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1. Introduction

The purpose of this paper is to study some summations over non-ssomor-
phic abelian p-gτoups. In particular, for a finite group (or a group which has
finitely many solutions of the equation xp*=l for each n>l) G, we study two
Dirichlet series as follows:

where the summation is taken over a complete set of representatives of isomor-
phism classes of finite abelian /^-groups and

h(A,G) := |Honψ4,

(The above series SGP(Z) and HAP(Z) are called the zeta functions of Sylow and
Frobenius type in the paper [Yo91] because they appeared in the study of Sy-
low's third theorem and Frobenius' theorem on the number of solutions of the
equation xn=l on a finite group.)

The main theorem states a relation between them:

Theorem 3.1.

In particular , the left hand side is independent of G.

The proof of this theorem is based on the LDU-decomposition of the
Horn-set matrix of the category of finite abelian ̂ -groups and on the generating
functions related to the Horn-set matrix. See [Yo 87], [Yo 91].
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As a corollary, we get P. Hall's strange formula ([Ha 38]):

Corollary 4.4.

A \A\~ A |

where the summation is taken over all non-isomorphic abelίan p-groups.

In his paper [Ha 38], P. Hall proved this formula as follows: Since the

number of isomorphism classes of abelian groups of order p* equals the partition

number p(n),

i i r c i
? \A\ %> p" Mm'

Here for 0<n<°°, we define

Thus an identity of Euler ([An 76,] Corollary 2.2) gives

'̂ _L -^ (i/ί)"
ΐ \A\ ί

Let A be an abelian group of order pn and of type

that is, A is the direct product of λi cyclic groups of order p, λ2 cylic groups

of order/)2, and so on. Let

μ, := λ

so that

Then the order of the automorphism group of A is given by

Thus in order to prove Corollary 4.4, it will suffice to show that

« μ 2+μ 1+...
X —. 2J _ X 1 2 _ /2)

fn(x) Wi = » fa_^(X)fa_μ^n(X) '

where the summation is taken over all (μ)=(μι, μ29 •••) such that μι>μ2>

>0 and μ1+μ2

Jί ---- =n.
P. Hall proved (2) by a combinatorial method in his paper ([Ha^38]). His
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formula (3) implies another strange formula:

Corollary 4.3. For any w>0,

1'

the summations are taken over all non-isomorphic abelian p-groups of order
ρn

} resp. of rank n.

In fact, the RHS of (3) equals the n-th term of the RHS of (1).
As a more general corollary of the main theorem, we have the following

identity, which is not found in P. HalΓs papers [Ha 38], [Ha 40]:

Corollary 4.2. Let C be an abelian group of order p". Then

yv \Έpi(C,A)\ = „, J_ ,4,
W&- I Aut -4 I

where Epi(CVi) denotes the set of epimorphic homomorphisms from C to A.

We can develop a similar theory for the summations on any category of
groups which is closed under subgroups and homomorphic images. Further-

more, in the case of elementary abelian ̂ -groups, it is related with a topological

property of />-subgroup complex of a finite group G. See [Yo 91].

I would like to thank the referee of this paper for reading carefully it and
pointing out many errors.

2. The Horn-set matrix

In this section, we study the relation between the number of homomor-
phisms from abelian jp-groups into a finite group G and the number of abelian
^-subgroups in G. The categroy of finite groups has the unique epi-mono-
factorization property, and so we can apply the method of [Yo 87] to this cate-

gory
Let A,B,G be finite groups, and define

h(A,G) := \Hom(A,G)\,

,
0 otherwise.

where Aut A denotes the automorphism group of A. Then q(A,B) |Aut-B|
(resp. I Aut A\ s(A,B)) equals the number of epimorphic (resp. monomor-
phic) homomorphisms from A to B. We view these families of integers
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(h(A, G)), (s(A, G)), (q(Ay G)), (d(A, B)) as matrices H, A, Q, Z), respectively,
indexed by isomorphism classes of finite groups.

Lemma 2.1. H=QDS as matrices, that is,

|Hom(Λ G)| = Σ' ${A'<A\AIA'^0} | Aut C \ s(C, G) , (1)
c

where Σ' denotes the summation over a set of complete representatives of isomor-
phism classes of finite groups.

