Ann (A), *{A F) is contained in t(Ann(Ann(A)))=^Rntnr-i'A, that is, *(A F)=

D-A for some D<ΞRnnr-i. Since A-F=\D Ά)={f 1)^*0) and *A=ζ A, we

get that there is an nr+1 X^-matrix ζ *D satisfying A (ζ *D) A=A.

From Lemma 5 and Proposition 4, we get the follwing theorem:

Theorem 1. Let (M, θ) be a finitely generated ζ-skew-symmetric R-module,

and M = Σ ϊ - i Rm{. A=θ (m/ωy m/ ( 2), —, W/(r))/eir(r>M) is a ζ-skew-symmtric nr-

matrix over R. The following conditions are equivalent:

1) (M, θ) is non degenerate and R-projective}

2) Ψ: (M, θ)->ζ[A]y is an isomorphism, aud there is an nr~ιXn-matrix D

over R such that A D A=A holds as a product of matrices nr~ιxn-matrix D

and nr~ιXnr^-matrix A.

REMARK III. Let R be a field or a Von Neumann regular ring, and A any

wr-matrix over R. One can show that there exists an nr~ι X ̂ -matrix D over R

such that A D A=A holds, regarding A as an nx/zr"1-matrix. Let A regard

as an /zXw'^-matrix, and for an n(nr~ι—l)χwr~1-zero matrix O,

put B: = ( ^ ) : /zr-1χnr-1-matrix.

Since the wr"1χwr"1-matrix ring Rnr-i over R is a Von Neumann regular ring,

there is an nr~ι X ΛΓ"1-matrix D with B D B=B. Let Dλ be an nr~ι X ^-matrix

and D2 an ftr~1X«(nr~2— l)-martix satisfying D=(DlyD2). By a computation,

A Dί*A=A follows.

Corollary 1. Let R be a field or a Von Neumann regular commutative

ring. If A is a ζ-skew-symmetric nr-matrix over R, then <[̂ 1])> is always non-

degenerate.

4. 3-fold cyclically symmetric i?-modules

Let (My θ; U) be a 3-fold cyclically symmetric i?-module, that is, θ(x,y> z)

= θ(y, z> x) holds for all x> y, z^M.

DEFINITION. For e G l , e is called a regular element of (M, θ; U), if
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θ(—y—,e): MχM->U;(xyy)*ΛMθ(xyyye) is a nondegenerate symmetric bi-

linear form.

REMARK IV; If there is a reglar element e of (M, θ; U)y then (M, θ; U) is

nondegenerate, and a multiplication M X M - ^ M;(Λ:,}') ΛAΛ-> Λ? j , satisfying

θ(xyyy z)=θ(x'yy z,e) for all #,j;, ̂ Gilί, is defined on M, and M becomes a

non commutative and non associative i?-algebra with identity e, this i?-lagebra

denote by ((M, Θ;U)> ;e). If 0 is symmetric and U=R is a field, these was

defined in [HJ.

Proposition5. Let {Myθ\ U) be a cyclically symmetric R-module, and e

and er regular elements of (M, θ; U). For R-algebras ((M, θ; U), •; e) and

{{M, θ; U)y *; e') defined by e ahd e', if ((M, θ; U)} e) is an associative algebra,

then the following statements hold:

(1) (x*y) ef=x y and (x y) *e=x*y hold every x,y£Ξ M.

(2) e' is an inversible element in the center Z((M, θ; U), ;e) of ((M, θ; U),

• \ e), and ef *{e*e)=e holds, e is inversible in Z{{M, θ\ U), * ; er) ande*(e' e')=e'.

(3) ψ: M->M; xW^>x ef is a bijection with the inverse φ: M-+M; #ΛAΛ->

x*e, and satisfies φ(x y)=x*y for all x,y^M.

(4) (x y)*z=x*(y-z) holds for all x,y, z^M.

(5) ψ (x - y) =Λ]Γ (X)*Λ}T (y) holds for all x3 y e M, so

ΛJT: ({M, θ; U), e)->((M, θ; U), *; ef) is an R-algebra isomorphism. ((M, θ; U),

* e) is also an associative algebra.

