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1. Introduction

Let G be a finite group, Z the ring of integers and @ the ring of rational
numbers. For R=Z or @, R[G] denotes the group ring of G over R. Put
GL(R[G]):li_rr: GL,(R[G]) and E(R[G])=[GL(R([G]), GL(R[G])] the com-
mutator subgroup of GL(R[G]). Then K (R[G]) denotes the quotient group
GL(R[G])/E(R[G]). The na:ural inclusion map ¢: GL(Z[G])—GL(Q[G)) gives
rise to a group homomorphism iy: K\(Z[G])—>K(Q[G]). Then SK,(Z[G]) is
defined by setting

SK(Z[G]) = ker iy .

In [9], C. T.C. Wall showed that SK,(Z[G]) is isomorphic the torsion sub-
group of the Whitehead group Wh(G) of G. Since it can be shown that

SKA(Z[G]) = ket (Res: Wh(G) — & Wh(C)),

SK,(Z[G]) gives information which cannot be obtained by restricting Wh(G)
to @ Wh(C), where ¢ is the class of all cyclic subgroups of G.

Cee
Incidentally, Whitehead group plays a role not only in studying simple

homotopy equivalences of finite CW complexes, but also in classifying manifolds.
The s-cobordism theorem says that if M and NV are smooth closed n-dimensional
manifolds, where n>5, and if W is a compact (n-+1)-dimensional manifold
such that 8W=M || N, and such that the inclusions M—W and N—W are
simple homotopy equivalences, then W is diffeomorphic to M X [0, 1] (see [5]).
For a finite group G, SK,(Z[G]) has been calculated by several authors.
Let Z,, be a cyclic group of order m. At first, it was shown by Bass, Milnor, and
Serre ([1]) that SK,(Z[G])=0 if G is cyclic or if G=<(Z,)" for some n. Also, it
was shown by T.Y. Lam ([3]) that SK(Z[G])=0 if G=Z,» X Z,, for any prime
p and any n. Later, it was shown by R. Oliver ([8]) that for a finite abelian group
G, SK,(Z[G))=0 if and only if either G=¢(Z,)", or each Sylow subgroup of G
has the form Z,» or Z,»X Z,. As far as non-abelian groups are concerned, it was
shown in [2], [4], [6] and [7] that SK,(Z[G]) vanishies if G is a dihedral group.
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The purpose of this paper is to determine SK,(Z[G]) for finite solvable
groups G which act linearly and freely on spheres. As in [10, Theorem 6.1.11],
there are 4 types for such kinds of groups. For the convenience of the reader,
the table of these groups are cited in Appendix. In order to state our main
theorem, we prepare the following notations.

Let G,, G,, G; and G, denote the groups of type I, II, III and IV respecti-
vely mentioned in the table in Appendix. Let (a,, @, :**, a,) denote the greatest
common divisor of integers {a,, a,, -**, a\}, and let m, n, 7, [, k, , v and d be the
integers appeared in the definition of G|, G;, G3 and G,. For positive integers
a, B, v and §, put

Mg = (r*—1,m),

D(a) = {x=N| x is a divisor of a} ,

D(a, B) = {xD(a)| x can be divided by 8} ,
D(@) = €D ()| xy=0(8)} .

If d is an even integer, we put d'=d/2, and put

1(2) = #4(@, B)| BED(©)—s, €€ D (Myss)
(a+aMysg) (I—1, r*—1) = 0 (m)
for some integer a with 0<a<<m|/Mg}
—# U D(m)G_y,pm/so1, 204 5

0<b<d
A=0,1

£(2) = #4(, B)| BED(0)i1, ¢ D(Mys),
(a+aMyg) (I—1, r"*—1)=0(m) or
(a+-aMug) (B —1, r"/*—1) = 0(m)
for some integer a with 0<a<<m/Mug}

_#OSF.J« D (m)?;—l.r”/‘—l,l)‘rb+1) u D(m)??r"’—1,,'-/4-1,:*,5“)) ’
A=0,1

3= 3 $D(Mp)—1,

Bep(n,3

th) = > #D(Mp)— > #D(Mp)T..

