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In the theory of equivariant CW complexes (for non-discrete transformation
groups) most of the basic properties and elementary results, such as the equi-
variant skeletal approximation theorem and the equivariant Whitehead theorem,
work in a natural and expected way; see for example Matumoto [13] and Illman
[6, Section 2]. However, there is one important and very basic operation that
causes some problems. This is the operation of restricting the action of the
transformation group to a closed subgroup. The problem here is that when in
a G-CW complex X (where say G is a compact Lie group) one restricts the given
action of G to a closed subgroup H of G, the iί-space X does not in general in-
herit an induced structure of an H-CW complex, at least not in any natural
way. An example which demonstrates this problem is given in Section 2.

By Waner [18, Proposition 3.8] we know that if X is a G-CW complex
and H is a closed subgroup of the compact Lie group G, then there exists an
H-CW complex YX of the same if-homotopy type as the ϋΓ-space X. How-
ever, the proof by Waner is such that the H-CW complex YX is not finite, or
finite-dimensional, even if the given G-CW complex has this property. (See the
proof of Lemma 4.7 in Section 5 of [18].) For many possible applications such
an H-CW complex YX is inadequate.

A good construction for an H-CW complex X, with the same iϊ-homotopy
type as the underlying iί-space of a given G-CW complex X> ought to have the
following properties. When G is a compact Lie group and X is a finite G-
CW complex the H-CW complex X should be finite. The H-CW complex X
should be finite-dimensional whenever X is a finite-dimensional G-CW com-
plex. In order to be really useful the construction should in fact preserve the
topological dimensions of the spaces and all the appropriate fixed point sets.
The construction should also preserve the ίf-isotropy types, without introdu-
cing any new ones.

Theorem A gives a construction with all the desirable properties mentioned
above. Observe that in Theorem A the transformation group G is an arbitrary
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Lie group and H is a compact subgroup of G. The property that X is a finite
H-CW complex when X is a finite G-CW complex can of course hold in general
only when G is compact; see Corollary B.

Theorem A. Suppose that G is a Lie group and H is a compact subgroup of

G. Let X be a G-CW complex. Then there exist an H-CW complex X and an

H-homotopy equivalence η: X—>X, such that the following properties hold.

1) For every K<H, Xκ is compact if and only if Xκ is compact.

2) dim X*=dim Xκ

y for every K<H.

3) The H-ίsotropy types occurring in X and in X are exactly the same.

Here dim denotes the topological dimension, more precisely the covering
dimension, of a space. For equivariant CW complexes and fixed point sets in
equivariant CW complexes, as in Theorem A, the covering dimension agrees
with the "geometric" dimension of such a space, see Lemma 1.2. The notation
K<H means that K is a closed subgroup of H. By (2) we in particular have
that X is a finite-dimensional H-CW complex if X is a finite-dimensional G-
CW complex.

Corollary B. Suppose that G is a compact Lie group and that H<G. If

X is a finite G-CW complex then X is a finite H-CW complex, and conversely.

It is a well-known fact that, when G is a compact group a G-CW complex
X is finite if and only if X is compact. Hence Corollary B follows directly
from (1) of Theorem A, by taking K={e}.

DEFINITION C. Let G and H be as in Theorem A. An if-reduction of a
V

G-CW complex X consists of an H-CW complex X and an ίf-homotopy equiv-
V

alence η: X->X such that conditions (1)—(3) in Theorem A are satisfied.

If (X, Xo) is a G-CW pair and η: X-*X and η0: XQ->XQ are //-reductions

of X and XOy respectively, we say that η extends η0 if Xo is an if-subcomplex

of X and η\XQ=η0. The proof of Theorem A is such that it immediately

also gives a relative version of Theorem A. Using the terminology introduced

above, the relative version of Theorem A can be stated as follows.

