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Introduction. In [16], R. Kirby and P. Melvin study invariants of 3-
manifolds 7,(r>3) introduced by E. Witten [38], N. Reshetikhin and V.G.
Turaev [31], and W.B.R. Lickorish [25, 26, 27] (see also [18]). In particular,
Kirby and Melvin calculated 7; and 7, explicitly. Let M be a closed, oriented
3-manifold obtained from an (integral) framed link L. Then 74(M) can be writ-
ten as follows [16, §6].

(M) =c"v/2 "2 V/=15%.

8<L

Here 7 is the number of components of L, o is the signature of its linking mat-
rix, c=exp (z\/—1/4), the sum is taken over all sublinks of L including the
empty sublink, and S-S is the sum of all the entries in the linking matrix of S.

In this paper, we generalize 7, and define another series of invariants of 3-
manifolds. Let ¢ be a primitive N-th (2N-th, resp.) root of unity for an odd
(even, resp.) positive integer N. Put

C o) Gu(9) )4(4) -n tal

239 = (7G50 )" 16 3 g
where Gy(9)=jez/vz ¢* (2 Gaussian sum), 4 is the linking matrix of L, / is
regarded as a column vector, and */ is its transposed row vector. One can easily
see that Z,(M; \/—1)=74(M). We will show that these are all invariants for
M (Theorem 1.3). As Kirby and Melvin proved for 74(M), Zy(M; q) is also
invariant under homotopy equivalence. More precisely, it is determined by the
first Betti number of M and the linking pairing on Tor H,(M; Z) for any N and
¢ (Proposition 2.5, Corollary 2.6).

We will express the absolute value of Z,(M; ¢q) in terms of the cohomology
ring of M with Z|N Z-coeflicients (Theorem 3.2). When |Zy(M; q)| %0, we
can also determine its phase (Theorem 4.5). It is a generalization of the Brown
invariant B(M) [16, §6] defined by the linking matrix using the signature and
Brown’s invariant [2] for Z/4Z-valued quadratic forms on a Z/2Z-vector space.

We can aslo calculate Zy(M; g) explicitly for 3-manifolds with linking pair-
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ings which are members of generator system of linking pairings on finite abelian
groups (Theorem 5.1). We also show that when M is a cyclic covering space of
an oriented link, Zy(M; q) is essentially equivalent to the link invariant introduc-
ed by E. Date, M. Jimbo, K. Miki, and T. Miwa [4| using chiral Potts models
(Proposition 6.3).

Other purpose of this paper is to describe various relationship of our in-
variants with quantum field theory, quantum groups, and U(1) gauge theory.
It is known that Zy(M; q) can be obtained from solutions to the polhnomial equa-
tions associated with Z/N Z-fusion rules [20, 21, 30]. It is also defined using a
quasitriangular Hopf algebra as =,(M) [6, 31, 16] (§7). If N is even, the absolute
values of our invariants coincide with the invariants of T. Gocho [8], which is
defined via U(1) gauge theory with charge NV (§8). We can also prove that in-
variants of R. Dijkgraaf and E. Witten [5] can be described using our invariants
if G=Z|NZ (8§9).

For basic concepts concerning 3-manifolds and links we refer the reader to
[3, 11, 32].

We thank T. Gocho, M. Jimbo, T. Kohno, and J. Murakami for their
useful converastions.

1. Difinition of invariants. An oriented link in the 3-sphere S°® is a
finite collection of disjoint, smoothly embedded, oriented circles L,, L,, -+, and
L,in 8% An (oriented, integral) framed link is an oriented link, each component
L, being provided with a framing f; which is an isotopy class of a section of the
projection dN(L;)—L,. We can obtain a connected, closed, oriented 3-manifold
M, by surgery on S* along a framed link L. M, is the result of gluing »
copies of D?x S* to S3— U%.; int N(L;) so that the i-th 9D?x {x} is identified
with f;. It is well known [24, 37] that each connected, closed, oriented 3-mani-
fold can be obtained by surgery on S* along a certain framed link.

Let A=()\;;) (1<4,j <n) be the linking matrix of L, that is, ;;=l1k (L;, L))
and n;;=lk (L;, f;). Here lk(-, -) denotes the linking number in S3®. Denote
by a(A4) the signature of A (the number of positive eigenvalues — the number of
negative eigenvalues). Let /V and d be coprime integers (N >2, d > 1) with N+d
odd and put g=exp (d= /—1)/N). Note that ¢ is a primitive N-th root of
unity if N is odd and a primitive Z/N-th root of unity if IV is even. Now we
consider the following formula:

ay  Z Lo = (GH0) T 161 5 g,

where M is obtained by surgery on S°® along L and Gy(q)=scz/vz - Gn(q)
is called a Gaussian sum and its properties are well-known (see Lemma 4.4).

RemMARKk 1.2. For N odd, ¢4 is well-defined since ¢ is an N-th root of



INVARIANTS OF THREE-MANIFOLDS 547

unity. For N even, we caw also easily see that it is well-defined though ¢ is a
2N-th root of unity. In both case, we can regard /i—*/Al as a quadratic form in
the following sence. If Nis odd, a quadratic form on (Z/NZ)" is a function
Q: (ZINZ)'—-Z|NZ satisfying Q(ax)=a’Q(x) as usual. If N is even, a
Z|2N Z-valued quadratic form on (Z/NZ)" associated to (-, +) is a function @:
(ZINZ)"—Z|2NZ satisfying Q (ax)=ad’Q(x)EZ|2NZ and Q(x+y)=@Q (x)+
Q(y)+2+(x,y)=Z/NZ. Here (+,+): (ZINZ)'X(Z|NZ)"->Z|NZ is a sym-
metric bilinear (not assumed to be non-singular) form, and 2: ZINZ—Z|2NZ
is 2 homomorphism sending 1 to 2. In this case, Q(!)=*IAI mod 2N with a
lift 7&(Z)" of I and (/,1') is 'IAl' mod N. (This definition coincides with that
in [2, 10, 28] for the case that N=2 and (-, -) is non-singular.) Then the sum
Sieznznq ! is written as Se(z/wz¢°® and is an invariant of quadratic
forms.

Theorem 1.3. Zy(M, L; q) is a topological invariant of M and does not
depend on any choice of L.

Proof. 'Two unoriented framed links L and L’ determine the same closed
3-manifold if and only if L’ may be obtained from L by Kirby moves; “stabiliza-
tion” and ‘“handle sliding” (see [15]). Two framed links L and L’ are related
by a stabilization if they are identical except for elimination or insertion of a
splitted, unknotted component L/ with framing f{ such that Ik(L{, f{)=-41. L
and L’ are related by a handle sliding if they are identical except for changing a
component L; by Lj=L, 4, f; with framing f} such that Ik(L}, f})=Ik(L;, f;)+
lk(L;, f)+£2lk(L;, f;). Here #, means the band connected sum with 4 a band
connecting f; and L;. The sign is + if the orientations of f; and L, are coher-
ent and — otherwise.