Bebp(,3) B epcn,s)’,; +1

We are now ready to state our main theorem.

Theorem. (i) SK(Z[G])= 0.

(i) SKY(Z[G,))=Z}® if dis an odd integer,
SK(Z[G,))=Zi® if dis an even integer.

(i) SK,(Z[Gs])=Zi®.

(iv) SK(Z[G])=2Z®.
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ExampLE 1.1.  When d=3, we have
(i) SK(Z[G)) =zt
(i) SK(Z[G,]) = Z{P®40m—40m3), 4Dm]},

ExampLE 1.2. For G,, when m=35, n=72, r=4, k=55, =29, we have
d=6 and then,

SK(Z[G,]) = Z¢ .

This paper is organized as follows: In Section 2 after proving (i) of The-
orem, we state some lemmas and propositions that are necessary for the proof
of (ii), (iii), (iv) of Theorem. From Section 3 to Section 5 we prove (ii), (iii),
(iv) of Theorem. Section 6 presents the proofs of the lemmas in Section 2.
Appendix is devoted to quoting the table of the finite solvable groups from [10]
which act linearly and freely on odd dimensional spheres.

I would like to thank Professors K. Kawakubo and M. Morimoto for their
many helpful suggestions.

2. Preliminaries

For every odd prime number p, since the p-Sylow subgroups of Gy(1<i<4)
are cyclic, it follows from [8, Theorem 14.2] that SK,(Z[G])»=0. Moreover,
Syl(G,) the 2-Sylow subgroup of G, is cyclic. Hence, by [8, Theorem 14.2],
we conclude that SK,(Z[G,])=0.

For the calculation of SK,(Z[G,]) (2<i<4), we will use the following lem-
mas:

Lemma 2.1. ([10, Theorem 6.1.11]). Syl (G;) == <R, B">=Q2*** Syl, (G,)
=P, @>=Q8, and Syl,(G,)=<P, Q, R>=<{PR, P>=Q16, where Q2¥ denotes the

generalized quaternionic group of order 2%,

When H is a subgroup of G, C;(H) denotes the centralizer of H in G and
N(H) denotes the normalizer of H in G.

Lemma 2.2. ([8, Example 14.4]). Let G be a fihite group whose 2-Sylow

subgroups are dihedral, quaternionic, or semidihedral. Then
SK\(Z[G)w=Z:,

where t is the number of conjugacy classes of cyclic subgroups o CG such that (a)|o |
is odd, (b) C¢(o) has a non-abelian 2-Sylow subgroup, and (c) there is no g Ny(o)
with g x g™ '=x"" for all x€ 0.

By Lemma 2.1, G,, G; and G, satisfy the assertion in Lemma 2.2. We now
prepare the next lemmas for the calculation of SK\(Z[G)]) (i=2, 3, 4), whose
proof will be given in the last section. For integers o and B, we put D(a)=
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{x&N |xis a divisor of a}, Mg=(r’—1, m). Then
Lemma 2.3. For any B D(n), we have ((r"—1)/(rP—1), Mg)=1.

Lemma 2.4. For any integer o, we have

(m, rP—1,

1
1 = (0[, Mﬁ) .

Lemma 2.5. Let <A*B") be the cyclic group which is generated by the ele-
ment of the form A*B*. We put B=(n,v). Then, there exists an integer o such
that {A*B">={A" B®>.

