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Let R be a commutative ring with identity 1, and for an integer r=2, { an
element of R with {”=1. For an R-module M and an r-fold multilinear map
0 on M, we shall say that 6§ is &-skew symmetric, if @ (xy, x5, %3, +**, %,)=
& 0(x,, x4, +++, x,, ;) holds for every elements xy, x5, %3, +++, ¥, EM. In this paper,
we investigate the R-module with 7-fold {-skew symmetric multilinear map. In
§1, we prove some fundamental properties on r-fold {-skew symmetric multi-
linear R-modules, which include ones on symmetric or cyclically-symmetric
multilinear R-modules in [H,] or [K,]. In §2, we give two examples of r-fold
§-skew-symmetric multilinear R-modules, one is the determinants of matrices,
and another is a 3-fold trace form of an R-algebra. In §3, we shall show that a
finitely generated {-skew symmetric multilinear R-module is characterized by an
r-fold ¢-skew-symmetric matrix, which is an expansion of [K;]. In §4, for a 3-
fold 1-skew symmetric multilinear R-module <[A]> defined by a 3-fold 1-skew
symmetric matrix A, we give some conditions for {[A]> to be an associative
R-algebra by some multiplication on {[A]).

1. r-fold {-skew-symmetric multilinear R-module (M, 6; U)

Let R be a commutative ring with identity 1, » a positive integer (r=2), {
an element of R with {”=1, and U a faithful R-module.

DerINITION  For an R-module M, we shall call (M, 6; U) an r-fold {-skew-
symmetric multilinear R-module, simply r-fold &-skew-symmetric R-module, if
O: MXMX o XM—U,; (%1, %5, X3, **+, %,) W (%, X, X3, *++, %,) is an r-fold
multilinear map of M into U satisfying 0(x;, x5, %3, **+, %,)=8 O(x,, X3, ***, %,, %y).
If {=1, r-fold 1-skew-symmetric R-module is called an r-fold cyclically symmetric
R-module. By 6* and 0y, one denotes the following R-homomorphisms:

O4: M — Homgp(Q%* M, U); x W 6(x, —), and
0*: ®;?—1 M — HomR(M) U); xl®"'® Xy WS 6('—’ X1y ***y xr—l) ’
where ®% ' M and 6(x, —) denote %' M=M QzM Qg+ Qg M: the tensor

product of r-1-copies of M over R, and O(x, —): @5 M—->U; x,Q++- Qx, W
0(x, x5y, %,). (M, 0; U)is said to be regular, if 0* is injective. If 6* is in-
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jective, and if @4 is surjective, then (M, 8; U) is nondegenerate. Furthermore,
(M, 0; U) is said to be finitely generated, projective, if M is finitely generated,
projective over R, respectively. If U=R, (M, 6; R) is denoted by (M, ).

Lemma 1. Let (M, 0; U) be an r-fold §-skew-symmetric finitely generated
projective R-module. Then, (M, 0; U) is nondegenerate if and only if Ox is sur-
Jective. In particular, an r-fold §-skew-symmetric R-module (M, 6) is nondegenerate
and finitely generated projective over R if and only if there exist x, ;, %3 j, ***, %, j,
,EM; j=1,2, -, n with 2=3Y}.1 0(%, %, ;, %3 ;, **, X, ;) 8; for all xEM, (cf.
[H,]; Lemma 1.1).

Proof. Let (M, @;U) be an r-fold {-skew-symmetric finitely generated
projective R-module. We shall show that if 0y is surjective then 6* is injective.
Suppose 0* is surjective and xEKer *. Since M is finitely generated projective
over R, there are Jn, vy, +**, Yr, EHomg(M, R) and yy, ¥, -+, ¥, EM such that
x=32T.14r;(x) y;. For any u€ U, v, u=+ry(—) u is contained in Homg(M, U)
=Im @y, hence there is a 3, 2, Q%;;Q - Qx;, ER% ' M with 04(3; #,,Q;,Q <+
Q) =vr(—) u. O(x, —)=0 implies that Yn(x) u=3%.1 0(x, x;5, ++, #;,)=0 for
all €U, so Yry(x)=0; k=1, 2, ---,m. Hence we get x=37_; y;(x) y,=0, and
0* is injective. The second part of the lemma is easy.

For an r-fold §-skew-symmetric R-module (M, 6; U), we can define quite
similar notions “orthogonal sum’ and “the center of (M, @; U)” to ones in [H,].
Let L and N be R-submodules of M. If 0(x,y, 23, ***, 2,)=0(y, %, 23, ***, 2,)=0
holds for all x€L, yEN and 2, -+, 3,€M, then L and N are said to be or-
thogonal, and L+N is denoted by L_| N, furthermore, N* denotes {xEM |
0(x,y, 23, *++, 2,)=0(y, x, 23, ***, 2,)=0; VyEN, Vz,, -, 2,€M}. Z(M,0;U)
= {fEHomR (M, M)| a(f(xl), Xy X3y **"y xt)=0j(x1’f(x2)’ X3, ***5 %) for all x,, x,,
-+, 8, EM} is called the center of (M, 8; U).

Lemma 2. Let (M, 4; U) be a regular r-fold {-skew-symmetric R-module
with r=3.
(1) (cf [H,);2.2,2.3,2.4) Let L and N be R-submodules of M such that M=L_| N.
Then, (N, 0|y, U) is regular, LN N={0} and L=N" hold. If L' and N’ are
another R-submodules of M with M=L’'_| N’, then L’ is decomposed as follows;
L'=(L'NL)1(L'N\N). Therefore, if (M, 8; U) has an orthogonal decomposition
of a finite number of indecomposable components, then the indecomposable components
are uniquely determined up to isomorphisms. If (M, @; U) is nondegenerate, so is
(N, 8], U).
(2) (cf. [Hy);4.1) Z(M,0; U) is a commutative R-algebra, and (M, 0; U) is
orthogonally indecomposable if and only if Z(M, 0; U) has no idempotents without
0 and 1.
(3) Let (M',0'; U) another r-fold £-skew-symmetric R-module, f: M—M' an R-



MUuLTILINEAR FORMS 737

homomorphism satisfying 0' (f(%y), (%) f(%3), =+, f(%,))=0(%1, %5, X3, -+, x,) for all
Xy, X3, X3, -, %, EM. If (M, §; U) is regular, then f is injective.

