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0. Introduction

Parabolic equations in Lp spaces have been studied both by potential theory
and by abstract methods mainly when/>>l. In this paper we want to continue
our previous researchs on the L1 case ([4], [5]) by using a semigroup approach.

Let Ω be an open bounded subset of Rn with smooth boundary 9Ω. We
denote by J? a second order elliptic operator in Ω and by Aι the L1 realization
of E with homogeneous Dirichlet boundary conditions. Then it is known
(see Amann [1], Pazy [11] and Tanabe [14]) that Aι is the infinitesimal gener-
ator of an analytic semigroup in L*(Ω). We set X=L\Ω) and denote by S(t)
the semigroup generated by Av

In this paper we establish some new properties for the semigroup S(t).
Moreover we give a characterization in term of Besov spaces for the interpola-
tion spaces DAχ(θ, 1), between the domain of Aι and LX(Ω), defined as (see
Butzer and Berens [2] and Peetre [12])

(0.1) DAl(θ, 1) = { M G I : Γ" H^SWIIIIX r Λ)< + oo> .
Jo

This characterization allows us to find new regularity results for the solutions
of the following Cauchy problem

l«(0) =

where / e i ^ O , T X) and uQ^X. For the connection between the regularity
properties of solutions of (0.2) and the interpolation spaces DAl(θy 1) we refer
to [4].

The plan of the paper is as follows. In section 2 we prove that the semi-
group S(t) satisfies the following estimates, for some M\ M">0 and ω

(0.3) y/1 IIA 5(ί)ILα)^M' exp (ωt) i = 1, • -, n

(*) The work of the author is partially supported by M.P.I. 40% and by G.N.A.F.A.
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and

(0.4) t\\DihS(t)\\LU)<M''exp(ωt) i , A = l , . . . , n

where we have set D.—θ/θ*, and Z)ίA=Z)ί2)jk. Properties (0.3) and (0.4) give
precise information about the behavior at t~Ό of the spatial derivatives of
semigroup S(t) (and hence about the solutions of (0.2)).

In section 3 we use these estimates and prove, in a very direct way and with-
out using the reiteration property, the following characterization of the inter-
polation spaces DAι(θ91), for each O<0<1

(W2Θ \CΪ), if O<0<l/2

(0.5) DAι(θf 1) = I K G B ^ O ) : j (d(x, ΘΩ))-1!^*) I <&< + «> , if 0 = 1/2.

[ i - ι ( a ) , if

Here W29'1^) denotes the Sobolev space of fractional order, £ U (Ω) denotes
the Besov space and d(xy 9Ω) the distance from x to 3Ω. This characterization
has been given by Grisvard [6] for the case p>ί. If the operator E has C°°
coefficients and 04=1/2 the characterization (0.5) can be deduced by a result of
Guidetti, [8], obtained by complex interpolation methods.

Finally in section 4 we obtain a quite complete description of the regularity
of the solutions of the following problem (for which (0.2) is the abstract version)

f ut(t, x) = Eu(t, x)+f(t, x), t>0,

u(t, x) = 0, t>0,(0.6)

where/e^QO, Γ[χΩ) and
These results for parabolic second order differential equations extend to the

case^>=l the classical theory for parabolic equations developed by Ladyzenskaja,
Solonnikov and Ura'lceva [10] and others, for the case^>>l.

1. The spaces DΛ(Θ, p) and (D(A), X)θtP

In this section we recall some definitions and properties concerning inter-
polation spaces which are needed in the sequel.

a) The spaces DA(θ,p)
Let -X"be a Banach space with norm | | . | | and let A: D(A)czX-*X be a linear
closed operator which generates an analytic semigroup exp (tA) in X. By this
we mean that there exists ωG/2, φ^\π\2> π[ and M>0 such that the set Zφ=
{z: [arg(^—ω)| <<p} U {ω} belongs to the resolvent set of A, Moreover for
each Z^LZΦ we have
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(1.1) | * - ω | | | J l ( * , i 4 ) » | | £ M | | * | |

where R(z, A)=(z—A)~ι. For convenience we assume that A satisfies (1.1)
with ω=0 (so that exp(tA) is a bounded semigroup). This can be always be
achieved by replacing A by A—ωl and exp(tA) by exp(—ωt) exρ(tA).

