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1. Introduction

In this paper we consider the problem whether pseudodifferential opera-
tors associated with real Weyl symbols are essentially self-adjoint on L\Rn).
There is a great deal of work concerning this problem, especially for Schrό" dinger
operators. (Seen Kato [14], [16, V, 5], [17], [18], Simon [23], Nagase-Umeda
[20], T. Ichinose [8], and ϊwatsuka [13] and the papers cited therein for exam-
ple.) Most of them treated elliptic symbols having positive potentials with
little regularity. Here we limit our consideration to smooth symbols only, but
we do not assume the ellipticity of symbols or the positivity of potentials. Our
aim is to give a simple sufficient condition on the growth of potentials for the
essential self-adjointness. Besides, we give a counter example which shows
the sharpness of our condition.

As an application of the above result, we obtain the L2(Rn) well-posedness
of the Cauchy problem for evolution equations whose evolution operators are
time-dependent pseudodifferential operators associated with pure imaginary
valued symbols, which include dispersive partial differential equations. Here
and in the following non-Kowalevskian non-parabolic partial differential equa-
tions of evolution are called dispersive.

By a similar argument, we can show that the above Cauchy problem is well-
posed on a family of weighted Sobolev spaces introduced by Beals [1] as well.
Petrovskii [22] investigated the well-posedness of these equations with coef-
ficients depending only on the time variable. Volevich [28] and Gindikin [5]
generalized the above result to the equations with small potentials. W. Ichinose
[9], [10] and Takeuchi [24], [25] studied the H°°(Rn) well-posedness of these
equations with evolution operators associated with not necessarily formally
skew self-adjoint elliptic symbols, and obtained some necessary conditions and
sufficient conditions on the growth of the self-adjoint part of the symbols along
the classical orbits. They also investigated the L2(Rn) well-posedness and the
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H\Rn) well-posedness of these equations in [11] and [26]. So far the author
knows no sufficient conditions for the L\Rn) well-posedness or H°°(Rn) well-
posedness of evolution equations with evolution operators having unbounded
self-adjoint part with non-elliptic symbols.

Concrete examples of our theory contain Schrϋdinger equations with bound-
ed magnetic fields and first order electric fields as well as non-elliptic partial
differential equations. The results of this paper will be applied in the forthcom-
ing paper [29] to the uniform regularizing effect of linear dispersive partial dif-
ferential equations.

We introduce some notions in order to state our main theorem. Let JM be

the set of C°° functions <p(r) defined on [1, oo[ satisfying <p(r)>Oy ^(1)=1 and

\φ(k)(r)\ <Ckr~k φ(r) with some constant Ck for every k^N, where JV denotes

the set of nonnegative integers. Further, let JM+ denote the set of monotone-

increasing functions in <3H. In the following we write Φ(r)=\ φ(s)ds-\-l and

Ψ(r)=[r ψ(s) ds+ί ίorφyψ^3ί.

Next we define our symbol classes as follows.

DEFINITION 1.1. For real numbers p, δ, pf, δ' satisfying

(1.1) 0 < δ < p < l ,

and for <p, ψ^t3Hy let Sp8yy(φy ψ) denote the set of C°°-functions A(xy ξ) de-
fined on Rn

x X Rξ such that

{β? a? A{x, ξ)

is bounded for every ay β^N"> where <#>=%/1a| 2+1 for x^Rn. If φ(r)=rp

and ψ(r)=r9, we write Sp8yy(rp, r9)=S$'Jy8'. Functions A(x, ξ) belonging to
Sp,*yt*'(φ> Ψ) a r e °ften called symbols.

REMARK 1.2. The class Sp8yy(φy ψ) above coincides with the class S(my g)
in Hϋrmander [7] and Beals [1] with m(x, ? ) = 9 ? « ? » ^ « ^ » and g(x ^(y, η)=

< D 2 δ <χ>-2?' I y 1 2 + < O ' 2 q <^>2δ/ \v 12

DEFINITION 1.3. Assume A (x, ?)G Sp8yy(φy ψ)y and put tA(ξ,x)=
A(xy ξ). Then, following Hϋrmander [7], we define the pseudodifferential
operators A(X, D) associated with the symbol A(x, ξ)y *A(D, X) associated with
the dual symbol Ά(ξ, x)=A(x, ξ) and AW(X, D) associated with the Weyl symbol
A(x, ξ) by the formulas

A(Xy D)u=\ exp (ix-ξ) A(xy ξ)ύ(ξ) dξ ,

Ά(D, X) u = jJ exp (i(x-y)-ξ) A(yy ξ) u(y) dy dξ ,
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and

AW(X9 D) u = j J exp (i(χ-y).ξ)A(£t2, f) u(y) dy dξ

respectively where dξ=(2π)~n dξ. Here and hereafter we omit the domain of
integration if it is the whole space Rn.

Then our main theorem is the following.

Theorem 1.4. Suppose that py S, p y δ ' satisfy (1.1) and that the functions
φ(r)y y]r(r)^JM+ satisfy

(1.2) φ(ψ(r))<r for r>\ .

Let B(x, ξ) be a real-valued symbol such that dξ.B{xy ξ)^S°p'tlyyy dxjB(x> f )G
Slily y and dxj dξjB(xy ξ)^S°Pιlyy hold for every j=ly —, ny and let A(ξ) [resp.
C(x)] be a real-valued symbol independent of the x-variables [resp. ξ-variables] such
that dξ.A(ξ) belongs to the class SOOtOtO(φy 1) [resp. dx.C(x) belongs to the class
£0,0,0,0(1* Ψ)] for every j — \ , -* yn. Then the pseudodifferential operator A(D)-\-
Bw(Xy D)+C(X) defined on Co(Rn) is essentially self-adjoint in L\Rn)y and each of
the operators A(D)+B(XyD)+C(X) and A(D)+tB(Xy D)+O(X), both defined
on C%(Rn), can be written as the sum of an essentially self-adjoint operater in L\Rn)
and a bounded operator on L\Rn).

EXAMPLE 1.5. If φ(r)=rp and ψ(r)=rq for p, q>0> the condition (1.2) is
equivalent to pq < 1.

An example for p=ί is the symbol Σ/=i(—ξι~a>ι{x))2jrV(x), where at(x)
and V(x) are real-valued smooth functions satisfying 19? #/(#)! ^ C ^ ^ 1 " 1 * 1 and
19? V(x) I < eX*)2-'*1 for every a^Nn. This is the symbol of the Schrϋdinger
operator with bounded magnetic fields and first order electric fields.

An example forp=2 is the symbol ξiJrξl-\-V(x)y where V(x) is a real valu-
ed smooth function satisfying \d*x V(x)\ <CΛ<Λ:>4/3"|α}| for every a<ΞNn. This
example illustrates that the ellipticity is not necessary.

Without any positivity assumption, the condition (1.2) is necessary in
general. In fact, we have the following proposition, which follows from a
result in Dunford-Schwartz [2].

Proposition 1.6. Let b{x)y C{x)^C\R) be real-valued functions such that
for some xOy M^R, the function f(x)=b(x)2—C(x) satisfies f(x)>—M if x>xOy

13) \ [ / W ) \_L / \x) \dx<oo,

and

(1.4) Γ , x ^^dx<°o.
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Then, for B(x, ξ)=2b(x) ξ, the operator D2+BW(X, D)+C(X) defined on CS(R) is
not essentially self-adjoint on L\R).