Now from a theorem of R. Kirby [15], it suffices to verify that a stabilization,
a handle sliding, and reversing of an orientation do not change Zy(M, L; q).
Assume first that two framed links L and L’ are related by a stabilization. We
assume that L’ is obtained from L by inserting a splitted, unknotted component.
Then denoting by 4 the linking matrix of L with #» components, that of L’ is

given by
(A 0
A = .
o 1)

Since the size and the signature of 4’ is n+1 and o(4)4-1 respectively, we have

201,159 = (2D G151 g s g

|Gy (9] 1eZ[NZ" WEZINZ

Since Syezmz ¢=Gy(q) or Gy(g) (the complex conjugate), we obtain
Zy(M, L'; q)=Zy(M, L; g).
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Let L and L’ be two framed links related by a handle sliding such that
Li=L,4%; f;. Then the linking matrix 4'=(\/;) of L’ satisfies

7\'43 = 7\'33+7\'tli27\':t ’

fs = Mgt Niy (E=*s3),
Asj = 7\':,'2*:7\':; (j=Fs),
=N (¢s,j£5).

Hence A'='TAT holds with T;;=1, T,;=+4-1 and T;;=0 otherwise, where
T=(T;;). Putting I'=T "1, we have
qfx’A’t’ = qlw .
Vez/n2" 1ez/| N2
Since # and o(A4) remain unchanged under this transformation, we have
ZN(M’ L'; q)=2Zy(M, L; 9)-

If L’ is a framed link which is obtained from L by reversing orientation of a
component L, then the linking matrix of L’ is ‘SAS, where S=(S;;) with
S;;=0 (i+j), S;=1(i+k), and Syu=—1. So Zy(M, L’; q9)=Zy(M, L; q) by a
similar way as above.

This completes the proof. W

By Theorem 1.3 we have topological invariants of M.
DEFINITION 1.4. Let M be a connected, closed, compact 3-manifold obtained

by surgery on S® along a framed link L. Then we put Zy(M; q)=Zy(M, L; q).

2. Fundamental properties. In this section we study fundamental pro-
perties of the invariant Zy(M; g).

First of all, we note that Zy(S%; ¢)=1 for any N and ¢q. If M is obtained
from a framed link L, the mirror image of L gives —M, M with the opposite
orientation. Since the linking matrix of the mirror image of L is —A with
A the linking matrix of L, we have

Proposition 2.1. For a closed, oriented 3-manifold M,
Zy(—M; q) = Zy(M; q) .

The split union of two framed links gives the connected sum of the cor-
responding 3-manifolds. So we have

Proposition 2.2. If M, and M, are closed, oriented 3-manifolds, then
Zy(M\ B M,; q) = Zy(M,; q) Zy(My; q) -

Zy(M; q) also factors associated with a factorization of N.
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Proposition 2.3. If N=N, N, with coprime integers N, and N,, then
Zy(M; q) = Zy,(M; 4%%) Zy (M ¢™) .

Proof. I€(Z|/NZ)" is uniquely expressed as [=N,,+N,l, for L
(Z|N, Z)" and [,&(Z|N, Z)". Hence we have
AL qzvg-f11411+N§-f12A12+2N1N2-f11A12
1eCZ/ N 2" he(Z /| Mz 1,E(Z | Ny 20"
= 3 qNg-'IlAll by qNﬁJIzAIz ,

Hhez |z 1,6CZ | N 2"

where the second equality holds since ¢?¥1¥2=1. In a similar way, we obtain
GN(q)=GN1(q”§) Gm(q”?). Therefore Z,(M; q) factors as above. W

As R. Kirby and P. Melvin state for 74(M) [16, 6.2 Remark], Zy(M;q) is
also a homotopy invariant (see Corollary 2.6 below) for every N and ¢. To
prove this, we review results of M. Kneser and P. Puppe [17], A.H. Durfee
[7], and R.H. Kyle [22].

Let B and B’ be symmetric integral matrices. B and B’ are said to ke
stably equivalent (or closely related in [22]) if they are equivalent under the
equivalence relation generated by the following @, and Q,:

Q,: B—!SBS with S integral and unimodular,

. B B 0
Qs H(O il)'

As in the previous section, let M be a 3-manifold obtained by surgery on
S? along a framed link L and A4 its linking matrix. Summarizing results in
[17, 7, 22], we can conclude that stable equivalence class is determined by the
first Betti number of M and the linking pairing on Tor H(M; Z). More pre-
cisely, the following proposition holds.

Proposition 2.4. Stable equivalence class of linking matrices of framed
links is determined by the first Betti number of the 3-manifold M obtained from it
and (Tor H(M; Z), M), that is, two linking matrices A and A’ are stably equivalent
if and only if M and M’ satisfy (1) and (2) below, where M (M’, resp.) are ob-
tained from framed link L (L', resp.) with linking matrix A (4’, resp.).

(1)  The first Betti numbers of M M’ are equal.

(2) There exists an isomorphism between Tor H(M; Z) and Tor H(M'; Z)
which induces an isomorphism between the linking pairings N and \'.

Here the linking pairing on Tor H(M; Z) is defined as follows.
An exact sequence of coefficient groups

iy
0-Z-Q—->QZ—0



550 H. Murakami, T. OHTSUKI AND M. Oxkapa
gives rise to a long exact sequence of homology groups of M:

3 i
— H{M; @) ™ H(M; @|Z) > H\M; Z) > H\(M; @) -,
where 8y is the connecting homomorphism. The linking pairing
A Tor H{(M; Z)X Tor H(M; Z) — Q| Z

is defined by Aea, B)=a- ,é\ where 8 ,(/-?\=,8 and a dot means the intersection
product

H(M; Z)xH(M;Q|Z) — Q| Z.

One can easily check that ) is well-defined.
By the above proposition, we immediately have the following proposition.

Proposition 2.5. If M and M’ satisfy the conditions (1) and (2) in Pro-
position 2.4, then Zy(M; ¢)=Zy(M'; q).

Proof. Since the corresponding linking matrices 4 and A4’ are stably equi-
valent, we have Zy(M; q)=Zy(M’'; g) as in the proof of Theorem 1.4. MW

Clearly two 3-manifolds which are homotopy equivalent satisfy the con-
ditions (1) and (2). So we have

Corollary 2.6. If M and M’ are homotopy equivalent, then Zy(M;q)=
Zn(M’; q).

3. Absolute value. In this section we calculate the absolute value of
Zy(M; q) and give its topological meaning.

First of all we prepare a lemma which will be used frequently in this paper.
A proof is an easy exercise.

Lemma 3.1. Let 2 be a primitive N-th root of unity. Then
, N" if y=0&€(ZINZ)",
> &=
reZ /N2 0 ify=*0e(Z/NZ),
where we regard x and y as column vectors.

Now |Zy(M; q)| is given as follows. This generalizes [16, Theorem 6.3].

Theorem 3.2. If there exists o in H'(M; ZINZ) with a Ua U a=0, then
Zy(M; q)=0. Otherwise |Zy(M; q)| = |H M; ZINZ)|" where | - | in the right
hand side is the order of the set.

Proof. Let M be a 3-manifold obtained by surgery on S*® along an z-



INVARIANTS OF THREE-MANIFOLDS 551

component framed link L. From (1.1), we have

| Zy(M; @) = |Gy() ™| 3 ¢"4].

1eZ/NZ"

We first calculate |Gy(q)|?=N.
IGu@ = = ¢**

nWEZINZ
=3¢ S W =N+
' h
=N,

The last equality follows from Lemma 3.1 putting n=1, x=~h", y=h, 2=¢*
since ¢* is a primitive N-th root of unity.