In what follows we denote by DA{θ>p) (for O<0<1 and \<p<oo) the
space of all elements XΈLX satisfying

Hβ,P{χ) =

It can be seen that DA(θ9p) are Banach spaces under the norm
HβtP(x). Moreover

The spaces DA(θ,ρ) were introduced by Butzer and Berens [2] and by Peetre
[12]. We refer to [2 Chapter 3.2] for a more detailed description of the prop-
erties of these spaces.

b) The spaces (X, D(A)) θtP

For our pourposes it is convenient to incorporate the spaces DA(θ,p) in the
theory of intermediate spaces. Let X, X1 and X2 be Banach spaces such that
X^X, i=l9 2. We denote the elements of X and Xi by x and xi and their
norm by ||.| | and Ifo-H,-, respectively.

In what follows we set for t>0 and

(1.2) K(t,x)= inf (IkllrHl

Moreover we denote, for 0e]O, 1[ and/)G[l, +©o

(1.3) (Xlf X2)θfP = {x - Xl+x2: |W|

where

(1.4) ||*||#># = ( p ( r ^(ί, *))• Γ'dtψ"
JO

It can be seen that (XuX2)θtP are Banach spaces under the norm \\x\\θtP) more-
over we have

xx n x2 ̂  (x19 x2)θιP o ^ + x 2 .

The spaces (̂ 5̂ , X2)β,p where introduced by Peetre in [12] and are exten-
sively studied. We refer to [2, Chapter 3.2] for a detailed description of the
properties of these spaces. Here we are interested in the case where XX=X
and X2=D(A) where D(A) is the domain of a linear closed operator which
generates an analytic semigroup in X. In this case the following results can
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be proved.

Theorem 1.1. Let A: D(A)c:X-+X be the infinitesimal generator of a
bounded analytic semigroup on X. Then we have

Proof. For a proof see e.g. [2, Theorems 3.4.2 and 3.5.3]. •

The following result turns to be useful in many applications.

Theorem 1.2. Let A and B generate bounded analytic segmigroups in X.
IfD(A)^D(B) then we have

DA(θ,p)^DB(θ,p).

Proof. The result is an immediate consequence of Theorem 1.1 and of the
definitions (1.2), (1.3) and (1.4). •

2. Analytic semigroups generated by elliptic operators in Ω

Let Ωcziϊ* be a bounded set of class C2 and let E be the second order
elliptic operator geven by

(2.1) Eu ^^Djia^x) Dtu)+ Σ bt(x) Dξu+c{x) u .

Here we have set Z)t =3/3Λ;ί; moreover aijf b{ and c are given functions satisfying

Moreover let A: D(A)ciL
1(Ωl)-^L1(Ωl) be the operator defined by

j D(A) = {utΞCψ): u(x) = 0,

We denote by Ax the closure of A in L\Ω)

(2.3) AX = A.

In what follows we set X =L\Ω) and denote by || |li the norm in X. Then
we have (see [1], [11])

Theorem 2.1. There exist ω', M'ei? and <p'e]τr/2, π[ such that setting

Zφ, = {*: I arg(s-ω') | <φ'} U {ω'}

we have that Zφ> belongs to the resolvent set of Av Moreover for each

we have
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(2.4) |*-V| \\R(*,Ad\\iU>£M'

where R(zy A^iz-Ά^1.

The following theorem establishes further properties of the resolvent ope-
rator.

Theorem 2.2. There exist ω>ω', M>M' and <pe]τr/2, φ'] such that for
each z verifying | arg(#—ω) | <φ we have

(2.5) | a - ω Π l A R(*,A)ILα)^Λf.