This proposition asserts that Theorem 1.4 does not hold if <p(r)=r and
ψ(r)=rq for q>\. Condition (1.4) is optimal in view of Ikebe-Kato [12].

We apply the previous result to well-posedness on weighted Sobolev spaces.
For <p(r),y}r(r)^3lj we define weighted Sobolev spaces H[φ,ψ] as the set of
tempered distributions u(x) such that

IMU,Ψ] = \\φ«D» {ψ«X»u(x)}\\L2(Rn)<oo .

This corresponds to the class of H(m, g) of Beals [1] with m and g as in Remark
1.2. (This fact will be verified in Section 2.)

For φ, ψ > £ j + satisfying (1.2) and σEΛ, we put

#[Φ(r) σ , l ] n # [ l , Ψ ( r ) σ ] if σ > 0 ,

SL* = < L\Rn) if σ = 0 ,

H[Φ(ry9l]+H[l,Ψ(r)*] if σ < 0 ,

and equip Mσ with a norm so that it becomes a Hubert space. (Details will
be given in Section 2.)

Next we introduce families of time-dependent symbols.

DEFINITION 1.7. For a positive number T, real numbers p, δ, p', δ' satis-
fying (1.1) and <py ψ^3ί+ satisfying (1.2), let SPf8yy(T; φ, ψ) denote the set
of functions A(t,x,ξ) denned on [— Γ, T]XRn

xXRn

ξ such that A(t, , ) G

SP,8,P',8'(<PJ Ψ) holds for every ίe[—7 1, Γ] and that the function

{9| 9? ,*(*, *, ?)

is continuous with respect to t^[—T, T] uniformly in (x> ξ)^Rn

xχRn

ξ for every
If <p(r)-^ and ψ(r)=r ? , we write SPtδyy(T; r*, rr)=Sp

P:lyy(T).

Then we have the following result on the well-posedness of a class of evolu-
tion equations on the weighted Sobolev spaces.

Theorem 1.8. Let B(t, x, ξ) be a real-valued time-independent symbol such
that 9€yβ(ί, x, ξ)tΞSi;\ys(T), dxjB(ty x} ξ)^S^yy{T) and dxj d^B(t9 x, £)6Ξ
S°P'XPΆT) hold for every j=l,—,n, and let A(t,ξ) [resp. C(t,x)] be a real-
valued time-dependent symbol independent of the x-variables [resp. ξ-variables] such
that dtjA(t, ξ)^SOtOtOtO(T; Ψ> 1) [resp. dxj C{t} X ) E S 0 M 0 ( Γ ; 1, ψ)]for every j=\,
-,n. Further, let Jί(t) stand for either A(t, D)+Bw(t, Xy D)+C(t, X), A{t} D)
+B(t, X, D)+C(t, X) or A{t, D ) + ί 5 ( ^ D, X)+C(t, X). Then, for every uo(x)
ΪΞSC and f{t, x)(EL°°([— T, T], SC), there uniquely exists a solution u(t, x) of the
evolution equation



ESSENTIAL SELF-ADJOINTNESS OF PSEUDODIFFERENTIAL OPERATORS 179

(15) \ψt{t'X) = iJt(t) U{t'X)+f(t'X) f°r {t> X) e [~ T> T] X RU

{ M ( 0 , X) = MO(Λ ) for x^R"

belonging to the class U <po,ψ o<EJH AC([— T, T], H[φ0, ψ0]), and it satisfies the fol-

lowing properties:

u{t,x)<ΞC{[-T,T],M''),

\\u{t, )\\M°

<C {exp (C 111) IWUr+sgn(ί) Γ exp(C | t-r\) ||/(τ, -)\\jr dτ}
JO

for some C > 0 .

Here AC([— T, T], X) denotes the set of X-valued absolutely continuous functions

defined on [— T, T] for a separable Hubert space X.

This partly generalizes Theorem 1 of Ozawa [21] concerning the well-posed-
ness of Schrϋdinger equations with potentials. (Ozawa treated non-smooth po-
tentials as well.)

Suppose that ψ(r)^JM+ is bounded. Then, for every 9(r)EjK+, there
exists a constant C such that (1.2) is satisfied with φ(r) replaced by φ(r)IC In
this case we have well-posedness in more general function spaces. Let ω(r) be a
function in 31+ satisfying φ{ω(r))<r for r > l , and put

Ωτ] if τ > 0 ,

JC = ] H[Φσ, 1] if T = 0 ,

H[Φσ+τ, l]+//[Φ σ,Ω τ] if τ < 0

for every σ,τ^R, where Ω(r) = \ ω(s) ds-\-1. Then we have the following theo-
rem.

Theorem 1.9. Under the same assumptions as in Theorem 1.8, we have

the same conclusions as in Theorem 1.8 with Mσ replaced by Jf0"'1".

This paper is organized as follows. In Section 2 we give several properties
of functions belonging to 31 and recall several properties of pseudodifferential
operators and weighted Sobolev spaces given in Beals [1]. Sections 3 and 4
are devoted to the proof of Theorem 1.4, and Theorems 1.8 and 1.9 respectively.
Finally we give a proof of Proposition 1.6 in the Appendix.

2. Some properties of measure functions and symbols

We start with the study of some properties of functions in <3ί.

Proposition 2.1.
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1) The set 3i [resp. <3ί+] is closed under multiplication and raising to the power

of real numbers, [resp. multiplication and raising to the power of nonnegative

numbers]

2) Every function φ{r) e 3i is slowly varying, that is, there exists a constant

0 0 such that φ(s)<Cφ(r) holds for every s^[r/2> 2r].
3) For φ(r)^3Λ.y we have Φ(r)^<3tt+, and there exists a constnat C > 0 such

thatrφ(r)<CΦ(r).

4) For <p(r) tΞJM+,we have Φ(r) < r<p(r) < C Φ(r).

5) For φ(r), ψ{r)(=3l+, (1.2) is equivalent ot ψ(φ(r))<r for r> 1.

6) For φ(r),ψ(r)^JM+, the fact φ{ψ{r))>rjC for r>\ with some positive con-
stant C is equivalent to ψ(φ(r))>rjCf for r>\ with some positive constant C".

7) For φ(r), ψ(r)^JM+ satisfying the equivalent conditions of 6), there exists

a>\ such that φ(2s)>as/C and ^{2s)>asjCr hold for every s>0.

8) For φ{r),ψ{r)^3ί+ satisfying (1.2), there exist φ(r)yψ(r)^JH+ such that

φ(r)<Cφ(r), ΛJr(r)<Cψ(r) and rlC<φ(ψ(r))<r hold for r>\ with some
positive constant O. Furthermore, if <p(r),ty(r) satisfy the equivalent condi-
tions of 6), then the estimates φ(r)<Cφ(r) and ψ(r)<Cψ(r) hold with some
positive constant C.