Next we calculate the absolute value of 33 ¢74'. In a similar way as above,
we have

t t1 A1 -t
l Yy q“”lzzqu’” 141
1eCZ /| N2" 1

=3 q'l" A’ 2 QZ‘IAI" (l/ = I"+1)
144 1
— N* 2 q‘I”AI” ,

1’Eker Ly
where L, is a linear map L,: (ZINZ)"—(Z|NZ)",l— Al. 'The last equality
follows from Lemma 3.1 putting x=1[ and y=A41I"". Therefore we have

[ Zy(M;q)|12=| X ¢"].

I€Eker Ly

Now there are two cases to consider.

Case 1: Nisodd. Recall that g is an N-th root of unity. For [€ker L,,
we have {/Al1=0in Z/NZ and ¢"#=1. Hence |Zy(M; q)|? is equal to the order
of ker L,. By Lemma 3.3 below, we have

|Zu(M; q)| = |H(M; ZINZ)|'*.

In this case @ Ua Ca=0 holds for any « in H(M; Z|NZ), because the cup pro-
duct is skew-symmetric and the order of H}M; Z|[NZ) is odd. Hence we ob-
tain Theorem 4.1 for N odd.

Case 2: Niseven. In thiscase gisa 2N-th root of unity. As in Remark
1.3 we regard /—*[Al as a map (Z/[NZ)"—>Z|2NZ. We denote the restriction
of this map to ker L, by @: ker L,— {0, N} CcZ/2NZ. Then ¢ is a homomor-
phism because

{T+1) AT +1") = TAI+ T AT’ +-2-*1 AT’
and 2-/7 A1’ can be divided by 2N. Therefore we have
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ker L ,|? =0,
| A P

Zy(M; =
[Zn(M; )| {0 otherwise.

By Lemmas 3.3 and 3.4 below, we obtain

| Zn(M; q)|
B { |H(M; ZINZ)|? if aUaUa = 0 for any a€H(M; Z|[NZ),

0 otherwise.
This completes the proof. W
Lemma 3.3. ker L, is isomorphic to H((M; ZINZ).

Proof. Since M is a union of S*-int N(L) and 7 copies of D*X S*, we have
the Mayer-Vietoris exact sequence below.

9 HY(M; ZINZ) — H(S%int N(L); Z|N Z)®SH'(D*x S'; Z|N Z)

A DHY(T?; ZIN Z)—--

Hence H(M; Z|NZ) is isomorphic to ker f. Moreover f corresponds to a ma-
trix (114" 1)”) as a map f: (ZINZ)"P(ZINZ)"—~(Z|NZ)*, where 1, is the nXn

identity matrix. Since ker f is isomorphic to ker L,, we obtain Lemma 3.3. W

Lemma 3.4. Let N be even. With the isomorphism ¢ in Lemma 3.3, the
next diagram commutes:

kerL, —2» {0,N}CZ2NZ

¢ VX3

H\(M; ZINZ) —» {0, J_;’-} CH¥M; ZINZ)— Z|NZ,

where ) is defined by J(a)=aUaUa.

Proof. Let / be an element in ker L,, and put a=¢(l). We calculate
aUaU a in the Poincaré dual and we will show that ¢ Ua U a is equal to @(7)/2.

Let S be a branched surface representing the Poincaré dual modulo Z/NZ
of e in M=(S*—int N(L)) U U%., D*X S* such that branch locus of S is a union
of disjoint circles in S*—N(L) and the number of sheets meeting along each
circle is a multiple of N. Since [S] is the Poincaré dual of ¢(/), SNON(L,) is a
union of 7, circles in dN(L;), each of which is parallel to the framing f;, where
l,eZis alift of ,€ ZINZ with *I=(l,, ---,1,). Let m; be a meridian of L; in
S3—N(L). Since [m;]’s generate H,(M; Z), we may assume that branch locus
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of Sis a union of m;’s. Let ;N be the number of sheets of .S meeting along m;.

Since the boundary of S N(S*—int N(L)) consits of 7; copies of f; in IN(L;),
we have 3} a; N[m]=31,[f] in H(S*—int N(L); Z). Moreover the classes
[f]’s are determined by

(Al [m.]
=4 ¢
(/2] [m.]
Hence we obtain a relation between 4;’s and 7;’s:
a N A
D=4
a, N 7,

Now we calculate the self-intersection of S. Since S— Um; is orientable,
we can push S in a normal direction. There are self-intersections near m; as
in Figure 3.1. Hence we have

Figure 3.1.

[S1-[S] = 25 (1+2+ - +(N—1)) [m]

% zN [m]EH,(M; ZINZ).

Since [S]-[m;]=1;, we obtain

[S]-[S]-[8] = 2 %V 7,

2 i
Al =

1 1
— —op(l).
5 2<D()

This is the required formula. W

ReMARK 3.4. The above lemma also follows algebraically from [35, Theo-
rem I], which states that

avaUp =A@ B)czINZ
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for a, BEH(M; ZINZ). Here a, BETor H(M; Z) satisfy Ma, x)=a(x)/nE
Q/Z and \(B, x)=0a(x)/nEQ|Z for any x&Tor H\(M; Z).

4. Phase. Now we study the phase of Zy(M; q).
We use the following notations for an odd integer x: (cf. [33])

l1x= 1 mod4,
—1 x= 3 mod#4,
1 x= 41 mod38§,
—1 x= 43 mod 8.

£(x) = (=)0 = {
4.1)
o(x) = (—1=- = {

Note that &: (Z/4Z)*— {1, —1} and w: (Z/8Z)*— {1, — 1} are homomorphisms.
By Theorem 3.1, Zy(M; q)=*0 if aUaUa=0 for any a€H(M; Z|NZ).
So we assume this in the following of this section.
We put

oy — (G @ TP - t1a1
ZN(A) Q) - <IGN(Q)] > \/N IE(Z/E.NZ)"q ’

for an integral symmetric #Xn matrix A. Zy(M; 9)=Zy(A; q) if M is obtained
from a framed link L with linking matrix 4. We note that if N is odd, 4 may
be regarded as a matrix in Z/NZ and if N is even, the diagonal entries in 4 may
be regarded as integers modulo 2N and the off-diagonal entries modulo .
We will try to diagonalize A to calculate the phase.

From Proposition 2.3 we will restrict ourselves to the case N=p" with p

prime for a while.
If p is odd, we can diagonalize A as a matrix in Z/NZ, that is, there exists
a matrix SE€SL(n, Z) such that

4.2) ‘SAS = & (a,) mod p".

If p=2, we cannot diagonalize A4 itself in general, but it is proved that one
can diagonalize the block sum of 4 and (1)P(—1)PB2)P(—2)P---P(2*1)D
(—2m"1), that is, there exists a matrix S & SL(n+2m, Z') such that

(43) ‘SABMB(-DBOB(—D® 2" )B(—2)) S =" (a),

where the diagonal entries are considered modulo 2”*! and the off-diagonal entries
modulo 2", (In fact, it can be proved that A@(1)P(2)P---P(2"!) is diagon-

alizable, using the technique to diagonalize (g] 2(;)@(2’).) Note that the phase
of Zy(A; g) remains unchanged by replacing 4 with AB(1)P(—1)P(2)P(—2)
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@ B2 )P(—2""") since easy calculations show that Zy((27); ¢)+0 and
Zy(2'); 9=2(—2)); g) for j<m.