Proposition 2.6. Let o be an integer, and B an element in D(n). Put n'=
h|B. Then we have
Mg-n'

My )’

Proof. It is clear that |[{A”BP>| is divisible by n’. We have (4 B?)"' =
AsC"DIEB-D Pyt 1=mes, r"—l:Mﬂ-s, and m:MB-t, then we have
(r"—1))(rP—1)=t-s'[s. Set Mp=ai*-a, t= Bf-8, and s=y8...q8. where
a;, B; and ;are prime numbers, and e f,, g, are posmve integers. By the fact
(¢,s)=1 and Lemma 2.3, we have s'= ,Bf 1 ,Bf K g‘ ')fg‘ 8M...8" for some prime

numbers §,, -+, §,, non-negative integers f1, «-+, f,, and positive integers gf, -+, g/,
hy, «-+, he, with gl >g; (i=1, ---¢). Since

[<4"BF>| =

”__1 Yy ’ ’ _ — :
:ﬂ 1 ]ftnfss: SRR AREAR Y SN SR L
— o

the smallest positive mteger x satisfying that a” 5 Hence

we have |[<A*Bf>|= '
(Mp, a)

Proposition 2.7. Let o and o' be integers, and 3 and B’ elements in D (n).
{A*BP is conjugate to {A¥ B¥> in G,, G, and G, if and only if |{A*BP>|=
I<4*' B*)|.

Proof. Suppose that |[<A4*BFf>|=|<A* B¥>|. By using Proposition 2.6,
we obtain that 8=8’. Since

A‘(AMBB) A~ — Aoﬁ-a(l—yﬁ) Bﬂ and (AuBﬂ)cn-i—ﬂ/B — Am(1+c(r”—1/r3-l)) Bﬁ

—1
x=0(m) is
— (m) (a, 2

for any integers a and ¢, by Lemma 2.4, two cyclic subgroups whose orders are
same are conjugate. 'The converse is clear. O

As an immediate consequence of Lemma 2.5 and Proposition 2.7, we have:

Proposition 2.8. Let p and v be integers. Put B=(v,n), then there exists
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an element o€ D(Myg) such that A" B*) is conjugate to CA® BP.

3. Proof of (ii) of Theorem

Every element in G, is represented by the form 4*B R’ for some integers
w and v, where e is either 0 or 1. We see that |{4*BYR)| is even, and that a
generator of a cyclic subgroup of odd order is represented by the element of
the form A% B*" for an integer »’. Put 8=(v,»’). By Proposition 2.8, there
exists an integer a&D(Myug) such that <A*B**") is conjugate to {A4*B*#).
Thus, from now on, we will consider the cyclic subgroups generated by the ele-
ment of the form A” B¥® for any B€ D(v) and any o€ D(Myps).

At first, we state some observations on G,.

Observation 3.1. 2v is divisible by d.

Proof. Since 7"=r*"'=1(m), d is a common divisior of # and k—1. Since
k+1=0 (2°), (k+1, k—1)=2, and ©>2, k—1 is divisible by 2, but not divisible
by 4. Since n=2"v, d is a divisor of 2v. O

When d is an even integer, we put d’=d/2. Then we have:
Observation 3.2. For any integer a,
<Aa(l—yn/4) Bn/4’ Aa(l—l) R> o~ QS .
If d is an even integer, then for any integer a,
< Asa-r"% B4, Asa-ir?y pa’ R>=Q8.

Lemma 3.3. In the case that d is an odd integer, for any @< D(v) and any
aED(Myg), Co(KA* B¥P)) has a subgroup H which is isomorphic to Q8 if and
only if B(k—1)=0 (v) and (a+a(r**—1)) (I—1, r"/*—1)=0 (m) for some integer a.

In the case that d is an even integer, for any B€ D(v) and any ac D(Myg),
Cs(CA® B¥®)) has a subgroup H which is isomorphic to Q8 if and only if B(k—1)=
0(v) and (a+a(r**—1)) (I—1, r*—1)=0(m) or B(k—1)=0(v) and (a+a(r***—1))
(Ir* —1, r*—1)=0 (m) for some integer a.