Proof. (1): From the definition of multiplications and *, it follows that

θ({x*y)-e'9 z} e)=θ((x*y), e', z)=θ(z, (x*y), e')=θ(x,y, z)=θ(x-y, z, e) imply

(x*y) e'=x y. Similarly, we get (x y)*e=x*y. (2): For any x&M, e'*x=x

implies Λ? ^'=(^'*Λ;) ^ —^/ ΛJ, and{e*e) e'=e e=e, hence ̂ 'G2Γ((M, θ; C/), e).

Similarly, e^Z((My θ; U), *; e') and e*(e' e')=e'. (3): From (1), we have

Λ]r(φ(x)) = (x*e) e'=x e = xy and φ(ty(x)) = (x ef)*e = x*e'= x and φ{x y) =

(x y)*e=x*y hold for all xyy^M. (4): Since ((M, θ; U), ;e) is associative,

(x y)*z=φ((x y) z)=φ(x (y z))=x*(y z) hold for all xyyy z^M. (5): Using

(4) and ef^Z((My θ; U)9 e), weget<y}r(x)*>ψ>(y)=(x-e')*(y e')==((x-e') y)*e')

=(e''x) y=e' (x y)=(x y)'e'=ΛJr(x y).

DEFINITION. Let (M, θ; U) be a 3-fold cyclically symmetric i?-module. If

there is a regular element e of (M, θ; U) such that ((Λf, θ; U)> e) is an associa-

tive algebra, then we shall say that (My θ U) is associative.

In the following, we consider the case U=R.

DEFINITION. Let A = (aitjk;ί^iίj\k^n) be a cyclically symmetric n3-

matrix over Ry and e=(el9 e2i •••, en) an element in Rn. We shall say that e is

regular with respect to Ay if for any χ=(χly •••, xn)GRn, xfa {efa ^L)=(Σ/,Λ-I
xi ek ai,k,k\ l ^ i ^ ^ ) = 0 implies J C J ! = ( 2 Ϊ » I xt aijk'y l^ίj, k^ή)=0.
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REMARK V. If e ^ l = ( Σ L i ek akij\ l<LiJ<^n) is an inversible wXw-matrix,
then e is regular with respect to A.

Theorem 2. Let A = (aitjk;l^i,j,k^n) be a cyclically symmetric nz-
matrix, and e=(ely e2> •••, en) be regular with respect to A.

(1) <[-4]> is R-projective and eA is a regular element of <[yl]> if and only if
eA—(Σtt

k.ιekakitJ.;l^i,j^ri) is a symmetric and Von Neumann regular nXn-
matrix, i.e. there is an nxn-matrix C=(citj; l^ij-^n) with (eA) C (eA)=eA.
(2) Assume the latter condition in (1), that is, eA is symmetric, and there is an
nxn-matrix C=(citJ;l^i,j^n) with (eA) C*(eA)=eA. Then, <|yi]> is as-
sociative if and only if an n4-matrix (Σϊ.f-i βh,i,t c$,t at,j,kl l^A, i,j, k^n) is cyc-
lically symmetric.