Now the phase of Z,»(4, g) is equal to that of (G,m(¢)) ™" II; Zscz/pmz 4"
Thus we only need to calculate the sum

Gya;9)= 3 ¢

hEZ|NZ

for an integer @ and a prime-power N. Note that a Gaussian sum Gy(q) is equal
to Gy(1;¢9). Let g=exp (dz /—1/p") with (d, p)=1 and d+p odd, and
a=p*c with (p, c)=1. If p is odd, we also write ¢ as exp (2bz \/—1/p") putting
d=2b. We can describe the above sum as follows.

Lemma 4.4.

(1) pisodd. Let (P ) be Legendre’s symbol, that is, (;)—1 if there exists

an integer | such that ?’=x mod p, and <P ):——1 otherwise. Then

b if k—m=>0,
\/?"‘” if k—m<O0 and even,

Gym(a; q) = %) - ) N X if k—m<0 and odd, and p=1mod 4,
(—j)—) <;> IV p "™ if k—m<0 and odd, and p=3 mod 4.

(2) p=2. Putt=exp (m\/—1/4). Then

2" if k—m>0,

if k—m =20,
gt /g if k—m<0 and even,
OO ST i b m 0 and odd.

Gpm(a; q)=

Proof. For the case that k—m>0 or the case that k—m=0 and p is odd,
the formulas follow since ¢°=1. If k—m=0 and p is even, Gy(a, g)=0 since
¢"=—1. The case that p=2 and k—m<0, the formula follows from G(a, g)=
2Gm-(a, q) (n>k—+3) and direct computations for m=k—+1 and k+2. The
case that p is odd and k—m<0 is well-known. For a proof, see for example
[23, Chapter IV, §3]. (There are some errors in [23], which one can easily
fix.) The proof is complete. W

From this lemma, we know that the phase of Z(4; ¢) takes only eight values.
So we define ¢y(A4; ) EZ[8Z as follows.

We first consider the case that N=p" for an odd prime p. Let a;’s be
diagonal entries when 4 is diagonalized as in (4.2). Let a;=p*i c; with (p, ¢;)=1
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for a;=0. Note that we can assume k,—m is always negative. We put z, and
n_ as follows.

= #{a;| k;—m is odd and <%1> 1}
n. = #{a,|k,—m is odd and (%) — 1}

Here #{-} means the number of elements in {-}. Then ¢,m(4;q)EZ/8Z is
defined as follows.
dpm(A; q) =

2 ((%) _ 1) n—2( %)Jr 1) n_ if p=1mod 4 and m is even,

() )ee () )a((B)2)een Fagtmels,

2 (%) n,—2 (%) n. if p=3 mod 4 and m is even,

2(%) n+—-2<;>n_—2< 2Y oa) if p=3 mod 4 and m is odd.

Then from Lemma 4.4 and (i)zcﬂ(%)—ln it follows that ¢m(4; ) =/ —1/4 is
the phase of Z,»(4; q).

Next we consider the case N=2". Let a,’s be diagonal entries when 4 is
diagonalized as in (4.3). Let a;=2% ¢; with c; odd for a;4-0. Here we assume
k;—m<0 as before. Then ¢m(4; q) is defined by

A3 -mieven €;TE@) Zjom : 0aa &(c;)—da(4) if m is even,
d Ekj—m teven L‘J—I-G(d) ij—m :odd E(cj) e(d) G-(A) if m is odd.

From Lemma 4.4, the phase of Z»(4; q) is ¢pm(A4; q) \/ —1/4-.
According to Proposition 2.3, we define ¢y(A4; g) for an arbitrary N by using

(A Q) = bu(A; @)+ bu(4; P EZ[SZ
where N=N, N, with coprime integers N, and N,.
For a closed, oriented 3-manifold M, we define ¢ (M ; 9)=¢n(A4; q) for the
linking matrix A of a framed link which gives M. Summarizing the above ar-
gument we have the next proposition.

bl ) = |

Theorem 4.5. If aUaUa=0 for any a€H\M; ZINZ), then

Zy(M, @) = exp (V=L 0,03 q) )| O ZINZ) 7,

where (M ; q)E Z[8Z is defined above. In particular ¢y(M; q) is a topological
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invariant of M.

REMARK 4.6. By defintion, B(M)=—¢,(M;+/—1) is the Brown invari-
ant [16, §6]. See [2, 10, 28] for Brown’s invariant of Z/4Z-valued quadratic
forms on a Z/2Z-vector space.

As applications of Theorem 4.5, we calculate Zy(M; q) for Z/pZ-homology
spheres. (A closed, oriented 3-manifold M is called a Z/pZ-homology sphere
if H(M; Z[pZ)=H(S*; Z|pZ) for all 1.)

Corollary 4.7. Let N=2" and q=exp (dn\/ —1/N). If M is a Z|2Z-
homology sphere, then the value of Zy(M; q) is as follows.
§aran if m is even,

A = {w( \EL(M; Z)|) E=*0 if m ds odd.

where {=exp (m/—1/4) and p(M) is the p-(or Rochlin) invariant of M (the
signature modulo 16 of a spin 4-manifold with boundary M).

Proof. Since H(M; Z|NZ)=0, we calculate the phase. After a change
of basis we may assume that 4 is diagonal (mod 2N) with diagonal entries a;.
Since M is a Z|2Z-homology sphere, a; is always odd. We also assume that
a;=1,3,5, or 7 because there exists an odd integer / such that ¢/*=1, 3,5, or
7 mod 2N for any odd integer ¢. Let n, be the number of ¢’s in these diagonal
entries (c=1, 3, 5, or 7).

For m even, by the definition of ¢(M; g), we have

on(M; q) = d(n+3n;+5n5+7n,—0 (4)) mod 8.

Since w(M)=a(A)—(m+3n;+515-+7n,) mod 8 (see [16, Appendix C]), we ob-
tain the required formula.
For m odd, we have

dn(M; q) = E(d) (n,—ng+n—n,— o (A))
Thus $y(M; g)+&(d) w(M)=—48(d) (n;+ns) mod 8. Since &(d)=-+1, we have
ou(M; q) = —&(d) p(M)+4(ny+n;) mod 8.
Moreover since
|H(M; Z)| = +det A = 43" 5% 7" = £3"(—3)"s (—1)" mod 8,

we obtain o (|Hy(M; Z)|)=(—1)"*". Therefore we obtain the required for-
mula. W

Corollary 4.8. Let N=p" with odd prime p and q an N-th root of unity.
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If M is a Z[pZ-homology sphere, then
Zu(M;q) = (2
W9 = (%)
where r=|Hy(M; Z)| and (%) is Legendre’s symbol.

Proof. Adding a splitted, unknotted component if necessary, we assume
that det4 is positive so that r=det4. Let b, a/s,n,, and n_ be as in the no-
tation of the definition of ¢,m(A4;q). Since M is a Z[pZ-homology sphere,
(p,@;)=1 and so k;=0 for any j. We also note that r=det4A=]]a; mod p.

Thus we have
(,)_ (Hd,-)__ I (a,.) _ { 1 if n_ is even,
p/ \p /T \p/ | =1 if n_isodd.
For m even, we have n,=n_=0. Hence Zy(M; g)=1.
Next we consider the case that m is odd. In this case, n,.+n_=n, the size

of A. Somn,=n—n_. We also have o(4)=n mod 4 since det4>0.
If p=1 mod 4, then by definition, we have

it 2oz () (2o
—2 ((%)- 1) (1—a(A))—4n.

= 4n_ mod 8.

If p=3 mod 4, then we also have
a3 9 =2 (2 ) h=2 () n—2 (%) o)

2 (%) (n—o(A))—4 (%) n_
=4n_ mod 8.