Proof. For and flGΛ,we have

drk

k

<Σ -j φ(r) <Cr~k φ{r

and

d"φ{r)'
drk Σ

Σ Π -»>φ(r)} <Cr~" φ{rf ,

which shows φ(r) ψ(r), φ{γ)a^3ί. It is also clear that if φ, ψ^JM+ and α>0,
then φ{r) ψ(r) and φ(r)° are monotone-increasing, and this shows Assertion 1).

Next, integrating the inequality \φ'{p)\lφ{ρ)<Cjp on [r, s], we obtain

I £ φ'{p)lφ{P) dp I <C I j] (lip) dp I, which yields

\\oglφ(s)lφ(r)}\<C\log(slr)\<Clog2 for ίe[r/2,2r].

This implies Assertion 2).
Further, for φ{r)<Ξ<M, we have Φ'(r)=φ(r)>0 and Φ ( l ) = l . On the

other hand, Assertion 2) yields
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rφ(r) = 2φ(r)[ dr<c[ φ(s)ds<CΦ(r).
Jr/2 Jr/2

This implies

r)I /Φ(r)<C\φ^ι\r)\ \rφ(r)<Cr~k.

These estimates prove Assertion 3).
For <p(r)^ JM+, Assertion 4) follows from the inequality

Φ(r)<φ(r) ^ dr+1 = (r-1) φ(r)+φ(l)<rφ(r).

In order to prove Assertion 5), it suffices to deduce ψ(φ(r))<r for r>\
from (1.2). If r > M= sup (ψ(s) s > 1}, the conclusion is trivial from ψ(φ(r)) <
M. On the other hand, if l < r < M , there exists s>l such that r=y]r(s). It
follows from (1.2) and the monotonicity of ψ that ψ(φ(r))=ψ(φ(ψ(s)))<Λ]r(s)
=r.

Similarly, in order to prove Assertion 6), it suffices to deduce ψ{φ{r))>rjCr

for r>\ from φ{ψ(r))>rlC for r>\. First, since r<Cφ(ψ(r))<Cφ(M) holds
for all r > l , we see M=oo. Hence, for every r > l , there exists s>ϊ such that
r=zψ(s). Now from the assumption, together with the monotonicity and As-
sertion 2) for ψ, we conclude φ{φ(r))=φ(φ(ψ(s)))>ψ(slC)>ψ(s)IC'=rlC\

We turn to Assertion 7). It follows from Assertion 2) that <p(2s), ψ(2s)
<AS holds for every s>0 with some positive constant A. Putting a=
exp((log 2)2/log A), we obtain φ(as) <2s and ψ(as) <2s for every s>0. Hence we
conclude φ(2s)>φ(ψ(as))>asIC and ψ(2s)>ψ(φ(as))>asICf.

Finally we shall prove Assertion 8). If lim^oo ψ(r) = °°f put <po(r) =
sup{s; yjr(s)<r} for every r> 1. Then φo(r) is monotone-increasing, and we have
ψ{φjjr))=r and <po(ψ(r))>r. Let X(r) be a C°°-function on [1, °°[ such that

%(r)>0, supp %(r)c[l, 2] and ( X(r) dr=l, and put φ(r)=[ X(s) φo(r/s) ds and

ψ(r)=ψ(r). Then it is easy to see that φ(r)^JM+ and

(2.1) Ψo (£) = j ' X(s) Ψΰ ( - 0 ds^φ(r)< J' %(i) cpo(r) ds = «po(r).

Applying ψ to (2.1), we obtain rβ<ψ(φ(r))<r, which implies sfC<φ(ψ(s))<s
with some constant C in view of Assertion 5).

If ψ(r)<C holds for some C and lim^oo <p(r)=°°, we can proceed in the
same way, by interchanging the role of φ and that of ψ. Finally, if <p(r)> ψ(r) <C C
holds for some C, then φ(r)=ψ(r)—r satisfy all the conditions.

Assume that φ (r) and ψ{r) satisfy the conditions of 6). Then, for every
r>ίy there exists s>l such that r=ψ(s). It follows from Assertion 2) for φ
that
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φ(f) = φ(ψ(s))^s<Cφ(ψ(s))<Cφ(Cf r)<C" φ(r).

In the same way we can prove Y(r)<CyJr(r) with some positive constant C.
The proof is complete.

Next we recall several properties of weighted Sobolev spaces introduced by
Beals [1], and add some remarks. We put τn(x,ξ) = φ(ζjξy)ψ((xy) and
g<s.t) (y, V)=Q>28 <*>"2p/ \y 12+<f>-2P<*>2δ' \v\\ and observe some property of
these functions. We obtain the inequality <(#>— | y—x | <ί<j>><ί<#>+ | y—x | by
identifying x andy with (1, xl9 •••, xn)^Rn+1 and (1,yl9 •••,;)/„) e i ? n + 1 respectively,
and making use of the triangle inequality on Rn+1. It follows from this inequali-
ty that

If I y—x\ <<#)>/2, we also have

Hence, in general, we have

^<Zi2(l+4<x>->'-*' \y-x\V

In fact, this inequality follows from the previous one if | y—x\ <.ζx>β, and from
the inequality <*>-p'-8' \y-x\i><x}2-s''-i'lA if \y-x\ ><»/2.

We can write

&.dy,v) = <Dp+δ<χ>->'-*' \y\2+<ξy-*<χY+*' \v\2,

*Γ...e)(*. 9) = <?>2 P <x>-2*' 13' 1 2 + < ? > - 2 S <*>2P' I ^ 1 2

and A(Λ;, ?)=<?>δ"p <V>δ7"p/ in the notation of [1], and it is easy to see that these
functions fulfill the assumptions (2.5), (2.6), (2.7) and (2.16) of [1]. (See Hϋr-
mander [7].)

Next, let ςp, ψ, <p0, ψ 0 be functions in 3ί, and let A(x, ξ), B(x, ξ) be symbols
in SPt8yt8'(φ,ψ) and SPt8yy(φ0> ψQ) respectively. For every N^N and 0 e
[0, 1],' put

= ^ ~ J{ exp(-iyv) (9? A) (x, ξ+θv) (D»B) (x+y, ξ)fydv ,

(9f m A) (χ+±, ξ+θή (8? Z)f B) ( * + | - , f+5f) dydηdzdζ ,
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and

C$,3,N(X> ζ)

= | α g t~f- \\ exp(-iy-v) (Dζ A) (x, ξ+θv) (3?B) (x+y, ξ) dydv .

Then, from the above facts and Theorems 2.7 and 2.7' of [1], we have

Proposition 2.2.
1) For every j = l , 2, 3, every N^N and every 0e[O, 1], the mapping (A(x, ξ),

B(x9ξ))\-*CBjtN(x3ξ) is continuous from Sp8yy(φίΛ]r)xSPt8yy(φ0yψ0) to
Sp,8yA<Z>m~r) ΦΦ** <x>N(p'-p/) ψψ o), and the family {CθtjtN(x] ξ) θ e [0, 1]}
is bounded in the class Sp8yy(^ξyN(δ"p) φφ0, (x)N(8'~p/)Λjrψ0).