Proof. In the case that B(k—1)=0 (v) and (a+a(r**—1)) (I—1, r*—1)=
0 (m) for some integer a, we see that Co(CA® B¥®y) DA™ Brls| 420-D R,
In the case that B(k—1)=0(v) and (@+a(r*?—1)) (¥ —1, r"*—1)=0 (m) for
some integer a, we see that CG(<A“BZ"“>)D<A"“""“) Bt 4ea-1") B’ R
Conversely, assume that C4(<A® B*?>) has a subgroup H which is isomorphic to
Q8. Since K=<B’, R} is one of the 2-Slyow subgroups of G and H is a 2-group
of G, we have g"'HgC K for some g&G. Now we consider the quotient group
of K/<B"> and the projection p: K—K/<{B’>. Since ker p=<B’) and g Hg=
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Q8, we have ker (p| g7 *Hg)=<B"*)>. Hence, g"'Hg={B"*, B'R) for some inte-
ger T which is divisible by v. Now put g=A° B’ R where a and b are some inte-
gers, and ¢ is either 0 or 1. Then,

H= g<Bn/4’ B-rR>g-1
= A°B*R<{B"*, BR)R“B*A4"*
= A°B¥B"* B"R)> B~*A~* (for some integer 7')
= A%B" B"'R> A~* (for some integer 7”’)
_ <Aa(1—,"/4) Bt 4o0-1) BIRY

Since 420~ Bt e Cy(CA* B¥?Y), we have
(r*—1) {a(r**—1)+a} =0 (m) .
On the other hand, since 4°0-""" B"'R& C4(KA” B*?)), we have

{ (I —1) {a+a(@f—1)} =0 (m)
Bk—1)=0().

Now, since 7”’=71k+b(1—k) if ¢=1, and 7"’"=7+b(1—k) if ¢=0, we have
r"'=r". Moreover, r"=1 or 7% because 7 is divisible by v and d is a divisior of
29. Thus the lemma was proved. O

As an immediate consequence of Lemma 3.3, we have:

Corollary 3.4. In the case that d is an odd integer, for any B&D(v) and
any a€D(Myg), Co(CA® B*?)) has a subgroup H which is isomorphic to Q8 if
and only if B(k—1)=0(v) and (a-+aMyug) (I—1, r"/*—1)=0 (m) for some integer
a with 0<a<<m|Mug.

In the case that d is an even integer, for any BE D(v) and any a& D(M,u),
Co(KA” B*®)) has a subgroup H which is isomorphic to Q8 if and only if B(k—1)=
0(v) and (a+aMyug) (I—1, r*—1)=0(m) or B(k—1)=0 (v) and (-+aMyus)
(Ir* —1, r"*—1)=0 (m) for some integer a with 0<a<<m|Mu,. O

It is clear that Cg(<A®B**#)) has a non-abelian 2-Sylow subgroup if and
only if C4(<A”B*?)) has a subgroup H which is isomorphic to Q8. Let
{A®B*?> be a cyclic subgroup of G, satisfying the conditions (a) and (b). As-
sume that it does not satisfy the condition (c). In the case that (4° B?) (4% B*F)
(A° BY)"'=(A” B*P)™! for some integers a and b, we have

{ a(r®+1)=0(m)
B=0(v).
On the other hand, in the case that (4° B’ R) (4* B¥?) (A° B* R)™'=(A4" B*#)™!
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for some integers @ and b, we have

{ a+alrt—ar*Pe -+ ar 2"t = 0 (m)
Bk+1)=0(v).

Since it follows from Corollary 3.4 that 8(k—1)=0 (v), in this case we
have

{ a(lr’*+1)=0 (m)
B=0(v).

Hence for a€D(m) satisfying that a(I*r*+1)=0 (m) (A=0, 1), <4*)> does not
satisfy the condition (c). This completes the proof of (ii) of Theorem.

4. Proof of (iii) of Theorem

Lemma 4.1. Let o CG; be a cyclic subgroup of odd order. Then, there
exist B D(n) and ac D(Mp) such that o is conjugate to (A” BP).