Therefore we obtain the value of Zy(M;gq) as above, completing the
proof. W

5. Calculation for generators of linking pairings
Any linking pairing is a direct sum of the following linking pairings [36, 14]:
(p~*r)(k>1), A%n)(k>1), Eik=>=1), and E¥k>2),

where p is odd, prime integer, 7 is 1 or a fixed quadratic non-residue modulo p,
and n=1(k=1), +-1(k=2), 41 or +3(k>3). Here we use the notation of
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[14].

Since Zy(M; q) is an invariant of first Betti numbers and linking pairings
(Proposition 2.5), and linking pairings split as above, we can calculate Zy(M; q)
if we know them for 3-manifolds with the linking pairings above from Proposi-
tion 2.3. Note that the free part of the first homology affects Zy(M; g) only
by absolute values (Theorem 3.2).

In the following, we denote Z(M; q) by Zy(A; q) if the linking pairing on
H,(M; Z) is isomprphic to A in the above.

Theorem 5.1. Let p and p’ be odd, prime integers (p==p’), band b’ integers
with (p, b)=1 and (p’,b')=1, and d an odd integer. Put g=exp (2bz~/—1[p"),
q'=exp (2b'z/—1/p""), ¢’ =exp(dn/—1/2"), and {=exp (z\/—1/4). We also
use the notations (4.1).

(1) The case A=(p~*r).

1 for (%,0, ¥, %),
—a(9)(}) for (%,1,0,1),
Zapirys gy =| DD (F)VTT o m1.0.3),
- (%) for (%,1,1,1),
- (%) V-1 for (%,1,1,3).

for (++or 0, x,0, x),
_; > (}IZ)') ?»" for (+or 0,%,1,1),
(%) ( > 1" for (or0,%,1,3),
h for (—,0, %, %),
)
)

Zp((p7Fr); ) =
V' for (= 1,%,1),
)

<£
G
(

_ £> <}>_) VIV for (—1,1,3).

G
(% V=ivp'  for (—1,0,3),

Here (-, «, «, *) is (sign of k—m, k mod 2, m mod 2, p mod4).

Ze 0 0) = ()"

(2) The case A=A¥n), E§, or E}.
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E4v2” for (+,%,0),
E=@ /2" for (4,%,1),
Zm(A*(1);¢") =10 for (0, %, *),
V2! for (—,0,%),
w(d)\v 2" for (—,1,%).
£\ 2" for (+,0,0),
SRV for (+,1,0),
g@ 2" for (+,0,1),
Zp(A*3); ¢") =< £7*@ /2" for (+,1,1),
0 for (0, %, ),
N for (—,0, %),
od)\V2"  for (—,1,%).
Here (-, -, «) is (sign of k—m, k mod 2, m mod 2).
Zin(AN—1); ) = Z(A7(1); ")  (complex: conjugate).
Zn(AH(—3); ) = Zn(A); 1)
Zp(Eb;q") = {2»: Jhem,
2" ifk<m.
(=D)"** 2" ifk>m,
2! if k<m .
. —1 ifmandk are odd, and p=+3 mod 8,
Zp(Aim); @) = { 1 otherwise.
Zyw(Es; @) = Zym(El; ) = 1

Proof. For (p~*r), we consider the lens space L(p*, r). It can be obtained
from a framed link with linking matrix of the form

2ot ) = {

4 1 0 .« 0
1 a1 -0
01 - :
.. )

0 0 «-- 1 q,
Here the continued fraction

a,—
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is equal to p*¥/r. See for example [32]. So we can calculate Z,»((p~*7);q)
using Theorem 4.5. The value Z,((p~*); ¢') can be calculated using Corollary
4.8. Zm((p~*7); q"") can be obtained from Corollary 4.7 and the fact

2u(L(et, B)) = 2(a+1)—4(8]a) mod 16,

where (8| a) is the Jacobi symbol [12, Theorem 8.14]. Note that our definition
of the y-invariant differs from that in [12].
For A%1) and A4*%(3), we choose linking matrices of the form

4mH__(—=2)h3 2"
2") and (_1)k+1(( 2,(,,+1))/ i )

respectively. (Note that they are diagonal in Z/2?#*! Z') Then we can calculate
Zym(A¥(n); ¢') (n=1, 3) using Theorem 4.5. Since if the linking pairing for a
3-manifold M is A*(n), then that for —M is A*(—n), the values Zyn(A*(n); ¢”’)
(n=—1, —3) are obtained from Proposition 2.1.

To calculate Z(E#%; ¢”’) (m==k), we use the relation (see [14])

AN1)P2A4H—1) = AH(—1)DES.
Since Zn(A*—1); ¢) %0 for m=£k, we obtain Zm(E%; ¢’') from Proposition 2.2.
k
For m=Fk, we can directly calculate it choosing ((2)’* %) as a linking matrix for
E%.
Using the relations (see [14] again)

34K1) = A*3)PE* and E'@A(1) = EtPAH*(—3),

we can obtain Zm(E}; ¢’) for any m.

The values Z, (4%n); q), Z~(E%; q) and Z, (Et; q) are easily obtained from
Corollary 4.7.

The proof is complete. W

ReEMARK 5.2. The series {Zy(-; q)} is not a complete invariant of linking
pairings. For example Z,(324'(1)D164%(1); q)=Zy(16A4'(1)P244%(1); q) for
any N and ¢ but 324'(1)164%(1) is not equivalent to 164'(1)P24A4%1).

From Theorem 5.1, we have another condition for Zy(M; g) to be zero.

Corollary 5.3. Zy(M; q)=0 if and only if there exists x€H\(M;Z) of
order 2" with \(x, x)=c[2", where N=2"b with b odd, c is an odd integer, and A
is the linking pairing on Tor H,(M; Z).

Proof. From the above theorem and Proposition 2.2, Zy(M; ¢)=0 if and
only if the linking pairing has a direct summand of the form A*n), If Zj
(M; g)=0 then the existence of an element x as in the statement of the corollary
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follows easily. Conversely, suppose that there exists x as above. Then since
the linking pairing restricted to the cyclic group generated by x is non-singular,
it has A*(n) as a direct summand with n=c¢ mod 8 (see [36, Lemma (1)]). The
proof is complete. W

6. Invariants for links. For an oriented link L in S* (without framing)
and an integer s(=>2), one can construct the s-fold cyclic branched covering space
branched along L associated with the kernel of a map H,(S*—L;Z)—>Z|sZ
sending each meridian to 1. Since it is a closed, oriented 3-manifold, we can
define Zy(L; g, ) to be Zy(M(L, s); q), where M(L, s) is the s-fold cyclic branch-
ed covering space as above. Zy(L;gq,s) is an invariant of L for every s since
M(L, s) is uniquely determined by L and s.

A framed link description for M(L, s) is given by S. Akubult and R. Kirby
[1]. Denoting a Seifert matrix for L constructed from a connected Seifert
surface by V, its linking matrix is given by V@B+'V ®’B, where B=(B;,)
(1<, j<s—1) with B;;=1 for 1<i<j<s—1and B;,=0 otherwise. So we have

Lemma 6.1.

ZN(L; q, s) — ( GN(Q) >—¢(A) \/ﬁ-g(!-l) ) q‘IAl ,

|Gy ()| 1eZz/n25CD

where A=V QB-+'VQ®'B and g is the size of V.