Proof. Some parts of this lemma are similarly proved to the proof of [H,].
(1): Suppose M=L_| N. First, we show M=L@PN. For any x€L NN and
Yo V3, o0, ¥, EM, we have y,=yj;+y;’ for some y;&L and y3’EN, and
e(x’yz’ys, "';yr)ze(‘x’yé’y-’b "':yr)_’_a(x»'yé,!yéb "':yr)ZO’ so x=0 and LNN
={0}. To see that (IV, | y; U) is regular, suppose xEKer(0|y)*. For any
yi=yi+y’EM with yl€L and y/EN;i=2,3, -, 7, 0(%, Y5 Vs =, ¥y) =
0(x’ yé’yib ""yt)+0(‘x: yél) Y3 ---,y,)=0(x, y'a,’,) V3 -o-,y,)=§ H(yé’, Y3 s Vrs x)
= 0(3’2,’/’ yi{u s Ve x)+c e(yé,».yi*[l’) Ve x):C a(yél’ yé’, Ve x): e =gt
0(yy's %, 95,95, =, y1L1)=0(x, y5', y3’, -+, ¥7/)=0, hence x=0. Tosee N"=L,
suppose xEN™ and x=x'+4«" with ¥’€L, ¥’€N. For any y,=yi+yl’'EM
with /€L,y €N;i=2,3, ---, 7, we have 0(x", y5, ¥3, =+, ¥,)=0(x"", ¥3', Y3, *** »)
=0(x, 53, Y3 ***, ¥,)=0, hence /=0, that is, x=x"EL. Suppose L’ and N’ are
another R-submodules of M with M=L’_| N’. Then, from the above statement,
we get N'=L'* and L'=N"*. Tosee L'=(L'NL)+(L'NN), suppose x is any
element in L’, and x=x"'+x"" with x'€L, ¥’EN. For any yEN' and z,E€M
written as y=y’'+y"” and z;=z{+2!’ for y',2lEL and y”, 2}’ €N, i=3, -+, 7,
we have 0(x',y, 25, «++, 2,)=0(x", y'+y", 25+25, -+, 21+27)=0(x", ', 25+2¥,
oy 22y ) =0 0(y, 2528, o0, 2042, x) =8 0(y, 28, -0, 20 tr  x)= e =
O(x',y', 25, -+, 21)=0(x",y", 25, -+, 2))+O0(x", y', 2%, =, 27)+0 (2", ", 2%, -, 27)
+0(x",y", 2%, -, 21)=0(x, Y, 2%, ++-, 27)=0, since O(x",y’, 23, -+, 27)=(*', y",
&5, o, 21)=L0(y", 24, -+, 2}, 8’/)=0. Hence x’ is in N'*(=L’), that is, x'E
L’'NL. Therefore, x’=x—x" is also in L'NN, and we get L'=(L'NL)_|
(L' N). In the last, we suppose that (M, €; U) is nondegenerate. M=L@PN
means that for any f&Homg(N, U), there is an FEHomg(M, U) such that
F|y=f. There exists an element 3;a;,Qx; ;@ ®w%;, in @%'M such that
F(x)=%; 0(x, x, , %; 1, ***, %; ,) for every x€M. If x€N and x; ;=x} .41/, for
xf2EL, x> EN, then f(x)=3; 0(x, x;,, %; 3, **, %;,,)=2; 0 (%, %12, %3, =5 %;,,)
=38 O(xils, x; 3, 00y Xy gy X)= 22" =Z,; (0, 2102, 2103, ++, 210,)=(0 | n)(Z; 1 Q%13
®--®x%’,) (x), and ; x/>@x/3Q - Rx}/, € @% 'N. Hence (N, 0|y, U) is non-
degnerate. (2): For any f, g€ Z(M, 6; U), 0( f(g(x1)), %3, X3, ***, ¥,) is computed
as follows: (f(g()), % % -+, 3)=0 (g (%), (%), %5, ==, 2)=0 (33, g(f(x)), s,
ey %) and g(g(xl)»f(xz)y X3y °**y xr):é‘ 0(f(x2)’ X35 **"y Xy g(xl))zc 0(x27f(x3)’ s
Xry g(xl))zgz a(f(x3): *tty Xpy g(xl): xz): e =gt 6(f(xr)’ g(xl), Koy *°°y x,_1)=
o(g(xl)) Koy X3y ***5 Xp—1y f(x,))=€(x1, g(xz)’ X3y °**5 Xp—1s f(xr))zg_l a(f(xr)7 X1 g(-x'z),
X3y **%y xr—l) = é‘—l a(xnf(xl)y g(xz)) X3 **y xr—l) = 0(f(xl)! g(xz): X3, ***5 Xp-1) x,)=0
(g(f(xy)), %5, 23, **+, %,—1, %,). Hence, fg=gf, and fg is contained in Z(M, 0; U).
If (M, 6; U) has non trivial orthogonal decomposition M=L_| N, the projection
e: N—M is a non trivial idempotent in Z(M, 6; U). Conversely, if Z(M, 6; U)
has an idempotent e different from 0 and 1, then we get M=e(M)_| (1—e) (M).
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(3): f(x)=0 implies that 8(x, x;, x5, **-, x,)=0(f(%), f(x3), f(%3), ***, f(%,))=0 for

all x,, xg, +++, x,_,E M, that is, x=0, since 0 is regular.

2. Examples

ExamMpLE 1. Let 0: MXMX -« X M—U; (%5, %3, +++, 2,) W 0 (%5, %5, +++, X,)
be an r-fold alternative multilinear map, that is, 9 (xy, x5, ==+, &;, X4, ***, %,)=—0
(%1 %y *+*5 X4 ¥y =+, %,) holds for i=1, 2, «--,r—1. Then, for §=(—1)"",
(M, 6; U) is an r-fold §-skew-symmetric R-module.