Theorem A (rel). Suppose that G and H are as in Theorem A. Let (Xy

Xo) be a G-CW pair. Then there exist an H-CW pair (X, Xo) and an H-map η\

(X, X0)-*(X, Xo) such that η: X-+X and η \ : Xo-+Xo are H-teductions of X and

Xo, respectively. In fact, any H-reduction η0: Xo-+Xo of Xo extends to an H-

reduction η: X-+X of X.

In the case of a finite filtration Jζ )C-Y1c cJ!ΓllI=-X' of a G-CW complex
X one directly obtains a filtered version of Theorem A by repeated use of the
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relative version of Theorem A. But in some situations it is important to be
able to deal with infinite nitrations and also in this case Theorem A generalizes
to give the following filtered version. (This filtered version of Theorem A is
used in [11].)

Theorem A (filt). Suppose that G and H are as in Theorem A. Let X0(Z

X1dX2cZ" be a filtration of a G-CW complex X by G-subcomplexes, and let η0:

X0->X0 be an H-teduction of Xo. Then there exist an H-reduction η: X-+X of X

and a filtration X Q C ^ C J ^ C ••• of X by H-subcomplexes, beginning with the given

H-CW complex Xo, such that η induces an H-reduction ηi~η\ : Xr*X>% of Xh for

each i>\} and η extends η0.

Theorem A, as well as its relative and filtered versions, are proved in Sec-
tion 5. The contents of the other sections of this paper are as follows. Section
1 gives some general preliminaries and Section 2 contains the example referred
to at the very beginning of this introduction. In Section 3 we present some
results concerning the equivariant homotopy type of adjunction spaces. These
results are crucial for the construction given in the proof of Theorem A. The
aim of Section 4 is to establish the result given in Corollary 4.4, and we use the
telescope construction to achieve this. We need Corollary 4.4 for the proof of
Theorem A, in the case of an infinite-dimensional G-CW complex.

As a typical example of the use of the results of this paper we now give an
application of Theorem A to the theory of homotopy representations for com-
pact Lie groups. For the definition of a homotopy representation we refer to
torn Dieck [3, Definition 10.1]. Let us here only recall that a finite homotopy
representation for a compact Lie group G is a finite G-CW complex X, such
that for each K<G the fixed point set Xκ is homotopy equivalent to the sphere
gn{κ)-ι^ w n e r e d i m Xκ=:n(K)—1. In addition two further technical conditions
must be satisfied, see conditions (v) and (vi) in torn Dieck [3, Definition 10.1].
Now suppose that X and Y are finite homotopy representations for a compact
Lie group G. In order to define the product of the homotopy representations
X and Y one considers the join X* Y with the induced diagonal G-action. Since
X and Y are finite G-CW complexes, the join X*Y is a finite (GxG)-CW com-
plex, but we need to consider X*Y as a G-space via the diagonal G-action; i.e.,
we consider X* Y with the induced action of the diagonal subgroup G of G X G.
In this situation Theorem A and Corollary B give us a finite G-CW complex
(X*Y)V with the same G-homotopy type as the G-space X*Yy such that

(1) dim ((X*Y)y)κ - dim (X*Y)K

for every K<.G. Furthermore the G-isotropy types occurring in (X*Y)y and
in X*Y are exactly the same. Since (X*Y)V is G-homotopy equivalent to the
G-space X*Y, it follows that ((X*Y)W)K is homotopy equivalent to (X*Y)K=
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Xκ* Yκ for each K<G. Thus

where dim Xκ=n(K) — 1 and dim Yκ=n'(K)—l. Furthermore, we have dim

(^Yy^dimX^-f-dim Yκ+ί. (The covering dimension need not always be

multiplicative, but this equality follows easily from Lemma 1.2 since X*Y is a

(GxG)-CW complex.) Hence the basic dimension equality (1) gives us

(2) dim ((X*Yyγ< = n(K)+n'(K)-l .

