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Introduction. Let X be a nonsingular algebraic' surface defined over
the complex number field C. We call X a homology plane (resp. a Q-homology
plane) if the homology groups H^X; Z) (resp. H^X; Q)) vanish for 1 <i<4. We
can also define a logarithmic homology plane X as a normal affine surface which
has only quotient singularities and H{(X; Z)=0 for all />0.

In our previous paper [7], Q-homology planes with Kodaira dimension less
than 2 are classified and it is shown that there are many Q-homology planes
which have non-trivial automorphisms of finite order. A structure theorem is
given on logarithmic homology planes of Kodaira dimension — oo and 1. In
particular, it is proved that a logarithmic homology plane of Kodaira dimension
— oo is isomorphic to one of the following surfaces:

(1) C2;
(2) C2/G> where G is a small finite subgroup of GL(2, C);
(3) A surface X with an ^-fibration p: X->Aι such that every fiber is

irreducible and that there are N multiple fibres Hv •••, HN with respective multi-
plicities dly •••, dN, each of them carrying a cyclic quotient singular point of type
djβfy where N is an arbitrary positive integer.

Similarly, logarithmic homology planes of Kodaira dimension 1 are studied by
making use of C*-fibrations.

In the present paper we are interested in homology planes with κ=2. An
example of a contractible algebraic surface with κ=2, which is a special case of
a homology plane, was first given by C.P. Ramanujam [9] and many examples
were recently found by Gurjar-Miyanishi [2], Miyanishi-Sugie [6] and Petrie-
tom Dieck [11, 12]. We constructed in [6] homology planes by the blowing-up
method from the configurations of two curves on the projective plane P2 and
Petrie-tom Dieck [11] from the line arrangements on P 2 . In order to construct
further examples, we propose to think of algebraic surfaces with fibrations of
curves. As a natural extension of the C-fibrations and the C*-fibrations which
are so effective in the cases of /c= — oo and 1, we shall look into a surface with
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a C**-fibration, where C** is the affine line with two points deleted off. We
can consider a C**-fibration as an analogy of a fibration by curves of genus 2
in the complete case.

Besides, in the study of structures of homology planes, it is an intresting
problem to verify or negate the following:

Homology Plane Conjecture. Let X be a homology plane admitting a
non-trivial automorphism of finite order. Then X is isomorphic to C2.

In §1 of this paper, we classify singular fibers of C**-fibrations, and in
§2 we classify Q-homology planes which have C**-fibrations. In §3 we calcu-
late the homology groups H^X; Z) and the Kodaira dimension κ=κ(X) of
certain surfaces listed in §2. Thus, we obtain infinitely many homology planes
and logarithmic homology planes of κ=2 and some of these surfaces have, inde-
ed, nontrivial automorphisms of finite order, which negates the above homology
plane conjecture. We give an explicit description of those examples in §4.

By the way, there seems to be a misunderstanding about the difference bet-
ween homology planes and contractible surfaces in the case of κ = l . Petrie
proved that contracttble surfaces of /c=l have no non-trivial automorphisms.
There exist, however, homology planes with K— 1 which have non-trivial auto-
morphisms. We also include these examples in §5.

NOTATIONS: We denote by C(JV*} a rational curve C-{N points}. In par-
ticular, C* is a curve C-{1 point} and C** is a curve C-{2 points}. A ( —1)
curve means an exceptional curve of the first kind. We refer to Miyanishi
[5] for the definition of Kodaira dimension K and relevant results. We employ
also the notations and results in [7].

1. Singular fibers of C**-fibrations

Let X be a normal affine surface defined over the complex number field
C with a CCJVHί)-fibration π: X-+B, where B is a smooth algebraic curve. Let
V be a normal projective surface which contains X as an open subset and is
smooth along D: —V—X. Moreover, we assume that D is an effective divisor
with simple normal crossings and that the fibration π is extended to a Px-fibra-
tion p: V->C, where C is a smooth complete curve. Let/: W-+V be a minimal
resolution of singularities of V. Then q=p'f: W->C is a Pι-fibration on a
smooth projective surface W and if we set Y=f~1(X), p: =p\γ: Y-^B defines
a C(jV*}-fibration on Y. We identify the divisor D on V with the divisor f~ι(D)
onW.

The following property of a Pι-fibration is well-known. We shall make
use of it freely.

Lemma 1.1. Let W be a smooth projective surface with a Pι-ftbration q:



HOMOLOGY PLANES 3

W-*C and let F be a singular fiber of q. Write F= Σ m, Ft as a sum of irreduci-

ble components. Then the following hold:

(1) Three irreducible components of F do not meet in one point

(2) Supp (F) does ont contain a loop

(3) If mk~\ and n>2 there exists a ( — 1) curve in F other than Ek.

We consider first the case where D contains N-\-l different cross-sections

and denote these sections by Sv •••, SN+1. If two or more of S/s meet in one

point, we blow up these intersection points until the proper transforms of S/s

are disjoint from each other, and we include the resulting exceptional curves

into the boundary divisor D. We may thus assume that Sv S2, •••, SN+1 do not

meet. In this case we call a C ( A W-fibration π: X-+C untwisted. If not all of

S/s are cross-sections, we call a C(ΛΓ*)-fibratopm twisted. Since singular fibers

of C(Λr*)-fibrations on normal surfaces can be obtained easily from the smooth

case, we consider first a smooth afϊine surface with a C(JVϊ|ί)-fibration. We call

a fiber π~\P) a singular fiber if it is not isomorphic to CCJVϊ!ί) as a subscheme.

Let A be a singular fiber of π, let Av •••, Ak be all connected components of

A and let Au be irreducible components of A{. Let T: =p~\π(A)) be the fiber

oί p containing A. We denote by T{ the connected component of Tf]D which

intersects S{. We may assume that T t Φ φ for every /. Indeed, if Γ ^ φ , blow

up the point T f] S{ and include the exceptional curve into the boundary divisor

D. Note that Tt and Tj might coincide with each other for different indices i

and . Set

β f + l : = the number of points of (A{—A{) and a: = 2 a{,
i

where At is the closure of A{ in V. Then we have

Lemma 1.2. a<N.