For example, for n=7, let R" be free R-module of rank #z consisting of 7-
rows (ay, a,, -, a,) for all q;&€R. For a;=(ay, a;, **, a;,) ER";1=1,2, -+, 1,
let A=(a;;) be an r X n-matrix with (7, j)-entry a;; for i=1, 2, ---,7 and j=1, 2,
.., n. Let L be a non-empty set of r-rows (k,, k,, -+, k,) of integers with 1<k,
<k,<++<k,=<n. Fora (k,k, -, k,)EL, we denote by det (A(ky, &y, **, &,))
the determinant of an 7 X7-submatrix A(k,, &, **+, k,)=(a;,;,) of A consisting of
ky-column, kj,-column, .-, k,-column of A. Then, the sum 3, det (A (%, &, -+,
k,)) of det (A(k,, k,, +++, k,)) for all (ky, &y, +, k,) EL defines an r-fold multilinear
form D;: R"X R" X --- X R"—>R; (ay, ay, -+, a,) W3, det (A (k,, k,, --+, k,)). Then,
(R", Dy) is an r-fold {-skew-symmetric R-module. If for every i with 1<i=<m,
there is a unique element (k,, k,, -+, &,) in L with i=k; for some 1< j <7, (neces-
sarily, » is a multiple of 7), then (R", D;) is nondegnerate. Because, for each
i-th projection p;: R*—R; (a;, ay, **+, a,)Wa;, if (ky, ky, +++, k,) is unique ele-
ment of L with i=k;, (—1)"" e(k)® - Qe(k;-;)Qe(k;1)® " Qe(k,) (EQF
R") satisfies Dy(a, (—1)* e(k)), -+, €(k;-1), e(k;41), =+, e(k,))=a; for all a=
(@y @y -, a)ER". Hence, we get pi=(D)s((—1)* e(k)®-@e(k;)De
(kj+l)®"'®e(k"))’ where e(l)=(1’ 0,--,0), e(2)=(0, 1,0,--,0), -, e(n)=(0,
., 0,1) (ER"). Therefore, (D;)x: @% ' R"—>Homg(R", R) is surjective, so by
Lemma 1 (R",D;) is nondegenerate. Particularly, if n=r, (R’, D) is nodegenerate.

ExampLE 2. Let 4 be a non commutative R-algebra with identity 1 such
that 4 is a finitely generated projective R-module with a projective dual basis
{b,€ A4 and +;EHomg(4, R); i=1, 2, -+, n}, i.e. x="_1 Yr,(x) b; for all x€A.
The trace map Tr,p of A is defined by Trp/p: A—>R; x> i1 Yry(xb;). Then,
one reminds that the bilinear form B,: AXA—>R: (x, Y)W Tt 4pp(xy) is sym-
metric, and it does not depend on choice of projective dual basis. The sym-
metric bilinear R-module (4, B,) is denoted by <A4>. Furthermore, the 3-fold
multilinear form T'j: AXAXA—R; (%,y, ) W Tryyp(xyz) defines a 3-fold
cyclically symmetric R-module (4, T',) which is denoted by {4).

Proposition 1. Let A be an R-algebra with identity 1 such that A is fini-
tely generated and projective over R.
(1) <A is regular if and only if (A) is regular.
(2) The following conditions are equivalent:
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(1) There exists a 3; a;Qb, EAQRpA such that 3, b; a;=1 and Z; xa,Qb,=
3, b;Qa; x for all x A hold,

(2) There exists a 3, a;Qb,€AQrA such that 3,;b;a,=3;a;b,=1 and
3, %a,Qb,=3,; a;Qb; x for all xE A hold,

(3) <4>=(4, B,) is nondegenerate,

4) (A)=(4,T,) is nondegenerate.
(3) If (A) is regular, then the center Z({A)) of (A) coincides with {f,: A—A;
xwWoxalaEZ(A)}, where Z(A) denotes the center of algebra A.
(4) (cf. [W]; Theorem 3) Let B be an another R-algebra with identity 1 which is
finitely generated projective over R, and f: A—B a surjective and additive R-
homomorphism satisfying T's(f(x),f(3), f(2))=Ta(x,, 2) for all x,y,2€A. If
(A or {B) is regular, then f(1) is an inversible element in Z(B), and a map g:
A—B; awW- f(a) f(1)7! is an R-algebra homomorphism. In particular, if f(1)=1,
then f: A—B is an R-algebra homomorphism.

Proof. (1) is obvious: {A) is regular if and only if Tr(x- —)=0 implies
x=0, that is, <4> is regular. (2): (1)=>(2): Since =;xa;®b,=3,b,Qa; x in
AR A holds for all xE A4, we get 5; a;Qb,=3,; b;Qaq;, =, a; b,=3,; b; a(=1) and
3, xa,Qb;=3; b;Qa; x=(Z; b;Qa;) (1Qx) = (Z; 2;Qb;) (1Qx) ==, a;Qb; x for
any x€4. (2)=(3): The condition that 3; xa;Rb,=3,; a;Q@b; x in AR A holds
for every xE A4, means that 3, a; Tt z(b; x)=x(Z; b; a;) holds for every xE 4.
Because, 3; a; Trye(b; x)=3;,; a; ¥ ;(b; xb;), and 3, ; xb; a,@r(b;)=3,; ; a,Q;
(b; xb;) in A®rA implies =; ; a; v (b; xbj)zzi,j xb; a; Yri(b;) =3y, ; xrj(b;) b; a;=
%(2;b; 4;), Since X;b; a,=1, we get x=3;a; Tt p(b; x) and dy(x)=+(Z; a;
TrA/R(bj x))zzj ‘P‘i(aj) TrA/R(bj x):TrA/R((Ej ‘l”i(aj) bj) 'x):BA((Ej 1:"‘.‘(“;‘) bj)’ x)
for all x4, so (B,)x: A—Homg(4, R): x> B,(—, x) is surjective, that is,
{4 is nondegenerate. (3)=>(1): Since (B,)x: A—Homg(4, R) is surjective,
there is an ¢, €4 with W(—)=Trp(a;+ —), and x=3; Tr,se(x-a;) b; hold for
any x€A4. In particular, we have 1=3; Tr p(a,)b,=7,; i@ b)) b, =3, ;
Tryr(a; b;a;) b;=3; ; Tryp(b; a; a;) b;=3;b;a;. On the other hand, we have