The fact that the G-isotropy types occurring in (X* Y)v are exactly the same as

the G-isotropy types occurring in X*Y implies that (X*Y)V also satisfies the

technical conditions (v) and (vi) in torn Dieck [3, Definition 10.1]. Thus we

have shown that (X*Y)V is a finite homotopy representation for G.

By Dim X we denote the dimension function of a homotopy representation

X. It is an integer-valued function defined on the set of all conjugacy classes

of closed subgroups of G. We have that Dim X is defined by

Dim X(K) = n(K)

for each conjugacy class (K) of a closed subgroup. Here Xκc^Sn(-κ)~1 and dim

Xκ=n{K) — 1, as before. It follows from (2) that the dimension function Dim

(X* Y)v of the finite homotopy representation (X* Y)v for G satisfies the equality

Dim (X* Y)v = Dim X+Dim Y ,

as it should. Compare with the discussion on page 169 in torn Dieck [3].

Another typical application of Theorem A is given in [11]. The proofs of

the main results in [11] use the filtered version of Theorem A and rely in an

absolutely essential way on the dimension equality given by part (2) of Theorem

A.

Some further developments related to this paper are as follows. When G

is a compact Lie group and X is a finite G-CW complex the finite H-CW complex

X is unique up to simple /f-homotopy type, see [10]. Furthermore, we show

in [10] that there exists a well-defined restriction homomorphism between equiv-

ariant Whitehead groups Res£: WhG(J*f)->Wh#(X), for every H<G. Additional

properties as well as applications of the restriction homomorphisms Res# will be

given in future papers. For a brief outline and an announcement of some of

our main results in this direction we refer to [9].

I wish to thank Erkki Laitinen for some very helpful comments concerning

this paper.

1. Preliminaries

By a G-space X, where G is a locally compact group, we mean a topological
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space X on which G acts on the left. By a compactly generated space we mean a
Hausdorff space X with the property that a subset A of X is closed in X if (and
only if) A intersects every compact subset of X in a closed set (cf. Steenrod [17]).
In our use of terminology a normal space is always assumed also to be a Hausdorff
space. We shall use some elementary facts about the covering dimension of a
normal space, which can be found in standard books on dimension theory. We
use Nagami [16] as our reference on a couple of occasions.

For the basic facts about equivariant CW complexes (in the case of non-
discrete transformation groups), such as the equivariant skeletal approximation
theorem and the equivariant Whitehead theorem, we refer to the original papers
by Matumoto [12], [13] and Illman [6], [7], and also to the exposition given in
torn Dieck [3]. The elementary fact given in Lemma 1.1 below is perhaps not
explicitly stated anywhere in the existing literature, so we present it here.

Lemma 1.1. Let X be a G-CW complex, where G is a Lie group. Then
the topological space X is compactly generated and normal.

Proof. The 0-skeleton X° of X is a disjoint union of homogeneous spaces
of the form G\P, where P<G. Hence X° is compactly generated and normal.
Now let n>\ and assume inductively that Xn~ι is compactly generated and nor-
mal. The n-skeleton Xn of X is obtained from Xn~ι as an adjunction space
XΛ=Xu"1\J9(ύ DnxG/PX where Pj<G for each;e/, and φ\ U S'^xG/Pj

-^Xn~ι is a G-map. Clearly each Dn X G/Pj is compactly generated and normal.

Since Xn is a quotient of the disjoint union Xn~ι LJ (LJ Dn X G/P,), which is

compactly generated, and Xn is Hausdorff we have by [17, 2.6] that Xn is com-
pactly generated. It is also a well-known fact that the normality property is
preserved in forming adjunction spaces, see for example [2, Theorem 8.B.4].
Hence Xn is normal. This completes the inductive step.

Now, since the topology of X is coherent with respect to the family of all
^-skeletons Xn

y n>0, and each Xn is compactly generated and normal we have by
[17, Lemma 9.2] that X is compactly generated and by [2, Theorem 7.D.2] that
X is normal. •

Lemma 1.2. Let X be a G-CW complex, where G is a Lie group. For
any compact subgroup K of G we have

dim Xκ = sup dim(cλκ

where the supremum is over the set of all G-cells of X. In particular dim X=
sup dim Cj.

