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1. Introduction

In this paper we consider the problem whether pseudodifferential opera-
tors associated with real Weyl symbols are essentially self-adjoint on L%(R").
There is a great deal of work concerning this problem, especially for Schrodinger
operators. (Seen Kato [14], [16, V, 5], [17], [18], Simon [23], Nagase-Umeda
[20], T. Ichinose [8], and Iwatsuka [13] and the papers cited therein for exam-
ple.) Most of them treated elliptic symbols having positive potentials with
little regularity. Here we limit our consideration to smooth symbols only, but
we do not assume the ellipticity of symbols or the positivity of potentials. Our
aim is to give a simple sufficient condition on the growth of potentials for the
essential self-adjointness. Besides, we give a counter example which shows
the sharpness of our condition.

As an application of the above result, we obtain the L} R") well-posedness
of the Cauchy problem for evolution equations whose evolution operators are
time-dependent pseudodifferential operators associated with pure imaginary
valued symbols, which include dispersive partial differential equations. Here
and in the following non-Kowalevskian non-parabolic partial differential equa-
tions of evolution are called dispersive.

By a similar argument, we can show that the above Cauchy problem is well-
posed on a family of weighted Sobolev spaces introduced by Beals [1] as well.
Petrovskii [22] investigated the well-posedness of these equations with coef-
ficients depending only on the time variable. Volevich [28] and Gindikin [5]
generalized the above result to the equations with small potentials. W. Ichinose
[9], [10] and Takeuchi [24], [25] studied the H>(R") well-posedness of these
equations with evolution operators associated with not necessarily formally
skew self-adjoint elliptic symbols, and obtained some necessary conditions and
sufficient conditions on the growth of the self-adjoint part of the symbols along
the classical orbits. They also investigated the L(R") well-posedness and the
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H'(R") well-posedness of these equations in [11] and [26]. So far the author
knows no sufficient conditions for the L% R") well-posedness or H=(R") well-
posedness of evolution equations with evolution operators having unbounded
self-adjoint part with non-elliptic symbols.

Concrete examples of our theory contain Schrédinger equations with bound-
ed magnetic fields and first order electric fields as well as non-elliptic partial
differential equations. The results of this paper will be applied in the forthcom-
ing paper [29] to the uniform regularizing effect of linear dispersive partial dif-
ferential equations.

We introduce some notions in order to state our main theorem. Let ¥ be
the set of C* functions ¢(r) defined on [1, oo[ satisfying ¢(r)>0, ¢(1)=1 and
|®(r)| <C, r™* @(r) with some constant C, for every k€N, where N denotes
the set of nonnegative integers. Further, let ¥, denote the set of monotone-

increasing functions in . In the following we write @(r):S' @(s) ds+1 and
xp(r)zg' ¥(s) ds+-1 for g, v E H. 1

Ne;t we define our symbol classes as follows.

DrerINITION 1.1, For real numbers p, 8, p’, 8' satisfying
(1.1) 0<8<p<L1,8<1,0<8'<p'<1,8'<1

and for @, Yy E M, let S, 5 o 5/(p, ¥) denote the set of C=-functions A(x, ) de-
fined on R} X R} such that

{07 0% A(x, &)} ¢(<E>)-l <E>al¢|—slﬂl ,\],.(<x>)-1 <x>p’|ﬁ|-s’|,,|

is bounded for every a, BEN", where {x>=+/[x[2+1 for xER". If p(r)=r’
and r(r)=r", we write S, 5 o, 5(r?, 7')=S3:{ o» . Functions A(x, £) belonging to
Sp.5,0,57(®, ) are often called symbols.

ReMARK 1.2. The class S, 5 o7 s(@, ¥r) above coincides with the class S(m, g)
in Hormander [7] and Beals [1] with m(x, £)=@(<E>) ¥/(<x>) and g, & (¥, 7)=
KB Ly | | 24-<E>7H K | 9%

DeriniTION 1.3. Assume A(x, £)ES, 5,5 (®,¥), and put ‘A(E, x)=
A(x, ). Then, following Hormander [7], we define the pseudodifferential
operators A(X, D) associated with the symbol A(x, £),'A(D, X) associated with
the dual symbol *A(E, x)=A(x, £) and A“(X, D) associated with the Weyl symbol
A(x, ) by the formulas

A(X, Dy = | exp (iv-8) A, &) 48) 2 ,

AD, X)u = ([ exp (i(x—3)-8) A3, &) u(y) dy d ,
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and
4%, D)u = [ exp (i(+—)-0) 4(212, £) uy) dy d

respectively where df=(2z)""df. Here and hereafter we omit the domain of
integration if it is the whole space R".

Then our main theorem is the following.

Theorem 1.4. Suppose that p, 8, p’, 8’ satisfy (1.1) and that the functions
(1), (1) E M, satisfy

(1.2) @(p(r)<r for r>1.

Let B(x, ) be a real-valued symbol such that d¢; B(x, £)ES}:; v 5, 0.; B(x, £)E
S3:3,05r and 8, 0¢, B(x, E)ESL:3 o 5 hold for every j=1, -+, n, and let A(E) [resp.
C(x)] be a real-valued symbol independent of the x-variables [resp. E-variables) such
that 3¢, A(E) belongs to the class Sy 00(@, 1) [resp. 0,; C(x) belongs to the class
So.0.00(1, )] for every j=1, -, n. Then the pseudodifferential operator A(D)+
B*(X, D)+ C(X) defined on C5(R") is essentially self-adjoint in L¥(R"), and each of
the operators A(D)+B(X, D)+C(X) and A(D)+'B(X, D)+ C(X), both defined
on C5(R"), can be written as the sum of an essentially self-adjoint operater in LA(R")
and a bounded operator on LA(R").

ExampLE 1.5. If @(r)=7 and r(r)=r* for p, ¢=>0, the condition (1.2) is
equivalent to pg<1.

An example for p=1 is the symbol 33} i(—&;—a,(x))*4V(x), where a,(x)
and V(x) are real-valued smooth functions satisfying |87 a,(x)| <C,{x>!"'*! and
|87 V(x)| <C, x> for every a EN". This is the symbol of the Schrodinger
operator with bounded magnetic fields and first order electric fields.

An example for p=2 is the symbol &}-+£3+ V(x), where V(x) is a real valu-
ed smooth function satisfying |9% V(x)| <C,{x>**"1*! for every a€N". This
example illustrates that the ellipticity is not necessary.

Without any positivity assumption, the condition (1.2) is necessary in
general. In fact, we have the following proposition, which follows from a
result in Dunford-Schwartz [2].

Proposition 1.6. Let b(x), C(x)EC*R) be real-valued functions such that
for some x,, M ER, the function f(x)=>b(x)*—C(x) satisfies f(x)>—M if x>x,,

(1.3) (L0 )+ kT dices,

0 \(f(x)+ M) 4 (f(x)+M)*
and
(1.4) [ dvoo
% (f(x)+M)
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Then, for B(x, £)=2b(x) &, the operator D*+B*(X, D)+ C(X) defined on CF(R) is
not essentially self-adjoint on L*(R).

This proposition asserts that Theorem 1.4 does not hold if @(r)=r and
Jo(r)=r® for ¢g>1. Condition (1.4) is optimal in view of Ikebe-Kato [12].