2) For θ=0, the following equalities hold:

Co.i.k(*> f) = ^j (9? DJY Ai*> Ώ β(y> 7) I w t >

CoA*(*, f) = -π (d*Dy-d*D*)k A(x, ξ) B(y, v) I w _ e ,

and

CoA*(*. f) = j { ( - 3 , £>,)* ̂ ( * , ξ) B(y, v) I ^.,-«

3) î or every positive integer N, we have the following equalities as operators:

A(X,D)B(X,D)

= β Σ ^ C Ό . ! , ^ , D)+ΛΓ j ^ (1-β)*" 1 Cβil>JV(Z, D) dθ ,

AW(X, D) Ba(X, D)

= Σ (Co 2>*Γ(X, D)+N [ (1-Θ)"-\C, 2 NY(X, D) dθ ,

and

>A(D, X) *B{D, X)

= Σ 'Coχk(D,X)+N\\l-θ)N-1'Ceί3:N(D>X)dθ,

For m(x,ξ)=φ(ζξy)ψ(<\xy). Beals [1] introduced the space H(m,g) as

the set

{utΞS\Rn)\Aw{X,D)uSΞL2{Rn) for all a(x,ξ)^S(myg)}

with natural locally convex topology by way of the symbol class S(m,g)=
SPt8y)8'(φ>Λ]r). However, for every φ,ψ^JMy the functions 9>«?»± 1 and
Ψi^y)^ belong to the class S^o^φ^j 1) and S1Λi,o(l> ψ^) respectively. Hence,
applying Theorem 3.1 of Beals [1] to the operator ψ « X » and to <p«Z)» succes-
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sively, we see that ?>«D» ψ«Xy) is an isomorphism from H(m, g) to L\Rn) for
m(x, ξ) as above. Therefore H(m,g) is isomorphic to H[φ, ψ] as locally convex
spaces.

From this fact and Theorem 3.1 of [1] we see the following

Proposition 2.3. For every φ, ψ, φ0, y]rQ^3l, the following properties hold:
1) For A(x, ξ) e SPt8yy(φ, ψ), the operator T denoting either A(X, D), AW(X, D)

or *A{D, X) is a bounded operator from H[<pφQ, ψψo] to H[φ0, ψ0].
2) In addition to the assumption of \)y assume further that T is a topological iso-

morphism. Then there exist B1(x,ξ),B2(x,ξ),B3(x,ξ)^SPt8ytB'(ll<pyllΛ}r)
such that T-^B^X, D)=B2

W(X, D)=tBz(D) X).
3) S is dense in H[φ, ψ],
4) H[ll<p, 1/ψ ] can be regarded as the dual space of H[φ, ψ] by way of the stand-

ard pairing.
5) [H[φ> ψ], H[φ0, ψo]]θ=H[φι"θ <po\ ψ1"9 ψo

θ], where [ , ]β denotes the complex
interpolation space.

We proceed to the study of function spaces H[φ0 φ, ψ0] Γ\H[φ0) ψoψ] and
H[<Pol<p, ψo]+H[φo, ψolψ], where <p0, ψo^3l and φ, ty^JM+\ in particular, the
spaces Mσ and JCr>τ. The following lemma equips these spaces with the Hubert
space structure, which we shall use throughout this paeer.

Lemma 2.4. Let E and F be Hilbert spaces continuously imbedded in a

common Hausdorjf topological vector space. We introduce norms \\ \\E(]F on EΓ\F

and | H I * + F on E+F defined by |MI!nF = IMIΪ+IMlS> and | | ι ι | | ϊ + ,=inf {\\ux | | | +
\\U2\\F] u^E, u2^F)u=u1

J[-u2} respectively. Then these norms make EOF arid
E-\-F Hilbert spaces, and induce them topologies which coincide with their natural
locally convex topologies.

Proof. We shall only show the equalities

(2.2)

and

(2.3)

since other facts are well-known. (See Lions-Peetre [19].)
(2.2) can be shown by direct calculation from the similar equalities for

INI* and INI,.
Hence we shall show (2.3). For every ε>0, we can choose u^υ^E and

u^υ^F such that I N l H - | k | | | < | | ω | | | ^ + £ and
Then, since u^v^E, u2±.v2^E and u±_v—{uι±.v^)-\-(u2±iV2), we have
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Letting €->0 in this inequality, we conclude

(2.4) \\u+v\\l+F+\\u-v\\UF^2i\\u\\2
E+F+\\v\\2

E+F}.

Replacing u and v by u-\-v and u—v respectively in (2.4), we obtain the converse
inequality. This inequality and (2.4) yield (2.3).

The following lemma provides a topological isomorphism between these
spaces.

Lemma 2.5. Let E, F and X be Hilbert spaces such that E and F are den-
sely imbedded in X, and let S [resp. T] be a closed operator in X with domain
E [resp, F] which is a topological isomorphism from E [resp. F] to X. Suppose
that the spaces EΓ\F' and E'+F' are topologίzed as in Lemma 2.4, and that EOF
is dense in E and also in F. Suppose further that the inequalities

(2.5) \\(S+T) ull

and

(2.6) ft((S+T)u,u)x>-C3\\u\\l

hold with some Cly C2, C 3>0 for all u belonging to a dense subset K of EOF.
Then the operator U from EΠF to X defined by Uu=Su+Tu satisfies the fol-
lowing:
1) U is closed inX.
2) The space E'+F' is topologically isomorphic to (EOF)', and there exists a

positive constant Mo such that, for every M>M0, the operator U+M and its
dual \U-\-M) are topological isomorphisms from EΠF to X, and from X' to
E'+F' respectively, satisfying the inequalities

C-1\\(U+M)u\\x<\\u\\EnF^C\\(U+M)u\\Xy

and

with some positive constant C.

Proof. First we shall show Assertion 1). Let {uj} be a sequence in E Γ\F
such that Uj->u and Uuj-^v hold in X, and take a sequence {Wj} in K such that
\\UJ~~WJ\\E<\F~*Q holds asy->°o. Then, since U is a bounded operator from
EOF to X, we have Uwj=Uuj+U(wj—uj)->v in X asy->oo. Hence, substi-
tuting Wj—wk into u in (2.5), we have
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This implies that {wj} is a Cauchy sequence both in E and in F, and hence so
is {uj}. It follows that u^EΠF and Uu=v> and this completes the proof of
Assertion 1).

We turn to the proof of 2). Since E'~\-F' can be canonically identified with
(E Π F)', (See Yoshikawa [30, Proposition 1.6]) and since the first inequality yields
the second one with E'-\-Ff replaced by (EΠF)\ it suffices to prove the first in-
equality. From the above argument we also have

(2.7) \\Uu\\2

x+C,\\u\\l>C1(\\Su\\2

x+\\Tu\\2

x)>CC1\\u\\2

εnF

and

(2.8) $i(Uuyu)x>-C3\\u\\2

x

for every u^EΠF with some constant C. Now put M0=C3+\/C2+Cl'
Then, for M>MQ) (2.8) implies

\\(U+M)u\\x=\\Uu\\x+2Mm(Uuyu)x+M2\\u\\2

x

>\\Uu\\2

x+(M2~2MC3) \\u\\x>\\Uu\\2

x+C2 \\u\\2

x .

This inequality and (2.7) yield \\(U+M)u\\x>CC1\\u\\EnF. On the other
hand, it is easy to see that U is a bounded operator from E Π F to X, and satis-
fies the inequality

\\(U+M)u\\x^\\Su\\x+\\Tu\\x+\\Mu\\x

<C \\u\\E+C \\u\\p+M \\u\\x<(2C+M) \\u\\EnF

for every M>M0 with some constant C. This completes the proof.