Proof. Since each homomorphism from A to G induces a unique epimor-

phism from A onto its image in G, we have that

\Hom(A,G)\ =

where Epi(/l, H) denotes the set of epimorphisms from A to H. By the ho-
momorphism theorem,

, H) I = £ {B<A I A/B^H} | Aut H \ = q(A, H) d(H, H) ,

and hence

|Hom(A G)| = Σ' %{A'<A\AIA'^C} | Aut C | ί(C, G) ,
c

as required. Π

REMARK. Arranging the isomorphism classes of finite groups in order of the
orders, £)(resρ. S) makes a lower (resp. upper) uni-triangular matrix. Thus
this lemma give an LDU-decomposition of the horn-set matrix H. Similar
decomposition holds for any locally finite category with unique epi-mono facto-
rization property. See [Yo 87].

Let p be a prime. We are mainly interested in abelian-groups. First of
all, we introduce the Mό'bius function of abelain ^-groups:

μ(* := / n τ(0 else.

Then the following lemma is well-known:

Lemma 2.2. For an abelίan p-group A,

f l ifA=\

X^A 10 else.

For the proof, refer to P. Hall [Ha 36] (2.7), [St 86] Example 3.10.2, [Me 79],
p. 97. Note that it suffices to prove it only for an elementary abelian group
A. We can now prove the inversion formula.
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Proposition 2.3. Let Abe a p-group and G a finite group. Then

Proof. By lemma 2.1 we have that

RHS = S. * A/B C) ' Aut c ' !(C

where Σ' denotes the summation over a complete set of representatives of all
finite abelian />-gropus. Thus it will suffice to show that

But this is proved as follows:

LHS = Σ μ(B) ${DIB<A/B\A/D^C}

= Σ xF^A \B<,D

I 1 it Λ«C
~ I 0 else

by Lemma 2.2, as required. Hence the proposition was proved. Π

3. Zeta functions of Sylow and Frobenius type

Throughout this section, G denotes a finite group, and A,B, C denote
abelian ^-groups. Furthermore, Σ' means a summation over a complete set
of isomorphism classes of abelian ^-groups. As before, let s(A, G) be the num-
ber of subgroups of G isomorphic to A, and let h(A, G) be the number of homo-
morphisms from A to G.

For any abelian ^-groups A, B, C, we define the Hall polynomial gβ,c by

See [Me 79] for the general theory of Hall polynomials.
We now define the zeta functions of Sylow and Frobenius types as follows:

(1)
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where, of course, A runs over a complete set of representatives of isomorphism
classes of abelian ̂ -groups. Clearly,

The following theorem is the main theorem of this paper :

Theorem 3.1. For any finite group G,

fj^-Sd-r-V' (Re*>-l). (3)

In particular, the left hand side is independent of the finite group G.

To prove this theorem, we need the following lemma due to P. Hall [Ha
40] (10). The proof given here is different from the one by P. Hall. See Corol-

lary 4.5.

Lemma 3.2. (P.Hall). For any finite abelian p-group B, C}

y^ / 1 pA __ _ 1 _ iλ \

A |Aut^Γ5 'C |AutJB| |AutCΓ ^ '

where A runs over non-isomorphic abelian p-groups.

Proof. Define a set

eλ(C, B) := {(f,g)\ 1 -> B ί A 1 C -> 1}

and a map

π : eA(C,B)

• (f,g)

Clearly, π is surjective, and if π(f,g)=π(f',g'), then there exist unique
AutjB and peAutC such that f'—fr,g'=pg. Thus the cardinality of each
fiber equals | Aut B | | Aut C | , and so

A _ \eA(c,B}\ (5}
* ' |AutB| |AutC| " V ;

Next we let Aut A act on 6A(C, B) by

for cr^Aut^l, (/,^)^<?^(C, 5). There exists a bijective correspondence be-
tween the stabilizer of (/,#) and the group homomorphisms :

(Aut A)(ftg) <-> Horn (C, B) ,



ABELIAN p- GROUPS 427

by cr<-»97, where a f(η(g(ά))}=σ(ά), and so the cardinality of each Aut yl-orbit
equals