Proof. We have only to consider the connected components A{ for which

Λ, > 1 . We assume that a{>l for \<i<m and a—Q for m<i<k. First, there

are ox+l connected components Tv •••, Tai+1 of Tf]D which intersect Av Sec-

ondly, there are a2 + l connected components Tai+2, •••, Tai+a2+2 of Tf)D which

intersect A2, at most one of which can be taken from 7\, •••, Taχ+1 since a fiber of

a P1-fibration contains no loops. Let a2 be the number of different connected

components in {Tv •••, Γβ l + 1, Γβ l + 2, •••, Γβl+Λ2+2} and let β2=a1+a2+2—a2.

Then α 2 ^ α i + β 2 + l a n ( i 2—β2 equals to the number of connected components
a1+a2+2

of the support of Ax+A2-{- Σ T{. In the third step, we need α 3 + l connected

components Tai+tt2+3, •••, Taι+a2+tt3+s which intersect A3 and at most 2—β2 can be

taken from T19 •••, T β l + 1 , TΛ l + 2, •••, Tai+a2+2. Let α 3 be the number of different

connected components in {7\, •••, Tai+a2+a3+3} and let β3=a1+a2+a3+3—a3.

Then Λ 3 >α 2 +{β 3 +l—(2—/3 2 ) }—^1+^2+^3+1- Continuing this way to the
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m

m-th. step, we see am> Σ «>•+!• Since am<,N-\-ί, we have the stated inequali-
ty. '"' Q.E.D.

We have also the following lemma.

Lemma 1.3. Assume N>2. If Aτeά is ίsomorphic to C( iV*) then A=Ated

and A itself is isomorphic to C{N*\

Proof. In this case, the connected components Tl9 •••, TN+^ must be all
different. If T contains a (—1) curve, we contract it. Then the images of
T/s are all different, though one of T/s might become the empty set and the
image of Aτeά is still isomorphic to C(N*K We can thus assume from the be-
ginning that Tv •••, TN+1 do not contain (—1) curves. Then Ated must be a
unique (—1) curve in T. Contract then Aled and let σ be the contraction mor-
phism. If Γ Φφ for every /, then more than three of σ(Γ, )'ί intersect in one
point, which contradicts the property of a singular fiber of a P^fibration.
Therefore at least one component of T/s is the empty set, say, Tx=φ. Then
Ated meets the section S1 and there must be a (—1) curve in the fiber T other
than A unless A=T. From the assumption that either T~φ or T{ contains no
(—1) curves, we conclude that T=A=P1 and A=CiN:¥) as a subscheme.

Q.E.D.

Lemma 1.3 states a property particular to the case N>2. For example,
a C* fib ration has a singular fiber of the form mC* (tn>2). The following result
is easy to verify if one takes into account that X is afϊine.

Lemma 1.4. If flf=0, then A{ is irreducible and ίsomorphίc to C.

From now on we restrict ourselves to the case where N=2. Let Γ be the
union of A/s for which a{>\ and let Δ be the union of A/s for which #,—0.
Then ^ 4 = Γ + Δ and Δ is a disjoint union of curves which are isomorphic to C.
With the above notations we have the following:

Lemma 1.5. Let X be a smooth affine surface with an untwisted C**-fibra-
tion p: X-+C and employ the notations A, T, Γ, Δ, T/s, etc. as above. Assume
Δ = φ . Then Γ and the dual graph of T+SΊ+S2-\-Sz are described as one of the
following:

(0) Γ=φ.
(Ij) Γ = J 1 = C * J A is a (-1) curve and (S1'F1)=(Sΐ'F2)=(S3 F2)=ί:

T: 6—o—o o o—o F2

where Tx migth be empty.
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(I2) T=AX = An+A12, where Anc^A12^C and either An or Aι2 is a (— 1) curve,

where Tλ may be empty.
(Hi) Γ = Ax = C** (This case occurs if A is not a smooth fiber, i.e., Δφφ).
(II2) Γ = A1 = An+A12j Λi —C*, Λ2 — C, Λ12 is a (-1) curve and (SrAn)

T: A

where T3 might be empty.
(II3) Γ = A1 = An+A12+A13y Anc^Al2—An — Cy Au and A13 are (-1)

- 2 — 1. -(n+m) - 1 - 2

curves

e empty.
!) Γ = J,1LΛ> A = Λ = C*, Λ and A2 are (-1) CMΓUW, and (SX F^ =

T: •-o-
-1

••-o-

where Tλ and T3 might be empty.

(Ill,) Γ = Λ!LΛ, Aι=C*, A2 = A21+A22> A21—A22^C, Aι is a (-1) curve,
either Λ21 or A22 is a (-1) curve and (5, iϊ'1)=(5?.F2) = (S3 F3)=1:

Si

T:
(-1)
• -o-
A

o-

*! and Ts might be empty.
( ) T = A1]\_A2, Ax^= An

J\-A12y A2 = A2i-^
either Λn or Λl2 is a (—1) curve, either A2ι or A22 is a (—1) curve and {Sx F^-=
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where Tx and T3 might be empty.

Proof. We use the notations set forth before. We can assume that Tv T2

and Γ3 do not contain (—1) curves other than those which intersect at least two
sections.

(1) Case α = l . In this case Γ ^ ^ .
(1-1) Consider the case where Ax is irreducible. Then AX^C*. We may as-
sume that T2=TZ and Ax intersects Tx and T2. Then T must contain curves
whose dual graph is given as follows:

A , F2 ° ° F3

where (S1-F1)=(S2 F2)=(S3-F3)=l. From the assumption, we see that T
does not contain other components than those included in the above dual graph.
Since there exists a composite of blowing-downs r such that τ(T)=τ(F2)^Pι,
the above dual graph must contain a (—1) curve in the branch on the right
hand side of F2 of the graph unless F2—Fz. Thus we have F2=F3 and Ax

must be a (—1) curve. This case corresponds to (lx) in the statement of the
lemma.
(1-2) If Γ = A is reducible, we have Aι=Au+A12 and An=Aι2^=C. We can
show the statement in (I2) be a similar argument as in (1-1).