Proof. Every element in G, can be represented by the form XA*B* for
some X&<{P, @> and some integers u and ». We see that <4"B"> has odd
order. In the case that »=0(3), we see that {(XA4"B") has even order. In the
other cases, we see that {<XA"*B") has even order or is conjugate to <4*B*>.
The conclusion now follows from Proposition 2.8. O

Hence from now on we will consider the cyclic subgroups generated by the
element of the form A®B? for B€D(v) and aD(Mp). Since <P, Q) is a
normal subgroup of G, Cg,(<A”BP)) has a non-abelian 2-Sylow subgroup if
and only if C(<A4®BPf)) includes <P,@)>. And it is easy to show that
Ce,(CA® B?)) includes <P, Q> if and only if B is an element of D(n,3). Let
{A® BP> be a cyclic subgroup of Gj satisfying the conditions (a) and (b). As-
sume that (4°B®) (A% B?) (A° B*)™*=(A" B?)™* for some integers a and b. Since
n is an odd integer, we have

a(l4+7*) =0 (m)
B=0(n).

Since (14-7%, m)=1 for any b&Z when n is odd, we have {4”Bf)=1.
This completes the proof of (iii) of Theorem.

5. Proof of (iv) of Theorem

Lemma 5.1. Let o CG, be a cyclic subgroup of odd order. Then, there
exist B€ D(n) and a s D(Mp) such that o is conjugate to <A® B®).

Proof. Every element in G, can be represented by the form XA*B" for
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some X <P, @, R)> and some integers x and v. We see that {4*B") has odd
order. And it is shown that |[<XA*B">| is even or <XA*B"> is conjugate to
{A*B*>. The conclusion now follows from Proposition 2.8. O

Hence from now on we will consider the cyclic subgroups generated by the
element of the form A4“ B? for B D(v) and e D(Mj).

Lemma 5.2. If Cg (<A BP)) has a non-abelian 2-Sylow subgroup, then
Ce, (KA B?) includes <P, <Q) or <PQ>.

Proof. We put K=<P, @, R>=<{PR, P). C;(<A®B*>) has a non-abelian
2-Sylow subgroup, if and only if Cg (<A®B?)) has a subgroup H which is iso-
morphic to @8. Since H is a 2-group of G, we have g"'HgC K for some gG.
We note that (PR is a cyclic subgroup of K whose order is 8. Now we con-
sider the quotient group K/{PR), and the projection p: K—K/{FR>. Since
ker p=<PR) and g"'Hg==Q8, we have that ker (p| g7*Hg) is a cyclic subgroup of
(PR whose order is 4. Hence we have ker (p| g7 Hg)=<{(PR)*>=<Q>. Thus,
we have g"'Hg=<@Q, (PR)*P) for some A& Z. We note that if A\ is an odd in-
teger, then g7'Hg=<@Q, R), and that if A is an even integer, then ¢"*Hg=<P, @>.
Thus, we obtain:

H={P,Q> or (RA®-DBG Q5 if b=0(3),

H = <P, Q>, (RA**~Y Bs&=Y PQS, (RA*-D B¢-1 P>
or {QRA-Y Bye-b P% if b=1(3),

H = <P, Q>, (RA*I~Y BH4=Y P% (RAI-Y B4~ PO’
or (RPAI-D BHe= PQ> if b=2(3),

where @ and b are integers. Hence H includes <P, {@)> or <P@>.

Lemma 5.3. C; (CA®B*)) has a non-abelian 2-Sylow subgroup if and only
if B=0(3).