We apply the previous result to well-posedness on weighted Sobolev spaces.
For @(r), Y(r)E M, we define weighted Sobolev spaces H[gp, 4] as the set of
tempered distributions #(x) such that

12l 1,91 = llop (KDD) {4 (KXD) ()} || 2emmy<<o°

This corresponds to the class of H(m, g) of Beals [1] with m and g as in Remark
1.2. (This fact will be verified in Section 2.)

For @, yr€ M, satisfying (1.2) and o ER, we put
H[®(r)’, 11N H[1, ¥(r)’] if >0,
I = { LA(R") if =0,
H[®(r), 1]+H[1, ¥ ()] if <0,

and equip 4{° with a norm so that it becomes a Hilbert space. (Details will
be given in Section 2.)
Next we introduce families of time-dependent symbols.

DeriniTION 1.7. For a positive number T, real numbers p, §, p’, 8’ satis-
fying (1.1) and @, Y€ M, satisfying (1.2), let S, 5,7 5/(T'; @, ¥) denote the set
of functions A(¢, x, &) defined on [—T, T]X R:X R} such that A(t, -, -)E
S;.5.07.6/(®, ¥r) holds for every t&[—T, T] and that the function

{02 08 A(2, x, E)} @p(<ED) ICEDPII-2IAI (D) 1B1- 81

is continuous with respect to ¢&[— T, T'] uniformly in (x, £) € R} X R} for every
a, BEN". If g(r)=r? and Yw(r)=r", we write S, 5 ,» o/(T; 7, 7" )=S4% o /(T).

Then we have the following result on the well-posedness of a class of evolu-
tion equations on the weighted Sobolev spaces.

Theorem 1.8. Let B(t, x, &) be a real-valued time-independent symbol such
that 3¢; B(t, x, E)E S3:5,05(T), 0,; B(t, %, E)E S8, 5(T) and 8,0, B(¢, x, &) €
S2:3.0.5/(T) hold for every j=1, ---,n, and let A(t, ) [resp. C(t,x)] be a real-
valued time-dependent symbol independent of the x-variables [resp. E-variables] such
that 0¢; A(t, E)E Sy00o(T; @, 1) [resp. 0,; C(t, ) E S 0,0,0(T; 1, 4)] for every j=1,
s, n. Further, let J(t) stand for either A(t, D)+B“(t, X, D)+C(t, X), A(t, D)
+B(t, X, D)+C(t, X) or A(t, D)+'B(t, D, X)+C(t, X). Then, for every ux)
EA and f(t, x) EL>([—T, T], I°), there uniquely exists a solution u(t, x) of the
evolution equation
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[%0, 0 = i@ ut.+f@n  for @x)e[-T, TIXE"
#(0, x) = uy(x) for x€R

(1.5)

belonging to the class U g, yroe i AC([—T, T, H gy, ¥ro)), and it satisfies the fol-
lowing properties:

ut, x)€C([—T,T], 4°),

[lu(, oo
< C{exp (C |2]) luol| g7 +-sgn (2) So exp(C [t—7|) || (7, *)llo= dr}
for some C>0.

Here AC([—T, T, X) denotes the set of X-valued absolutely continuous functions
defined on [— T, T for a separable Hilbert space X.

This partly generalizes Theorem 1 of Ozawa [21] concerning the well-posed-
ness of Schrodinger equations with potentials. (Ozawa treated non-smooth po-
tentials as well.)

Suppose that Yr(r)E M. is bounded. Then, for every o(r)E M., there
exists a constant C' such that (1.2) is satisfied with ¢(r) replaced by @(r)/C. In
this case we have well-posedness in more general function spaces. Let w(r) be a
function in M. satisfying @(w(r))<r for r>1, and put

H[®™, 1INH[®", Q] if >0,
K" ={ H[®, 1] if +=0,
H[®*, 1]+ H[®%, Q7] if <0
for every o, TE R, where Q(r)= s: o(s) ds+1. Then we have the following theo-
rem.
Theorem 1.9. Under the same assumptions as in Theorem 1.8, we have

the same conclusions as in Theorem 1.8 with H® replaced by K.

This paper is organized as follows. In Section 2 we give several properties
of functions belonging to .9 and recall several properties of pseudodifferential
operators and weighted Sobolev spaces given in Beals [1]. Sections 3 and 4
are devoted to the proof of Theorem 1.4, and Theorems 1.8 and 1.9 respectively.
Finally we give a proof of Proposition 1.6 in the Appendix.

2. Some properties of measure functions and symbols

We start with the study of some properties of functions in (.

Proposition 2.1.
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1) The set M [resp. M) is closed under multiplication and raising to the power
of real numbers. [resp. multiplication and raising to the power of nonnegative
numbers.)

2) Every function p(r)E€ M is slowly varying, that is, there exists a constant
C>0 such that o(s)< Cp(r) holds for every s€[r/2, 2r].

3) For p(r)E M, we have ®(r)E M., and there exists a constnat C>0 such
that rp(r) < C O(r).

4) For ¢(r) € M., we have O(r)<rep(r)<C D(r).

5) For @(r), ¥(r) E M+, (1.2) is equivalent ot (@ (r))<r for r>1.

6) For o(r), yr(r)E M., the fact @(Jr(r))=7/C for r>1 with some positive con-
stant C is equivalent to v (o (r))=>7/C’ for r >1 with some positive constant C’.

7) For @(r), y(r)EM., satisfying the equivalent conditions of 6), there exists
a>1 such that 9(2°)>a’|C and \(2°)>a’|C’ hold for every s>0.

8) For @(r),Y(r)E M, satisfying (1.2), there exist P(r), Vr(r)E M, such that
()< CP(r), Y(r)<CV(r) and r|C<P(J(r))<r hold for r>1 with some
positive constant C. Furthermore, if @(r), (1) satisfy the equivalent condi-
tions of 6), then the estimates P (r)<Cep(r) and ¥ (r)< Cr(r) hold with some
positive constant C.

Proof. For ¢, Y& M and a=R, we have
dk
OO} 4 (

) | @9 (r) =) (r) |
i}( )Crf o (r) Cri=t yu(r) < Cr=* o(r) (1)

and

d* o(r)’

PO 3 3, Cones 90 000 942(r))

F=0 By k=

= i" o2 Gty P(r)*~’ IIII {Cr -t p(r)} <Cr* o(r)*,
F=0 kgt tkj= =1

which shows @(r) Yr(7), @(r)’ € M. It is also clear that if @, Y& M, and a>0,
then o(r) Y+(r) and @(r)* are monotone-increasing, and this shows Assertion 1).
Next, integrating the inequality |@’(p)|/@(p)<C/p on [r,s], we obtain

1| 26N ol <C1 (1/p) dpl, which yields
[log{p(s)/p(r)} | <C |log(s/r)| <C log2 for s&[r/2,2r].

This implies Assertion 2).
Further, for @(r)E M, we have ®'(r)=@(r)>0 and ®(1)=1. On the
other hand, Assertion 2) yields
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r
7,

ro(r) = 29(7) g dr<C S:/z P(s) ds< CD(r) .
This implies
| 2O [0(r) <Cl 9% (0) | frer) <Crt.

These estimates prove Assertion 3).
For p(r)€ M., Assertion 4) follows from the inequality

®()<00) | dr+1=(—1) pl)+o(1)<rolr).

In order to prove Assertion 5), it suffices to deduce r(@(r))<r for r>1
from (1.2). If r>M=sup{yr(s); s=>1}, the conclusion is trivial from Yr(¢p(r))<
M. On the other hand, if 1<r<<M, there exists s>1 such that r=njr(s). It
follows from (1.2) and the monotonicity of «r that yr(®(7))=vr (@ (Y (s))) < (s)
=7.