Corollary 2.6. Suppose <p0, Λlro^<3ί and φ, φ^JM+} and put E =

H[<Po<P,Yo], F=H[φo,ψoψ], X=H[φo,φo], Y=H[φol<p}ψo] and Z=
H[φ0) ψo/ψ]. Then there exists a positive number Mo such that, for every M>M0,
the operator <p((Dy)-\-ψ(ζXy)J

rM is an isomorphism from E (~]F to X, and also
from X to Y+Z.

In order to prove this corollary, we introduce the following

Lemma 2.7. Putting Q=φo«D» <ψ 0 « X » , we have

(2.9) nρ(<p«D»+^«x») ρ-1 u\\b(Rn)

>

and

(2.10)

for every u^S with some constant C.
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Admitting this lemma for the moment, we complete the proof of Corollary
2.6. Prpposition 2.3 implies that φ{ζΣ>y) [resp. ψ(ζXy)~\ is a topological isomor-
phism from E [resp. from F] to X. It is also easy to see tahat these operators
are closed in X.

Moreover, since Q is an isomorphism from X to L2(Rn), Lemma 2.7 as-
serts that (2.5) and (2.6) hold for all u(ΞS with S=φ«D» and Γ = ψ « X » .
Hence we can apply Lemma 2.5 to conclude that there exists a positive constant
Mo such that, for every M>M0, the operator £>«.D»+^«-X»+Af is an
isomorphism from E Π F to X, and its dual is an isomorphism from X' to E'-\-F'.

On the other hand, in view of Proposition 2.3, 4), the spaces X\ E' and Fr

can be identified with H\\jφ^ 1/ ψvJ, H\\jφφ0, ίjψo] and H\\jφQ, l/ψψ0] re-
spectively, and we have *S=<p(ζDy) and tT=ψ((Xy) under this identification.
Replacing φ0 and ψ0 by l/<p0 and l/-ψ 0, we conclude that <p((Dy)J

ΓΛ]r((Xy)+M
is an isomorphism from X to Y-\-Z for every M>M0. This completes the
proof.

Proof of Lemma 2.7. Since ρ- 1 =(l/^ 0 ) « X » (l/<p0) (<£>», Proposition
2.2 implies that there exist B(x, ξ)<^SltOtltO«ξ>-1 φ, <Λ?>" 1^), R(X, ξ)t=SΪ't

0

0Λf0

and S(*, £)eS?;S,i.o such that

(2.11)

(2.12) <Λ><?>«Z>»-1 B{X, D) = R(Xy

and

(2.13) ψ(Z) = ρ^«x» ρ

Then, from (2.11) and (2.12), we obtain

(2.14)

+(WQ<P(Φ» Q-1 M|li^
1 u, Qψ«x» ρ-1 M)^. ,

«lli tβ->—2SR(S(JΓ, D)

for some positive number Co.

We wish to estimate the right-hand side of (2.14). First, Proposition 2.1,
2) implies the existence of a positive integer k and a positive unmber Cx such
that ψ(f) < Cx tk and φ(t) < Cx tk. It follows that
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(2.15) IKZ)-1 ψ«X» ullage1,.'* \\(ψ«X»)(k-1)/k

and

(2.16)

Kxy-1" vψ«x» u\y(Rn^ε \wψ«x» BNΛ

for every £>0. On the other hand, (2.13) yields the estimate

lhκ<*» «ll^Λ»)^liρ^«z» ρ-1
 HIIΛ^+C, \Kxy~1

with some constant C2. This inequality and (2.15) imply

Γ4^ f ^
1 — C2C 1 — C2

Choosing 6 so small that Co6/(1 —C 2£)<l/2, we obtain

c 0 ^

with some positive constant C In the same way we obtain

These estimates imply that the right-hand side of (2.14) is dominated by

{i- ||ρψ « z » ρ-1 uUtto

-1 «IIΛ« ) + C IMIΛ

1 « l lh Λ . )+^ \\Qφ«D» ρ-1

 M||

Now (2.9) follows from this estimate and (2.14).
Next we shall prove (2.10). There exists a symbol C(x, ^GSr.J'j.o such

that

This equality and (2.16) with 6=1/0 yield

^ uy u)



ESSENTIAL SELF-ADJOINTNESS OF PSEUDODIFFERENTIAL OPERATORS 189

In the same way we can prove

^(ρ- 1 *>«£>» Qu, u)>-c iMii

Summing up these inequalities, we conclude (2.10).

3. Proof of Theorem 1.4

Since dxj d^.B(xy ξ)^Sp$yt8' holds for every j = l , ••-,«, it follows that the

operators Bw(Xy D)-B(Xy D) and tB{DyX)-B{Xy D) are bounded on L2(Rn).
Moreover, the operator Bw(Xy D) is symmetric on C%(Rn) with respect to the
L2-norm. Hence it suffices to show that the operator S=A(D)+B(Xy D)+C(X)
denned on Co(Rn) is closable in L\Rn)y and that the adjoint in L\Rn) of the
operator T=A(D)+tB(Dy X)+C(X) defined on Co(R") coincides with S, the
closure of S in L\Rn).

First, assume that {Uj} is a sequence of functions in O?(Rn) such that wy->0
and Suj^v hold in L\Rn). Then wy->0 holds in 3)\Rn)y and hence Suj->0
holds in <D\Rn). This implies v=0, and it follows that S is closable in L\Rn).

Next,, for uyv<=Go(Rn), we have (Suy υ)=(uy Tv). Hence, for v^O%(Ru)
and u^Dom(S)y we see easily (Suy v)=(u, Tv) by approximating u by functions
in C o(Rn) This shows T* D S.

It remains only to show T*dS. We introduce a function ζ(x)^C°°(Rn)
such that supp^c{^G/i w ; | t f |< l } and that ζ(x) = ί for x&R" satisfying
1^1^3/5. Further,, let φ(r)^<3i+ be a function satisfying the properties of
Proposition 2.1, 8), and put Zj(x, ξ)=ζ(φ(jy1 x) ζ(j~ι ξ) for j = l, 2, —. Then
we have the following

Proposition 3.1. 7%̂  sequence of operators

{Ztfί, D) (A(D)+B(X, D)+C(X))-

(A(D)+B(X,D)+C(X))Zμί,D); j= 1,2, •••}

defined on L\Rn) is uniformly bounded on L\Rn)f and converges to 0 with respect
to the strong topology of L{L\Rn)).

Admitting this proposition for the moment, we shall prove T*ClS. For
), put Uj(x)=Zj(Xy D) u(x)<=Oo(Rn). Then we have

Since
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and

\ \ύ(ξ)\>dξ - 0

hold asy-^oo, and since ζ(φ(j)"1 X) is bounded on L2(Rn) uniformly in 7, we

see that

(3.1) Uj-u->0 in L\Rn) as j-» 0.

If MEDom(Γ*), we see

(3.2) Zj(X9D)T*u^T*u in L2(ΛΛ) as j — 0

in the same way.