J 7
3 xa; @ b,~=2,~,j TrA/R(xa,.-aj) b;® bj:E,-.j b, ® TrA/R(xa,.-a,.) b,:z,.,,. b, @ Trp
(a;x-a;) b;==,;b,Qa; x forany xEA. (3)«(4): Since (B,)x: A—>Homg(4, R):
®M T 5(— - %) is surjective if and only if (T'y)s: AQrA—>Homg(4, R); x@y
M- Trgsp(— - xy) is surjective, using (1) we get that <4>=(4, B,) is nonde-
gnerate if and only if {4)=(4, T',) is nondegnerate. (3): Suppose that {A4) is
regular and f € Z({A4)). Since T'4(f(x),y, 2)=T4(x, f(), 2) holds for all x, y, =
€4, f satisfies Tryp(f(xy) 20)="Tr /e (%3 (2) ) ="Tr47e( 3 (2) wt)=Tr4p( ()
gwx)="Tt 4p(xf (y) 2w) and T ,(f(xy)—xf(y), 2, w)=0 for all x, y, 2, wE 4, that
is, f(xy)=xf(y). Therefore, f(x)=xf(1) for every x€A4. Put f(1)=a, then
f=fs. Therefore, we have T'(ay, 2, x)="Tr yp(ay2x) =Tt p(xayz)=T 4(xa, y, 2)
=T ,(f(®), 3, ) =T, (), %) = Tu(, ya, )= Tt yg(syaz) = Tr y( yas)— T
(ya, 2, x) for every x,y, 2E4, so ay=ya for all yEA, hence acZ(4). The
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converse is easy. (4): Let f: A— B be a surjective and additive R-homomorphism
satisfying I's( f(%), f(¥), f())=T 4(, y, 2) for all x, y, € A. 'There is an element
ein A4 such that f(e)=1. Then, we have Trg/;(f(xy) f(2))=Trs(f(e) f(xy) f(2))
—T5(f(e), f(x9), () =Ta(e, 2y, £)=Tr s (exyz)—Ts(ex, y, )=T's(f(ex), £(3),
F() = Trasa(f(ex) F(3) f(#)), 50 Traa({f(ex) f(9)—f(@y)} 5)=0 for all beB.
If (B) is regular, then so is {B), and we have f(xy)=f(ex)f(y). Similarly,
Tran(f(9) () = Tran () £€) f(2) = Ts (F(29), f(&), £()) = Ta (w9, €, 3)
Tt ya(xyes) =Ta(, ye, ) =T (3), £(3€), f) = Traa( f(3) f(3) f(2)), we have
() =F(x) f(3e). Hence, we get f(&)f(x)=f(2) f(¢)) and f(xy)=f(x) f(3) f(€")
for any x,y, €4, so f(1)'={(A)EZ(4) and f(xy) f()=F(x) (&) f() (&)
hold for any x,yEA. Therefore, g: A—B: am f(a) f(1)~! is an algebra
homomorphism. If {4) is regular, then by Lemma 2: (3), f: {(4A)—{(B) is an
isomorphism, so (B) is regular. By the above statement, g: A—B: aw\ f(a)
f(1)7!is an algebra isomorphism.

ReMARK I. 1) The conditionsin (2) of Proposition 1 mean that 4 is strong-
ly separable over R in the meaning of [K,], which is equivalent to that A4 is sep-
arable over R and A=Z(A)D[A4, A], where [4, A]={S(a; b;—b; a;)| a;, b, A}.
2) For symmetric algebras 4 and B over a field, Watanabe [W] proved (4) in
Proposition 1.

3. Matrix representation of {-skew-symmetric multilinear
R-module

For any positive integer m, U™(or R™) denotes an R-module consisting of
m-10WS (Uy, Uy, ***, Uy,) With u; €U, (or u;ER).

DerINITION. For integers #» and 7 (=2), let F(r,n) be the set of all
mappings of {l,2,-,7} into {l,2, ---,m}. Then, a set A=(as)ser(;, m=
(@, 760) rertr,n) Of elements a,EU which suffixed by elements f=(f(1), -,
f(r)) of F(r,n), is called an r-fold matrix of degree n, or simply say n’-matrix,
over U, (in the case U=R, it was defined in [K, W]). We shall say that A=
(a5)rert,» is E-skew-symmetric, if it satisfies a; ), 1@, £ @), 7N =8 5@, 7 @), 1), 70
for every f=(f(1), =+, f(r)) EF(r,n). If {=1, "1-skew-symmetric”’ will be said
“cyclically symmetric”’. Let A=(ay)ser( ) be an n'-matrix, and let b=(b,, b,,
-+, b,) be any element in R". For 1=<k=<r,b;A denotes an »"~'-matrix
(¢g)gertr-1,m With €;=Zi_1b; (), gG-1),4,6®), 46— and Bi)A is denoted by
bA. If A is regarded as an ordinary zX#"~-matrix, bA is an element of U ™",
R*A—{bA|bER"} becomes a finitely generated R-submodule of U* ™", We
note that for any b;=(b;, by, +*+, ;) ER" (i=1,2, -+-,7) and an #'-marrix A=
(a5)rert,m» We can define a product by (ba) (+*(brisy A))) =2 sert,m bir@ brre
by Ay

For a given {-skew-symmetric n"-matrix A=(as)ser(,4) OVer U, we can de-
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fine a §-skew-symmetric multilinear map 0,: R"AXR"AX -+ XR"A—U as
follows: For (5,4, b,A, -+, 5,A)ER"AXR"AX - X R"A, 0,(b,A, b,A, -, b,A)
=bx(i) (bz(é) ("’br(;) A))) = 2fEF(r,n) blf(l) bzf(z) brf(r) ar (= 2;,,-,---,Z-=1 bu b2j"'brk'
ag,;,»). Thisis well defined. Because, if b,A=>5;A for by=(bs, bz, **, bsn)
and bI::(b/:l, b/ﬁz: °tty b/fn) in R”, then 3}.; b;,,,- A, g(k+1),,g(r), g(1), o, g (k=1)) = a1
byt G, g1, 5.5, g4-1) fOr €very g € F(r, m), hence we get buiy (b2 (++* (Bach
(++briiy A)))=

Zger(r,n) big) D2g@*  Org) * brg(r) Ao, g h=1), g ) g (4

= 5% Zpertr, n) D1g) bag) *bige)**brg(r) Ag(r), e 5, g0, g (h=1))

= 0¥ 3 e, m) Dig og) gty **brg(r) Alqh) e 50, (1), g k1))

= Zgert,n) D1g0 Dag@)**Ohahy  *brg(r) Ao, =, g1, 4,5

= buciy (bzz) (+++(Biciy (+*+briiy A)))-

The r-fold §-skew-symmetric R-modlue (R"A, 0,; U) defined by a §-skew-
symmetric #'-matrix A will be denoted by <{[A]>.