Similarly, in order to prove Assertion 6), it suffices to deduce yr(¢(7)) >7/C’
for r>1 from @(yr(r))=7/C for r>1. First, since 7<Cp(Yr(r)) < C (M) holds
for all >1, we see M=oco. Hence, for every r>1, there exists s>1 such that
r=+r(s). Now from the assumption, together with the monotonicity and As-
sertion 2) for v, we conclude Yr(@(7)) =vr(@(Yr(s))) = Yr(s/C) =Ar(s)/C'=7/C".

We turn to Assertion 7). It follows from Assertion 2) that ¢@(2°), 4(2°)
<A’ holds for every s>0 with some positive constant 4. Putting a=
exp ((log 2)*/log A), we obtain ¢ (a*)<2° and r(a®) <2 for every s>0. Hence we
conclude @(2°) > @(yr(a’))>a’/C and r(2°) >r(p(a’)) >a’[C".

Finally we shall prove Assertion 8). If lim,,. yr(r)=00, put @u(r)=
sup {s; Yr(s)<7} for every r>1. Then @(r) is monotone-increasing, and we have
Yr(@o(r))=r and @4(Yr(r))=r. Let X(r) be a C~-function on [1, o[ such that

X(r) =0, supp X(r)C[1, 2] and Sz X(r) dr—1, and put q‘)(r):Sz X(s) u(r/s) ds and
1 1
P(r)=++(r). Then it is easy to see that (r)E M, and

2 2
21) @ (%) =[5 90 (%) ds£¢(r)ssl X(s) @o(r) ds = u(r) .
Applying 4 to (2.1), we obtain 7/2 <+jr($(r)) <7, which implies s/C < P(Jr(s)) <s
with some constant C in view of Assertion 5).

If 4(r)<C holds for some C and lim,,.. ¢(r)=o0, we can proceed in the
same way, by interchanging the role of @ and that of 4. Finally, if (), 4o(r)<C
holds for some C, then @(r)=1(r)=r satisfy all the conditions.

Assume that @(r) and +(r) satisfy the conditions of 6). Then, for every
r>1, there exists s>1 such that r=1v(s). It follows from Assertion 2) for ¢
that
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Plr) = POF(5) Ss<CP(W(s) <CP(C' N<C” plr) -
In the same way we can prove {(r)<C+r(r) with some positive constant C.
The proof is complete.

Next we recall several properties of weighted Sobolev spaces introduced by
Beals [1], and add some remarks. We put m(x, &)=@(KE>)Yr(<x>) and
gty (1, 1) =<ED® (>~ | y|2-<E>" <x>® |]? and observe some property of
these functions. We obtain the inequality {x)— | y—x | <{y><<{x>+ | y—=x| by
identifying x and y with (1, x,, -++, x,) ER"*' and (1, 3y, +**, y,) ER™*! respectively,
and making use of the triangle inequality on R**'. It follows from this inequali-
ty that

P <1 ly—=l
o=

If | y—a] <<x>/2, we also have

@<1+2 |y—=x| .
< <>

Hence, in general, we have

@3 {2 (144>~ | y—n|Rue-"-8)
<w

In fact, this inequality follows from the previous one if | y—x| <<{x>/2, and from
the inequality <x>~*~% | y—x|2><xD? " ¥4 if | y—a| ><aD/2.
We can write
gen(D 1) = B ™Y |y 2KET )+ )2,
gl p(®, 1) = <EOF <> | | 24-<ED7 (D |92
and h(x, £)=<E>*~* {x>¥~* in the notation of [1], and it is easy to see that these
functions fulfill the assumptions (2.5), (2.6), (2.7) and (2.16) of [1]. (See Hor-
mander [7].)
Next, let ¢, 4, @y, Yr, be functions in ¥, and let A(x, &), B(x, &) be symbols

in S, 5,0 8(@, ¥) and S, 5 o 5(Poy Yro) respectively. For every NEN and g
[0, 1], put

CO,I,N(x) &)
=2 Sg exp(—1y+7) (6¢ 4) (x, E+-07) (D5 B) (x-+y, &) fvdn

Cei=w gl

Coz,n(x, &)
(=D" SSSS exp (—iy-n+iz-{)

lwi+igr=x 2V | B

(02 D 4) (w5, £+0n) (02 D B) (3-+ 2, £-+0¢) dydndd,
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and
Cos.n(% €)
= 2 L (fexp(—iyen) (D2 ) (v £+6n) 02 B sty ©) dy .

Then, from the above facts and Theorems 2.7 and 2.7’ of [1], we have

Proposition 2.2.

1) For every j=1,2,3, every NEN and every § €[0, 1], the mapping (A (x, £),
B(x, £))—Cy ; n(x, &) is continuous from S, 5 o o/(@, ¥r) X Sp 5.07.5/(@os Yro) 20
Sp.8,6 5/ (SEDVCT oy, DN =) i), and the family {C, ; y(x, £); 0, 1]}
is bounded in the class S, 5 p 5 (CEDV®™ @@y, CEONE =) afpny).

2) For 0=0, the following equalities hold:

Cous(x,£) = - (0 D) A, ©) B ) yosit

1 /0 D,—8,D,\*
CO,Z,k(x’ E) = E (_5—172‘_‘_) A(x’ E) B(.y7 77) | y=x,n=£)
and
1
CO,3,k(x) E) = E (—671 Dx)k A(x) E) B(y) 77) [ y=x n=§& «
3) For every positive integer N, we have the following equalities as operators:
A(X, D) B(X, D)
1
— Y CousX, D)+N S (1—6)¥1 Cy, (X, D) d6 ,
0<k<N 0
A*(X, D) B*(X, D)
1
= 5 (CoaaV" (X, DN | (1=6)Y(Cop)(X, D) 6,
0<k<N 0
and
tA(D, X)'B(D, X)

1
=3, CossD, X)+N So (1—6)¥1¢Cy 5 (D, X) 6,

For m(x, £)=@(<&>) Yr(<x>). Beals [1] introduced the space H(m,g) as
the set

{ucsS'(R"); A°(X, D)ucsL¥R") forall a(x, £)ES(m,g)}

with natural locally convex topology by way of the symbol class S(m, g)=
Sp.5.0'.5(®@, ¥). However, for every o, y€ M, the functions o (<&>)*! and
Jr(<x))*! belong to the class S, o 10(@*", 1) and S, o, o(1, ¥»*') respectively. Hence,
applying Theorem 3.1 of Beals [1] to the operator Y»({X ) and to ¢({D>) succes-
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sively, we see that (<D)) 4»(<X)) is an isomorphism from H(m, g) to L} R") for
m(x, £) as above. Therefore H(m, g) is isomorphic to H[gp, 4] as locally convex
spaces.

From this fact and Theorem 3.1 of [1] we see the following

Proposition 2.3. For every @, Jr, @o, Y0 E M, the following properties hold:

1) For A(x, E)ES, s, s(®, V), the operator T denoting either A(X, D), A“(X, D)
or *A(D, X) is a bounded operator from H[pp,, Yryre] to H @, Yro].

2) In addition to the assumption of 1), assume further that T is a topological iso-
morphism. Then there exist B, (x,&), By(x, &), Bs(x, E)E S, 5,07.5(1/, 1/4r)
such that T'=B,(X, D)=B,"(X, D)="'By(D, X).