Proof. By Lemma 1.1 X is normal and since the fixed point set Xκ is closed
in X it follows that Xκ is normal. We have Xκ = U (Xn)κ, where Xn denotes

»>0
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the equivariant ^-skeleton of X, By the countable sum theorem for the cover-
ing dimension (see e.g. [16, Theorem 9.10]) and the fact that the covering dimen-
sion is monotonic on closed subsets we therefore obtain that dim Xκ—sup dim

We claim that

im(XΛ-y, dim(XΛ-XΛ'ι)κ} .

This follows by [16, Theorem 9.11] and the fact that dim is monotonic on closed
subsets, using the following observations. The difference Xn—Xn~ι is a disjoint
union of open G-cells DnxG/Piy i^Jny where Jn denotes the set of all G-w-cells
of X. Each DnxGjPiy ί^Jny is a smooth G-manifold. Hence (X'—X*'1)* is
a disjoint union of smooth manifolds Dnx(GjPi)κ

y ί^Jny and in particular
(Xn—Xn~ι)κ is normal. Thus we see that ά\m{Xn—Xn~ι)κ equals the maximal
dimension occurring among the manifolds DnX(G/P,-)^, all i^Jn\ i.e.,

d=aim(Xn-Xn~l)K = max{dim(Z)wx(G/P,)*)}

(We have d<n-\-άim G.) For every closed subset C of (Xn)κ such that Cd
(Xn—Xn~λ)κ we clearly have dim C<d and there also exists such a set C with
d i m C W , for example C= U Dn

ιI2x{GfPi)
κ. Hence [16, Theorem 9.11] and

the monotonicity of dim on closed subsets imply that (*) holds. Now Lemma 1.2
follows by induction in n. •

We will use the important general fact that every smooth G-manifold, where
G is a compact Lie group, can be given the structure of a G-CW complex. The
precise form, of this general result, that we shall use (in fact in this paper only
in a special case) is the following.

Theorem 1.3. Suppose that G is a compact Lie group and that M is a smooth
G-manίfold with boundary dM, {which may be empty). Then there exist a G-CW
pair (A, B) and a G-homeomorphίsm a: (A, B)->(M, dM) of G-pairs.

A proof of this theorem is given in Illman [8], where one also finds refe-
rences to the original sources Matumoto [12] and Illman [6], [7] for this result.
In the present paper we do not need the uniqueness result for G-CW structures
on smooth G-manifolds proved by Matumoto and Shiota [14]. But this uni-
queness result plays a crucial role in our paper [10].

2. An example

Let S1 be the circle group; i.e., S1={ζ^C\ | J | = 1 } . We now construct a
finite Sι-CW complex X in the following way. Let L=D2={z^C\ \z\<l},
and let S1 act on D2 in the standard way; i.e., the action S1xL->L is given by
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(ζ> zfy^ζZy f° r every ζ^S1 and every z^L. Then L is a 1-dimensional Sι-CW
complex with three equivariant cells. The ̂ -equivariant 0-cells of L are the
origin and the boundary dD2=S1. There is one ̂ -equivariant 1-cell of the
form IxS1, which has been attached to the 0-skeleton L° in such a way that
{0} xS1 is attached to the origin by the constant map and {1} X S1 is attached to
SD2=S1 by the identity map. The Sι~CW complex X, that we wish to consider,
is obtained by adjoining an S^-equivariant 2-cell of the form D2xS1 to L via
some strange attaching ^-map ψ: dD2xS1->L.