2) Case a—aλ=2. In this case T=AV

(2-1) If Ax is irreducible, Lemma 1.3 shows that A is a smooth fiber.
(2-2) If Ax is reducible and consists of two components, we have Ax=An-\-Ax2

and ^4n^=:C* and Ax2—C. We may assume here that Tx and T2 intersect Axι and
Γ3 intersects with Ax2. Then, by these assumptions we know that the dual
graph of T+Sx+S2+S3 is given as follows:

S, Tx

s2 τ2
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If Au is a (—1) curve, by contracting A1V we can easily show T1=T2=φ.
Then since Au intersects the sections Sx and S2, there exists another (—1) curve,
which must be A12 and we have Tz—φ. If A12 is a (—1) curve, first contract
Aι2 and continue the contractions of the curves Fv •••, Fn_x contained in Tz and
assume that after contracting Fn_v An becomes a (—1) curve. At this step, we
get to a situation similar to the above. This means that Aιv Aι2> Fv •••, Fn_x

exhaust all curves in the fiber T. The statement in (II2) is now easy to prove.
(2-3) If Ax is reducible and consists of three components, Ax=An-\-A12+Al3

and Alί^A12^^Aιf^.C. Arguing as in (2,2), we can prove the statement in
(Π,).

(3) Case α=2, a^=a2=l In this case Γ=Aι]\_A2. We divide it into the
following three cases:
(3-1) Aλ and A2 are irreducible.
(3-2) Ax is irreducible and A2 is reducible.
(3.2) Ax and A2 are reducible.
In each case we argue as in the cases (1) and (2) and obtain accordingly che state-
ments from (IIIJ to (III3). Q.E.D.

The method of obtaining a singular fiber in the case where Δ φ φ from one
of the above singular fibers is explained in [7]. Namely, starting from an ini-
tial point Po in T Π D, we obtain a component of Δ as follows:
(a) If PQ is an intersection point P0=FiΓϊFj of two components F; and Fj of
T, let σx: Z^V be an oscilating sequence of blowing-ups with initial point Po.
The dual graph of the configuration of curves F1+σT1(Po)+Fj is given as fol-
lows:

- 1

We say that this oscilating sequence of blowing-ups is of type (a),
(b) If Po belongs to only one component F{ of Γ, let σx\ Zx-+V be an oscilating
sequence of blowing-ups with initial point Po. The dual graph of curves
jF.-f σT\P0) is given by one of the following:

"

We say that an oscilating sequence producing the dual graph L2 or L3 is of type
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(b-1) or (b-2), respectively.

Next we choose a second initial point Pλ from Ex. If P1 is an intersection
point of Ex with other component of the fiber, we perform an oscilating sequence
of blowing-ups of type (a). If P1 does not belong to other components of the
fiber, perform an oscilating sequence of blowing-ups of type (b-1).

We proceed this way several times and at the last step we perform an oscila-
ting sequence of blowing-ups of type (b-2). Then we obtain a surface Z and a
(—1) curve E which is an end component of the dual graph of the curves contain-
ed in the fiber corresponding to T. We include all exceptional curves obtained
by the above sequence of blowing-ups except for E into the boundary divisor
D. Then E—D—C is a component of Δ. Every component of Δ is given in
this fashion. We denote by (II2)(*)> for example, a singular fiber which is ob-
tained by adding k components of Δ to (II2).

Next, we consider the case where affine surfaces have twisted C**-fibrations.
We use here the notations similar to those employed above. Let π: X—>C be
a twisted C**-fibration. There are two cases to consider, that is, the case where
p has two sections Sx and S2 contained in D such that deg p\Sl=-l and degp\s2

=2, and the case where p has one section contained in D such that deg >̂ | s = 3 .
We call the first the 2-section case and the second the 3-section case, respectively.

L e m m a 1.6. Let X be a smooth affine surface which has a twisted C**-

fibration p: X->C.

(A) The 2-section case. Assume A=φ. Then Γ and the dual graph of

T+S^Sz are exhausted by one of the following graphes (IV-0) to (IV-3) which

correspond to a fiber containing a branch point of p\s2- S2-*C and by one of the

modifications of the graphes listed as (I1)-(Π3) in Lemma 1.5, where S2 meets a

fiber in two points and two branches of the 2-section S2 are identified suitably with

two of three sections Sv S2 and S3.

(IV,) Γ = AX = C*:

T:
. - 2 - ] 2

o

Sx 6 ό S2

(IV2) Γ = Ax = C* βnt/ ̂  £y Λ (—1) curve:

T:
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or

T:

Si

(IV3) Γ = A1 = An+A12f An=Aι2^C, either Au or A12 is a (-1) α<m?:

71: O -O —O O-

Sfi " L

or

—o
A

n

(B) The 3-section case. Assume Δ = φ . Then Γ and the dual graph of T+S
are exhausted by the modifications of the graphes (Iι)-(IV3) in Lemmas 1.5 and
1.6(A), where the 3 -section meets a fiber in either 3 points or 2 points and zve
identify accordingly branches of the 3-section S either with sections Sv S2 and S3

or with the section Sλ and the 2-section S2y and the following extra case:
(V) Y—φy which corresponds to a fiber containing a totally ramified point of p\s.

Proof. Note that we have a<\ in the case (A). The proof in this case is
similar to the one in Lemma 1.5. We omit the details of the proof. Q.E.D.

A singular fiber with Δ=t=φ is obtained by the same way as explained after
Lemma 1.5. We use the notaions like (IVJβ), for example, to signify a singu-
lar fiber obtained from (IV) by adding three affine lines to A.

Next we consider the case where a surface X has quotient singularities.
Then we have

Lemma 1.7. Let X be a logarithmic affine surface with a C**-ftbration
π: Y->B. We use the same notations as above. Then we have:
(1) A=Γ+A, and Γ r e d together with T is given by one of (I) to (V) listed above
and the following (IV4):
(IV4) Γ^A^C* and Aλ has one singularity of type Ax:

S2
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(2) Each component of Δ r e d has at most one cyclic quotient singular point.