Note that if s=2, a(4) is just o(L), the signature of L [29, 34].
In [4], E. Date, M, Jimbo, K. Miki, and T. Miwa define link invariants us-
ing generalized chiral Potts models. They are give as follows.

DEFINITION 6.2. [4]. Let N be a positive odd integer, q a primitive N-th
root of unity, and C an (s—1)X(s—1) integral matrix (s>1). For an oriented
link L with Seifert matrix V of size g, we put

LN, O) = VN % gieon,
1€C2/ N 2¥¢ D

Since H(VQRCH+'VQ!C) I=2(1(VQC)I), we have

Proposition 6.3. Let g=exp (2bn\/—1/N) and q'=exp (N+1) bx
v/ —1/N) with (b, N)=1. Then

' Gy(g) \°®
Zy(L;q',s) = s 7(L;N,q,s, B),
! (|G~<q )l )
where A=V QB+'VQ'B and B is as above. Note that q' is also a primitive
N-th root of unity because N is odd.
RemARk 6.4. For a positive even integer N and a primitive N-th root of
unity ¢,
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fLiN,g,5,C)= VN 3 guveon
1€z /xz¥C
is also an invariant of a link L. This follows from the fact that the above for-
mula is invariant of S-equivalence class [3, 29, 34] of Seifert matrices for links.
Proposition 6.3 also holds in this case. (¢’ is now a primitive 2N-th root of unity.)

The cyclotomic invariant T'y(L) [19] is given by 7(L; N, exp 27/ —1/N),
2, (1)) for an integer greater than 1. (See also [9, 13].) So we have

Proposition 6.5. Put g=exp (N+1) zn/—1/N). Then

_ (Gl \® )
Ty(L) = (m) Zy(L; q,2).

For relations of the cyclotomic invariants to the polynomial invariants for

links, see [9, 19].

7. A family of quasitriangular Hopf algebras. We will give another
description for Zy(M; q) using representations of some algegras. A Hopf alge-
bra A is an algebra over a field 4 with comultiplication A: A—> AR A, counit
&: A—# and antipode v: A—>A. Let R be an element in AQA. The pair
(4, R) is called a quasitriangular Hopf algebra [6] if R is invertible in AQA,
PoA(a)=RA(a) R™! for any aE A, where P is the permutation operator (P(x®y)
=y®x), and

(A®id) (R) = Rys Ry
(Id®A) (R) = Rz R;;
where R;,=R®1, R;;=1QR, and R;;=>) a;®1QB; for R=3 a;QB,;.

Let r be a positive integer and ¢ a primitive 7-th root of unity. We define
a quasitriangular Hopf algebra 4, over the field @(gq). The algebra A4, is gen-
erated by 1, K, and K~' with relation K"=1. A comultiplication, counit and
antipode are defined by A(K)=KQ®XK, £(K)=1 and v (K)=K"!, respectively.
Let Rbe r ' )70 ¢ K*QK’. Then we have

Lemma 7.1. (4,, R) is a quasitriangular Hopf algebra.
Proof. The inverse element of R is given by ! 3174, ¢/ K@K’ because
R.r! ;} qi’i’ K:"®Ki’
— r";Z qi’i’—u‘ Ke+i’®Ki+j’
— r-z‘-%kqik(]z. q—(i+i’)i) Ki+i’®Kk (k =j+j')
=r! Ek} (;} 7% 1QK*
=1.
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Here the third and fourth equalities follow from Lemma 3.1.
Since A4, is commutative, we have RA(a) R™'=A(a)=PoA(a). Moreover

Ry Ry =123 ¢~ KIQKV QK™
=S¢ NS ¢ K'QKYRK?, (k=j+f")
= 5¢* K'QK'QK!
— (A®id) (R) .

A similar calculation shows (IdQA) (R)=R;3 R,,, W

Since A, is commutative, all irreducible representation spaces are one-
dimensional. We denote these representations by {V;} ;... ,-1, With the action
p(K) given by the multiplication by ¢’. For representations p,: A,—~End (V)
and p;: 4,~End (V}), a tensor product representation is defined by (p,®@p;)°A:
A,~End (V;QV;). The action p¥ on the dual space V¥ induced from the an-
tipode v is given by the multiplication by ¢~. We can easily see that (4, R, v,
{V}) is a modular Hopf algebra [31] putting v=r"" 3317, ¢’¢~” K. With this
algebra (4,, R, v, {V}), we can construct invariants of 3-manifolds according to
[31]. We survey an outline of the procedure for constructing them.

Let L be a framed link and consider its diagram. We assume that its fram-
ing f; of a component L; is parallel to L, in the plane. A coloring of L is an as-
signment of I/, to each component of L. Now we associate an operator { with
each crossing of a colored framed link as follows.

m\ v, V\ y-
N\ N

q” g
(a) (b)

Figure 7.1.

If the crossing is as in Figure 7.1(a), then Q is a homomorphism from
V:QV; to V,QV; given by 2@yt (Po((p;®p;)R))(x®y). It follows that
Q(xQ y)=¢"(yRx) because

((p:®p )R)(x® y) = "—'1‘./5‘7/ q_i/j/(Pi(Ki/)x(ng(Kj/)y)
=r! Z} ¢ 2/ g9~ (x® y)

= ¢'(*®y),
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where the last equality follows from Lemma 3.1 again. If the crossing is as in
Figure 7.1(b), then Q is a homomorphism from V;QV¥ to V¥®V,; given by
Po((p;@pF))R) and we see that Q(xQy*)=¢ (y*®x). Similar calculations
show that if the crossing is positive, then Q is the multiplication by ¢/ (and the
interchanging of the coordinate) and if the crossing is negative, then Q is the
multiplication by ¢=*.

Then we can obtain an invariant of a 3-manifold as the sum of the products
T positive crossings @ Il negative crossings 4 ° for all colorings after some normaliza-
tion.

Zy(M; g) corresponds to this invariant putting r=2N for N even and r=
N for N odd.

8. Operator invariants for 3-dimensional cobordism and invariants
of Gocho

As in [31] we can extend the invariants Zy(M; g) to operator invariants of
3-dimensional cobordisms with non-empty parametrized boundaries, using the
modular Hopf algebra structure in 4, described in §7. In this section, we
define them by using linking matrices, and prove that invariants of T. Gocho
[8] are essentially the absolute values of our invariants. See [31, §4] for the
precise definition of 3-dimensional cobordisms with parametrized boundaries.

We denote by GZ(GZ, resp.) a horizontal line segment with g arcs glued to
the top (bottom, resp.), which is embedded in S* as described in Figures 8.1
and 8.2. Each arc has a framing (or parametrization) indicated by a thin line
parallel to it in the plane.

Figure 8.1.

Figure 8.2.

Let GT(GE, resp.) be a farmed link obtained by eliminating short segments
between arcs from G7 (Gy, resp.) as in Figures 8.3 and 8.4.
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Figure 8.3.

Figure 8.4.

Let (M, F',F) be a 3-dimensional cobordism with connected M whose
parametrized boundaries are F’ and F. For simplicity we assume that F’ and F
are connected surfaces of genus g’ and g respectively. We can represent M by
Dehn surgery on S as follows. We consider graphs G2 and Gy, and a framed
link L in S% where L is located between G and G} as shown in Figure 8.5.
With suitably chosen L, we can put M=M,-(int N(GZ)Uint N(G})), where
M;, is a 3-manifold obtained by Dehn surgery in S* along L, and N(Gy) and
N(GY) are tubular neighborhoods of G, and G7 respectively.