Proof. Assertion (2.5) can be proved using the results of [13] and an argu-
ment similar to the one used in [3, Lemma 4.3], •

In what follows we assume that Ax satisfies (2.5) with ω=0 (if this is not
the case then Ax is replaced by Ax—ωl). As a consequence of (2.4) (with ω =0)
we have that Ax generates a bounded analytic semigroup S(t). Then there exist
MQ and Mι such that

(2.6) \\S(t)\\L(x)£M0,

(2.7) tW

Moreover from (2.5) we can establish further properties for the semigroup
S(t). We have

Theoerm 2.3. There exists M2 verifying

(2.8) t* \\DiS(t)\\L(x)^M2.

Proof. Let φ be given by Theorem 2.2 and set Γ = Γ " U Γ° U Γ+, where

oriented so that Im z increases, and

T° == is = exp(t», -

oriented so that ψ increases. We have for t>0

2πι

Setting z'=zt we get

S(t) = — \ exp(*') R(z'lt, A,)

Therefore from (2.5) (with ω=0) we get
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HA SφWajagconst ί exp(Res') \tx\"V2d\z'\ <,const r w

and the result is proved. •

To study the spaces DAl(θ, 1) we use a further property of the semgiroup
S(t) which is established by the following lemma. Using Theorem 1.2 we
assume for simplicity that the operator E takes the form

(2.9) Eu = Σ au Du u+yu

with γG/ί (here A 7 = A

Theorem 2.4. For eαd* Γ > 0 ίΛeπ? exists M3=MZ(T) such that for
[0, T] we have

Proof. Since 9Ω is of class C2 for each # oe3fl there exists an open ball Vo

centereed in x0 such that Vo Π 3Ω can be represented in the form

xι ^ ^o(^i> ""> xι-u xι+u "•> ^n)

Now cover 3Ω by a finite number of balls Vh(h=ίy •••, m—ί) and add an open
set Vm such that F W CΩ so as to obtain a covering of Ω. Moreover denote by
{φh} a partition of unity subordinate to this covering. Furthermore fix σ>0
and denote by u the solution of the problem

(2.10) 1-X0

Setting uh=φhu we see that wA satisfies the problem

(«ί(ί) = <P* X u(t) = ^ M i (ί)+β* u(t)(2 n ) ί
where

and

(2.12) Bh u = --^Σ *

Now let h=m; since F^QΩ and wίn=0 on P\P>m we have

A «»(') = 5(0 Dt «o,M+ Γ S(ί- ί) S. . . u(s) ds
Jo
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where

(2.13) Bkιm u =Έ(Dk au) Du um+Dk Bm u .

Therefore using (2.8) and interpolatory estimates for | |A w|li we get

θ*«b.Jli+Γ-^= [ Σ IIAi«(*)lli+I

Jo v t—s **j=1

Now we have from (2.6) and (2.8)

and

so that

HA*μ.Wlli^Φ lkίlι+f# - ^ = Σ HAi«(*)lliΛ

and hence

(2.14) ΣIIA ytUOIIi^Γ)[!Jτf+Ji7^7 ΣJ|Dίyw^lkds].ΣI

Further fix A G [ 0 , m—1], Using local transformation of variables we may as-
sume that VhΓ)dΩ can be represented by xn=0 (and that for xGVhf)Ω we
have #Λ>0). Therefore for kΦn we have that the function wk—Dk uh satisfies

wk(t) = S(t) Dk «„,*+ (' S(t-s) Bk,h u(s) ds
Jo

where Bkh is given by (2.13) with m replaced by h. Hence by a computation
similar to the one used above we find for (/, Λ)=f=(w, n)

(2.15) HA* uh(t)\\^c(T) β + Γ -ηί= Σ IIA y "Wlli ds].