Lemma 3. For any §-skew-symmetric w'-matrix A over U, {[A]) is always
regular.

Proof. To show that (6,)*: R® A>Homy(®%*R" A, U); bAW 0 ,(bA,
—) is injective, suppose bA EKer(0,)*, that is, & by (bazy (++*br—1-21) (bi3y A)))
=0 for all b,ER"; 1=1,2,+-,r—1. We can check that for any n*-matrix H=
(45) rerx,m)» ¢H=O0 for every ¢€R" implies H=0, that is, ;=0 for every fEF
(k,m). Therefore, by (brr1criy*(biy A))=0 for every b, ER" implies by11411)
-++(b;y A)=0. Hence, we get bA={ b;y A=0.

Let (M, 6; U) be any finitely generated r-fold ¢{-skew-symmetric R-module
with M=Z%i.1Rm,. B=(0(msq), Mmse), **, Ms())) rerr,» is a £-skew-symmetric
n’-matrix over U. We consider a relation between r-fold ¢-skew-symmetric R-
modules (M, §; U) and <[B]>. For any x=3}..¢c;mEM, (0(x, msq), *+,
Ms-1)) rert-1,m=€¢BER" B holds, where e=(c,, ¢;, *+, ¢,)ER". Hence, we
can define an R-epimorphism

Y: M—» R"B: x W (o(x: Mra)y mf(r—l)))fEF(r—l,n) .

Then, ¥ becomes a morphism of {-skew-symmetric R-modules of (M, @; U)
onto {[B]>=(R"B, 0z; U), that is, for any x=37}., c;mEeEM; i=1,2, -,
7, 05(¥ (1), ¥ (x5), -+, W(x,))=03(eB, €,B, -+, e,B)= e1(i) (€ut) (*+*€riy B))) =
Oy, x5 -+, %,), Where ¢;=(c;y, €y ***, ¢;y) ER".  On the other hand, if one re-
gards B=(b;)ser(,») as an #’ "' X n-matrix, then for any #"~'-row e=(c,)zert-1,n
ER"'_I’ ¢ B=(Z,cr(-1,2) ¢4 big-1s ***s Zgert-1,m)Cq b(g.n))e U’, so R"'.B=
{c:B|e=R" '} is an R-submodule of U”. If % Qx,Q Q% (EQ%' M) is
expressed as Sserp-1,n) Cr Mr@Ms) @+ @My(,—yy for c,ER, then (0(xy, -+,
Xymgy My)y O(24, o005 Xpmyy My), oo+y O(%y, +++, X,—q, m,)) can be expressed as ¢-B with
¢=(cs)ser-1,»- Hence, ¥ is surjective.
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Lemma 4. For a generator {m;; i=1,2,--,n} of M, one can define R-
homomorphisms
V: @5 M—U" and A: Homg(M, U) — U" as follows:
V: Q% M—U"; %,Q%,Q* @%py W (0 (111, %y, *+, X,-1), O, 2y, ++, X,o1), +7,
6(my, %y -+, %), and A: Homg(M, U)y=U"; f 4w (f(my), -+, f(m)).
Their images are Im V=R" " -B and Im A= {(u;, u,, ---, u,) EU" | =41 ¢; u;=0
for all (cy, ca, +++, c4) ERel ({m;}), where Rel ({m})=A{(cy, ¢z, -+, €4) ER" | Zic1 ¢;m;
=0}. Furthermore, A is injective, and the following diagram is commutative:

QKM — U
# Vo I
Homg(M, U) — U".

Proof. One has an exact sequence 0—Rel ({m;})—>R">M—0, so Im A=
Ker (U"—>Homg (Rel ({m;}), U)) follows from that 0—Homg(M, U)—Hom,
(R", U)=U"—>Homg(Rel ({m;}), U) is exact. Since A:O0x(xQ%,Q+** Qx,_;)=
A(O(—, %y, Xy ***y Xp-1)) =V (%;Q%, Q- ®x,-;) hold for any x,Q%,Q - Qx,_,E

%= ' M, the diagram () is commutative.

Proposition 2. Let (M,0,U) be an r-fold ¢-skew-symmetric R-module
with a generator {my, my, +-,m,} as an R-module, i.e. M=3_, Rm;, and let
B=(0(msq), Ms(»), ***, Ms()) rertr,n)- Lhen the following statements fold:

1) (M, 0; U) is regular if and only if ¥: M—R" B is bijective.

2) By is surjective if and only if Im A=Im V.

Proof. 1) follows from that * is injective if and only if ¥ is injective.
2) immediately follows from the diagram (%).

DeriNiTION. By U, ,, (01 R, ,), We denote the set of all # X m-matirces with
entries in U (or R). Let A=(a;) er( ») be an r-fold {-skew-symmetric n"-matrix
over U, and B=(};;) (ER,,,) an ordinary #Xn-matrix over R. When one re-
gards A as an #Xn "'-matrix over U, a subset Ann (4) of R, , and a subset
Ann (B) of U, , are defined as follows; Ann(A):={DER, ,|D-A=0} and
Ann (B):={veU, ,|B-V=0}, where D-A or B-V means an ordinary prod-
uct of matrices. For a subset b.C R, ,, Ann (b) denotes the intersection of Ann
(B) for all BEb. On the other nand, one car regard A as an »"~!Xn-matrix
over U, then for any #Xn"~!-matrix C over R, the ordinary product C- A is an
nXn-matrix over U. We putR, ,r-1-A={C-A€U, ,|CER, ,r-1}. Foraset
a of U, ,, ‘a denotes the set of transpose matrices ‘H’s for all HEa.

Proposition 3. Let A=(a;)ser(,» be an §-skew-symmetric n'-matrix over
U. Then {[A]) is nondegenerate if and only if *(Ann(Ann)A)))=R, ,-1-A
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holds.