(3) The point (s) indicated below can be a cyclic quotient singular point:

(I)2 Anf)Aι2,

Anf]Aι2>

Anf]A12 and Aι2f]Alz,

A21()A22,

Anf]Aι2 and A2ιf]A22,

(IV), AUΠAU.

If one of the above points is a singular point, the statement in Lemmas 1.5 and 1.6

concerning the curves A{j being a (-—1) curve need not be true.

It is easy to prove the above statement. We omit the details. In order to

indicate a singular fiber of a logarithmic surface as listed above, we refer to it

by the same notations as in the smooth case corresponding to it.

2. Logarithmic Q-homology planes with C**fibrations

Let X be a logarithmic Q-homology plane with a C**-fibration π: X-*B.

Let A^\ ..., A^ be all singular fibers of π. We define Aψ, A«\ and aψ etc.

for a singular fiber A=A(i) as in §1. First we cite the following result from

[MS2].

Lemma 2.1. (1) Let X be a rational logarithmic Q-homology plane.

Then the boundary divisor D is simply connected, Γ(X, (5^)*=C* and Pic(X) is a

finite group.

(2) Assume that X is a smooth rational surface such that the boundary divisor

D is connected and simply connected, Yιc(X) is a finite group and H\V\ Q)->H2

(D Q) is an isomorphism. Then X is a Q-homology plane and we have the following

isomorphisms:

Yιc(X)^Hλ{X\ Z ) ^ C o k e r ( # 2 ( F ; Z) -> H2(D; Z)).

Moreover, if HX{X\ Z)=0 then X is a homology plane.

(3) Assume that X is a rational logarithmic surface such that D is connected and

simply connected, H\W\ Q)->IP(D U Θ; Q) is an isomorphism, where Σ is the sing-

ular locus of X and Θ is / - 1 ( Σ ) (cf. the notaions in § 1). Then X is a logarithmic

Q-homology plane and we have the following exact sequence and isomorphisms:

0 -> H^dT; Z) -> H^X0; Z) -> HX(X; Z) -* 0

; Z) -* H2{W; Z)),

where X°: =X—Σ and dTis a disjoint union of the boundaries of closed neighbourho-

ods of singular points. In particular, if Hλ(X\ Z ) = 0 then X is a logarithmic

homology plane.
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In this section, we determine the singular fibers of a logarithmic Q-homolo-
gy plane with a C**-fibration π: X-*B. First, note that D can contain at most
one complete fiber of p: V->C since D is simply connected. Therefore J B ^ P 1

or C. From Lemma 2.1. (1)., we also have the following:

Lemma 2.2. Assume that p: V-+C is untwisted. Then we have:

Σa™ = 2(1-1) if B ^ P 1

Proof. Since D is connected and simply connected, we have:

2 if J B ^ P 1

0 if 5 ~ C .

From this follow the above inequalities. Q.E.D.

Let b(i) be the number of irreducible components in A(i). Since Pic(.X") is
a finite group and Γ(-XΓ, O*)=C*> rank (Pic(V)) is equal to the number of ir-
reducible components in D. Hence we have the following:

(1)

(2)

Lemma 2.3. We have:
The untwisted case:

Σ(* -l)-

The twisted case with a s 2-section:

' n J

ί 1

12

ί°

*/
if

if
if

(3) The twisted case with a 3-section: b(i)=lfor all i if B—C. The case B—Pι

does not occur.

Now we shall determine the structure of logarithmic Q-homology planes
with C**-fibrations.

Lemma 2.4. Let X be a logarithmic Q-homology plane with a C**-fibration
π: X-+B. Then the set of all singular fibers of π is given by one of the following:
(1) The case where π is untwisted and B—Pι;

(UPi) π has only one singular fiber A ( 1 ): type (0) ( 2 );
(UP2) π has two singular fibers \

(UP2_0 A<»: type ( 1 ^ , A<»: type (I x);
(UP 2 . 2 ) A « : type (I2), A<2>: type (IJ;
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(XJP2.3) A « : type ( I I , ) ^ A<2>: type ( 0 ) ω

(UP 2. 4) A « : / ^ (II2), A » : type ( 0 ) ω

(UPS) π Aoί ίAree singular fibers;
(IΠVJ A'1): type (III,), A<2>: type (I,), A<3>: type (I,)
(UP3_2) A « : type (II,), A»>: type (I,), A « : type (Ix)
(UP,.,) A « : type ( Π x ) ω , A « : type (IJ, A'3): type (I,)

(2) ΓAe case where π is untwisted and B~C.
(UC ι) π has one singular fibers \

(UC..0 A^: type
(UC,.,)

(UQ_4)

(UQ) w Λαί /zw singular fibers;
(UQ.O A « : type (III,), A<2>: type
(UQ,.,) A": type (III,), A<2': typ«
(UC,.,) A « : type (III,), A<2>: type (II,)
(UQ_4) A « : type (ΠOω, A « : type (ΠOω
(UC2_5) A"): type (ΠOω, A<2>: type (II,)
(UC 2. 6) A<«: type (II,), A<2>: type (II,)

(3) The case where π is twisted with a 2-section and B^P1;
(TPj) π has two singular fibers, A(1): type (IV0)(1),

A&: type (IYJ or (LV2) or (IY4);
(TP2) π has three singular fibers, A (1): type (IVΊ) or (IV2) or (IV4),

A^2>: ί ^ (IV,) or (IV2) or (IV4), A<»>: Q ^ (I,) ;
(4) TΆ^ case where π is twisted with a 2-section and B—C;

(TCX) π has one singular fiber;

(TQ.x) A< :̂ type (IVOω or type (IV,)ω or type (IV4)ω

(TQ.,) A«: type (IV,);
(TC 2 ) 7Γ AΛS too singular fibers;

(TC,.,) A'": type (IV.) or (IV,) or (IV4), A<2>: type (III,);
(TC2_2) A « : type (IVt) or (IV,) or (IV4), A » : type (II,);

(5) The case whert π is twisted with a ^-section and B~C.
(T3Q) π has one singular fiber, A(1): type (V 0)ω

(T3C2) π has two singular fibers, A(1>: type (IVJ or (IV2) or (IV4)
A ( 2 ): ίypβ (IVJ or (IV2) or (IV4);

B—P1 does not occur.

