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Introduction

Let G-ZFIDCW denote the category of G-spaces having the G-homotopy
type of a finitely dominated G-CW complex for a compact Lie group G. Luck
[8] has introduced a functor WaG from G-EF^C^ into the category of abelian
groups and has realized the equivariant finiteness obstriction as the element wG(X)
in WaG(X). That is, a finitely dominated G-CW complex X is G-homotopy
equivalent to a finite G-CW complex if and only if wG(X)=Q. When G is the
trivial group, there is an isomorphism from WaG(X) to the reduced projective
group KQ(Z[πι(X)]) which sends the element wG(X) to the WalΓs finiteness ob-
struction ([14]).

Anderson [1] and Ehrlich [4] have studied a sufficient condition for w[1](E)=
0 for some fibration E-^B with fiber S1. Munkholm, Pedresen [11], Luck
[6, 7, 9] and others have studied the transfer map KQ(Z[^(B)])-^K:Q(Z[^(E)]).
The purpose of this paper is to get a sufficient condition for wL(X)=0 for a
S^space X and a finite cyclic group L.

We call G-maps /0: YQ-^X and /0: Y4-*X equivalent if there exists a com-
mutative diagram

such that (YΊ, Y0)
 and (Ys, ¥4) are relatively finite G-CW complexes, and Yι~>Y2

and Y3-+Y2

 are G-homotopy equivalences. The group WaG(X) consists of
equivalence classes [/: Y->X] of the set of G-maps /: Y->X with Y finitely
dominated and wG(X) is the equivalence class containing the identity lx of X.
The additive structure on WaG(X) is given by a disjoint sum:

-+X] = [/ Π g: Y Π Z^X]



608 T. SUMI

Let K be a closed subgroup of G. For a X"-space X, we define ind^X as the

orbit space GxκX of the product space GxX with respect to the X^-action

k (g,x)=(gk~l,kx). For a jK-map /: X->Y9 we have an induced map lx#/:
GχκX-+GχκY, denoted by ϊnd£/. The induction functor ind£ induces a

transformation Indf: (Waκ,wκ}->(WaG,wG). To consider G-maps as .SΓ-maps
implies a transformation Res£: (WaG, w°)-*(Waκ, wκ).

Throughout this paper we denote by v the restriction of the G-action of X

to Gx {tf0}. If G=S1 and X is connected, the order of the image of //ι(z>; Z)

is independent of taking a point x0 of JSΓ.

Our main results are as follows:

Theorem A. Let X be a connected S1-CW complex which has finitely many
orbit types. Suppose that the Sl-map v\ S1-^X defined as above induces a mono-
morphism H^v Z) between l-dimensional homology groups. Then there exist

a proper subgroup K of S1 and a K-CW complex Y such that S1XKY is S1-homo-

topy equivalent to X.

Theorem B. Let G=Sl and let X be a connected G-space. If the above
defined G-map v: G^>X induces an ίnjective homomorphism H^v^Z], then the

restriction homomorphism Res^(^C): WaG(X)-*WaH(X) is trivial for any proper

subgroup H of G.

p
This paper is organized as follows. Let F->E->B be a G-fibration with

fibre F ([15]). In [13], we have constructed a transfer pl: WaG(B}-*WaG(E).

But this homomorphism does not always send w°(B) to wG(E). It is originated

from that (WaG,wG) is not a functional additive invariant for G-ΉίίDC^W. In

section 1 we study a K-CW structure on p~\\K) for a G-CW complex E which

has a G-map E->G/K. In section 2 we show that if GxκX has the G-homotopy
type of a finite G-CW complex then X has the ^-homotopy type of a finite

K-CW complex. In section 3, we prove Theorem A in the case where X is free.

We use the fact that πι(X/K) has the subgroup πι(SlIK) as a direct summand
for some closed subgroup K of G. The last section consists of the proof of the

main theorems. The proof of Theorem A is obtained from applying the free

case.

1. K-CW structure on X of a G-CW complex GxκX

Let G be a compact Lie group. We study a space p~\{pt}) for a G-map
p from a G-space onto an orbit space G/K of G. We note that it has a canoni-

cal ^-action.