3) &is dense in H[p, ]

4) H[1l/p, 1/4r] can be regarded as the dual space of H[p, ] by way of the stand-
ard pairing.

5) [Hp, ], H®o, Yolle=H[@'™® @, '~ Ur’], where |-, -1y denotes the complex
interpolation space.

We proceed to the study of function spaces H [@, @, Yro) N H [@y, Yrg 4] and
H [@o] @, Yro]+H (@0, Yo/ Y], Where @y, YreE M and @, Y E M, ; in particular, the
spaces 4” and K”". The following lemma equips these spaces with the Hilbert
space structure, which we shall use throughout this paeer.

Lemma 2.4. Let E and F be Hilbert spaces continuously imbedded in a
common Hausdorff topological vector space. We introduce norms ||+||znr on ENF
and ||+||g+r on E+F defined by |lullznr=|lullz+lull7 and ||u|lz+r=inf {|l, |2+
wol|%; u, EE, u, EF, u=u,+u,} respectively. Then these norms make ENF and
E+F Hilbert spaces, and induce them topologies which coincide with their natural
locally convex topologies.

Proof. We shall only show the equalities

(2.2) llu4-9l|% 0 r+-lle—2l|20r = 2{lullznr+112l1Z 0 r}
and
(2.3) [lu42l|%+r+lle—2ll%sr = 2{llullzsr+lolZs 7}

since other facts are well-known. (See Lions-Peetre [19].)
(2.2) can be shown by direct calculation from the similar equalities for

[I+llz and [|+[[F.
Hence we shall show (2.3). For every €>0, we can choose #,, v, €E and

ty, V,EF such that [lul|z+|lwll; <l|lull%.r+€ and [lo)|F+]lvellF <llv]l54r+8&.
Then, since u,4+-v,EE, u,4-v,EE and u+v=(u,4v,)+ (4,-v,), we have
llut-oll% s r+-llu—ollZ.r
<llwy+-ollE+llwy— 12+ [l +-2ol 7+ [l — ol 7
= 2{llw,l|z+llollE+lllF+-lvol |7} <2{|lullZ r+ |0l 5 2 £} +4E.
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Letting €0 in this inequality, we conclude

(24) llu+-ollzsr+llu—ollzsr <2{lllz s r+lIollE L £}

Replacing  and v by #+v and u—v respectively in (2.4), we obtain the converse
inequality. This inequality and (2.4) yield (2.3).

The following lemma provides a topological isomorphism between these
spaces.

Lemma 2.5. Let E, F and X be Hilbert spaces such that E and F are den-
sely imbedded in X, and let S [resp. T] be a closed operator in X with domain
E [resp. F] which is a topological isomorphism from E [resp. F] to X. Suppose
that the spaces ENF' and E'+F' are topologized as in Lemma 2.4, and that ENF
is dense in E and also in F. Suppose further that the inequalities

(2.5) 1(S+T) ull% = Cy(|1Sullk 411 Tull%) — Callullx
and
(2.6) R((S+T) u, u)x=>—C; |lullk

hold with some Cy, Cy, C;>>0 for all u belonging to a dense subset K of ENF.

Then the operator U from ENF to X defined by Uu=Su+Tu satisfies the fol-

lowing:

1) U is closed inX.

2) The space E'+F' is topologically isomorphic to (ENF)’, and there exists a
positive constant M, such that, for every M >M,, the operator U+ M and its
dual '(U+M) are topological isomorphisms from ENF to X, and from X' to
E'+F' respectively, satisfying the inequalities

CHI(U+M)ullx<|lullgnr<C [|(U+M) u||x ,
and
CHHUHM) ullgryr Zl|lull x < C [|(U+M) u| g7 pr

with some positive constant C.

Proof. First we shall show Assertion 1). Let {u;} be a sequence in ENF
such that #,—u and Uu,—v hold in X, and take a sequence {w;} in K such that
lu;—wl|zn r—0 holds as j—>oo. Then, since U is a bounded operator from
ENF to X, we have Uw,=Uu;+U(w;—u;)—>v in X as j—>co. Hence, substi-
tuting w,—w, into » in (2.5), we have

U (w;—wy)l|x+C, [l ;—wll%
> Cy(IIS (w;—willx+I1 T (w;—w)l%) -
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This implies that {w;} is a Cauchy sequence both in E and in F, and hence so
is {u;}. It follows that uENF and Uu=wv, and this completes the proof of
Assertion 1).

We turn to the proof of 2). Since E’'4F’ can be canonically identified with
(ENF), (See Yoshikawa [30, Proposition 1.6]) and since the first inequality yields
the second one with E'+F’ replaced by (E N F)’, it suffices to prove the first in-
equality. From the above argument we also have

(2.7) [1Uul|%4C; [1ul% = C, (I1Sull3+11Tull%) = CC, ||ul|%n r
and
(2.8) R(Uu, u)x>—C; |lull%

for every u€ENF with some constant C. Now put M,=Cs;++/C,+C3
Then, for M > M,, (2.8) implies

(U+M)ullk = ||Uullx+2M R(Un, u) x+M? |lullx
2| Uullx+(M?—2MCy) [lullz = 1| Uullx+C, |lull% -

This inequality and (2.7) yield [(U+M)ullx>CC,|lullznr. On the other
hand, it is easy to see that U is a bounded operator from ENF to X, and satis-
fies the inequality

N(UA+M) ul| x <||Sull x4+ Tul x| Mul|
<C|lullg+C ”W'F‘f‘M ||u“xS(ZC+M) “u“EnF

for every M > M, with some constant C. This completes the proof.

Corollary 2.6. Suppose @,, V& M and @, v E M., and put E=

Hlp, @, Y], F=H|py, Yo¥], X=H|p, Y], Y=H|plp, Y] and Z=
H{py, ArofAr].  Then there exists a positive number M, such that, for every M > M,
the operator @({DD>)+r(KXD)+M is an isomorphism from ENF to X, and also
from X to Y+Z.

In order to prove this corollary, we introduce the following
Lemma 2.7. Putting Q=@y(<D>) Yo(<XD), we have
(2.9) O (@(KDP)+4(KXD)) O~ ullizgn
2% (19p (KD>) O~ ull2am 4110y (KXD) O ullizgn)—C llulli2am
and
(2.10) R(Q(@DD)+4(KXD)) O w, w)s2gny = —C |lul|Z2g)

for every u S with some constant C.
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Admitting this lemma for the moment, we complete the proof of Corollary
2.6. Prpposition 2.3 implies that o(<D}) [resp. y»(<X>)] is a topological isomor-
phism from E [resp. from F] to X. It is also easy to see tahat these operators
are closed in X.

Moreover, since Q is an isomorphism from X to L% R"), Lemma 2.7 as-
serts that (2.5) and (2.6) hold for all u€S with S=@(<D)) and T=+(<{X)).
Hence we can apply Lemma 2.5 to conclude that there exists a positive constant
M, such that, for every M>M,, the operator @(<{D>)++r(<XD)+M is an
isomorphism from £ N F to X, and its dual is an isomorphism from X' to E'4F’.

On the other hand, in view of Proposition 2.3, 4), the spaces X', £’ and F’
can be identified with H[1/@,, 1/4r], H[1/@@y, 1/4r] and H[1/@,, 1[dmfr] re-
spectively, and we have ‘S=¢@(<D}) and ‘T=+({X>) under this identification.
Replacing ¢, and «r, by 1/@, and 1/4r, we conclude that @(<D>)4(<XD)+M
is an isomorphism from X to Y+Z for every M >M, This completes the
proof.

