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Introduction

Let G-F9DCH denote the category of G-spaces having the G-homotopy
type of a finitely dominated G-CW complex for a compact Lie group G. Liuck
[8] has introduced a functor Wa® from G-F9DCIY into the category of abelian
groups and has realized the equivariant finiteness obstriction as the element w¢(X)
in Wa®(X). That is, a finitely dominated G-CW complex X is G-homotopy
equivalent to a finite G-CW complex if and only if w¢(X)=0. When G is the
trivial group, there is an isomorphism from Wa®(X) to the reduced projective
group Ky(Z[=(X)]) which sends the element w%(X) to the Wall’s finiteness ob-
struction ([14]).

Anderson [1] and Ehrlich [4] have studied a sufficient condition for w(E)=
0 for some fibration E—B with fiber S'. Munkholm, Pedresen [11], Luck
[6,7,9] and others have studied the transfer map Ky(Z[z(B)])—K\(Z[\(E))).
The purpose of this paper is to get a sufficient condition for w*(X)=0 for a
S'-space X and a finite cyclic group L.

We call G-maps f,: Yy—X and f,: Y,—X equivalent if there exists a com-
mutative diagram

G

G
ViV, »>Y,> Y, <Y,

i

X

such that (Y}, Y,) and (Y5, Y,) are relatively finite G-CW complexes, and Y,—Y,
and Y;—Y, are G-homotopy equivalences. The group Wa®(X) consists of
equivalence classes [f: Y—X] of the set of G-maps f: Y—X with Y finitely
dominated and w®(X) is the equivalence class containing the identity 1y of X.
The additive structure on Wa®(X) is given by a disjoint sum:

[f: Y=>X]+[g: Z—>X]=[flIg: Y I Z—X]
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Let K be a closed subgroup of G. For a K-space X, we define indZX as the
orbit space G XX of the product space GXX with respect to the K-action
k-(g, x)=(gk™, kx). For a K-map f: X—7Y, we have an induced map 1X «f:
GXxX—>GX Y, denoted by indif. The induction functor indg induces a
transformation Ind§: (Wa¥, w¥)—(WaC, w°). To consider G-maps as K-maps
implies a transformation Resg: (Wa€, w®)—(Wa¥, wk).

Throughout this paper we denote by » the restriction of the G-action of X
to GX {x}. If G=S" and X is connected, the order of the image of H,(v; Z)
is independent of taking a point x, of X.

Our main results are as follows:

Theorem A. Let X be a connected S*-CW complex which has finitely many
orbit types. Suppose that the S'-map v: S'—X defined as above induces a mono-
morphism H\(v; Z) between 1-dimensional homology groups. Then there exist
a proper subgroup K of S* and a K-CW complex Y such that S*'X Y is S'-homo-
topy equivalent to X.

Theorem B. Let G=S" and let X be a connected G-space. If the above
defined G-map v: G—X induces an injective homomorphism H,(v; Z), then the
restriction homomorphism Res$(X): Wa®(X)—Wa¥#(X) is trivial for any proper
subgroup H of G.

This paper is organized as follows. Let F—E £>B be a G-fibration with
fibre F ([15]). In [13], we have constructed a transfer p': Wa®(B)— WaC(E).
But this homomorphism does not always send w®(B) to w®(E). It is originated
from that (Wa®, »°) is not a functiorial additive invariant for G-FQDCY. In
section 1 we study a K-CW structure on p~}(1K) for a G-CW complex E which
has a G-map E—G/K. In section 2 we show that if G X xX has the G-homotopy
type of a finite G-CW complex then X has the K-homotopy type of a finite
K-CW complex. In section 3, we prove Theorem A in the case where X is free.
We use the fact that z)(X/K) has the subgroup #,(S*'/K) as a direct summand
for some closed subgroup K of G. The last section consists of the proof of the
main theorems. The proof of Theorem A is obtained from applying the free

case.

1. K-CW structure on X of a G-CW complex G X x X

Let G be a compact Lie group. We study a space p~'({pt}) for a G-map
p from a G-space onto an orbit space G/K of G. We note that it has a canoni-
cal K-action.