Proposition 1.1. (cf.[12]) A G-map p: E-+B is a G-fibration if and only

if pκ: EK->BK is afibrationfor any closed subgroup K of G.
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Proof. This follows essentially from Theorem 4.1 in [2].

Since Y-*GXKY-*GIK is a G-fibration ([15,13]), we have that YL~*
(GχκY)L-^>(G/K)L is a fibration for any closed subgroup L of G.

We symbolize 1 as the identity element of G. For any G-map p: X-+G/K
it is a G-fibration with fibre p~\lK). The following lemma is a key to show the
main theorems. It implies that a G-map p: X-*G/K with X a G-CW complex
is G-homotopy equivalent to a G-fibration whose fibre is a K-CW complex.

Lemma 1.2. Let X be a G-CW complex which has a G-map p: X-^G/K.
A K-CW complex can be constructed from the G-CW structure of X such that the
K-space V=p~"\lK) is homotopy equivalent to it. In particular it is a finite
K-CW complex if X is a finite G-CW complex.

Proof. Clearly we have GxκV and X are G-homeomorphic. Then we
construct a K-C W complex W and a jf£-homotopy equivalence W-+V by induc-
tion on the dimension of cells of X. By the existence of the G-map p, we ob-
tain that L is subconjugate to K for any isotropy subgroup L of G in X. We
can regard a 0-cell G/Lxe° of X as GxκK/αLα^Xe° for αeG with αLα~l<>K.
Suppose that X=G X KY U ΦG/L X e* for some K-CW complex Y. Let C be a
connected component of (G/K)L which contains pLoφ(lLxen). Take
and let -ψ : G/αLα^-^G/L be the canonical G-map. Then the pushout of

G/αLα-1 x en ̂  GjαLα~l x en

GxκY

is G-homotopy equivalent to X. Then we can assume that L<iK and pLoφ(lL
Xen) is contained in the connected component of IK.

ILxe1 <-?lLxen

Since the map pL°φ\ιLχ'e» is homotopic to a constant map, there is a map σ: IL
Xen-*(G/K)L such that σ coincides with£Loφ over ILxe" and σ(0)=ίK. We
define a map r: 1LX^X/-^(G/^)L as τ(s,t)=σ((l—t)s). Since (Gx*y)£-^
(GjK)L is a fibration with fibre YL, there exists a homotopy F: lLxe*Xl->
(GχκY)L such that -F0=φ|1Lx;. and F^lLxe^^Y1. This map can be canoni-
cally extended to a G-map Φ from G/Lxe"χI to GχκY. Let IF be a K-CW
complex obtained from the following pushout.
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KjLxe" =-» K/Lxe"

I*.
Y

By the property of pushout, we get a K-map k: W-+V.

W^ GxκW - > G/K

k \md$k

Since the G-map ind£& is a G-homotopy equivalence, we have the K-map k is a
K-homotopy equivalence.

Theorem 1.3. Let f : Y-^X be a K-map between K-CW complexes and
(V,GxκY) be a G-CW pair. If there is a G-map g: V-*GxκX which is an
extension of the G-map lχκf, then there exists a K-map k: W-+X unique up to
K-homotopy equivalence which fullfills the following conditions.

(1) (W,Y) is a K-CW pair.
(2) There is a G-homotopy equivalence h:(GxκW,GxκY)^*(V,GxκY)

such that ind£& and g°h are G-homotopic.
(3) The number of the relative cells of ( W, Y ) equals that of(V,GxκY}.

2. Induction homomorphism

Let DG(X) be the set of equivalence classes of the set of G-maps /: Y-*X
where Y has the G-homotopy type of a G-CW complex. Here the equivalence
relation is defined as in introduction. For a G-map /: Y-*X, we denote by
[f: Y->X] its represented element of DG(X). The additive structure on DG(X)
is given as the one of Wa°(X). A G-map from a finite G-CW complex to X
represents the zero element of DG(X). Then D°(X) is a semigroup and we
obtain a map WaG(X)-*DG(X} which preserves the abelian structures.