Moreover for (/, k)—(n, ή) we have from (2.11)

(2.16) HA,.uh{t)\\ι = l l ^

Hence from (2.15) and (2.16) we find that there exists a constant (again denoted

by c(T)) verifying
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f
i,j=i Vtσ Jo V ί—s '•.;=!

so that from (2.14) we get

(2.17) Σ HAv «(0lli<<Ό { 1 τ=+Γ - 4 = [ ΣIIAy «M
«,y=i v i e J o y ί—ί l^'==1

Now we have fiom (2.7) and (2.10)

HA uWII^M, Iklli τ χ - < ^ i I kill

and finally from (2.17) we find that there exists a constant (again denoted by
c(T)) such that

Σ HA, "(*)lli<^) { ^ i + Γ -L= Σ HAv uWill Λ}.
ij=i Vtσ Jo V t—s '.i=i

Hence using GronwalΓs generalized inequality (see e.g. [9, Chapter 7.1]) we
get (for some constant depending on T)

so that the result follows by taking σ=t. •

3. Characterization of interpolation spaces between D(A^ and

Let A1 be given by (2.1)—(2.3). Then we have the following result.

Theoerm 3.1. For each 0e]O,l[ and \<p<°° we have

where V=L\a)y W2'1=W2-\n) and W\-l=W\'\a).

Proof. From Theorem 1.2 it suffices to prove the theorem in the case
where Ax is given by (2.2)-(2.3) where E is given by (2.9) and satisfies (2.5) with
ω=0. Now we have

therefore using (1.2)—(1.4) we obtain

(3.1) (L\ w^ n wi \p^ (L

Conversely let u^(L\ D(A1))e>p and set for ίe[0, 1]
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(3.2) u = u-S(t) u+S(t) u=[t Aλ S(s) uds+S(t) u = vx+v2.
Jo

We have

M\ι<\t\\ΛιS(s)u\\1dsy
Jo

moreover α 2 e W2Λ Π W\Λ and

<M 0 | |« | | I+ Σ HAv Γ S(sβ) Λ5(ί/2)« ΛH.

<const [ | |M | | 1+j' i"11|^5(*/2) «|L * ]

where we used (2.6) and Theorem 2.4. Therefore we obtain for ίe[0, 1]

K(t,u)= inf
+ "

<const [ί INIx+Γ Wis) MIL rfί+ί ί1 r 1 WA.Sisβ) u^ ds].
Jo Jt

Now we have ίΓ(ί, tt^lMl! (choosing u1=u and w2

=θ) a n d hence

ίC(f, z/)<const [min(l, t) IMU+ Γ IIΛSW wIL Λ+ί Γ r 1 H^^/2) uH, ds].
Jo Jί

Therefore for each 0e]0,1[ and ί<p<oo we get

Γ°° (Γβ K(t9 u))prι ώ<const [Γ°° (Γβ min(l, t))pΓι dt \\u\\{+
Jo Jo

Γ " r 1 A ( r (' HA S(*) Mil, Λ)Ή-Γ" r1 it{fi- Γ°° r111^5(1) u\\, ds)"],
Jo Jo Jo Jt

so that using Hardy inequality (see e.g. [2. Lemma 3.4.7])

( r K(t, «))*r' Λ^conβt [||«||{+ \*~ (sι-° HA^M all,)'*-1 ds],
JoJo

and hence from Theorem 1.1

(3.3) (L\ DiA^,^(L\ W2-1 Π Wl \ p .

Hence the desired result follows combining (3.1) and (3.3). •

Corollary 3.1. For each 0e]0,1[ and \<p<oo we have

DAl(θ9p)^(L\W^f]Wl\p

Proof. The result follows from Theorems 1.1 and 3.1. •
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In view of the study of parabolic equations in L\Ω) (see sect. 4 below) it
is convenient to consider the casep=\.

Theorem 3.2. For each 0e]0,1[ we have DAχ{θy 1)^£2<M(Ω), where

if O<0<l/2

I ( (d(xy 3Ω))-1|w(Λ?)l^< + °° > i f θ = V2

ί J P ^ Ω ) n ^ ' ( Ω ) , if ii2<θ<ι.

Here W2Θ'1(Ω,) denotes the Sobolev space of fractional order, BU(Ω) denotes the
Besov space and d{xy 9Ω) the distance from x to 9Ω.