Proof. We make use of the inequalities in Lemmas 2.2 and 2.3. Consider,
for example, the case where π is untwisted and B—P1. We have

2 ( / - l ) = Σ f l « and Σ ( έ ( 1 ) - 1 ) = 1,
i l 1
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where / is the number of singular fibers of π. If / — I , we have a{1)=0 and
b(1)=2. If 1=2, we may assume b(1)=2, b(2)=ί and then have either aa) = ly

a™=\ or aV=2, a&=0. If 1=3, we may assume b™=2, ft«=l, 6 ^ = 1 and
then have a{ι)=2, a(2)=l, a{Z) = l. This case divides into two cases: aγ)=2 or
α ^ ^ ^ D ^ l . If />4, we may assume b™=2 and b^=\ for ι > 2 , but a ( ί ) = 2
for at least two i's with ?>2. This contradicts Lemma 1.3. Therefore the
number of singular fibers is at most three. We argue in a similar fashion in the
other cases. Q.E.D.

We can exhibit the configurations of the divisor D o n V or D U Θ on W and
also the configurations of the image curves of D on the relatively minimal model
which is obtained from W by the contraction of curves in the fibers. We remark
that there exists a contraction a: V-+Za from V to a Hirzebruch surface Σα of
degree a such that the images of horizontal components of D are disjoint and
smooth. This means that a=0 if p is untwisted or if p is twisted and has a 3-
section, that a=\ if p is twisted and has a 2-section. Conversely, starting from
Σ o or 2j, we can construct a Q-homology plane with a C**-fibration which has
singular fibers as described in Lemma 2.4. It is rather easy to show, by means
of criteria given in [5] or by looking into the configuration of the boundary
curves, that Q-homology planes with C**-fibrations have also C-fibrations or
C*-fibrations except for the following cases: Type(UP3_1), ( U G ^ ) , (UC2_ι)' (see
below), (TP2) and

3. Ht(X; Z) and κ{X)

In this section we compute the homology groups and Kodaira dimensions
of Q-homology planes given in Lemma 2.4. Some of these surfaces have C-
fibrations or C*-fibrations and the homology groups and Kodaira dimensions
are computed for them in the previous paper [7]. So, we omit the computa-
tion for them and restrict ourselves to the cases listed at the end of §2.

Type (Z7P3_t). The configuration of singular fibers and sections Sv S2, S3

of p is given as follows:

F7 V-V s, PιxPι

M,

M2

Fig. 1
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We obtain the above configuration starting from a configuration as given in Fig.
1 consisting of curves on P1xP1 by oscilating sequences of blowing-ups σ:
V-+P1 X P1 with initial points Rv R2, R3 and i?4. We represent by lv l2 and l3

the fibers of the first projectionpλ: PιXP1-^P1 and by Mv M2 and M3 the fibers
of the second projection p2: P1xP1^Pι. The projection px induces a P 1 -
fibration on V. Let E{ ( l < / < 4 ) be a unique (—1) curve contained in σ'^i?,).
For example, Ex is A{x) and E2 is ^42

1} in the notations of Lemma 1.4. The total
transforms of //s and Mxs are written as follows:

components of D)
σ*(l2) r^u3E3-\-(fiber components of D)
σ*(/3)~w4.E4+(fiber components of D)
<r*(M1)'^v1Eι-\-v3E3

Jr(other components of D)
σ*(M2) ^^v4E4-\-(other components of D)
σ*(M3) ~v2E2+(othev components of D).

Since lχn+jl2^>lz and M ι ^ ' M 2 ^ ' M 3 on P1xP1, HX(X\ Z) has generators £,•:=
[JE1,-] and relations

uxξx+u2ξ2~uzζ3 = 0

3—W4|4 = 0

Therefore the order of HX(X\ Z) is equal to \d\, where

ux u2 —u3 0

0 0 u3 -u4

= U3UAVχV2-\-UχUιV2V3—U2U3VχVA — # ^ # 2 ^ 4

vx 0 ί;3 — v 4

0 v2 0 —z;4

The equation rf=±l has infinitely many solutions of positive integers for u{ and
ϋf . The following is a solution of the equation d— ± 1:

^ = #2=3/3 = w4 = 1 , ϋj = m, υ2 = mn—m±\, v3 = w—w, ϋ4 = w—1 ,

where m and w are positive integers such that n>m and n>2. The homology
planes obtained this way are isomorphic to those which we constructed in our
paper [6].

Next we compute the Kodaira dimensions. Write the canonical divisor of
V as Xy~cr*(ίf2o)+Gr, where G is supported on the exceptional curves of σ.
Starting with 2 0 and comparing the multiplicity of the newly obtained excep-
tional curve in G and σ*(/ί )

>s and a*(MiYs inductively at each step, it is easy
to verify the following:
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~ lΊ+lί+li+S,+S2+SB+G+H,

where l\ is the proper transform of l{ and H is the sum of all exceptional curves
of σ with Hred—H. Since Kτo <^->—12—13—M2—M3, we have the following ex-
pression for Kv+D:

Ky+D ^σ*(h)+^*(Mι)-(Eι+E3+E9+E4).

There exist many examples of homology planes of Kodaira dimension two. For
example, we will show that κ—2 for almost all values of u/s and v/s given
earlier as a solution of d= i 1

(a) case n>m-\-2y v2=mn—mJrί or n>mJr2, m>2, v2=mn—m—1 .
In this case, we have

2(KV+D) ~ σ*(Mι)+σ*(M2)+2σ*(l1)-2(E1+E2+E3+E4)

~S1+S2+(v1Eι+v3E3)+v4Ei+2{u1Eι+u2E2)-2(E1+E2+E3+E4)

+(fiber components of D)

(w-/w-2) £ 8 + ( n - 3 ) £4+(fiber components of D).