Proposition 1.1. (cf.[12]) 4 G-map p: E—B is a G-fibration if and only
if pX: EX—BX is a fibration for any closed subgroup K of G.
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Proof. This follows essentially from Theorem 4.1 in [2].

Since Y—>G X Y—>G|K is a G-fibration ([15, 13]), we have that Y‘—
(GX ¢ Y):—(G/K)! is a fibration for any closed subgroup L of G.

We symbolize 1 as the identity element of G. For any G-map p: X —>G|K
it is a G-fibration with fibre p~(1K). The following lemma is a key to show the
main theorems. It implies that a G-map p: X—G/K with X a G-CW complex
is G-homotopy equivalent to a G-fibration whose fibre is a K-CW complex.

Lemma 1.2. Let X be a G-CW complex which has a G-map p: X—G|K.
A K-CW complex can be constructed from the G-CW structure of X such that the
K-space V=p~Y(1K) is homotopy equivalent to it. In particular it is a finite
K-CW complex if X is a finite G-CW complex.

Proof. Clearly we have GX ¢V and X are G-homeomorphic. Then we
construct a K-CW complex W and a K-homotopy equivalence W—V by induc-
tion on the dimension of cells of X. By the existence of the G-map p, we ob-
tain that L is subconjugate to K for any isotropy subgroup L of G in X. We
can regard a O-cell G/L x¢° of X as GX xK[aLa™'x ¢® for acG with aLa™'<K.
Suppose that X=G X x Y U 4G/L x ¢" for some K-CW complex Y. Let C be a
connected component of (G/K)* which contains prop(1Lx¢é"). Take aKEC
and let 4r: G/aLa™'—G|L be the canonical G-map. Then the pushout of

GlaLa™'x¢" < GlaLa™xe"

et 1)
GX Y

is G-homotopy equivalent to X. Then we can assume that LK and pfod(1L
% ¢") is contained in the connected component of 1K.

1Lxe" <>1L x¢é"
l‘i’lmxi"

L

Yi— (G V1 D (GIKY:

Since the map pLog|;;«:» is homotopic to a constant map, there is a map o: 1L
X "—(G/K)* such that ¢ coincides with plod over 1L x¢" and o(0)=1K. We
define a map 7: 1LXe"XI—=(G/K)* as 7(s, t)=a((1—12)s). Since (GX Y)l—
(G/K)* is a fibration with fibre Y%, there exists a homotopy F: 1L xé"xXI—
(GX g Y)* such that Fy=¢|,;«:» and Fy(1Lx¢é")S Y%, This map can be canoni-
cally extended to a G-map ® from G/LXé&" X1 to GX Y. Let W be a K-CW
complex obtained from the following pushout.
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KJLx¢&" < K|Lxé"

B

Y
By the property of pushout, we get a K-map k: W—V.
W Gx KW — G/K
| dek |

Since the G-map ind§£k is a G-homotopy equivalence, we have the K-map & is a
K-homotopy equivalence.

Theorem 1.3. Let f: Y—X be a K-map between K-CW complexes and
(V,GxgY) be a G-CW pair. If there is a G-map g: V—>G X X which is an
extension of the G-map 1X cf, then there exists a K-map k: W—X unique up to
K-homotopy equivalence which fullfills the following conditions.

(1) (W,Y)isa K-CW pair.

(2) There is a G-homotopy equivalence h: (G X (W, GX (Y )—(V,GXY)

such that indgk and goh are G-homotopic.

(3) The number of the relative cells of (W, Y) equals that of (V,G X Y).

2. Induction homomorphism

Let DS(X) be the set of equivalence classes of the set of G-maps f: Y—>X
where Y has the G-homotopy type of a G-CW complex. Here the equivalence
relation is defined as in introduction. For a G-map f: Y—X, we denote by
[f: Y—=X] its represented element of D°(X). The additive structure on D¢(X)
is given as the one of Wa®(X). A G-map from a finite G-CW complex to X
represents the zero element of DY(X). Then D¢(X) is a semigroup and we
obtain a map Wa®X)—DSX) which preserves the abelian structures.

Lemma 2.1. The element of D°(X) represented by the identity map of X
is invertible if and only if X is finitely dominated.