Lemma 2.1. The element of D°(X) represented by the identity map of X
is invertible if and only if X is finitely dominated.

Proof. The "if" part is trivial and then we show the "only if" part. There
is the commutative diagram

X
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such that ( Y2, XU Yj) is a relatively finite G-CW complex, Y3 is a finite G-CW
complex, and h is a G-homotopy equivalence. Let A"1: Y2-^> Y3 be the G-homo-

topy inverse of A. Then r is a domination with section h~l°i.

Proposition 2.2. Let K be a closed subgroup of G. A K-space X is a
finitely dominated K-space if and only if GxκX is a finitely dominated G-space.

Proof. Suppose GxκX is dominated by a finite G-CW complex Y3.
There is a commutative diagram such that /3 is a domination with section h~lίj.

G x KX^ (G x KX) Π Y, c- Y2 - Y3

ιWII/

We let Z^pfJ^lK), Z2=(pf2)-\lK)9 and Z3=(pf3)-\lK) for short, where
p:GxκX-*X is the canonical projection. We have G-homeomorphisms A/

(/—I, •••, 3) such that the following diagram is commutative.

ϊ A
^\ 1 I /j± Z/2 ^ ^3

1 i J
(G x A.λ') U (G x A.Z.) -> GxκZ2*-Gx KZ3

By taking the Z,'s, the G-mapsf, induce /f-maps //: Z,-+X (I— I, •••, 3). Since
h is a ίΓ-homotopy equivalence and the diagram

c-+ z2 ^ z3

/2

commutes, Z3 dominates -X". By Lemma 1.2, Z3 has the -SΓ-homotopy type of
a finite K-CW complex. This completes the proof.

Let Φ: DG(GxKX)-*DK(X) be a homomorphism induced by a mapping
assigning k: W-*X, described as in Theorem 1.3, to any G-map g: V-+GxκX.
It is an inverse isomorphism of a homomorphism Dκ(X)-+DG(GxκX) induced
by ind£. Since GxκW— V, it follows from Proposition 2.2 that Φ(WαG(Gxκ

G

X)) C Wef(X). Then we have:
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Theorem 2.3. Let K be any closed subgroup of G and let X be a K-space.
The induction homomorphism Indχ(X): Waκ(X)-^>WaG(GxκX) is an isomor-

phism. In particular GxκX has the G-homotopy type of a finite G-CW complex
if and only if X has the K-homotopy type of a finite K-CW complex.

3. Free S^spaces

In this section we study Theorem A for free ^-spaces. We denote a group
S1 by G and let X be a connected free G-CW complex such that ί/ι(z>; Z) is in-
jective. If the projection X->X/G is a principal G-bundle and the fundamental
group of X is abelian, Anderson [1] has shown that the universal cover of X is
TΓ^^/GJ-homeomorphic to the product of the universal cover of X/G and the
real space R with some πι(X/G) -action on JR. We show that for some K<G
and some CW complex V, the G-space X/K is G-homotopy equivalent to
GIKX[IK]V=GIKXV.

Lemma 3.1. Let X be a connected free G-space such that the G-map v:
G-+X induces a monomorphism Hi(v\Z). There is a finite subgroup K of G
such that 7fι(X/K) isomorphic to

Proof. For any K^G, we have a short exact sequence:

We construct a splitting π^X/^-^π^G/K) for some K<G. By the assump-
tion, there is an epimorphism μ: πι(X)-*Z such that the following diagram com-
mutes:

*ι(<J) ̂ -> *,(*)ϊ\j">^ φ

Z

Here n is multiplication by n>0. Let /£ be a subgroup of G with order n.

.' μl V
^(G/JC) .

I8
V
K

Ifψ

*AXI*

I8
Φ

~ /Γ

By a chasing method, the equation v(m)p(y)=ΐ>(m')p(y') implies that there is
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ι(G) satisfying m^m'+nz and y=v(z~l)yf '. Then we have

For any x=^(m)p(y)G^(XIK) we define as μ(x)=m+μ(y). Then the map

7& : 7r1(X/K)-*'Z is a homomorphism with jz°p=μ, since the image of v is a
subgroup of the center of π^X/K). Since both μ°v and w are multiplication by
ny we have ~μ°v=l and /z is the required splitting.