Therefore 2{KY

J

ΓD) is effective and there exists an effective member A of
|2(ϋΓ y+D)| whose support contains the curves, the configuration of which is
given as follows:

(n~l)όS2

Note that -n+l+(m-l)+l+(υ2-l)=n(m-l)±l>l. Therefore if we con-
tract all curves contained in the above graphs other than Sλ and S2y the proper
transform of Sx becomes a nonsingular rational curve of positive self-intersection
number. This shows that Kodaira dimension of X: = V—D is equal to two.

(b) case m=l, n>4 and v2=n—2.
In this case also 2(KV+D) is effective and \2(KV+D)\ contains an effective

member whose support contains the union of curves given by the following dual
graph.

— 1 o o —n —(« — l ) o

Eι -2
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If we contract all curves contained in the above graph except S19 S2> E3 and E4>
then S1 and S2 become nonsingular rational curves whose self-intersection
numbers are (—1) and the proper transform of Sι and that of S2 intersect at
one point with multiplicity n—2. From this it is easy to show that κ(X)=2.

(c) case n=m-\-l, m>3 and v2=m2^zί.
In this case we have the following expression for 3(Kv-\-D).

3(KV+D) ~

+(fiber components of D)—3(Eι+E2+E3+E4)

~ 5 1 + 5 2 + 5 3 + ( w - 2 ) ̂ + ( ^ - 2 ) E2+(m-3) £4+(fiber components of D)

Therefore 3(KV+D) is effective and there exists an effective member of
13{Kv-\-D) I whose support contains the union of curves given by the following
dual graph.

S3
— v9 o oSιn —n

- 1

E,
m—\

The similar argument shows that κ(X)=2.

Type (UC2^) The configuration of singular fibers and sections Sv S2, S3

of p is given as follows:

V P'xP1

M2

h h 4

Fig. 2

We obtain the above configuration starting from a configuration of curves as
given in Fig. 2 on PιxPι by oscilating sequences of blowing-ups σ: V-+PιxPι

with initial points Rv R2y R3 and i?4. We use the notatonos /,-, M t and E{ in
the same way as in the previous acse. Write the total transforms of l/s and
Λf/s as follows:
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σ*(/2) ~#1£'1-f-#2^2+(fiber components of D)

σ*(/3) r^uzEz-\-uAEι+{$Lbtr components of D)

σ*(M1) <—'ϋ1J?1+ϋ3J534-(other components of D)

σ*(M3) ~ v2E2+v4E4-{-(oUϊer components of D).

Hγ{X\ Z) has generators ξλ: = [£,•] and relations:

= 0

W4?4 = 0

The order of HX(X\Z) is equal to \d\> where d=u2u3vιv4—uιuAv2v3 and the
equation d=±l should take positive integer solutions for u/s and v/s.

On the other hand, a computation shows that we have the same expression
as above for Kv-\-D and there are many examples of homology planes of /c=2
of this type.

Type (UC2-ιf The configuration of singular fibers and sections Sv S2, S4

of p is given as follows:

V

Fig. 3

We obtain the above configuration starting from a configuration of curves on
PιχPι as given in Fig. 3 by oscilating sequences of blowing-ups σ: V-*PιxPι

with initial points Rv R2i R3 and i?4. We use the notations liy Mi and E{ in the
same way as in the previous case. Write the total transforms of //s and M/s
as follows.

0"*(4) /^u1Eι+u2E2-\-(6ber components of D)

σ*(/3) -—'U3E3-\-uAE4-\~(fiber components of D)

σ*(M1) '—'VλEx-\-v3E3-\-(other components of D)

σ*(M2) ^"^4£4+(other components of D)

σ*(M3) ~v2E2-\-(other components of D) .
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HX{X\ Z) has generators £,-: =[-Ef ] and relations:

4?4 = 0 .

The order of HX(X\ Z) is equal to d=uιu3v2v4+u1uiv2υ3+u2u3υιv4. Since u/s
and Ϊ /S are positive integers, there are no solutions for d=±l. Hence there
exist no homology planes of this type. The divisor Kv+D is also given by the
same expression as in the previous cases and there are many examples of Q-
homology planes of κ—2 of this type. We remark that the surface correspond-
ing to the values uι=u2=u3==u4=vι=υ3~l and v2=v4 has /c=0 and isomorphic
to Y{2, 4, 4} according to Fuijta [F].

Type (TP2) The configuration of singular fibers and sections Sx, S2 of p
is given as follows:

Σ,- Λf, G,

Fig. 4

We obtain this configuration starting from a configuration of curves Σx as given
in Fig. 4. Let Mx be the minimal section of Σ t and let px be the morphism from
Σx to P1 which gives the natural P^bundle structure on Έ,v Let C be a 2-
section of 2 t disjoint from Mj and let lx and /2 be fibers of px containing ramifi-
cation points of px\c and let l3 be a third fiber of pv Consider a divisor Do=
J I ^ + C + ^ + 4 + 4 o n Σi First we blow up lλ Π C, /2 Π C and their infinitely near
points over C in order to get a simple normal crossing divisor. We call this
surface Σί and let τ\ Σί-^Σi be the composition of these four blowing-ups. The
configuration of curves on Σί is given in Fig. 4, where M2 is the proper trans-
form of C. Next we perform oscilating sequences of blowing-ups &: F->Σί
We choose an initial point Rx on T"1^) to be one of Pl9 P2 and P3 if A(1) has type
(IV2). Similarly, we choose an initial point R2 on τ~\l2) Let R3 be an initial
point on τ~\l3). Let σ=τ & and let £,•(!</<3) be a unique (—1) curve con-
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tained in σ " 1 ^ ) . Ex is A(1) and E2 is Λ(2) in the notations of Lemma 1.4. We
choose Gx as £, (resp. G2 as 2^) if 4̂(1> has type (IVj) (resp. (IV4)). The same
remark applies also to A(2). Write the total transforms of //s and M/s as fol-
lows:

σ*(h) /^/«i-Bi+(fiber components of Z))
σ * ( 4 ) / ^ 2̂ ̂ 2+(fiber components of D)

σ*(/3) r^uzEz-\-(fiber components of Z>)

σ*(M1) ^ ^ Z ^ + ^ - ^ + f a t h e r boundary components)

σ*(C) ~^ 1Z? 1+w 2£2+^3 £3+( o t : h e r boundary components).