On the other hand, Proposition 3.1 yields Z {X, D) T^ u(x)-Suj(x)-^0

in L\Rn) as j-*o°> which together with (3.2) implies that SUj converges to

71* u in L\Rn) asy-*oo. This fact and (3.1) yield T*cS.

Proof of Proposition 3.1. We follow the method of Friedrichs [3]. First

we have

(3.3) Y.u{x)

= Σ {B%.o{X,D)u+ChΛfi(X,D)u)

l - d ) " - 1 Σ (i i,», )

for every positive integer N, where

Λ-Λ*. f) = ̂ ΐ" ί J expί-fy ,) Z«Zj(x+y, ξ) d«ξ A{ξ+Θv) 3V dy ,

BΐUx, ξ) = ~^ J5 exp(-ίy i7) 3? Zy(*, f+(?,) Di B(X+y, ξ) dv dy,

and

Cj,β^x, ξ) = -^ J j exp(-ίj^) 9| Zy(*.

Then we have

(
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(9f ITx

+r Zfr+y, ξ) drβ~β' Dl-ϊ B(x, ξ+θr,))} dr, dy

for every αφO and L, M<=N. Since 8? B(x, £)eS«$$- 1 + « l < < ' - 1 ) , this yields

'ι % £ . ( X ( y t ξ t η) ^ dy

for every β, γeiV", where XEj(x, y, ξ, η) is the characteristic function of the set

Ej = {(χ,y,ξ,η);Φ{j)β^

Now, given β, γeJV", choose L, M^N satisfying

and

Then, from the facts

and

for (x, y, ξ, τj)^Ej, we obtain the estimate

By virtue of the facts

dtA(ξ)<ΞSofiχo(φ,l),

D«s B(x, &

and
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together with the estimates

{φ{2 <£>), φ(2 <βη»}<Cφ{<g» <7>
c

and

with some C>0, we obtain

and

in the same way. These facts imply

AjΛe and CktΛtB are bounded in
(3 4 )
V ' ' ' y&θ and Bγtl,Θ are bounded in

uniformly in 0^[0,1] a n d / = l , 2, ••• for every a^.Nn satisfying | α | = 1 , and

Γ AjtΛtQ and C i ) Λ > θ -> 0 in SS;g#o.o as j -> oo

in 5p°;δ°,p^ as

uniformly in 0^[O, 1] for every a^N* satisfying | α | >2.
Fix a&iN" satisfying | α | = l , and choose a function φ(x)^CS(Rn) such

that φ(x) = ί holds for x^Rn satisfying l/3< |ΛJ| <4/3 and that suρρφC{Λ:G

Then, from the fact

supp Cy,-i0(*, f), supp B£ltQ(x9 ξ)d {(x, ξ);jβ<\ξ\<j} ,
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we see

(X, D)u = Bγtlt0(X, D) φij-1 D) u ,

C^X9 D)u = C;,Λ>0(X, D) φO'-1 D) u

for every u^L\Rn). It follows from (3.4) and the fact φ{j~ι D) u-*0 in V(Rn)
that

(3.6) Bγtlt0(X,D)uy CjtΛf0(X,D)u->0 in L\Rn) as y - * o o .

In the same way we have

(3.7) AjtΛf0(X, D) ΦiψU)-1 X) uy #ft.o(X, D) φ{Φ{JYι X)u-*0

in L\Rn) as y -> oo .

Finally, let Eje6(xy ξ) and FjtJx, ξ) be symbols such that

(3.8) Eha{X, D) = AJιΛfi(X, D) {1 - f t P O T 1 ^)>

and

(3.9) Fhm{X, D) = B^i.o(X, Z)) { l - φ ^ O T 1 X)} .

Since Φ{φ(JYι x) = 1 if (*, | ) e s u p p ^ y > e > 0 (*, f) U supp J5(/i.o(*, ξ), we have

(3.10) ^ . > , ξ) = -Nφ(j) -» j[ ( 1 - ί r 1 , ^ ^ 5J exp (-,>.,)

(6? 4y > - i 0) (*, f + β , ) (Dϊ φ) (Φ(j)-1 (x+y)) dy dη dθ

and

(3.11) FjtΛ(x, ξ) = -Nφ(j)-» £ ( l ^ β ) ^ Σ ^ ^j J5 exp (-,>.*)

(9? ̂ i i 0 ) (x, f+fl^) (Dϊ φ) (^(y)-1(^+^)) dy dv dθ .

Then, from the fact that the families (AjΛ0(xy ξ) J=li 2, •••} and {Bftit0(xy ξ)\
j=l,2y •••} are bounded in So.'o.o.o a n d ^P.'δ.p'.δ' with δ, δ ' < l respectively, we
conclude that

(3.12) EJ§Λ(X9D)u9FjtΛ(X,D)u-+O in L\Rn) as ; - > o o .

Now the conclusion follows from (3.3)—(3.12).

4. Proof of Theorems 1.8 and 1.9

First we state two propositions.

Proposition 4.1. Let X denote a function space of the form H[φ0, ΨQ], where
<Po{r)> Ψo(r) <Ξ 3i. Suppose that φ(r), ψ(r) G 3ί+ satisfy (1.2), and put S= Φ«Z)»
-\-Ψ((Xy). Next, let M be a positive constant such that S-\-Mgives a topological
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isomorphism from H[Φφ0j ψo]f)H[φo, Ψψ0] to X, and also X to H[φ°/Φ,

= (S+M) Jί(t) {S+M)~l

and

C(t) = (S+M)'1 Jl(t) (S+M)-Jl(t).

Then {$(t)\ ί<^[—T, T]} and {C(t)\ t<=[— T, T]} are uniformly bounded families
of bounded operators on X, and they are continuous with respect to the uniform
topology as operator-valued functions of t. Further, if rlC<φ(Φ(r)) holds, then
{JL{t)(S+M)'ι\ t<^[—T,T]} is also a uniformly bounded family of bounded
operators on X, and it is continuous with respect to the uniform topology as an
operator-valued function of t.

Proof. Putting

= ΣJ [ \\ (dξh Φ«ξ+θη» DXh{B(ty x+y, ξ)+C(t, x+y)}
A = l JO J J

-DXh Ψ«x+y» dh{A(t, ξ+θv)+B(t, xy ξ+θv)}) dy dv dθ

= Pλ(t, χy ξ)+P2(t, x, ξ)+P3(t, x, ξ)+P<(t9 x, ξ),

we have B(t) (S+M)=-{S+M) C(t)=[S+M9 Jl(t)]=P{ty X, D). Hence, in
the same way as in the proof of Proposition 3.1, we can prove that the family
(Pj(t, x,ξ)\ ίG[—J1, T]} is bounded and continuous in the symbol class Sj
for every j=\, 2, 3, 4, where S2=SPtByt8'(T; Φ(r), 1), S2=S3=S0A0,0(T; φ(r),
φ(r)) and -S4=5Piβip'iβ'(Γ; 1, Ψ(r)). Hence, putting E^HlΦφo, ^ 0 ] , E2=E3=
H[<pφo,τhfo], Eι=H[φ0,Φ,fo], F^HiφolΦ^ol F2=F3=H[φ0jφf Λ/ΓO/ΛIΓ], and
Fi=H[φ09y]r0IΨ], we easily see that iPj(t,X9D); ί e [ — Γ , T]} is a uniformly
bounded family of operators bounded from E}. to X and also from X to Fk for
every ; = 1, 2, 3, 4. Further, the set {Jl(t) te [— Γ, T]} is a uniformly bounded
family of operators bounded from E0=E1 Π E4 Γi H[rφQ, rψ0] to X. Moreover, as
operator-valued functions of ty they are continuous with respect to the uniform
topology. Since (S+M)'1 is an isomorphism from X to E1f)E4 and also from
i^+jF4 to X, it suffices to show Eι[\EAc:E2 and f 2 c F 1 + ί ' 4 , and also ExViEA(Z
H[rφo,rΛlro] under the extra assumption rjC<φ(-^r(r)). In view of Proposition
2.3, we may assume φo(r) = i/ro(r) = 1 namely, X=L2(Rn).