I
hiss

Figure 8.5.

Let V, be an N¢-dimensional complex vector space with basis {e,}, where
N is an integer greater than 1 and A&(Z/NZ)¢. V¥ is its dual with dual basis
{e¥}. We define an operator invariant of M in VE®V,=~Hom(V,, V,) by

Zy(M; q) o
(Gulg) @ ” ()a(2)
= (J__> [Gy(g)| ¢ 12)-(2l2) = ’( 3 ¢ YeER ey,
exel h’e(Z/.N'Z); 1=z/ 82"
»e(Z /N2>

where ¢ and Gy(g) are as in §1, 4 is the linking matrix of GEZULUG?, and n
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is the number of components of L. In a similar way as the proof of Theorem
1.3, we can show that this is a topological invariant of M as a 3-dimensional
cobordism with parametrized boundary.

The following proposition is a corollary to [31, Theorem 4.5]. We give a
direct proof using the formula above.

Proposition 8.1. If a 3-dimensional cobordism (M, F,, F;) is a composition
of two cobordisms (M,, Fy, F,) and (M,, F,, F5), then for some integer ¢

Zy(M; q) = §°Zy(M,; q)oZy(M; q) ,

where Zy(M,; Q) EVEQV ,,=Hom(V,,, V,,), Zy(M,; 9) EHom(V,,, Vy,), & is the
genus of F,, and {=exp(z\/ —1/4).

10

Proof. For simplicity, we assume that F;=F;=@. We present M, and M,
by L,UGY, and GZ,UL, respectively, where M,=M,; —int N(G},) and M,=
M,,—int N(Gg,). Then M is presented by a framed link L, ULyU L,, where L,
is a framed link obtained from G}, and G, by gluing arcs as shown in Figure
8.6.

GB
£2

22

Q

N

Let 4, 4,, and 4, be the linking matrices of L, U L,U L,, L, U GZ, and GE UL,

respectively. We have
A4, 0 0 O
=0 o)l u)
0 0 0 4,

where 0’s are zero matrices with suitable sizes. Hence we have

(i)~ €)1

LI\l
It follows that Zy(M; g) is equal to Zy(M,; q)oZy(M,; q) with a scalar multiple
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(Gn(9)/|Gn(g)])T#-40=7(42)  Since the phase of a Gaussian sum has a value of
eighth root of unity, we obtain the required formula. Wl

Let M, be the mapping class group of a closed surface of genus g. With
this proposition we obtain a representation of R, to PU(V,)=U(V,)/U(1) as
follows. Let F be a closed surface with parametrization of genus g and f: F—F
a homeomorphism. We denote by C, the mapping cylinder of f, that is, F X
[0, 1] with parametrization in F X {1} induced by f. For fixed N and ¢, we have
a map M,—PUV,), fr>Zy(Cs;q). By Proposition 8.1 this map becomes a
representation.

In the case that N is even and g=exp(z\/ —1/N), this representation coin-
cides with a representation constructed by T. Gocho [8]. Let N and ¢ as above
in the following of this section. By a geometric method based on U(1) gauge
thory, Gocho constructed a representation p, of MM, to PU(V,) which fac-
tors Sp(2g; Z)> fy: H(F; Z)—H\(F; Z). The representation p,: Sp(2g; Z)—
PU(V,) is given by the next formulas.

0 —1 S ,
px( g) e =VN ¢ ey,
1, 0 S

X 0
Pg 0 tx-! €p == €tx 1y,

1, ¥
pg(og 1 )eh =g e, .

£

Here XeGL(g; Z) and Y is a gXg symmetric integral matrix. Note that

((l)g _34’), <0X ';_J , and ((1)‘ i) generate Sp(2g; Z). We can check that
this representation coincides with our representation by calculaing about genera-
tors of M,. In [8], Gocho also defines a topological invariant of M by

Wy(M) = VN <p (fr)en e8> EC|U(1),

where M is presented by a Heegaard splitting M=H,U(—H,) with H, a han-
f

dlebody of genus g. Noting that Wy(S®)=+/N"", Zy(H,; 9)=+/N*? ¢, and
Zy(—H,; 9)=+/N*" ef, we immediately have the next proposition.

Proposition 8.2. Let N be even. Then we have

WalM) _ | 7 (01 xp ™Y =1
s — 1 Ev M e DD,

where Wy(M) is Gocho’ s invariant defined above.
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9. Invariants of Dijkgraaf and Witten for G=Z/NZ.

In this section we will show relations between our invariants and invariants
of R. Dijkgraaf and E. Witten.

Let G be Z[NZ. We choose a class g€ H¥(BG, U(1)). Since H¥BG, U(1))
=Z|NZ (see for example [11, Lemma 9.2]) for a classifying space BG for G,
we regard ¢ as a (not necessarily primitive) N-th root of unity with an inclu-
sion Z[NZ —U(1). Let M be a closed orientable 3-manifold. In [5], Dijkgraaf
and Witten defined invariants as the sum over all possible G bundles over M:

DyM;q)=___ > <f¥g[MPeC,

YEHom(r,(I),69

where fy: M —BG is a classifying map corresponding to v and {f¥q, [M]<
U(1). We regard U(1) as the set of units in C and the sum is taken in C.

Proposition 9.1. Let N be a positive integer, K a divisor of N, and q an
N2-th (primitive) root of unity. Then the following formulas hold.

For Nodd  Dy(M; ¢"*) = Zyyx(M; ¢)Z(M; g™¥'/%) .
For N even Dy(M; ¢"%) = Zy2jp (M ; ¢V Zpi(M; g~ N*1*K) .

Before we prove this proposition, we show some lemmas. Since Hom
(zy(M), G)=Hom(H(M; Z), ZINZ)=H'(M; Z|NZ), we denote by ¥ the cor-
responding element to v in H(M; Z|NZ).

Lemma 9.2.

{f¥g, [M]> = gV vs@unp
where 8%: H(M; ZINZ)—H*M; Z) is the connecting homomorphism with respect

N
to an exact sequence 0—~Z —-Z —-Z|INZ—0 and U: H(M; ZINZ)XH M; Z)
—HYM;Z|NZ).

Proof. Let v'€Hom(z(BG), G)=Hom(G, G) be the identity map which
is the monodromy representation of a classifying space EG—BG. We denote
by #' a corresponding element to v’ in HY(BG, G). Some calculations show
that ¥'U8*®’) is a generator of H¥BG, G)=Z|NZ=H*BG, U(1)), where
8*: H(BG; ZINZ)— H*BG; Z) is the connecting homomorphism. Let ¢
be exp(m-2z+/—1/N)EH¥BG, U(1))cU(1). Then f¥g=-exp(m(¥U3d*%¥))-
2zv/ —1/N)eH¥M, U(1))=U(1) because ¥=f3¥'. Hence we have the re-
quired formula. H

The following lemma is obtained in a similar way as a proof of Lemma 3.4.