Proof. Let e,=(1,0, -, 0), e,=(0, 1,0, -+, 0), +--, e,=(0, +++, 0, 1) be ele-
ments of R”. R"A is generated by {e;A;i=1,2, ---,n} as an R-module. For
the R-homomorphisms V and A defined by the generator {e,A4;i=1, 2, ---, n}
in Lemma 4, we have Im V=R A, because of 0 ,(e;q) A, es) A, -+, ey, A)=
ey (er2)y (- esryiy A)))=a, for every fEF(r,n). On the other hand, it
follows that Rel ({e;4})={b=(by, b,, -+, b,)ER"| 3.1 b, ,A=bA=0} and Im
A is the set of elements (uy, 4y, *++, u,)E U”" such that 3¥%.; b; u;=0 holds for all
b=(by, by, +++, b,)ER" with 8pA=0. Hence, Im V2Im A, (or Im VSIm A),
holds if and only if R . AD, (or ©), {(uy, uy, +++, u,)EU" | 21 b; ;=0 for all
b=(by, b,, -+, b,) ER" with bA=0}. The latter condition is equivalent to that
R, ,r-12AD, (or ), {(w,)EU, .| 251 b;;w;=0; ¢, k=1, 2, -, m, for all B=
(b;,)ER, with B- A=0}=*(Ann (Ann (4))). Hence, By Proposition 2, (6 4)4 is
surjective if and only if R, ,--1-A=*(Ann (Ann (A))). Since {[A]) is regular,
the proof finished.

RemaRk II. 1) In the above proof, we showed that R, ,r-1+AC!(Ann
(Ann (A4))) holds for any {-skew-symmetric n’-matrix A over U, since the
commutative diagram (#) in Lemma 4 means Im V< Im A.

2) If U is an inversible R-module, that is, U is finitely generated projective
and rank 1 over R. Then for any f, g&Homg(U, R), f(x) g(y)=f(») g(x) holds
for every x, y€ U, so f(x) y=f(y) x for all x,yeU.

DEFINITION. Any element D in HomR(U""‘, R") will be able to regard as
an n"~!'X n-matrix (d; ;) with (7, j)-entry d; ;&€ U¥=Homg(U, R). For an n""1X
n-matrix A=(a; ;) over U and D=(d; ;)€ Homg( U, R™), AD means an nX
n-matrix with (4, j)-entry Zi_y' d, (a;4) (ER).

Lemma 5. Let U be an inversible R-module, and A a &-skew-symmetric
' -matrix over U. If there exists a DEHomg(U* ™", R") such that (AD)- A=A
regarding A as nXn'"'-matrix, then the n'~'X n-matrix A satisfies the condition
R, ,r-1+ A='(Ann (Ann (A))), hence {[A]> is nondegenerate and R-projective.

Proof. By 1) in Remark II, R, ,r-1*+AC‘(Ann (Ann(A))) always holds.
Since (AD)-A=A, if I, denotes the identity matrix in R, ,, (AD—1,)-A=0
and AD—1I,€Ann (A) hold. Hence, HE!(Ann (Ann (A))) implies (AD—1,)+
tH=0, so (AD)-*H='H holds. By 2) in Remark II, we get H=H-}(AD)=
C(H'D)-A. Because, if &; j(or a; ;) is (¢, j)-entry of H (or A), then (AD)-‘H=
‘H implies that & ;= 3(3 di 1(a; 1)) 7; 4= Z4(Zh de,u(P 1)) @i 0=E Z4(Zp B, 1(R;,4))
a ; is (j, 7)-entry of £ (H'D)-A. Hence, we get HER, ,r-1-A and R, ,r-1- A=
*(Ann (Ann (4))). By Proposition 3, {[A]> is nondegenerate, and using Proposi-
tion A in Appendix, we get the R-projectity of {[A]>.
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Proposition 4. Let U=R, and let A be a {-skew-symmetric n'-matrix over
R. Then, {[A)])> is nondegenerate and R-projective if and only if there is an
" X n-mairix D over R such that A-D-+A=A holds, where the product - means an
ordinary product of matrices regarding A as an nXn'"*-matrix.

Proof. The “if” part is obtained from Lemma 4. Suppose <[A]> is non-
degenerate and R-projective. By Lemma 5, R, ,r-1-A=(Ann (Ann (4))) holds.
By Proposition A in Appendix, there is an #”~!'Xn-matrix F' over an injective
hull of R as an R-molule such that every entry of the product A-F is in R and
(A-F)-A=A holds. Since B:-(A-F)=(B-A)-F=0-F=0 hold for all B
Ann (A), (A-F) is contained in ‘(Ann (Ann (4)))=R, , -1-A, that is, (A -F)=
D-A for some DER, ,--1. Since A-F=!D-A)=('A)-(*D) and *A={ A, we
get that there is an #"*! X n-matrix § ‘D satisfying A-({ ‘D)-A=A.

From Lemma 5 and Proposition 4, we get the follwing theorem:

Theorem 1. Let (M, 8) be a finitely generated &-skew-symmetric R-module,
and M=3/i., Rm;. A=0 (msq), Ms), ***, Ms(») rerr,») 15 @ §-skew-symmtric n'-
matrix over R. The following conditions are equivalent:

1) (M, 0) is non degenerate and R-projective,

2) W: (M, 0)—<[A) is an isomorphism, aud there is an n'~'Xmn-matrix D
over R such that A-D-A=A holds as a product of matrices n'~* X n-matrix D
and n""t X n' " -matrix A.

ReMARk III. Let R be a field or a Von Neumann regular ring, and A any
n’-matrix over R. One can show that there exists an #"~! X n-matrix D over R
such that A-D-A=A holds, regarding A as an nXn "'-matrix. Let A regard
as an # X n'~'-matrix, and for an n(n"~'—1) X n"~!-zero matrix O,

put B: = (g) : 77 X nr " -matrix.

Since the #"~!X 7" ~!-matrix ring R,--1 over R is a Von Neumann regular ring,
there is an n"~*Xn'~'-matrix D with B D B=B. Let D, be an n"~! X n-matrix
and D, an n"~'Xn (n"~?—1)-martix satisfying D=(D,, D,). By a computation,
A-D,- A= A follows.

Corollary 1. Let R be a field or a Von Neumann regular commutative
ring. If A is a §-skew-symmetric n'-matrix over R, then {[A])> is always non-
degenerate.

4. 3-fold cyclically symmetric R-modules

Let (M, 8; U) be a 3-fold cyclically symmetric R-module, that is, 0 (x, y, 2)
=0 (y, 2, x) holds for all x, y, zEM.
DErFINITION. For e€EM, e is called a regular element of (M, 0; U), if
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0(—, —, e): MXM—U; (x,y)MW—>0(x,y, e) is a nondegenerate symmetric bi-
linear form.