Thus

On the other hand, by the definition of the equivalence of module-extensions,
we have that

t'ίC, B) I = ΣΊ εA(C9 £)/Aut A \ (7)

By (5), (6), (7), we have that

c =

A \Axit A\ |AutjB| |AutC| |Hom(C,JB)Γ

It remains to prove that

I Ext^C, B) I - I Hom(C, B) \ . (8)

Since there exists an exact sequence 1-»F->F-»O->1, where F is a finitely
generated free abelian group, the long exact seqeunce gives an exact sequence

0 -> Hom(C, B) -* Hom(F, B) -> Hom(F, B)

-> Ext^C, B) -> Ext1^, B) = 0 ,

which implies that | Ext^C, B)\ = \ Hom(C, B) \ . This proves the lemma. Π

Lemma 3.3. Let μ(B) denote the Mobius function of finite abelian p-
groups. Then

l, (9)

where B runs over non-ssomorphk abelian p-groups.

Proof. Since

_/(-!)>(")
0 if B is not elementary abelian,

we have

LHS -
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Thus the required identity follows from the ^-binomial theorem ([An 76],
Theorem 2.1):

m*) lxl<p

D

Proof of Theorem 3.1. The inversion formula Proposition 2.3 gives

Thus

'*.o |Aut-4|

, A

By Lemma 3.2, we have

- ' iAu.aHAu.ci

By lemma 3.3, we conclude that

This proves the theorem.

4. Corollaries

Theorem 3.1 implies some identities as a special cases.

Corollary 4.1. Lέtf ^&p(β} denote the set of abelian p-subgroups of a finite
group G. Then

\A\ '

where the summation is over non-isomorphίc abelian p-groups.
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Proof. Put * = 0 in Theorem 3.1. Π

Corollary 4.2. Let C be an abelίan group of order p". Then for any m>Q,

W=Pm I Aut A \ rkU)=m-» \A\*

where Epi(C, A) denotes the set of epίmorphic homomorphisms from C to A.

Proof. By Lemma 2.1, we have

The following formula is well-known ([An 76]), (2.1.1)):

Π / Λ . —«M\ 1 V 1
I I Y"Π "* I — > *I JL Λ/p I χ.j

m=l k=0 n=0

_^,, 1

where p(k,ri) denotes the number of partitions of k into n parts and, of course,
it is equal to the number of non-siomorphic abelian p-groups of order pk and
of rank n. Thus Theorem 3.1 yields that

= Σ' s(C, G) \ C I,
a * \Λ\

Thus comparing (2) and (4), an easy induction argument yields that

V I Epί(^4, C) I [ Λ\-z __ ^' 1 fl-z-rkU) I p I -z

' ' ~ ~ P '

We now assume that | C | =pn. Then the right hand side of (5) is

RHS — V _J__Λ-* ('
^ \A\P

1
= Σ Σ'

=w-» \A |

Hence

Σ/ |Epi(AC)| _ Σ,
\A\=ρm | Aut A | rkco=»-
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as required. D

As a special case of this corollary, we have the following identites (refer to

[Ha 40], (7)).

Corollary 4.3. For any n>Q,

V 1 — y

where the summations are taken over all non-isomorphic abelian p-groups of order
p", resp. of rank n.

Corollary 4.3 implies P. HalΓs strange tormula ([Ha 38]):

Corolla^ 4.4 (P.Hall,: Σ'^-Σ'^.

The final corollary is the fundamental theorem of finite abelian groups.

Corollary 4.5. Any finite abelian p-group is a direct product of soem cyclic

groups.

Proof. The formula which P. Hall proved in his paper [Ha 38] is

A : known | Aut A \ »=l A : known | A \

where A runs over all non-isomorphic abelian ̂ -groups which are direct produ-
cts of some cyclic groups. On the other hand, the formula proved in this section
is just

"y1' = x1' i /"7\
A:all |Aut^4| A : known \A\ '

where in the first summation, A runs over all non-isomorphic abelain ̂ -groups.
Comparing the above two formulae, we conclude that all abelian p-groups are
known. Π

REMARK. In the proof of (7), we used only the property that a finite abe-
lian group A has a free resolution of the type

1 -̂  F -> F -> A -> 1 .

See (8) in the proof of Lemma 3.2.
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