Proof. Let A=(aitjk;l<^i,jίk^ri) be a cyclically symmetric n3-matrix,
and e=(e1, e2) •••, en) an element in Rn. (1): Put B(xA, yA)=θA(xAy yA, eA)
for xA, yAEϊRnA. The bilinear form B is symmetric if and only if n X ̂ -matrix
e-A=(ΣJ.i ek aitjtk\ 1 ^hj ^n) is symmetric. Suppose that eA is symmetric. By
Theorem 1, (RnA, B) is nondegenerate and i?-projective if and only if
Ψ : (RnAy B)-^ζ[eA]}; vA*ΛMx (eA) (=x (i) (e$)A)) is an isomorphism and eA
is a Von Neumann regular riXn-matήx. Hence, we get that eA is a regular ele-
ment of ζ[A]> and <[-4]> (=(RnA, ΘA) is i?-projective, if and only if e is regular
with respect to A and eA is a symmetric and Von Neumann regular nXn-
matrix. (2): Suppose that eA is a regular element of <(|yl]^ and there is an
nx^-matrix C=(citj) with (eA) C (eA)=eA. A multiplication * on RnA is
defined by θA(xA*yA, zA, eA)=θA(xAy yA> zA). Since <C[-A]> is associative if
and only if θA(xA*yA, zAy wA)=θA(xA, yA*zA, wA) holds for every xA, yA>
zA,wA^RnA, it is sufficient to show that θΛ(xA*yA9 zAfwA)=^Σns,t,tj.k^i
xiyj zk wh aKKs cst atJtj and θA(xA, yA*zA, wA)=Ίt

n

Stt,ijιk^i ociyj zk wh aKitS cStt

atJk hold for avery x=(xl9 —,xM), y=(yl9 —,yn), z=(zl9 —,zM) and w=
(wl9 •••, wn)^Rn. We put xA*yA=uA and yA*zA=vA for u=(ul9 •••, un) and
v=(vlf •••, vn)^Rn. First we shall show the following identity:
(if); ΘJxA, yA, zA) (=S?.y iA.i xiyi zk aiJιk)=
Σί./i*.M.«-i XiVj *k aitjtS cStt em amtttk for any x, yy z&R".
Using identities Σϊfy.*-i Xiy} zk

 aitjtk{=θA(xA, yA, zA)=θA(uAy zA9 eA)) =
^nj,t.m^iujztemajttttn and J,*mmiemaMJtt(==eA=(eA)-C-(eA))==
Σni,P,q,m-i ei aiιjfP cPtq em aUΛtt9 we have Σΐ.y^i xiyj aitίtk-=Ί,n

j>m^ι u. em ajXm=
^".i.P.Q.m-i Uj e{ aiJtP cPtQ em «« i f i Λ=Σ; i f f iι«.i (Σϊ.y-i uj e{ aitjtP) cPΛ em amtqtk=
Σ5.fff«.i (Si.y-i x{yj aitjtP) cPΛ em amtqfk=^n

iJtPfqtm^i x4yj aiJwP cPtQ em a%q%h for
ft=l,2, —,n. Hence, we get S1.y-i *ιyi*i,iy==r2!i.j.p.q,m-\ xty

}jaitjtpCptq^m^mtqtk\
k=l9 2, •••, w, and the identity (#). Using (#), we get θΛ(xA*yA> zA, wA)=
θA(uA, zA, wA)=θA(zA, wA, uA)=Ί,n

ktgtitStt,m=i zk wh u{ α M > , cStt em amtttj.
Since θA(zAy uA9 eA) (=θA(xA9 yA, zA)) = θA(xAf yA, zA) means
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? i l w.i us em atJtm)=Ί,nijml xiyl aiti%t for ί = l , 2, —, Λ, we get
*.*.« c M e w Λ i i f M = S M i ί i y i , i / - i #* wh aktKs cSJ (u{ em α β , M ) =

ΣΪ.M./.*.#-I ** ̂ A Λ M . « cβ,t fay,- ai,j,t)=?<nk.h,i.j.s.t-i Xijj zk wh aKKι cStt *,,,,,=
Σί.i.y.M.ί-i xiVi zk v>h Λk.h,* c*,t <*t.i.j> S o w e h a v e θA(xA*yA, zA, wA)=
Sϊ.i.y.*.*./-i ^, Jy #* ^A «*.*,« ̂ ,ί «M.y. Similarly, since θA(vAy xA, eA) ( =
θΛ(yA, zA, xA))=θA(xA, yA, zA) means Sy.«.-i ©y ̂  ««.#fy(=Sy.«-i ŷ ̂ « «ίfy,w)
= S 5 . * - i y s *k <*t,j,k for ί = l , 2, •••, w, we get θA(xAy yA*zAy wA)=
θA{wA, xA9 vA)=Ί,n

htijtS,t,ma,ι wh x{ v. aKitS cSft em amJtj=

Έ+.u. .t.m.i Mh Xi ahtitS cStt (v em aMttJ)='Σnk.ij.k.,.t-i wh xt "h,*,, c*,t {y, %h <*t,j.k)=
Σnh,ij,k,s,t-i Xi yj %k ̂ h βh.i.s c*,t at,j,k> using (#). Thus, the proof finished.