Proof of Lemma 2.7. Since Q™'=(1/4r) (KXD) (1/@,) (D), Proposition
2.2 implies that there exist B(x, £)E.S;,<KE> " @, 2> 4p), R(x, E)EST:0.1,0
and S(x, £)€.87:8.1.0 such that

(2.11)
07 (KXD) O (KDD) Q7!
=07V XD) Vo D)) O* Ve KD)) V4 ((XD) 97'+B(X, D),

(2.12) <D ¢(KDp)™" B(X, D) = R(X, D) <X>™ 4 (<XD)
and

(2.13) P (X) = Qv (KXD) 07+ S(X, D) <XD™ 4 (KXD).
Then, from (2.11) and (2.12), we obtain

(2.14)

—119(@ KDD)++4(KXD)) Q7" ullz2(pny
+(10p(KD>) O ullZ2pm +1O0v(<XD) O ullizgm)
= —2R(Qp(KDD) 07" u, Qyr(<XD) Q71 ) 2pm)
<2110 Vo KDD) V4 (KXD) O ullL2pm— 2R (B (X, D) u, u) 2(pm)
<2|KD) @(KD})™! B(X, D) ull2gn - |IKD>™* p(<DD) ul| 12¢pm)
L Co [KXD™ (XD ull 2y + [IKDD ™ @(KDD) il 2emmy
for some positive number C,.
We wish to estimate the right-hand side of (2.14). First, Proposition 2.1,

2) implies the existence of a positive integer £ and a positive unmber C; such
that ¥(t)<C, t* and @(2)<C, t*. It follows that



188 M. YamAzAk1

(2.15) IKXD> ™ (< XD) tll 2m S CI* (| (9 (KXD)) * % ] 2y
SCYF|Ie(KXD) ull @ N1ull2 g,
<€ [W(KXD) ull 2 emy+Co 87 |1l c2am)

and

(2.16)
[IKXD™12 /g (KXD) | 2oy S € NN/ (KXD) il 2oy +Cy 8 7* [Nl 2gem)

for every €>0. On the other hand, (2.13) yields the estimate
W (<XD) ull 2o S NQY(KXD) Q7 ull 2y +C IKXD ™ Yr(KXD) w2
with some constant C,. This inequality and (2.15) imply
[IKXD™! Yr(KXD) ull 2any

< &
1—G,¢

Choosing € so small that C, &/(1—C; £)<<1/2, we obtain

Co KX p(<XD) ullmmsé— 1O¥(<KXD) O ull 2emm+C llull oany

-k

g, G
OY(KXD) O~ ull2p )+1__ng

Haall 22y -

with some positive constant C. In the same way we obtain
KD 9(<DY) ull i -5 199(<D3) 0 sllean+C Nl
These estimates imply that the right-hand side of (2.14) is dominated by
{2 QW) 0 ullcamy+-C Nl
X {2 10p(<D>) 0l t+C lulzcn
<10 (<20) 0 e+ 199(CDY) Q™ lcany+2C* 1l

Now (2.9) follows from this estimate and (2.14).
Next we shall prove (2.10). There exists a symbol C(x, £)€S73,0 such
that

07 P(XD) Q = Y(KXD)+<KXD™ /4 (KXD) C(X, D) XD/ (KXD) -
This equality and (2.16) with é=1/C yield

R(Q™ (<XD) Qu, u)
= R (KXD) u, u) +RLXD™ /9 (KXD) C(X, D) <XD™2 \/hp (KXD) w, w)
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2V (KXD) ull 22pm— C [KXD™2 /34 (KXD) ul| L2
> —C* G, |lull 2y -

In the same way we can prove

RO @(KDD) Qu, u)=—C" |lullL2mm -

Summing up these inequalities, we conclude (2.10).

3. Proof of Theorem 1.4

Since 8,, 8¢, B(x, £) €S58 . holds for every j=1, :--, n, it follows that the
operators B“(X, D)—B(X, D) and ‘B(D, X)—B(X, D) are bounded on L¥R").
Moreover, the operator B“(X, D) is symmetric on C7(R") with respect to the
L*-norm. Hence it suffices to show that the operator S=A(D)-+B(X, D)+C(X)
defined on C§(R") is closable in LA R"), and that the adjoint in L% R") of the
operator T'=A(D)+'B(D, X)+C(X) defined on Cg(R") coincides with S, the
closure of S in LY R").

First, assume that {u} is a sequence of functions in C7(R") such that #,—0
and Su;—~v hold in L{R"). Then u,—0 holds in 9'(R"), and hence Su,—0
holds in @’(R"). 'This implies v=0, and it follows that S is closable in L* R").

Next,, for u, ve C§(R"), we have (Su, v)=(u, Tv). Hence, for vECF(R")
and u€ Dom(S), we see easily (Su, v)=(u, Tv) by approximating u by functions
in C7(R". This shows T*58S.

It remains only to show T*CS. We introduce a function ¢(x)EC=(R")
such that supp {C {xER"; |x| <1} and that {(x)=1 for x€R" satisfying
|x| <3/5. Further,, let §(r)E M, be a function satisfying the properties of
Proposition 2.1, 8), and put Z (x, &)= (P(j) " ») £ (j7* &) for j=1,2,---. Then
we have the following

Proposition 3.1. The sequence of operators
{Z(X, D) (A(D)+B(X, D)+C(X))—
defined on LX(R") is uniformly bounded on LA(R"), and converges to 0 with respect
to the strong topology of L(L* R")).
Admitting this proposition for the moment, we shall prove 7*CS. For
u(x) €Dom (T*), put u(x)=Z (X, D) u(x)ECT(R"). Then we have
u—u= (@) X)—1} u+l(p(j)" X) LG D)—1} u.

Since

I8 (P ()™ X)—1} u||2Lz(m)SCS |u(x)|2dx — 0,

15128(;)/2
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and

6 (i D)—1} ullaen<C Smm 14(8)|2dE — 0

hold as j— oo, and since §(@(j)* X) is bounded on L*R") uniformly in j, we
see that

(3.1) u;—u—0 in L*R") as j—O0.

If ueDom (T*), we see

(3.2) Z(X,D)T*u— T*u in L¥R") as j—0

in the same way.

On the other hand, Proposition 3.1 yields Z,(X, D) T* u(x)—Su;(x)—>0
in L¥R") as j—oo, which together with (3.2) implies that Su; converges to
T*u in L*R") as j—>co. 'This fact and (3.1) yield T*CS.