Let Z2j(X, D) be the same as in Section 3. For u^E1Π Eiy put

Uj = Z2J(X, D) u ,

l#> = φ(φy) ψ « X » (ζ(φ(2j+1)'1 X)-ζ(φ(2j)'1 X)) ζ(2~j D) U

and
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-1 D)-ζ{2~' D)) u .

Then we have <p«Z)» ^ « Z » («/+1-MJ.)=M(/)+«(

ί

2). Next, put Fj={xeR";
1)^ | * | <<p(2'+1)> and $/£)=%,/(£), and take keN such that 9? <p{ξ) and
ΛO are bounded for every a^N* satisfying | a \ =k. Then we can write

(4.1) «</>= Σ P%D)Q'ί(X)φi(X)u+Rj(X,D)u,

where

β5(*) = *''-'
and

{φ(2i'1)k+1 Rj(xy ξ);j = 1, 2, •••} is bounded in Sf o.i.o.

Since supp Q*(x)(ZFjy we can apply the Plancherel equality to obtain

(4.2) \\P%D)QtX)φj{X)u\\ΛRn)

Qft*L λ \\Φj(χ)ψ«χ»u(x)\y(Rn)

On the other hand, the operators ^(2y"1)*+1 R^X, D) are bounded on L\Rn)
uniformly in^'. Substituting this fact and the estimate (4.2) into (4.1), we con-
clude

<C Σ (^(2y-1)-*"1 \\u\\L*w)+\\Φj(x) ^ « ^ » U(Λ

Since Ψ(^»w(Λ;)GL2(Λn) and since

pi' ^ ' - 5=1 \ c
the right-hand side of this formula converges to 0 as A, /->©o. Hence Σ7-i w;1 }

converges in L\Rn). In the same way we can show that Σ7-i uiP converges in
L\Rn), by using the fact ψ(φ(2j))<2j. We thus conclude that <z>«D» ψ ί < Z » ιιy

converges in L2(Rn), which implies φKPΪ) ^ f < Z » u(ΞL2(Rn). This proves
E Ί Π ^ C ^ , which yields J F 2 cF 1 + J F 4 by duality argument.

Next we assume rlC^φiψir)). Then we have <£)> <X> (uj+1—Uj)=u{p+
uγ\ where

ιX))ζ(2-'D)u
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and
ι X) (r(2"y-1 D)-ζ(2'j D)) u

Putting

and

we can write

«?> = Aj(D) B£X) φj(X) u+O^X, D) u ,

where ί ^ " 1 ) Cj(x, ξ);j=l, 2, —} is bounded in SΪ S.i.o Since supp Qj(ξ)d
Fj and since

we can apply the Plancherel equality to obtain

3y) ι l φ j { x ) ψ(<x>wχw*

Using this fact, we can conclude as before that 27-»' w(/} converges in L\R*).
In the same way we can show that Σ7-i w;4 ) converges in L\Rn), by using the
fact 2J φ(2j)<CΦ(2J) with some positive constant C independent of
These facts imply the convergence of <Z)><Z>wy in L\Rn). Now
i/[r, r] follows from this similarly as before.

Proposition 4.2. Let X denote a function space of the form H[φ0, Λ]ro]} where
qh{r),^rQ{r)^3i. Suppose that φ(r),ψ{r)^.3ί+ such that φ(r)[resp. ψ(r)] is
bounded, and put R=Ψ(X). [resp. R=Φ(D).] Tnen {RJί{t)R-ι-Jl{t)\t^
[— T, T]} and {R~ι JL(t)R—Jl{t)\ t<B[—T, T]} are uniformly bounded families
of bounded operators on X, and {Jl(t)R~ι\ t^[—T, T]} is a uniformly bounded
family of bounded operators from X ΠH[rφQ, ψo/ψ] to X, and also from X to
X^-H[φQlry ΛJr0 yjr], [resp. from XΓ\H[φQjφy rΛJr0] to X, and also from X to X-{-
H[φQφ, Λlrolr]. ] Further, these families are continuous with respect to the uniform
topology as operator-valued functions of t.

Proof. We consider only the case where φ(r) is bounded and R—Ψ(X).
We proceed in the same way as in the proof of Proposition 4.1. Putting

= - Σ Γ (( Dχk Ψ«x+y» 8$*{i4(f, ξ+θv)+B{t, x, ξ+θv)}) dy dη dθ ,
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we have [Ry Jl(t)]=P\ty Xy D). In this case we have E3=H[φQy <
H[φOy Ψτ|r0] and F3=H[φ0: ψolΛl/\dF4=H[φOy φo/Ψ]. Further, R'1 is an iso-
morphism from X to E4 and also from F4 to X. Hence it is easy to see that
i[Ry JL(t)]R-ι\t^[-Ty T]} and {R-'IR, JL(t)]\ *e[-Γ, T]} are uniformly
bounded families of bounded operators on X, Moreover, as operator-valued
functions of ty they are continuous with respect to the uniform topology.

On the other hand, the family {Jί(t)\ t^[—Ty T]} is a uniformly bounded
family of bounded operators from H[rφQy ryjro] f]H[φOy ΛJTQ Ψ] to Xy and also from
-XT to H[φo/ry ψo/r]+H[φOy ψo/Ψ]. Further, as an operator-valued function of
ty it is continuous with respect to the uniform topology. The assertion for
<Jl(t) R~ι is an immediate consequence of this fact and the isomorphism property
oίR'\

Let X denote either SC or JCσ*r. Take φ(r)y ψ(r)^ι3H+ as in Proposition

2.1,8), and p u t Φ ( r ) = l + ( φ(s)dsy Ψ(r)=l + ( ψ(s)dsy and Q=Φ(D)+Ψ(X).