Proof. The result follows from Theorems 1.1 and 3.1 and from the chara-
cterization of the spaces (L1, W2'1f]Wl'1)ΘΛ (see Proposition 1 of the Appen-
dix). •

REMARK. In the case Ω=Rn the results of Theorem 3.2 where presented
in [5].

4 Parabolic second order equations in L1

Let E be the operator given by (2.1) and consider the problem

( ut(ty x) = Eu(t9 x)+f(ty x),

u(t,x) = 0, t>0,

w(0, x) = uo(x)>

(4.1)

Regularity results for parabolic equations with / in L^(0, T; L9(Ω,)) and u0 in
Lq(Ω) are well known in the literature if \<p> ?<°o. In this section we study
in a quite complete way also the case p=q=ί by using the abstract results of
[4, sect. 8] and Theorem 3.2.

To state our results it is convenient to introduce some notation and defini-
tions. Let Y be a Banach space and let a<b be real numbers. We shall be con-
cerned with the following spaces of Y-valued functions defined on [a> b]

L\a, b; Y) is the space of measurable functions u such that ||κ( )||y is inte-
grable in ]a> b[,
C(a, b; Y) is the space of continuous functions on [a, b],
WlΛ(a, b; Y) is the space of functions u of L\af b; Y) having distributional
derivative in L\ay b; Y),

L\{ay b; Y) = {u^L\6y b; Y), for each a<€<b} ,

Wi'\ay b; Y) = {u<ΞWι>\Sy b; Y), for each a<6<b} ,

Wθ'\ay b\ Y), O<0<1, is the Sobolev space of functions u oΐL\ay b; Y)
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such that

\Tdt\Tds\\u(t)-u(s)\\γ I f_,|-*-•< +oo .
Jo Jo

0

Finally B2Θ>\Ω) is the Besov space introduced in Theorem 3.2 and D(AX) is the
domain of the operator Ax given by (2.2)-(2.3), i.e.

D(AX) =

where Eu is understood in the sense of distributions.

The following theorems describe the regularity of the solutions of (4.1)
when the regularity of/and u0 increases.

Theorem 4.1. Let /eZ^QO, Γ[xΩ) and uQ<ΞL\Ω). Then (4.1) admits a
unique generalized solution u and we have

(i) u(t, )eC(0, T;L\Ω))r)L\0, T;B2^(Ω))Π Wβ-\0, T; L

for each

u(t, ) (Ξ Wβ-">\0, T; B2«>\Ω)), for each 0<a<β< 1 .

Proof. The result follows from [4, Th. 28] and Theorem 3.2. •

Theorem 4.2. Lelf(t, -)ξΞL\0, T; B2β \Ω,))y for some O<0<1. Then for
each WQGL^Ω) (4.1) admits a unique solution u and we have

i) u{t, )eC(0, T; L\CΪ))nLί(0. T; D{AX))n WV{0, T; L\

ii) u(t, -)eL\0, T; B2ί> χci)) n Wβ \0, T; L\Λ)) Π W^' \0, T;
for each 0<a<β<l.

0

If in addition u0^B2y'\D,)yfor some 0<<y<l, then we have for δ=min (θ> <y)

iii) u(ty )eC(0, T; B2S'\Ω)) Π W«'\0y T; BP \n)), for each 0<a, β<l,

B2iv) Eu{t} OeZ^O, T; B2*'\a)) fl W75'1^ Γ; LJ(Ω)) Π ̂ - - ^ ( O , T; B2«'XΩ)),
for each 0<a<δ<ϊ ,

v) n ( / J ) Z 1 ( 0 Γ J B l

Proof. The assertions follow from [4, Th. 29] and Theorem 3.2.

Theorem 4.3. Letf(t, ) e PTM(O, T; L\Ω)),for some 0<θ<ί. Then for
each uQ&L\Ω) there exists a unique solution u of (4.1) and we have

i) u{t, )eC(0, T; L\Ω)) Π U(0, Γ; Z)(A)) Π ̂ ' ( O , Γ; ^
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ii) u(t, .)e=Zi(O, T; B2β>\ίl)) Π Wβ-\0, T; L\Q)) Π W^ '^O, Γ;
for each 0<a<β<l.