Proof of Proposition 3.1. We follow the method of Friedrichs [3]. First
we have
(3.3) Y, u(x)
:1S'w§N (BS.I‘)” oX, D) ut+C o o X, D) u)

— 3, (Ao X, Dyut B, D))
So (1=6)" 33 (B2oX, D) u+C, o X, D)) dO
_N S: (1=0)"" 33 (4, o(X, D) u+BPedX, D)) dO
for every positive integer N, where
A £) = - || exp(—iyen) D2 Z (543, £) 02 A(g-+0n) Ay
Bk, &) = —SSexp(—zy ) 0F Z,(v, £+07) DE B(x-+3,8) dy dy,

Bla(e, ) = — ﬁ exp(—iy-n) D2 Z,(x+, E) 02 B (x, E-+0x) dn dy
and
Ca &) = - [{ exp(—iyen) 02 Z,(x, £4-0) D2 Cla-ty) dmdy
Then we have

0F DY B2 o(x, £)

2 2 () () {252 =)

< >2M (1 A}')
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(8¢ DY Z (x+y, £) 02*F~F DI B(x, £-+-07))} dy dy
for every a+0and L, MEN. Since 87 B(x, £) €S8, 1%)1+¥1#1=1 this yields
|08 D% B o(x, £)|

B( 7)==l =171 ;=18"|
<C S ?(7) J 1= 1Y=7 1 +8/ (|2 +18-B"1-1)
AN R e

CE4- Gy TPt (9, &, 1) A dy
for every B, yEN", where Xg,(x,y, £, ) is the characteristic function of the set
E; = {(x 3, & n); P()2< |x+y| <P(j); |EI <j} -
Now, given B, Yy EN", choose L, M €N satisfying
2L>n+p'| Y| +8"(let| +181)+1

and

2M>ntp(lal+181)+8]v]+1.
Then, from the facts

CEH O KLED™! (B> KED™! {md < U212 (S

and

L) <L+ Ky <29(5) <y
for (x, y, £, 7) EE;, we obtain the estimate

|62 D% Bffao(, &)
Gpd\ Pl =1F1B=F"D+8IY=Y'1
<Cc>) $< 7
5E e ,

j—m’l Xt 101< () E>PUI=1+1B=B"D+817-Y|
’ 7
S <y>|1+p’w’|+a'(m—lﬁ’l—l)l—2L dy<x>—o'm+8’m|
q—)(j)l—lwl—l'v'l+P’I'Y'I+8'(le—l—lﬂ’l)
<O ) Cpprr Cyyr (KD~ IMHIBL o =rIBI+8I
B’<B y'<vy
7= 1871+ max(0,~p" (|| =1=18"1)=81¥"1} g5 7)(1~121)(1=8")=(1=p")|¥"| -8’18’
J P(7)
< Cy y ™Y IMHIBL (ES=PIBIFBI 5 )(1=1aDA-37)
By virtue of the facts
6? A(g)ESO,O,1,0(¢) 1) ’
D B(x, E)Es;-gs;(,lcg)~1),P’(1—lw|)

and
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D‘: C (x) = Sl,o,o,o(ls "]") ’

together with the estimates

P(CE+0n) <max {p(2 <E), p(2 6n)} < Cop(KED) m>°

and

V(K +y0) < Cur (<) <3>°

with some C' >0, we obtain

|08 DY A;, . o, E)I
<Cpy Xt 101<(8) @(KED) P(5) 71! <ad~M
<Cesy P(j)' '™,

|6 DY B o, £)|

<N NClr g EDTPIBIFIN el =BT+ 81wl ~11Y])
F<By'sy '

Xis 1115 (3) DY 181/ m161 =011 ()1
< Cyy EYPIRIFEM Ly~ IN+YIBI j-1aD(-3)
@)1 1 +max 0,818 12 (=1l +171)
< Cpy EYPIBIFIM ey MBI ja-1aa-8)
and
|65 DY C;., o, E)]
L Cay ™' TP X, 11 (%) Yr(K2D)
SCpy <O T (P()+1)
SCB’_Y]'I-WI

in the same way. These facts imply

(3.4) { A;.oand C,,, areboundedin 8§50,

B{') ,and B{), are bounded in S, s

uniformly in §€]0, 1] and j=1, 2, -+- for every a EN" satisfying || =1, and

. 0.0 .
i, 0,0 i, ,0,0,
(3.5) {A,” and C;,o—>0 in Sggo0 as j— o

BSsand B, ,—0 in Spfyy as j— oo
uniformly in §€[0, 1] for every a EN" satisfying |a| >2.

Fix a&N" satisfying |a| =1, and choose a function ¢(x)ECF(R") such
that ¢(x)=1 holds for xER" satisfying 1/3<|x|<4/3 and that supp ¢C {xE
R*; 1/4<|x| <<3/2}.

Then, from the fact

supp Cj.a,O(x» E)’ supp Bfil.t)”.o(x’ ‘E)C {(x’ E)»]/ZS IEI S]} ’
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we see
B{s.o(X, D)u = B{o(X, D) $(j D),
Cuuo(X, D)= C;0(X, D) $(j D)

for every uLAR"). It follows from (3.4) and the fact ¢(; ! D) u—0 in LY R")
as j— oo that

(3.6) By o(X,D)u, C; ,o(X,D)u—0 in L¥R") as j— oo.
In the same way we have

(3.7) A;,0 (X, D) $(P(j) ™ X) 4, BYa,o(X, D) $(P(j) " X)u— 0
in L R") as j— oo.

Finally, let E; ,(x, £) and F; ,(x, £) be symbols such that

(3.8) E; (X, D)= A; ,oX, D) {1—¢(P(j)™ X)}
and
(3.9) F; (X, D) = B?, o(X, D) {1—¢($(j)* X)} .

Since ¢(P(j) ' x)=1 if (x, E)Esupp 4; , o(%, E) U supp BY o(x, E), we have

(10) B, &)= —No() ™ [ (-0 5 L [[exp (—ivn)

Iy|= ly
(9% Ay0) (3, E-+01) (DY) () (x-+9)) dy dy O
and
G1)  Fyuw )= —NoG)™ | 1-07" 53 L (fexp =iy
(31 BY) (v, E-+07) (D1 ) (2(j) (x-+3) dy &y dO .

Then, from the fact that the families {4, , o(¥, £); j=1, 2, --:} and {B%?) o(x, £);
j=1,2, .-} are bounded in S50, and S5§, 5 with §, 8'<<1 respectively, we
conclude that

(3.12)  E,(X,D)u,F, (X,D)u—0 in I{R") as j— oo.

Now the conclusion follows from (3.3)—(3.12).

4. Proof of Theorems 1.8 and 1.9

First we state two propositions.

Proposition 4.1. Let X denote a function space of the form H [p,, \r,], where
@o(7), Yo(r)E M. Suppose that @(r), Yr(r) € M. satisfy (1.2), and put S=D({D))
+W(X>). Next, let M be a positive constant such that S+ M gives a topological
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isomorphism from H[Dgp,, Jro] N H [y, Try] to X, and also X to H[@"|®, yry]+-
Hpo, ¥ro/¥], and put

B(t) = (S+M) At) (S+M)™'—A(2)
and
C(t) = (S+M)™? A(t) (S+M)—A(z) .

Then {B(t);1€[—T, T} and {C(t); t[—T, T} are uniformly bounded families
of bounded operators on X, and they are continuous with respect to the uniform
topology as operator-valued functions of t. Further, if r/C <@(\(r)) holds, then
{A@)(S+M); [T, T]} is also a uniformly bounded family of bounded
operators on X, and it is continuous with respect to the uniform topology as an
operator-valued function of t.