RemARK IV; If there is a reglar element e of (M, §; U), then (M, 0; U) is
nondegenerate, and a multiplication M XM— M; (x,y) W x-y, satisfying
0(x,y, 2)=0(x-y, 3, ) for all x,y, 2 M, is defined on M, and M becomes a
non commutative and non associative R-algebra with identity e, this R-lagebra
denote by ((M, 0; U), +;e). If @ is symmetric and U=R is a field, these was
defined in [H;,].

Proposition 5. Let (M, 0; U) be a cyclically symmetric R-module, and e
and e’ regular elements of (M, §; U). For R-algebras (M, 0; U), «;e) and
(M, 8; U), x; ') defined by e ahd e, if (M, 0; U), «;e) is an associative algebra,
then the following statements hold:

(1) (xxy)-e'=x-y and (x-y)ke=xxy hold every x, yE M.

(2) e’ is an inversible element in the center Z((M, §; U), - ;e) of (M, 6; U),
*;e),and e’ +(exe)=e holds. e isinversible in Z((M, ; U), *; e') and ex(e' -e")=e’.

() s M—>M; xMW>x-e’ is a bijection with the inverse ¢: M—>M; x W
xxe, and satisfies ¢ (x-y)=ux*y for all x,yEM.

(4) (x-y)kz=xx(y-2) holds for all x,y, zE M.

(5) Y (x-y)=A(x)%r(y) holds for all x,yEM, so
i (M, 8; U), «;e)—((M, 0; U), *; e') is an R-algebra isomorphism. (M, 0; U),

*; e) is also an associative algebra.

Proof. (1): From the definition of multiplications + and #, it follows that
O((x%y)-e’, 2, e)=0((xxy), €', 2)=0(z, (x*y), e')=0(x, y, 2)=0(x- y, 2, ) imply
(x*y)-e'=x-y. Similarly, we get (x-y)ke=xxy. (2): For any xEM, e'sx=x
implies x-e'=(e"%x)-e'=e’+x, and (exe)-e’=e-e=e, hence e’ €Z((M, 0; U), «; e).
Similarly, e€Z((M, 0; U), *;¢’) and ex(e’-e’)=e’. (3): From (1), we have
Y (P(x)) = (xxe)-e'=x-e=wx, and P(Yr(x))=(x-e")*e=ax¢'=x and P(x+y)=
(x+y)*e=x%y hold for all x, yEM. (4): Since (M, 8; U), +;e) is associative,
(% y)k2=0((x+y)*2)=0(x+(y+2))=x%(y-2) hold for all x, y, zEM. (5): Using
4)and e'€Z((M, 0; U), - ; e), we get U (x)xyr (y)=(x+e")x(y-e")=((x-e")+ y)*e’)
=(e'x): y=e'+(x:y)=(x-y) &= (x+y).

DerFiniTION.  Let (M, 6; U) be a 3-fold cyclically symmetric R-module. If
there is a regular element e of (M, 6; U) such that (M, 6; U), -; e) is an associa-
tive algebra, then we shall say that (M, 8; U) is associative.

In the following, we consider the case U=R.

DEeFINITION. Let A=(a; ;43 1=1,j,k=<n) be a cyclically symmetric n*
matrix over R, and e=(e,, e, -**, ¢,) an element in R". We shall say that e is
regular with respect to A, if for any x=(x,, ---, #,) ER", xi) (e3y A)=(Z% 41
%; ey @ g1y 1= j <n)=0 implies xA=(2}.1 %; a; ; 5 1 =< j, k=n)=0.
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ReMARK V. If eA=(Z}.1 ¢ a4 ;,;; 1=1,j=<n) is an inversible X n-matrix,
then e is regular with respect to A.

Theorem 2. Let A=(a; ;,;1=1,j,k<n) be a cyclically symmetric n*-
matrix, and e=(e,, e,, **+, e,) be regular with respect to A.
(1) <[AD]> is R-projective and eA is a regular element of {[A}]) if and only if
eA=(Zia1 6 a4 ;3 1=i,j<n) is a symmetric and Von Neumann regular nXn-
matrix, i.e. there is an n X n-matrix C=(c; ;; 1 =<1, j<n) with (eA)-C-(eA)=eA.
(2) Assume the latter condition in (1), that is, eA is symmetric, and there is an
nXn-matrix C=(c; ;; 1=i,j<n) with (eA)-C-(eA)=eA. Then, {[A]> is as-
sociative if and only if an n'-matrix (35,:a1 @44 €44 0, ;05 1=, 1,5, R=n) is cyc-
lically symmetric.

Proof. Let A=(a; ;:; 1=7,j,k<n) be a cyclically symmetric #*-matrix,
and e=(ey, €, ***, ¢,) an element in R". (1): Put B(xA4, yA)=0,(xA, yA, eA)
forxA,yA=R"A. The bilinear form B is symmetric if and only if 7 X #-matrix
eA=(Z}.1 6, a; ;5 1=1,j <n)is symmetric. Suppose that eA is symmetric. By
Theorem 1, (R"A, B) is nondegenerate and R-projective if and only if
W: (R"A, B)—{[eA]>; vAM > x (eA) (=X, (e3)A)) is an isomorphism and eA
is a Von Neumann regular 7 X n-matrix. Hence, we get that eA is a regular ele-
ment of {[A]> and <{[4]> (=(R"A, 8,) is R-projective, if and only if e is regular
with respect to A and eA is a symmetric and Von Neumann regular #Xn-
matrix. (2): Suppose that ed is a regular element of {[A]> and there is an
nXn-matrix C=(c; ;) with (ed)-C-(eAd)=eA. A multiplication * on R"A is
defined by 0 ,(xAxyA, zA, eA)=0,(xA, yA, zA). Since {[A]) is associative if
and only if 0 (xA+yA, zA, wA)=0 ,(xA, yAxzA, wA) holds for every x4, yA,
zA, wAER"A, it is sufficient to show that 0 (xA*yA, zA, wA)=3" . jr-1
X;Y; Zh Wy Ak s Cot Ar,i,; AN O4(XxA, yAxz A, wWA)=TZ5 1 ; j =1 X; YR Wh Qp,i,sCs,t
a; ;5 hold for avery x=(x;, -+, %,), y=(¥1, ***, V), 2=(2p, ***, 2,) and w=
(wy, »++, w,)ER". We put xAsyA=uAd and yAxzA=v A for u=(u,, +*+, u,) and
v=(v, ***, v,) ER". First we shall show the following identity:

(#); 04(xA, yA, zA) (=27 11 %; ViR a; ;)=

Sk tmal %Y By @; ;s Cot €Ay 5 fOr any x, y, zER".