0

If in addition uQ&B**Λ(Ω), for some 0 < γ < l , then we have, for δ=min (0, γ)

iii) u(t, )eC(0, T; BP-Xn)) Π WΛ-\09 T; BP-XQ)),
for each 0<a3 β<l, a+β=l+8 ,

iv) ut(t, -)ezLX0, T; JP ^Ω)) Π ΪF ^O, Γ; L^Ω)) Π W'-*-χθ, T; fr*-χn)),
for each 0 < α < δ < l ,

v) Eφ,-)eW*-χ^T\Lχn)).

Proof. The assertions follow from [4, Th. 30] and Theorem 3.2. •

Appendix

We want to give here the proof concerning the characterization of the in-

termediate spaces (L^Ω), W2'Xa){\ Wl>XΩ))9tl9 for O<0<1, which has been

used in section 3. If Ω is of class C2 using local change of coordinates it suffi-

ces to consider the case Ω=R+ where

If ^φl/2 this characterization can be deduced from kown results (see e.g. [2,
Th. 4.3.6]) but we give here a direct proof for all O<0<1 in order to make the
paper self-contained.

In what follows we denote by ΰr'1(i2+), for 0 < r < l , the Besov spaces de-
fined as

Xmy. Hr{u) = ( dy \ dx \u{x)+u{y)-2u(^]v

\χ—y\~n~r<+°°}

endowed with the norm

IMU"> = INIf+Hr(u)

where || ||ί" denotes the norm in LXR+), whereas for l < r < 2 we define

β' 1 ^ ) = {ue-W-XRiy. DjU(ΞB'-χRn

+)}

with the norm

It is known that if r Φ l we have BrΛ(Rn

+)=WrΛ(Rl)f the usual Sobolev spaces
of fractional order.
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Proposition 1. We have {L\R\), W2 ϊ(Rl)C]Wl'1(Rl))β>1=βλβ \Rl),
where

XRV), if O<0<l/2

(O"11 «(*) I dx< + «*> , */ 0 = 1/2

In proving Proposition 1 we need some preliminary result. Set

N+(t,u)= sup \\u(')+u( +2y)-2u(.+y)\\ΐ
O<W<<Λ>O

and

Then for each 5 G ] 0 , 1/2] it is easily checked that

(1) \RH dy \^ dx I u(x)+u(y)-2u ( * ± 2 ) | | * - y |

< const Γ°° Γι-2θN+{t, u) dt.
Jo

Moreover we have the following result.

Lemma 1. Let us denote by XBΛ th: Banach space corresponding to the norm

IIHII.+.i. Then

Proof. Given u^L\R\)y let us introduce the function U^L\Rn) defined
as

— t t ( * ' , — X) , if Xtι

Furthermore set, for 0e]O, 1[

P
Jo

\R")
where | |-1^ denotes the norm in L\R") and

N(t, U) =oSup<J|C/( )+C/(

Then (see [2, Prop. 4.3.5])

(2) lll llk^H IUi

where Btβ ι=Bt9Λ{R"). Moreover one easily obtains, for each 0e]0,1[ (here by
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c% c'\ c"> ci9 we denote various constants)

(3) \\\U\\\9^c \M\\ti£C [| | |£/|| |M+( „ (χΛ)-2i \u(x)\dx)

and

(4) \\U\\B*.*<:c" [II«II^.'5B,

where Blβ 1=B2β \R%). Now let θ<ίβ; we have (see [7, Th. 1.4.4.4])

(5) ( (*.)-* K*) I ^ ^ c o n s t Httll^.1.