Note that if the initial point Rx is Pv wλ is 0 and if Rx is P2 or P3, t;t is 0. If
A(1) has type (IV4), ux=wx=2 and ̂ = 0 . The same remark applies also to
A®\ Since lx~l2~lz and 271^+2/3^(7, ^ ( X ; Z) has generators f,: = [ £ J and
relations:

w3?3 = 0

- w 8 ) f 8 = 0 ,

and the order of HX(X; Z) is equal to | d \, where

J = uxu2(2u3—wz)+u2u3(2vx—wx)+uxuz(2v2—w2).

The equation d=±l has infinitely many solutions of positive integers for u{, v{

and wx. The following is a solution of the equation d=±l.

w . =,w2 = 0>Ul = u2= 1, u3 = m,vx = v2 = n, wz = 2m+4mn±l,

where tn, n are positive integers. In the next section we prove that homology
planes corresponding to the above values have involutions.

We compute the Kodaira dimensions of the above examples, Write the
canonical divisor of V as follows:

Kv^σ*(Kτι)+2Gi+Gί+2Hί+Hi+Zι+Z2

where Supρ(Z1)=τ""1(P ι)Uτ"1(Q1), Supp(Z2)=τ~\R) and we denote the proper
transform of the curve using'. Starting with X2 and checking inductively at each
step, it is easy to prove the following:

~ /{+1'2+1'3+Sι+S2+4G'2+2GI+W2+2H'3+Zϊ+ Ux+Z2+ U2

where Ux is the sum of all exceptional curves contained in τ~\Px) U τ"1(Q1) with
(t/1) rβd=C/1 and U2 is the sum of all exceptional curves contained in T~\R) with
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(U2)τed= U2. Since K^^—C—l^ we have the following expression for Kv+D:

Kv+D^Ky+lί+l/

2+l/

3+S1+S2+G/

2+G/

3+H/

2+m+Uι+U2

-(E1+E2+E3)

-Zι-Z2-(E1+E2+E3)

Since

we have

σ*(C)+2σ*(M1)+3σ*(/1)+3σ*(/2),

-4(E1+E2+E3+G'2+H'2)+2S1+S2+(fiber components of D)

- ( 2 ^ - 1 ) ^ + ( 2 ^ - 1 ) E2+(W3-4) E3+4G'2+4H'2

+25 1+5 2+(fiber components of D)

and 4(Kv-\-D) is effective. From this expression, it is easy to see that κ(X)=2.

If AW has type (IV4), the above number \d\ is the order of H^X—Ί,; Z).

The surface obtained this way has a unique Ax singular point. We have d~

for the following values:

ux — 2, vx — 0, w1 = 2,7̂ 2 = 1, v2 = w, Z U 2 = 0 , uz=n, w3

Thus we have examples of logarithmic homology planes, each of which has a

unique Aλ singular point.

Type (TC2~<\) We use the same notations as in the previous cases. We

obtain a surface V starting from Σί by oscilating sequences of blowing-ups with

initial points Rly R2 and R3.

V S i - M,

M,

\
G

Fig. 5
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We choose an initial point Rx from Ql9 Q2 and Q3 if A(1) has type (IV2) and we
choose an initial point R2 from Px and P2. Let Ei be the unique exceptional
curve contained in σ""1^,). Eλ is the proper transform of Gλ (resp. G2) if A(1)

has type (IV,) (resp. (IV4)).
Write the total transform of //s and M/s as follows:

σ*(/1) ~tt1i?1+(fiber components of D)

σ*(/2) ~tt2£
l

2+t/3.E3+(fiber components of D)

σ*(Mx) ~ vxEx

J

Γv2E2-\-(oUιtτ boundary components)

σ *(C) ~ wxEx-\-w2 E2+w3Ez-\-(other boundary components).

T h e order of HX(X\ Z) (or HX(X-Z; Z) if Aa) has type (IV4)) is equal to \d\

where d— 2uxu3v2-\-uxu2w3—uxu3w2. We note that v2w2=0. Therefore we have
homology planes when v2=0> ux—l and u2w3—usv2— ± 1 and logarithmic ho-
mology planes when v2=0, u2~2 and u2w3—u3v2= ± 1 . The computation of
the Kodaira dimension is similar to the previous case.

Type (T3C2) The configuration of singular fibers and sections of p is
given as follows:

Fig. 6

We start from a nonsingular member C of | 3 M + / | on P1xP1 which totally
ramifies at one point and has two other ramification points when it is considered
a covering of P1 through the first projection pv Here M is a section and /
is a fiber of pv We can prove that such a curve exists. The calculation of
HX(X\ Z) is same as before. In this case, there exist no homology planes.
Also we can show that there exist Q-homology planes of κ=2 of this type. We
omit the details.

Summarizing the results of this section we obtain the following theorem:

Theorem 1. There exist infinitely many homology planes of κ—2 with C**-
fibrations of type (UP^), (UC2^)9 (TP2) and (TC2^) and there exist infinitely
many logarithmic homology planes of κ=2 with C**-fibrations of type (TP2) and
(TC2 - 1). Conversely, if X is a homology plane or a logarithmic homology plane of
κ=2 with a C**-fibratίon, X belongs to one of the above classes.



22 M. MlYANISHI AND T . SUGIE

4. Homology planes which have automorphisms

In this section we give examples of homology planes which admit non-
trivial automorphisms of finite order. First we show that homology planes of
type (TP2) with values of uiy v{ and w{ assigned in the previous section have
involutions. These examples are constructed by torn Dieck and Petrie. We
found out them by differenc approach.