Proof. If Cg (<A”BP>) has a non-abelian 2-Sylow subgroup, by Lemma
5.2, we have P, @ or PQ are elements of Cg (<A”B?)). In the case that P or Q
are elements of Cg (CA” Bf)), we have 8=0 (3) as in the proof of (iii) of Theorem.
On the other hand it is easy to show that if PQ is an element of Cg (A" B)),
then 8=0(3). Conversely, if 3=0 (3), it follows from the proof of (iii) of Theo-
rem that Cg (<A®BP)) includes <P, @, that is a non-abelian 2-group. This
completes the proof. O

Now for @& D(n, 3) and as D(Mjg), we assume that <A B?> doesn’t satisfy
the condition (c). If (4°B?’) (A% BP) (A° BY)'=(A" Bf)™, then we have A” Bf—=
1. If (RA°BY) (A° B®) (RA* BY)*—(A® BP)™, then we have
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lar*+a(1—1")+ar? = 0 (m)
BE-+1)=0(n).

Since d is a common divisor of # and k—1, we have (k+1, d)=1, and so 8 must
be divisible by d. Hence we have a(1+Ir*)=0 (m). Since F=1 (m), we have
a(l+7r")=0 (m). By these equations, we have a(l+1)(r*+1)=0 (m). Since
(r’41, m)=1, we have a(I-+1)=0 (m).

Conversely under the conditions B(k+1)=0 (m) and a(/+1)=0 (m), we see
that R(A”BP) R™'=(A4"Bf)™, then <A”B®> doesn’t satisfy the condition (c).
This completes the proof of (iv) of Theorem.

6. Proof of Lemmas in Section 2

Proof of Lemma 2.3. Put n'=n/B and r*—1=Mg-s. Then we have

r"—1 _",_1 Bi
P—1 igor
- :gl(Mﬂ'S“f‘l)‘
=n' (Mp).
Now since (n’, Mg)=1, we have ((r"—1)/(r*—1), Mg)=1. O

Lemma 2.4 is an immediate consequence of Lemma 2.3.

Proof of Lemma 2.5. Since 8=(n, v), there exists an integer x such that
ve=B(n). Put n’=n/B, then we see that (x, n’)=1. We note that the order
of CA*B") is a divisor of mn'. If (x, m)=1, we have (4*B*)*=A" B? for some
integer a and {(4*B")">={A4*B"). If (x, m)=1, since there exists an integer
¢ such that (x+cn’, n'm)=1, we have (4" B")***" = A* B? for some integer a and
{(A*BY)*+"">—=(A*B*>. 'This completes the proof. 0O

7. Appendix ([10, Theorem 6.1.11])

Let G be a finite solvable group. Then G has a fixed point free complex
representation if and only if G is of type I, II, IIT or IV below, with the addi-
tional condition: if d is the order of r in the multiplicative group of residues
modulo m, of integers prime to m, then n/d is divisible by every prime divisor
of d.

TypeI. A group of order mn that is generated by the elements of the
form A and B, and that has relations:

A" —B"=1,BAB = A",

where m, n and r satisfy the following conditions:
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m>1,n>1, (n(r—1),m)=1,7"=1 (m).

Type II. A group of order 2mn that is generated by the elements of the
form A4, B and R, and that has relations:

R* = B, RAR = A', RBR™ = B}

in addition to the relations in I, where m, n, , [ and k satisfy the following con-
ditions:

P=rtt=1(m), k=—1(2"),
n=2"u>2(v,2)=1),F=1(n)

in addition to the conditions in I.

Type III. A group of order 8mnm that is generated by the elements of
the form A, B, P and @, and that has relations:

P*= @ = (PQY, AP = PA, AQ = Q4,
BPB!'= Q, BQB™' = PQ

in addition to the relations in I, where m, n and r satisfy the following conditions:
n=12),n=0(3)
in addition to the conditions in I.

TyPE1Iv. A group of order 16mn that is generated by the elements of the
form A, B, P, @ and R, and that has relations:

R} = P’ RPR = QP, RQR'=Q™*,
RAR™ = A', RBR™ = B*

in addition to the relations in III, where m, n, r, k and [ satisfy the following
conditions:

B=1(n),k=—1Q3),r'=r=1(m)

in addition to the conditions in III.
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