Therefore from (1), (2), (3) and (4) we get, for

which, together with (5), proves the assertion if
Finally let 0>l/2. If ueW" \Rl)Γ\Wl'\Rn

+) then UeW» χR") and
(5) holds (see [7, Th. 1.4.4.4]). Therefore from (2), (3), (4) and (5)

Conversely let W G Z M ; from (2) and (3) we get

H
so that u e W^^Rl) and

I
Finally the assertion u^W\Λ{RX) follows from the fact that u^WlΛ(R\) and

( .(*.)"" N*) I Λ < +oo
JR\

implies that u{x\ 0)=0. •

Proof of Proposition 1. For simplicity in notation we restrict ourseleves to
the case n=2. The method of the proof will lead the way for all n> 1.

In what follows we denote by Qt} for ί>0, the subset of R\ defined as

moreover we set c=(4y/~2)4. Furthermore, given weL1(Λ+), we denote by vx

and v2 the functions defined as
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and

j J A = 2Π

Moreover set a)i=rt"4(©1—v2), Z02=cf(ί+#2)~
5(ϊ>i—ί>0 and «!=«+«;!—a>2, «j=

—ίoι+s»2. Then we have that u=u1+u2 with «1eL1(Λ+) and « 2 e ϊ F 1(Λ!j.)n
Wl \Rl). Furthermore, using the fact thaty 2 +^2^t(2\ r 2)~ 1 , we get

(6)

and

\t+x2-(y2+z2)\5

^Λ (o * o * f ^ if *ψ

where c' denotes a constant. Therefore setting

L(t, u) = ( ^ [Γ |«(«
JR JO

we obtain

(7) \\w2\\i£

Concerning M2 we have

(8) M\t£C \\u\\t.

Moreover, to estimate ||jDi,*«2llî < l e t u s note that

[u(zit xk+tlVΎ)~2u(zh xk+tl2V 2 )-u{zh xk)] dz,

where iφh. Moreover

dz2 [u(zly

+2u(z1-tjW 2",
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Thereofre for each ft, k we get

Now we have ||A,i ^ l l ί^HA.i willί" s o Λat (9) holds for h=k=l with wx re-
placed by w2. Furthermore

. , 1

Now we get

h+Iz^lD^w^t+c^llulltKcΊ-'lN^^+Mlt]

where we used (9). Furthermore, proceding as in (7), we obtain

I2<c'Γ2L(t,u).

Therefore

(10) \\D2,2w2\\t<c'Γ2 i\\u\\t+N+(t,u)+L{t,u)} .

Finally in a similar way we get

(11) IIA.2 willf <c't-> {N+(t, u)+L(t, u)} .

Summarizing using (6)—(11) we obtain that given ue.L\R\), we can write
u=u1+u2 with u^L\R\) and «,e FP W ) Π W\-\R\) and

Ifcllί^ΛΓ+fc «)+<:'£(/,«)

and

where || ||J denotes the norm in W2*\R\). Therefoie (see (1.2)) there exists
cλ such that

(12) K{t\u)<cλ [iV+(ί,«)+min(l, t) | |α| | ί

Conversely let «=« 1 +« 2 with u^L\R\) and
Then we have

(13)

and

(14) N+(t u)<N+(t, uJ+N+ίβ,«2)<:4 Mlt+f ||«2||2
+<4K(f, u)

the third estimate following by
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u(x)-2u(x+y)+u(x+2y) = 2 ("' ds Γ dσ -f- J _ φ
Jo Jo oί 0σ

Furthermore

(15) L f r w ^ l k l l i + J ^ t J ^ £2<ίy2 J*"<% \D22u2(x1)ξ2)\

so that

Finally from (12)—(15) we obtain that there exists c2 such that

^( ί 2 , u ) £ C l [JV+fc w)+min (1, ί2) ||«||ί-

Therefore

Γ~ r1-' X(ί, u) dt = 2 ί+" r1"2" X^,«) Λ< eί [Γ~ rχ-2β iV+(<,«)
Jo Jo Jo

+ (+0° r ι"2 L{t, u)dt]^c'2 ( + " r1""K(t, u)dt.
Jo Jo

Now

P r1-2* L(ί, u) dt = const ( _ (^2)-2β | φ ) I J Λ ,
Jθ JR%

therefore the desired result follows from Lemma 1. •
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