Proof. The “if” part is trivial and then we show the “‘only if” part. There

is the commutative diagram

h
xuv,.H>vty,

)1{/



FINITENESS FOR S!-SPACES 611

such that (Y,, X II Y,) is a relatively finite G-CW complex, Y; is a finite G-CW
complex, and % is a G-homotopy equivalence. Let k™' Y,— Y, be the G-homo-
topy inverse of 2. Then 7 is a domination with section A~'os.

Proposition 2.2. Let K be a closed subgroup of G. A K-space X is a
finitely dominated K-space if and only if GX X is a finitely dominated G-space.

Proof. Suppose G XX is dominated by a finite G-CW complex Y.
There is a commutative diagram such that f; is a domination with section A7%j.

_J _ i .. h
G (X (G (X)L Y, Y, < Y,
id ”f{\ lf.' ﬁs
G XX
We let Z,=(pf)" (1K), Zy=(pf,)" (1K), and Zy=(pf;)"*(1K) for short, where

p: G X X—X is the canonical projection. We have G-homeomorphisms %
(/=1, -++, 3) such that the following diagram is commutative.

s ‘ -,
X Z, < Z, Zy

(GXxX)H(GC X xZ) = GX gZy < GX yZs
hy h, i“h3
| : \

(G X)IY, —— Y, < ¥,

By taking the Z,’s, the G-maps f; induce K-maps f;: Z,—X (I=1, -+, 3). Since
k is a K-homotopy equivalence and the diagram

7 h
X1 Z — Z, — Z,

@17\, |72/

X

commutes, Z; dominates X. By Lemma 1.2, Z; has the K-homotopy type of
a finite K-CW complex. This completes the proof.

Let ®@: DY(G X xX)—>D¥(X) be a homomorphism induced by a mapping
assigning k: W—X, described as in Theorem 1.3, to any G-map g: V-G X ¢ X.
It is an inverse isomorphism of a homomorphism D¥(X)—D% G X xX) induced
by indg. Since GX KW%V, it follows from Proposition 2.2 that &(Wa’(G X x

X))CWaX(X). Then we have:
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Theorem 2.3. Let K be any closed subgroup of G and let X be a K-space.
The induction homomorphism Indg(X): WaX(X)—>Wa®(GX xX) is an isomor-
phism. In pariicular G X xX has the G-homotopy type of a finite G-CW complex
if and only if X has the K-homotopy type of a finite K-CW complex.

3. Free S'-spaces

In this section we study Theorem A for free S'-spaces. We denote a group
S! by G and let X be a connected free G-CW complex such that H,(v; Z) is in-
jective. If the projection X —X/G is a principal G-bundle and the fundamental
group of X is abelian, Anderson [1] has shown that the universal cover of X is
7,(X|/G)-homeomorphic to the product of the universal cover of X/G and the
real space R with some 7,(X/G)-action on R. We show that for some K <G
and some CW complex V, the G-space X/K is G-homotopy equivalent to
G/IKX unV=G/KXV.

Lemma 3.1. Let X be a connected free G-space such that the G-map v:
G—X induces a monomorphism H,(v; Z). There is a finite subgroup K of G
such that =,(X|K) isomorphic to =\(G/K)P=(X|G).

Proof. For any K <G, we have a short exact sequence:
1-7(G/K)—=n(X|K)—=n\(X|G)—1

We construct a splitting 7,(X/K)—z,(G/K) for some K<G. By the assump-
tion, there is an epimorphism g: 7z;(X)—Z such that the following diagram com-
mutes:

14
7(G) > m(X)
N lﬂ
z
Here 7 is multiplication by #>0. Let K be a subgroup of G with order ».
v w
m(G) —> m(X) —> Z

Pl

-

2(GIK) —— m(X|K)
o s
K=———K

By a chasing method, the equation p(m)p(y)=5p(m’)p(y’') implies that there is



FINITENESS FOR S1-SPACES 613

2Em(G) satisfying m=m’+nz and y=v(27")y’. Then we have
m+w(y) = m'+nz+ pE(E )+ u(y) = m'+u(y) .