Proof. Putting
P(t, %, £)
=3[ {§ 06, @<t +02) D, 1B, w3, 6)+C (1, w9}

—D,, W(<x+y>) 0, {A(t, E+607)+B(t, x, E+0n)}) dy dn db
= Pl(t» x’ g)‘!‘Pz(t; x: E)-I_Pa(t) x) £)+P4(t’ x’ E) ’

we have B(t) (S+M)=—(S+M)C(t)=[S+M, A(t)]=P(t, X, D). Hence, in
the same way as in the proof of Proposition 3.1, we can prove that the family
{P,(t, x,£); t€[—T, T]} is bounded and continuous in the symbol class S;
for every j=1,2, 3,4, where S,=3S, s, &(T; ®(r), 1), S,=S3=S0,0,00(T; (1),
¥ (r)) and S,=S, 5,0 5(T; 1, ¥(r)). Hence, putting E,=H [Dp,, ], E,=E;=
H{p@o, Y], Ei=H[@o, o), Fr="H [@o/D, ro), Fy=Fy=H [@y/@, ¥ro/{¥], and
F,=H |, ¥ro/¥], we easily see that {P(t, X, D); t€[—T, T]} is a uniformly
bounded family of operators bounded from E; to X and also from X to F, for
every j=1,2,3,4. Further, the set {A(¢); t&[—T, T} is a uniformly bounded
family of operators bounded from E,=E, N E, N H [rg,, rry] to X. Moreover, as
operator-valued functions of ¢, they are continuous with respect to the uniform
topology. Since (S+M)™! is an isomorphism from X to E,NE, and also from
F,+F, to X, it suffices to show E,NE,CE, and F,CF,+F,, and also E,NE,C
H[r@,, rir] under the extra assumption 7/C <@(U(r)). In view of Proposition
2.3, we may assume @y(r) =+ (r) =1; namely, X=L,(R").
Let Z,i(X, D) be the same as in Section 3. For u€E, N E,, put

u; = Zyi(X,D)u,
U = P(KDY) WLX) (¢ (P2 X)—E(@(2) X)) (27 D)

and
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uP = p(<D) w(KXD) §(P(2*) 1 X) (¢ (271 D)—£ (27 D)) u.

Then we have @(<D>) Y({XD) (4;s1—u;)=u{’+u?. Next, put F,={xER";
P2 < x| <P(27*)} and ¢;(E)=Xri(E), and take kE N such that 3% (&) and
0% Yr(x) are bounded for every a € N” satisfying || =k. Then we can write

(#1) ui) = 3 Pj(D)Q%X)$;(X)utRyX, D)u,

o< <k-1

where

Pi(E) = p(KE))02£(277F),

%) = i 0 (G) L (PP )L (P(2) Wb}
and

{p(2 ) Ry(x, E);j=1,2,-} isboundedin S%:0:0.

Since supp Q%x)CF;, we can apply the Plancherel equality to obtain
(#2)  [IPY(D) OHX) ¢,(X) ull2am

<(oup 1PHE)1) (sup | 72| ) 1669 W) (ol

<C, p(271) Cp P(2177)7117 I () V(<) ()| 2cmm)

<Co ldj(x) ¥ (<xD) w(%)ll 2cmm -
On the other hand, the operators $(2'~!)**! R (X, D) are bounded on L¥R")

uniformly in j. Substituting this fact and the estimate (4.2) into (4.1), we con-
clude

-1
2 11 2

<C S @@ lullrn -+ () W) w2

Since W(<x>) u(x) € LA R") and since
§¢(2 ) S'1(C) <
the right-hand side of this formula converges to 0 as A, /l—>co. Hence 3)7.; u{"
converges in LX(R"). In the same way we can show that 317.; 4” converges in
L¥R"), by using the fact y/p(27)) <2’. We thus conclude that (<D>) Y({XD) u;
converges in LA R"), which implies @({D))y({X>)ucsL¥R"). This proves
E,N E,C E,, which yields F,C F,+F, by duality argument.

Next we assume 7/C <(r(r)). Then we have <D)> <X (u;,—u;)=ui+
u}, where

U = <D <X (E(P(27*) ™ X)—E(P(2)™ X)) (2~ Dy
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and
U = <KDY XD P27 X) (6277 D)—£(27 D)) u.
Putting
AE)=<E>E(27E)
and

B(x) = <a> (P27 2)—E(P(2) " X))}
we can write

uP = A,(D) B,(X) $,(X) u+C,(X, D)u,

where {p(2™") C,(%, £); j=1,2, -+} is bounded in S%:31,0. Since supp Q%(&)C
F; and since

27 P SCWH(PT) PRTHSCTU(PETY)
we can apply the Plancherel equality to obtain
14(D) B(X) ¢,(X) ull2gm
i, PR . % o
<c2t.c T @@) [l (%) W (<2)) w(x)|| 2Rm)
<C (%) B(<wp) w2 -

Using this fact, we can conclude as before that 3)7.; 4 converges in L¥R").
In the same way we can show that 317, {*’ converges in LA R"), by using the
fact 2/ P(2/)<C®(2’) with some positive constant C independent of jEN.
These facts imply the convergence of <D)><X>u; in L(R"). Now E,NE,C
Hi[r, r] follows from this similarly as before.

Proposition 4.2. Let X denote a function space of the form H [@,, \r,], where
@o(7), Uo(r) EM.  Suppose that @(r), r(r)E M, such that o(r) [resp. Yr(r)] is
bounded, and put R=Y (X). [resp. R=®(D).] Tnen {RA(t) R™'—A(t); t€
[T, T} and {R™* A(t) R—A(t); tE€[—T, T} are uniformly bounded families
of bounded operators on X, and {A(t) R™';tE[—T, T} is a uniformly bounded
family of bounded operators from X N\ H[re,, Jro/yr] to X, and also from X to
X+H @yfr, Yo ). [resp. from X N H [@po|@, 1] to X, and also from X to X+
H@p, @, nyfr].] Further, these families are continuous with respect to the uniform
topology as operator-valued funciions of t.

Proof. We consider only the case where @(r) is bounded and R=¥(X).
We proceed in the same way as in the proof of Proposition 4.1. Putting

P,(t) Xy E) = P3(t) X, §)+P4(t> Xy g)
= — 3 [§ Do) 260A(t E+8m) 1B, 3, E+00))) dy dn o,



ESSENTIAL SELF-ADJOINTNESS OF PSEUDODIFFERENTIAL OPERATORS 197

we have [R, A(t)]=P'(¢, X, D). In this case we have E;=H [@q, Yl DE,=
H{py, Yry] and Fy=H [@,, Yo/ V] C F,=H [y, Yro/¥]. Further, R™! is an iso-
morphism from X to E, and also from F, to X. Hence it is easy to see that
{{R, A®)] R, t€[—T, T} and {R7'[R, A(t)]; tE[—T, T} are uniformly
bounded families of bounded operators on X. Moreover, as operator-valued
functions of ¢, they are continuous with respect to the uniform topology.

On the other hand, the family {A(¢); ¢€[—T, T} is a uniformly bounded
family of bounded operators from H [rey, 7r,] N H [, Uy ¥] to X, and also from
X to H@o[r, yro/r]+H[@o, yro/¥]. Further, as an operator-valued function of
t, it is continuous with respect to the uniform topology. The assertion for
() R is an immediate consequence of this fact and the isomorphism property
of R7%.