Propoistion 3.2. Lέtf X be as in Theorem A. If X is free, then there are
a proper subgroup K of G and a CW complex V such that G/Kx V and X\ K are
G-homotopy equivalent.

Proof. Let K be a subgroup of G such that

We denote by p: V-+X/K the covering space corresponding to

π^X/K). The G-map G/KxV-+X/K, sending (gK,υ) to g p(v), induces an
isomorphism of homotopy groups. By a Whitehead theorem of the equivariant
version [10], it is a G-homotopy equivalence.

By Lemma 1.2 there is a K-CW complex Y such that GxκY and X is
G-homotopy equivalent.

REMARK. Let Y be a ^-space obtained from the G-homotopy pullback of

the G-map p through the covering map V-+X/K. Then the G-map Gx KY-*
X induced by the given /f-map Y-+X is a G-homotopy equivalence.

4. Proof of Theorems A and B

In this section, we also denote Sl by G.

Proposition 4.1. Let X be as in Thoerem A and let H be a finite subgroup

of G. Then H^pov, Z) is monic for the projection p: X-+X/H.

Proof. As the //-action on X comes from a G-action by restriction, H acts
trivially on H^X', Z). Applying Theorem 2.4 [3, p. 120], we obtain that the
projection induces an isomorphicm H^p, Q): H^X; Q^-^H^XIH; Q). Then

', Z) is injective on any free abelian subgroup of rank one in H^X; Z).

We note that πι(v) is monic does not imply that πι(p°v) is injective.

Proof of Theorem A. Let H be a cyclic subgroup of which order is a com-
mon multiple of order of all isotropy subgroups in X. Clearly X/H is a con-

nected free G\H-CW complex. By the argument in the previous section, there
are a free K/H-CW complex V and a G/ΐί-homotopy equivalence h: GIHxκ/HV
-^X/H. We see canonically V as a K-CW complex. Then h induces a G-

homotopy equivalence h': GxκV-*XIH. The G-space W obtained from a
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G-homotopy pυllback of hr through the projection X-+X/H is G-homotopy

equivalent to X.

X/H

On the other hand, by Lemma 1.2, there is a K-CW complex Y such that Gxκ

Y and W are G-homotopy equivalent. This completes the proof.

To prove Theorem B we may show the following:

Proposition 4.3. Let X be a connected finitely dominated G-space which
fulfills that H^v, Z) is ίnjectίve. Then the K-space X has the K-homotopy type

of a finite K-CW complex for any finite subgroup K of G.

Proof. X has the G-homotopy type of a G-CW complex with finitely many

orbit types [5, Theorem 1.4]. By Theorem A and Proposition 2.2, there is a

finitely dominated L-space Y such that X^GxLY. Since Gx^Y-^G/L is a
G

X-fibration, we have the result. (See Theorem 3.6 [13].)

Theorem 4.4. Let G be any compact Lie group and let K be a subgroup of

G. Let X be a finitely dominated G-space with X/G connected. If the rank of
the image of H1(WGK-*X/K',Z) is not zero, then Resj?(-Y): WaG(X)-*Waκ(X)

is a zero map.

Proof. Let T be a maximal torus of WGK. Since H^T-^WcK; Z) is epic,

there is a proper subgroup C of WGK such that C is isomorphic to S1 and H^C

-^X/Ky Z) is injective. Then there is a C-map /: X/K-+C/L for some finite

subgroup L of C. Let C (resp. L) be the preimage of C (resp. L) under the
projection NGK-+WGK. Clearly h: C/L^C/L. Since K is a normal subgroup

of C, the projection p:X-*X/K is a C-map. Then hofop-.X-^C/L is an

equivariant C-fibration. The K-space C/L has a trivial X-action and its Euler
characteristic is zero. If we apply Theorem 2.6 [13] to the equivariant K-
fibration ho fop, we conclude the proof.
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