Then, by Corollary 2.6, we see that there exists a positive constant M such that

Q+M is an isomorphism from H[Φ(r)σ Φ(r), 1] nH[Φ(r)σ

y Ψ(r)] to ff[Φ(r)σ, 1]

and also from H[Φ(r)y Ψ(r)°] Γ\H[ίy Ψ(rY Ψ(r)] to H[ly Ψ(r)η if X=Sί\ and

that Q+M is an isomorphism from H[Φ(r)σ+τ Φ(r)y l]ΠH[Φ(rY+τ

yΨ(r)] to

H[Φ(rY+r

y 1] and also from H[Φ(r)σΦ(r), Ω(r)τ] Π H[Φ(rY, Ω(r)r Ψ(r)] to

i/[Φ(r)σ,f2(r)]τ] if X=JCσ>\ Then, by using Lemma 2.4 repeatedly, we can

equip the space Y=(Q+M)~1 X with the Hubert space structure with which

Q+M becomes an isomorphism from Y to X. It follows immediately from

the previous propositions that the family {Jl(t)\ t^[— Ty T]} is a uniformly

bounded family of bounded operators from Y to X, and that {(Q+M) Jl(t)

(Q+M)~ι—Jl(t)\ ί e [ — T , Γ]} is a uniformly bounded family of bounded oper-

ators on X. Further, as operator-valued functions of ty they are continuous with

respect to the uniform topology. Hence, in view of Proposition 6.1 of Kato [15],

Theorems 1.8 and 1.9 will follow from the following

Proposition 4.3. The family {±iJί(t)\ t^[—T, T]} is stable in X; that
is, there exist constants L, N>0 such that, for every k^N, tl} t2, •••, tk^[—T, T]
and \>N, the following estimate holds:

II Π(±^(^)-λ)-ΊL ( z )<L(λ-iV)^.

For the proof of this proposition we use the following two lemmas.

Lemma 4.4.

1) Put 5 = Φ « D » + Ψ « Z » . Then, for every σ,τ^N, there exists a positive
number M such that (S+M)σ is an isomorphism from Jίσ+T to Mτ.
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2) Asssume that ty{r) is bounded, and put Q= Φ « Z > » + Ω « Z » . Then, for every
σGfi and every p3r^N, there exists a positive number M such that (Q-\-M)p

is an isomorphism from JC(Γ'T+P to JC***.

Proof. In order to prove Assertion 1), put Jί(r)= f]%QH[ΦJ\ Ψτ-y] for
every rGiV. Then we can take M>0 so large that the mapping S-\-M gives

an isomorphism from H[&+1, Ψk] ΠH[Φ>, Ψk+ι] to H[Φ\ Ψk] for every j , k<=N
such that j+k<σ+τ. Then (S+M)* is an isomorphism from M{<Γ+r) to M{r\

On the other hand, Proposition 2.3, 5) yields

H[Φ>, v-*] = [H[ί, ψη, H[Φ°, ΐβ^HiΦ*, l] nff [l, Ψ°]

for every j^N such thaty^σ. This implies M{σ)=Mσ for every σGiV, which
completes the proof of Assertion 1).

We can prove Assertion 2) in the same way, by considering the space Πy=0

H[Φσ+i, Ωτ->] in place of ^ ( τ ) .

Lemma 4.5.

1) For every positive integer h and every positive number σ less than h, we have
Mσ=[L\Rn)> M%Ih={L\Rn)} Mh)σJht2i where ( , )#.2 denotes the real interpol-
ation space.

2) Assume that ψ(r) is bounded. Then, for every σ^R, every positive integer h
and every positive number r less than h, we have Jί<ΓfT=[JC<rt0, JCσ'h]τ/h=

Proof. For every AeiV, there exists a positive constant C such that the
family

is uniformly bounded on L\Rn) with respect to the operator norm. Hence we
can apply the main theorem of Grisvard [6] to conclude that

= {L\R"), H[&, l])σ / M Π (L\Rn), H[\, Ψ*

On the other hand, Triebel [27, § 1.8.10, Remark 3] implies

= [L\R"), H[&, 1] Π H[1,

and

(L\Rn), H[Φ\

[L%R"), H[Φ\ 1]U Π [L2(i2")( H[\,
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Finally, Proposition 2.3, 5) yields

[L\R\ H[Φ\ ί]U n [L\R\ H[l, Ψh]]σIh

= H[Φσ, l] n # [ i , ψ σ] = J T .

Now Assertion 1) follows from (4.3)-(4.6). Assertion 2) can be proved exactly
in the same way, by replacing L\Rn) and Sίh by JC*'0 and JCσ'h respectively.

Proof of Proposition 4.3. We begin with the case X=Mσ. First, assume
σGiV. Then Lemma 4.4, 1) assures the existence of positive constants M
and Cl9 •••, Cσ such that

for every j = l , 2, •••, σ, where -S f=Φ«Z)»H-Ψ«X». Making use of these con-
stants and observing Proposition 4.1, we obtain

(4.7) -ί-iιπ(
1 1

Π

= II Π i(S+M)'(±iJl(tj)-\)(S+M)-'}-1\\UL*(Jί.))

Π

Π

for every fteiVand ίlf ί2, •••, tk^[-T, T], where

Σ) = * ΣΣ (S+MY £{t,) (S+M)+i

It follows from Proposition 4.1 and Theorem 1.4 that

< Σ C ; . sup \mt)\\UΛ*)+ sup
i o τ^t<τ Tζt^

= N.

From this fact and (4.6) we conclude

Π (±iJl(tj)-X)-ι\
y=i
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for \>N. This estimate shows the conclusion in the case σ^N. We can
treat the case σ > 0 and σ < 0 by interpolation and duality argument, making
use of Lemma 4.5, 1) and Proposition 2.3, 4) respectively.

We turn to the case X= JCσ>τ. We first consider the case τ = 0 .
First, suppose σ^N. Then, mrking use of R in place of S-\-M and apply-

ing Proposition 4.2 in place of Proposition 4.1, we can prove the well-posedness
by an argument similar to that for Sίr with σ^N. The case σ > 0 and σ < 0
can be handled by way of interpolation and duality argument respectively.

Next we consider the case τ^N. Starting from the well-posedness on JCσ'°
in place of that on L\Rn) and making use of Q+M in place of S+M, we can
treat this case similarly as in the case X=JίT with σ^N, by virtue of Lemma
4.4, 2) in place of Lemma 4.4, 1). We can handle the case τ > 0 by interpolation
argument, using Lemma 4.5, 2) in place of Lemma 4.5, 1). Finally, we obtain
the conclusion for τ < 0 by way of the duality JCr>τ=(JC~(Γ'""τ)'. This completes
the proof of Proposition 4.3.

Appendix. Proof of Proposition 1.6

Defining a unitary transformation U on L\R) mapping Cl(R) onto itself

b(t) dt) u(x) and introducing an operator Jl

with domain u o{K) Dy

Jlu(x) = (U~\D2+BW(X, D)+C(X)) Uu) (x),

we can write

φ ) = -u"(x)+2ib(x) u'(x)+ib'(x) u(x)+b(x)2 u(x)+C(x) u(x)

exp (i(x-y) ξ-i [ b(t) dt) b (*±2.) ξv(y) dy dξ

= -u"(x)+2ib(x) u\x)+ib\x) u(x)+b(xf u(x)+C(x) u(x)

+2Dy{exp {-i j " b(t) dt) b (^ψ) v{y)} \ y=x

= -u"(x)-f(x)u(x),

and the essential self-adjointness of the operator D2+BW(X, D)+C(X) on Co(R)
implies that of Jl. But, in view of (1.3) and (1.4), we can apply Dunford-
Schwartz [2, XIII. 6.22] to conclude that the point + oo is a boundary point of
limit circle type of Jl. It follows that Jl has positive deficiency indices, and
hence Jl cannot be essentially self-adjoint.
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