For any x=p(m)p(y)Ex(X/K) we define as m(x)=m-+ u(y). Then the map
%: m(X/K)—Z is a homomorphism with mop=y, since the image of 5 is a
subgroup of the center of z,(X/K). Since both yov and 7 are multiplication by
n, we have mop=1 and 7 is the required splitting.

Propoistion 3.2. Let X be as in Theorem A. If X is free, then there are
a proper subgroup K of G and a CW complex V such that GIK XV and X|K are
G-homotopy equivalent.

Proof. Let K be a subgroup of G such that z,(X/K)==,(G/K)®=(X|G).
We denote by p: V—X/K the covering space corresponding to =,(X/G)<
m(X/K). The G-map G/KXV—X|K, sending (gK, v) to g-p(v), induces an
isomorphism of homotopy groups. By a Whitehead theorem of the equivariant
version [10], it is a G-homotopy equivalence.

By Lemma 1.2 there is a K-CW complex Y such that GxxY and X is
G-homotopy equivalent.

Remark. Let Y be a K-space obtained from the G-homotopy pullback of
the G-map p through the covering map V'—X/K. Then the G-map GX xY—
X induced by the given K-map Y—X is a G-homotopy equivalence.

4. Proof of Theorems A and B

In this section, we also denote S* by G.

Proposition 4.1. Let X be as in Thoerem A and let H be a finite subgroup
of G. Then H\(pov; Z) is monic for the projection p: X —X|H.

Proof. As the H-action on X comes from a G-action by restriction, H acts
trivially on H,(X; Z). Applying Theorem 2.4 [3, p. 120], we obtain that the
projection induces an isomorphicm H,(p; Q): H\(X; Q)—H,(X/H; Q). Then
H\(p; Z) is injective on any free abelian subgroup of rank one in H,(X; Z).

We note that z,(v) is monic does not imply that z,(pov) is injective.

Proof of Theorem A. Let H be a cyclic subgroup of which order is a com-
mon multiple of order of all isotropy subgroups in X. Clearly X/H is a con-
nected free G/H-CW complex. By the argument in the previous section, there
are a free K/H-CW complex V and a G/H-homotopy equivalence %: G/H X gV
—X/H. We see canonically V' as a K-CW complex. Then %4 induces a G-
homotopy equivalence A': GX ,V—>X/H. The G-space W obtained from a
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G-homotopy pullback of A’ through the projection X—X/H is G-homotopy
equivalent to X.

W —— X

| 2|

Gx V- X/H

On the other hand, by Lemma 1.2, there is a K-CW complex Y such that G X x
Y and W are G-homotopy equivalent. This completes the proof.

To prove Theorem B we may show the following:

Proposition 4.3. Let X be a connected finitely dominated G-space which
Sulfills that H\(v; Z) is injective. Then the K-space X has the K-homotopy type
of a finite K-CW complex for any finite subgroup K of G.

Proof. X has the G-homotopy type of a G-CW complex with finitely many
orbit types [5, Theorem 1.4]. By Theorem A and Proposition 2.2, there is a
finitely dominated L-space Y such that X G:GX Y. Since GX, Y—G|L is a

K-fibration, we have the result. (See Theorem 3.6 [13].)

Theorem 4.4. Let G be any compact Lie group and let K be a subgroup of
G. Let X be a finitely dominated G-space with X|G connected. If the rank of
the image of H(W;K—X|K; Z) is not zero, then Resg(X): Wa®(X)—Wa*(X)
is a zero map.

Proot. Let T be a maximal torus of W K. Since H(T—W K; Z) is epic,
there is a proper subgroup C of W K such that C is isomorphic to S* and H,(C
—X|K; Z) is injective. Then there is a C-map f: X/K—C|L for some finite
subgroup L of C. Let C (resp. L) be the preimage of C (resp. L) under the
projection NoK —W;K. Clearly h: C/L=C|L. Since K is a normal subgroup
of C, the projection p: X—X/K is a C-map. Then hofop: X—C/L is an
equivariant C-fibration. The K-space C/L has a trivial K-action and its Euler
characteristic is zero. If we apply Theorem 2.6 [13] to the equivariant K-
fibration ko fo p, we conclude the proof.
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