Lemma 9.3. Let IEker L,C(Z|NZ)" be the corresponding element to 7
under the isomorphism ¢ in Lemma 3.3. Then we have
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TUS*T), [M])> = %‘ZAZEZ/NZ,

where [ EZ" is a lift of | and A is the linking matrix of the framed link.
Proof of Proposition 9.1. By Lemmas 3.3, 9.2, and 9.3, we have
Dy(M; V)= qK'TAT

Ieker L

with L,: (ZINZ) —(Z|NZ)", I+ Al.
For N odd, we have

ZN”/K(M s §5)Z (M5 g~ VIK)

( |-» ¢ hal, q-NzK"l 11,4l
| T | ez | NEE-1z> 1,eCZ [ EZ"

— (2 —ﬂ'll", —"2 2 qK’IIAI’+2N‘11A12 (llzll,—f—NK-llz)

II‘I

— (_l_I‘_I)—a-,FI -n 2 qK thAh 2 quf(K13+12)Ah (lf=h+Nl3)
R 4 —-n \T? KthAh
IP' TN he ‘é"‘aq ’

where T'=Gy2/x(¢5)Gx(g~"*¥). Similar calculations show I'=N. Hence we

obtain the required formula.
For N even the required formula is obtained in a similar way. ll

References

[1] S. Akubult and R. Kirby: Branched covers of surfaces in 4-manifolds, Math. Ann.
252 (1980), 111-131.

[21 E.H. Brown: Generalizations of the Kervaire invariant, Ann. of Math. 95 (1972),
368-383.

[3]1 G. Burde and H. Zieschang: ‘“Knots,” De Gruyter studies in mathematics; 5,
Walter de Gruyter, Berlin:New York, 1985.

[4] E. Date, M. Jimbo, K. Miki, and T. Miwa: Braid group representations arising
from the generalized chiral Potts modlels, Preprint, RIMS, Kyoto Univ., 1990.

[5] R. Dijkgraaf and E. Witten: Topological gauge theories and group cohomology,
Commun. Math. Phys. 129 (1990), 393—429.

[6] V.G. Drinfel’d: Quantum groups, in ‘“Proceedings of the International Congress
of Mathematicians, 1986,” Amer. Math. Soc., 1987, 798-820.

[71 A.H. Durfee: Bilinear and quadratic forms on torsion modules, Adv. in Math.
25 (1977), 133-164.

[8] T. Gocho: The topological invariant of three-manifolds based on the U(1) gauge
theory, Preprint, Univ. of Tokyo, 1990.



(9

(10]

(11]

[12]

[13]
[14]

[15]
[16]

(17]
(18]

(191

[20].

[21]
[22]
(23]
[24]
[25]
[26]
[27]

[28]

[29]

[30]

INVARIANTS OF THREE-MANIFOLDS 571

D.M. Goldschmidt and V.F.R. Jones: Metaplectic link invariants, Geometriae
Dedicata 31 (1989), 165-191.
L. Guillou and A. Marin: Une Extension d’un théoréme de Rohlin sur la signature,
in “A la Recherche de la Topologie Perdue,” Progress in Mathematics, vol. 62,
ed. L. Guillou and A. Marin, Birkhiuser Boston, Inc., 1986, 97-118.
J. Hemple: ‘‘3-Manifolds,” Annals of Mathematics Studies 86, Princeton Univ.
Press, Princeton, 1976.
F. Hirzebruch: W.D. Neumann, and S.S. Koh, ‘Differentiable Manifolds and
Quadratic Forms,”” Lecture Notes in Pure and Applied Mathematics, Marcel Dek-
ker, Inc., New York, 1971.
V.F.R. Jones: On knot invariants related to some statistical mechanical models,
Pacific J. Math. 137 (1989), 311-334.
A. Kawauchi and S. Kojima: Algebraic classification of linking pairings on 3-
manifolds, Math. Ann. 253 (1980), 29-42.
R. Kirby: A calculus for framed links in S3, Invent. Math. 45 (1978), 35-56.
R. Kirby and P. Melvin: The 3-manifold invariants of Witten and Reshetikhin-
Turaev for si(2,C), Invent. Math. 105 (1991), 473-545.
M. Kneser and P. Puppe: Quadratische Formen und Verschlingungsinvarianten
von Knoten, Math. Z. 58 (1953), 376-384.
K.H. Ko and L. Smolinsky: A combinatorial matrix in 3-manifold theory, Pacific
J. Math. 149 (1991), 319-336.
T. Kobayashi, H. Murakami, and J. Murakami: Cyclotomic invariants for links,
Proc. Japan Acad. Ser. A 64 (1988), 235-238.
T. Kohno: Topological invariants for 3-manifolds using representations of map-
ping class groups I, Topology (to appear).
————:  Invariants of 3-manifolds based on conformal field theory and Heegaard
splitting, in ‘““Quantum groups, Leningrad,” Springer Lecture Notes (to appear).
R.H. Kyle: Branched covering spaces and the quadratic forms of links, Ann. of
Math. 59 (1954), 539-548.
S. Lang: ‘“Algebraic Number Theory,” Addison-Wesley Publishing Company,
Inc., 1970.
W.B.R. Lickorish: A representation of orientable combinatorial 3-manifolds,
Ann. of Math. 76 (1962), 531-540.
—————:  Invariants for 3-manifolds from the combinatorics of the Jones polyno-
mial, Pacific J. Math. 149 (1991), 337-347.

Three-manifolds and the Temperley-Lieb algebra, Math. Ann. 290
(1991), 657-670.
——————:  Calculations with the Temperley-Lieb algebra, Preprint, Univ. of Camb-
ridge.
Y. Matsumoto: An elementary proof of Rochlin’s signature theorem and its exten-
sion by Guillou and Marin, in “A la Recherche de la Topologie Perdue,” Progress
in Mathematics, vol. 62, ed. L. Guillou and A. Marin, Birkhiuser Boston, Inc.,
1986, 119-139.
K. Murasugi: On a certain numerical invariant of link types, Trans. Amer. Math.
Soc. 117 (1965), 387—422.
G. Moore and N. Seiberg: Classical and quantum conformal field theory, Com-
mun. Math. Phys. 123 (1989), 177-254.



572
[31]
[32]

[33]
(34]

[35]
[36]
[37]

(38]

H. Murakami, T. OHTSUKI AND M. OKADA

N. Reshetikhin and V.G. Turaev: Invariants of 3-manifolds via link polynomials
and quantum groups, Invent. Math. 103 (1991), 547-597.

D. Rolfsen: “Konts and Links,” Math. Lecture Series 7, Publish or Perish, Inc.,
Berkeley, 1976.

J.-P. Serre: ‘“‘Cours d’Arithmétique,” Presses Univ. de France, Paris, 1970.
H.F. Trotter: Homology of group systems with applications to knot theory, Ann.
of Math. 76 (1962), 464—498.

V.G. Turaev: Cohomology rings, linking forms and invariants of spin structures
of three-dimensional manifolds, Math. USSR Sbornik 48 (1984), 65-79.

C.T.C. Wall: Quadratic forms on finite groups, and related topics, Topology 2
(1964), 281-298.

A.D. Wallace: Modifications and cobounding manifolds, Canad. J. Math. 12 (1960),
503-528.

E. Witten: Quantum field theory and the Jones polynomial, Commun. Math.
Phys. 121 (1989), 351-399.

Hitoshi Murakami

Department of Mathematics
Osaka City University
Sumiyoshi-ku, Osaka 558, Japan

Tomotada Ohtsuki

Department of Mathematical Sciences
University of Tokyo

Bunkyo-ku, Tokyo 113, Japan

Masae Okada

Department of Mathematics
Osaka University

Toyonaka, Osaka 560, Japan

Current address
Department of Mathematics
Waseda University

Okubo, Shnjuku-ku

Tokyo 169-50, Japan