We can start from the following configuration of curves on P 2 to obtain
the homology plane of type (TP2):

Fig. 7

Let (Xo: Xχi X2) be the homogeneous coordinates of P 2 and lv l2 and lz be lines
on P 2 and let C be a conic on P 2 whose equations are given respectively as fol-
lows:

12\ Jί.x—JLQ : = : U ,

Let i: P2-*P2 be an involution defined by (-X"o: X\- X2)-*(X0: —Xi X2)> Then
we have i(C) = C, ί(/ ι)=4 and /3 is pointwise fixed. Moreover, i has an isolated
fixed point (0, 1, 0). To obtain a homology plane, we first perform the blowing-
ups with centers P, lx Π C plus its infinitely near point over C, and l2 Π C plus its
infinitely near point over C. Let σ: Σί-^P 1 be the composition of these blowing-
ups. Then we have the following configuration of curves on Σί:

Mx

H,

Next we perform the blowing-ups with centers the point Rv its (»— 1) infinitely
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near points consecutively lying on Mv the point R2 and its (n—1) infinitely
near points consecutively lying on Mv and perform an oscilating sequence of
blowing-ups with initial point R3 such that, if we set &: F->Σί the composition
of the above blowing-ups, we have

&*(M2) ~ (2m-\-4mn±l) 2?3+(other boundary components) and

<?•*(/) ~m E3+(other boundary components),

where 2?f represents a unique (—1) curve contained in δ-~\Ri). Set D=&~1

(Mι+M2+Gι+G2+G3+H1+H2+H3+l)ted--(Eι+E2+E3). We give the dual
graph of divisor D+Ex+E2+E9 on F i n the case where w3=2m+4mn— l(m>2):

- 2

It is shown in §3 that the affine surface X:=V—D is a homology plane. Since
we perform the blowing-ups at the intersection points of pairwise stable curves
or at the fixed points of the involution i or the involutions induced by i, the
involution i is liftable to an involution ϊ on V such that ϊ(D)=D. Hence i
induces an involution % on X, which has a unique fixed point inside X. Thus
we obtain homology planes which have involutions. The quotient surface Xji
is a logarithmic homology plane with a cyclic quotient singular point of Dynkin
type Ax and belongs to the class (TP2).

Next we show that there exist homology planes of κ=ϊ which have non-
trivial automorphisms. A method of constructnig homology planes with /e=l
is given in [2]. Let (Xo: Xx\ X2) be the homogeneous coordinates of P2. We
take four lines on P2 as follows:

/0: X2 = 0, /ji Xx = 0, /2: X1 = —X2,

The configuration of four lines is as follows:

x = X2.



24 M. MlYANISHI AND T . SUGIE

First blow-up P 0 =(0: 0: 1) and then perform the oscilating sequences of blow-
ing-ups of type (a) (cf. § 1) with initial points P2 and P3. Finally we perform
an oscilating sequence of blowing-ups with initial point Px to produce a sin-
gular fiber isomorphic to C on X. — V—D. Let σ: V->P2 be the composition
of all the above blowing-ups. Let E{ be a unique (—1) curve contained in
σ~\Pi). Write the total transform of /f as follows:

<r*(/t ) ~£04-#,•£";+(other boundary components) for 1<*<3
3

σ*(ί>) ~ Σ Vi^i+(other boundary components).
ί = l

Set D=σ*(lQ+l1+l2+l3)τed-(E1+E2+E3) and X=V-D. Then the order of

HX(X; Z) is \d\y where d=uιu2u3—uxu2v3—uxu3v2—u2uzvx (cf. [2]). The equa-

tion d=±\ has the following solutions for any prime number />#=2:

i(uv vi)> (U2> 2̂)* (U3> ^3)} is a permutation of

{(2,l),(4r4-l,l),(2r+l,r)} if p = 4r+l,

{{uχy v})y (u2y v2)y (u3> v3)} is a permutat ion of

{(2,l),(4r+3,l),(2r+l,r)> if p = 4r+3 .

Since the role of l2 and /3 is symmetric, there are three homology planes accord-
ing to which one of three pairs is assigned to lv Among them, we consider
only those homology planes with vx=l and therefore we may assume that
(u3y ^3)—(2r4~l> r) For a different prime number py we denote by X^ a ho-
mology plane with uλ=my m being 2 or 4 r + l if ^>=4r4-l (resp. 2 or 4r4-3 if
^=4^4-3). We shall show that X^ admits an automorphism of order m.

Let 97=exρ(2τr \J~H\\m). Define an action of Z\m on P2 by (Xo: Xx: X2)-*
(η~~ι XQ: rf1 Xx: X2). Then P0~(0: 0: 1) is a fixed point under this action and /0

is pointwise fixed. We state explicitly the process of blowing-ups σ: V-+P2

(i) blow up POy

(ii) blow up P2 and its infinitely near points over l2 altogether n times,
(iii) blow up P3 and its infinitely near points over l3 altogether s times, in such

a way that σ*(l3) ~u3E3-\— and σ*(/0) ~v3E3-\—,
(iv) blow up P ι and its infinitely near points over lx altogether m times and

blow up an arbitrary point on the last exceptional curve which is not an
intersection point,

where (mynys)=(uχyu2yu3). Define D on V as stated before. Then the dual
graph of D looks like:

9
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We note that the last blowing-up on the line lx is performed on F. Since the

first \-\-n-\-s-\-m blowing-ups are performed at the intersection points of two

components of fibers, it is easy to see that the action of Zjm is liftable to the

blown-up surface. Then at the last step, F becomes pointwise fixed under the

induced action. Thus the action of Z\m is liftable onto V and induces an

action o n Z ^ . It is clear that this action on X has a unique isolated fixed

point which lies on the unique (~1) curve contained in σ'^Pj), i.e., on Ev

Summarizing the results in this section we obtain the following theorem:

Theorem 2. (1) There exist infinitely many homology planes with κ=2>

each of which admits an involution t. This involution c has a unique isolated fixed

point.

(2) For every prime number pΦ2, there exist homology planes X^ of κ=ί on

which a cyclic group Zjm acts, where m=2, or 4 r + l if p=4r-}-ί and m=2 or

4 r + 3 if p=4r-\-3. This action has a unique isolated fixed point.
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