Using identities 3} ; ga1 %; ¥ 2k, (=04(xA, yA, 2A)=0,(uA, zA, eA))=
St me1U; 3y Ay and 351 €y Ay ; (=eA=(eA)-C-(eA))=

S p,ama1 € @ 5 Cp g Cm Am g1, WE have BT XY W =2 mal Ul A =
S ipama1 U € Ay Cp g O Ay g k7=20 g mm1 (B, jm1 U; € Q5 5 3) Cp g € O g 4=
350 me1 (37,51 % Yj ai,j.p) o0 Cm Am g k=241,5,0,0,mm1%; YV ; Ui ; 5Cp g €m Goqk for
k=1,2,..-,n. Hence, we get 3} ;.1 XYW k=2 am=1 % Y i i 5CpaCm Om g b
k=1, 2, +-+, n, and the identity (#). Using (#), we get 0 ,(xA*yA, zA, wA)=
O4(uA, zA, wA)=0,4(zA, WA, UA)=T] ;i s.t.m=1 2% Wy, U; Qg 5 Cs,¢ €m At e
Since 0,(zA, uA, eA) (=0,(xA, yA, zA))=0,(xA, yA, zA) means
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Sl Uy oy Ay i (=2 a1 U €y at.i.m)zz’;.i-l X;YV; for t=1, 2, ---, n, we get
Shohisitmal Zx Wyt Ay i s Cot O O g =20k b,i,7,5,tm1 Tk Wy A g Cot (U; O Oy g,;)=
Shohijus a1l Sk Ok Qp ps Cop (X V; G 5 ) =Zf h,isjs.tm1 X:Y; Rk Wh Aphys Cot Fi 6=
Shidks, a1 XY B Wy Ay ps Cop Gy ; 5y SO We have 0,4(xAxyA, zA, wA)=
i ks tml XY 2% Wy A s Cot @y ;o Similarly, since 6 4(v4, xA, ed) (=
04(yA, zA, xA))=0,4(xA, yA, zA) means 3] na10; €y Ay s (=ZF ma1 V) Cn At m)
=Zjk=1Y; 38 a4 for t=1,2, -, n, we get 04(xA, yAxzA, wA)=

..... m=1 Wy X; f0,‘ Qpi5Cst Cm am,t,j:
Shod,s.t,mal Wy X; Ay s Co (‘U,‘ €m “m.t,j)=z7x,i.i.k,s.t-l Wy X; Api,5 Cs t (J’,- Ry a,’j,,,)=
S ks, t=1 %V By Wy Gy 5 s Co g Ay j 4y Using (§).  Thus, the proof finished.

5. Appendix: Projectivity of R"A

Let R be, in general, a non commutative ring with identity 1, and U a left
R-module. Then, U"={(u, u,, ***, u,,) |4;EU} and the set U, ,, of all nxXm-
matrices (x; ;) with (7,5)-entry %; ; in U become left R-modules. For any
H=(u;;)€EU, m R" H={aH=(2%.1 aytyy, a1 a; Uy, -+, a1 @ Uy) la=(ay, a5,
«+,a,)ER" is a finitely generated R-submodule of U". By E=E(;R), one
denotes an injective hull of left R-module R, and put U*¥*=Homg(U, E). Every
element F in Homg(U", E") can be regarded as an m X n-matrix (f; ;) with (z, j)-
entry f; ;€U*, that is, Homg(U", E")=U%,. For F=(f, ,)€HomyU", E")
and H=(u, )€U, ,, HF denotes an n X n-matrix with (z, j)-entry Z¥_. fi, ;(u; 4)
(€E). For an nXxs-matrix C with entries in R and an sX#-matrix D with
entries in U (or R), the ordinary product of matrices C and D will be denoted
by C-D. Furthermore, by R, one denotes the ring of n X #-matrices over R.

Proposition A. Let HEU, ,. R"H is R-projective if and only if there ex-
ists an FEUY , such that HFER, and (HF)- H=H.

Proof. Suppose R"H is projective over R. An epimorphism 4: R"—>R"H;
awW-aH is split, that is, there is an R-homomorphism g: R* H—R" with k-g=1.
Since E" is injective over R, an R-homomorphism ¢ g: R" H—>R"-E" is ex-
tended to an R-homomorphism f: U"—E". Then, there exist f; ;& U*(=Hom,
(U, E)); i=1, +--,m, j=1, -, n, such that, for any (u,, uy, *--, 1,) EU", f(uy, **-,
) =(Zt fa()y S folth), oy S fya(w)) holds. F—=(f, )isin U Itis
easy to see that f(R"H)=g(R"H) and g(R"H)S R" mean HFER,. From the
fact that f|grg=t-g and h-g=I, it follows that A-f|gg=1I, and A-f|gng=1I
means (HF)-H=H. Because, the i-th row of (HF)-H is

(zﬁ%n-lfj.k(ui.j) Up,1 27.7:‘-1](;.&(”:,,;) Up,2> **° ?.'kn—lfj,k(ui.j) Ui,m)=
h(ZTa j.l(ui.j)> 2?-1](,-,2(“;.;)» ) 27-1](;.:»(“:.;)):
h'f(ui,l’ Ui 2 *°° ui,m)=(ui,b Uiz ui,m)

which is i-th row of H. Conversely, suppose that there is an F& U¥ , such that
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HEER, and (HF)-H=H. Then, the epimorphism 4: R*—R" H is split, that
is, there is an R-homomorphism f':R" H—R"; aH W (aH) F with h-f'=1I.
Because, 4-f'(aH)=(a (FH))-H=a((FH)-H)=aH for every aH< R"H,
since (aH)F=a(FH) fora=R". Hence R"H is projective over R. Thus, the
proof finished.

Especially, if U=R, one can regard R¥ ,(=Homg(R", E")) as E,, , by a nat-
ural isomorphism Homg(R", E")—E, ,; (f;, )W (f;,1)). Then, for HER, ,
and FEE,, ,, the product HF coincides with the ordinary product of matrices
Hand F.

Corollary A. Let A be an nXm-matrix over R. Then, R"A is projective
over R if and only if there exists an FEE,, , such that A-FER, and (A-F)-
A=A,
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