5. Appendix: Projectivity of RnA

Let R be, in general, a non commutative ring with identity 1, and U a left
jR-module. Then, Um={(ulyu2, •••, um)\Ui^U} and the set TJn%m of all nxm-
matrices (uif.) with (i,y)-entry uifj in U become left i?-modules. For any
H={uiti)^Un%my RnH= iaH=(ΣΊ-i aλuily Σ !- i α, ui2y - , Σ?»i at uim)\a=(aly a2y

-~yan)&Rn} is a finitely generated Λ-submodule of Um. By E=E(RR)y one
denotes an injective hull of left i?-module Ry and put [7*=Hom/?(ϊ7, E). Every
element F in HomΛ(ί7w, En) can be regarded as an mx«-matrix (fitJ) with (i,j)-
entry fitj<ΞU*y that is, HomR(Um

y En)=U*,n. For F=(fίtj)GiUomR(Um

y En)
and H~(utJ)^.Unmy HF denotes an wXw-matrix with (/>t/)-entry 'Σΐ-ifkj(Ui,k)
(G51). For an wX^-matrix C with entries in i? and an sXf-matrix D with
entries in U (or i?), the ordinary product of matrices C and D will be denoted
by C D. Furthermore, by Rn one denotes the ring of n X /^-matrices over R.

Proposition A. Let H^ Unm. RnH is R-projective if and only if there ex-
ists an F^Uttn such that HF^Rn and (HF)-H=H.

Proof. Suppose R*His projective over R. An epimorphism h: Rn-*RnH\
αΛAMαiTis split, that is, there is an i?-homomorphism£: Rn H->Rn with h g=I.
Since En is injective over i?, an jR-homomorphism eg: Rn H->Rn<L->En is ex-
tended to an i?-homomorρhism/: Um->En. Then, there exist fif. G ί7*(=Hom f f

{UyE))\ i=\y ~-ymyj=ly ~-yny such that, for any (ulyu2y —,um)^Um,f(uly - ,
«.)=(SΓ.i/M(iι,), JΪ-ifM, - , Σr.iΛ.(M) holds. F=(fitJ) is in U*.n. It is
easy to see that f(RΉ)=g(RΉ) and g(RΉ)^Rn mean HF^Rn. From the
fact that f\R»ff=cg and h g=ly it follows that h f\RnH=Iy and h'f\RnH=I
means (HF) H=H. Because, the ί-th row of (HF)-His

h*f(uitly u i t 2 y •••, u i t f n ) = ( u i t l y u i t 2 y •••, t / ί > β l )

which is ί-th row of /f. Conversely, suppose that there is an JPe Utttt such that
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HEϊΞRn and (HF)-H=H. Then, the epimorphism h: Rn-*Rn H is split, that
is, there is an i?-homomorphism f':Rn H->Rn; aHW^>(aH) F with h*f'=l.
Because, h f'(aH) = (a(FH))-H=a((FH) H) = aH for every aH<=RnH,
since (aH)F=a(FH) for a^R". Hence RnH is projectile over i?. Thus, the
proof finished.

Especially, if U=R, one can regard R$tn(=HomR(Rm

y En)) as Emn by a nat-
ural isomorphism HomR(i?w, E")->Emtn (fitj)W^>(fitj(l)). Then, for H(=Rnm

and F^Emtfty the product £ΓF coincides with the ordinary product of matrices

Corollary A. Let A be an nXm-matrix over R. Then, RnA is projective
over R if and only if there exists an F^Emn such that A F^Rn and (A F)
A=A.
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