Let X denote either K" or K*". Take @(r), ¥(r)E M, as in Proposition
2.1,8), and put <_D(r)=1+slq‘7(s) ds, \if(r)zl—{-glx,l_t(s) ds, and Q—&(D)+F(X).
Then, by Corollary 2.6, we see that there exists a positive constant M such that
Q-+M is an isomorphism from H[®(r)” &(r), I]NH[D(r)°, ¥(r)] to H[D(r), 1]
and also from H[®(r), ¥(r)"]NH[L, ()" ¥(r)] to H[1, ¥(r)°] if X=J(°, and
that Q+M is an isomorphism from H[®(r)""" &(r), 1] NH[D(r)"*", ¥(r)] to
H[®(r)°™", 1] and also from H[®(r)" ®(r), Q(r)] N H[®(r)’, Q(r) ¥ (r)] to
H[®(r)", Q(r)]"] if X=K"". Then, by using Lemma 2.4 repeatedly, we can
equip the space Y=(Q+ M) ' X with the Hilbert space structure with which
O+ M becomes an isomorphism from Y to X. It follows immediately from
the previous propositions that the family {A(#);t€[—T, T} is a uniformly
bounded family of bounded operators from Y to X, and that {(Q+M) JA(t)
(O+M)'—(t); t€[—T, T} is a uniformly bounded family of bounded oper-
ators on X. Further, as operator-valued functions of ¢z, they are continuous with

respect to the uniform topology. Hence, in view of Proposition 6.1 of Kato [15],
Theorems 1.8 and 1.9 will follow from the following

Proposition 4.3. The family {+i A(t); t&[—T, T} is stable in X; that
15, there exist constants L, N>0 such that, for every REN, t, t,, -+, 1, E[—T, T]
and N> N, the following estimate holds:

T (8 A ) =0 o SLO—N) ™.

For the proof of this proposition we use the following two lemmas.

Lemma 4.4.
1) Put S=O(KD))+¥(KX)). Then, for every o, rEN, there exists a positive
number M such that (S+M)° is an isomorphism from H°*" to H".
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2)  Asssume that \(r) is bounded, and put Q=D(KD>)+Q(KXD). Then, for every
o €R and every p, TEN, there exists a positive number M such that (Q+M)°
is an isomorphism from K™ to K",

Proof. In order to prove Assertion 1), put A= N7j.o H[®, ¥"] for
every TEN. Then we can take M >0 so large that the mapping S+ M gives
an isomorphism from H[®+!, W¥| N H[&’, ¥¥'] to H[®, ¥*] for every j, REN
such that j+k<o-+7. Then (S4M)° is an isomorphism from 4*™ to 4.

On the other hand, Proposition 2.3, 5) yields

H[®, W] = [H[L, ¥°], H[®", 1]] ,,DH[®", )N H[1, ¥°]

for every jEN such that j<o. This implies K=" for every o €N, which
completes the proof of Assertion 1).

We can prove Assertion 2) in the same way, by considering the space N7j.,
H[®°*, Q"] in place of H™.

Lemma 4.5.

1) For every positive integer h and every positive number o less than h, we have
HHT=[LY(R"), A" ojp=(L R"), H")osn 2, where (-, +); ; denotes the real interpol-
ation space.

2) Assume that yr(r) is bounded. Then, for every o € R, every positive integer h
and every positive number T less than h, we have K™ =[K"° K" /=
(Jca',o, CKa'h)'r/h,Z:

Proof. For every hEN, there exists a positive constant C such that the
family

(P(CX) <1+% DD W(LXD)H; A>C}

is uniformly bounded on L*R") with respect to the operator norm. Hence we
can apply the main theorem of Grisvard [6] to conclude that

(LAR"), H[®", 1]NH[1, ¥*])qp.
= (LAR"), H[®", 1])on,2 N (LAR"), H[1, ¥")ops 2 -

On the other hand, Triebel [27, §1.8.10, Remark 3] implies
(LAR"), H[®" 1N H[1, "),z

(4.3)

(4.4) -
= [LXR"), H[®" 1]NH[1, ")y ,

and

(4.5) (LAR), H®", U)epn2 N (LR), HIL, W)y

= [LAR"), H[®", Uloys N[LHR"), H[1, ¥*])oss -
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Finally, Proposition 2.3, 5) yields
[LAR"), H[®*, 1]ess N [LAR"), H[1, ¥*T]oss
=H[®°, 1]1NH[1,¥7] = HA°.

Now Assertion 1) follows from (4.3)-(4.6). Assertion -2) can be proved exactly
in the same way, by replacing L(R") and 4(* by K°° and K°'* respectively.

(4.6)

Proof of Proposition 4.3. We begin with the case X=4°. First, assume
oc&€N. Then Lemma 4.4, 1) assures the existence of positive constants M
and C,, -+, C, such that

o 1T llecay <II(S-+MY TS+ lacran <C, 1 Tllaty

i
for every j=1,2, -+, o, where S=D(KD)>)+¥(<X)). Making use of these con-
stants and observing Proposition 4.1, we obtain

(7)o T GEAE) =) e
<|I(S+MY{ fI (L8 AE) =) (S+M)llazmm
= I T A(S+MY” () =) (S+M)™F ey
= 11 TLA(S-+M)" (i A(t) £iB(1)—2) (S+M)} e

lj (i A(2,) £ 2 (S+MY iB(t,) (S+M)7—A) 2w

* -
=l H £ Jl(t )+(Jl(t ) :{:g{(tj)-—h) 1 LL2R™)
for every REN and t,, t,, -, t, E[—T, T], where
B *
R(t) = i S (S +My B(t) (5+ M)+ HEZAGN

It follows from Proposition 4.1 and Theorem 1.4 that
IR () cermn
< 2 C; sup H-@(t)”L(JH)‘l‘ sup

-TS'

| AO—(AE)*
2

lzczzcrm)
= N .
From this fact and (4.6) we conclude

1T (A1) =) s SCN—N) ™
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for A>N. This estimate shows the conclusion in the case c€EN. We can
treat the case >0 and ¢<0 by interpolation and duality argument, making
use of Lemma 4.5, 1) and Proposition 2.3, 4) respectively.

We turn to the case X=K"". We first consider the case 7=0.

First, suppose s €EN. Then, mrking use of R in place of S4-M and apply-
ing Proposition 4.2 in place of Proposition 4.1, we can prove the well-posedness
by an argument similar to that for " with ¢&€N. The case >0 and <0
can be handled by way of interpolation and duality argument respectively.

Next we consider the case 7&N. Starting from the well-posedness on K
in place of that on L% R") and making use of Q-+M in place of S+M, we can
treat this case similarly as in the case X=#" with ¢ €N, by virtue of Lemma
4.4, 2) in place of Lemma 4.4, 1). We can handle the case 7>>0 by interpolation
argument, using Lemma 4.5, 2) in place of Lemma 4.5, 1). Finally, we obtain
the conclusion for 7<<0 by way of the duality K™"=(K"""")"." This completes
the proof of Proposition 4.3.

Appendix. Proof of Proposition 1.6

Defining a unitary transformation U on L R) mapping C§(R) onto itself

by the formula (Ux) (x)=exp (—: S b(t) dt) u(x) and introducing an operator 4
with domain C}(R) by °

Au(x) = (U"(D*+B*(X, D)+C (X)) Uu) (x) ,
we can write
Au(x) = —u'’(x)+2ib(x) w'(x)+1b" (%) u(x)+b(x)’ u(x)+ C(x) u(x)
. (7 x_..'_y -
+2 [ exp (i(e—p) 6= | b0 an s (1) eoly) ay
= —u(x)+2ib(x) u'(x)+b’(x) u(x)-+b(x)® u(x)+ C (x) u(x)
.(? x+y
2D, {exp (—i S b(t) dt) b ( ! JEC) I
= —u’(x)—f(%) u(*), :
and the essential self-adjointness of the operator D*+ B“(X, D)+ C(X) on C7(R)
implies that of 4. But, in view of (1.3) and (1.4), we can apply Dunford-
Schwartz [2, XIII. 6.22] to conclude that the point 4 oo is a boundary point of

limit circle type of A. It follows that A has positive deficiency indices, and
hence <A cannot be essentially self-adjoint.
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