Let ω: dI¥->L be a space filling curve such that the image of ω is the
whole disk DZ=L; i.e.,

For the existence of such maps, see for example [2, Section 9.B]. Now define
a n A^

by setting ψ(z, ξ)=ζω(z), for every z^dD2 and every ζ^S1. Since ψ is an
/S^map from the boundary dD2 X S1 of the ^-equivariant 2-cell D2 X S1 into the
(S^equivariant) 1-skeleton L1=L, the adjunction space

X=L\J*(D2xS1)

is (by definition) an Sι-CW complex.
Suppose now that D2 and Sι have been given arbitrary CW structures and

that D2 X S1 has the product CW structure, or any subdivision of the product
structure. We claim that the space X cannot have a. CW structure, which is
induced from the CW structures on L=D2 and D2xS1. (By an induced CW
structure on X is meant a CW structure on X such that the family of all open
cells of X consists of all open cells of L=D2 and all open cells of D2 X S1.) As-
sume on the contrary that there exists an induced CW structure on the adjunc-
tion space X. Let v be any vertex of S1 we may assume that v — 1 e S1. Then
D2=D2X {1} is a subcomplex of D2xS1 and hence 7-LU ω (O 2 X{l}) is a sub-
complex of X. But it is a well-known fact that the space Y cannot have a CW
structure, see [20, p. 51]. Therefore Y cannot be a subcomplex of X. This
contradiction proves our claim.

3. Adjunction spaces and equivariant homotopy type

By G we denote, as before, an arbitrary Lie group. (In this section and in
Section 4 G could as well be any locally compact group.) Let X be a G-space
and (A, B) a G-pair, where B is a closed G-subset of A. Given a G-map φ\
B-+X we can form the adjunction space X {]φ A. Since G is locally compact
and the natural projection p: X \J A-+X \JφA is an identification map it follows
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that id Xp: G X (X LJ A)->G X (X U φ A) is an identification map (see e.g. [4, The-
orem XII 4.1]). Hence the induced action of G on X \JφA is continuous, and
therefore the adjunction space X \JφA is a well-defined G-space.

Now assume that the G-pair (A, B), where B is closed in A, has the G-ho-
motopy extension property. This assumption holds if and only if A X {0} U
Bxl is a G-retract of ^4x/. Furthermore, ^4x{0}LJ5x/ is a G-retract of
A X / if and only if 4̂ X {0} U B X / is a strong G-deformation retract of Ax I.
This last fact follows by the same proof as the one in JR. Brown [1, Lemma 7.2.3]
for the corresponding non-equivariant case. (R. Brown attributes this Lemma
7.2.3 to D. Puppe.) Thus our assumption that the G-pair (A, 5), where B is
closed in A, has the G-homotopy extension property is equivalent to the assump-
tion:

(*) A X {0} U B x I is a strong G-deformation retract of Ax I.

(In Section 5, where we use the results of this section, (A, B) is a G-CW pair
and by a well-known property of G-CW pairs condition (*) holds in this case.)

Suppose that the G-pair (A, B)y where B is closed in A, satisfies condition
(*) and that φ0, φλ\ B->X are two G-maps that are G-homotopic. We shall
show that the adjunction spaces X U ΨQA and X\JφiA have the same G-homotopy
type. Let Φ:ΰXI-+X be a G-homotopy from <p0 to φx. We form the adjunc-
tion space X U Φ(A X I). It follows directly from (*) that X U Φ(A X {0} U B X I)
is a strong G-deformation retract of X UΦ(AxI). Similarly X\Jφ(Aχ{l}{J
B X I) is a strong G-deformation retract of X U Φ(A x / ) . Let i0: X U Φ(A X {0}
[jBxI)->X UΦ(AxI) denote the obvious inclusion. Choose a G-retraction
rλ: AχI^Ax{ί}[jBxI and let ί\: X ΌΦ(AxI)->X ΌΦ(Ax {1} (J Bxl) de-
note the G-retraction induced by rx. Define

fr. X\JψfiA-> X\JΨlA

to be the composite map

where the first and the last map are natural G-homeomorphisms, which we shall
use as identifications. Since both iQ and ^ are G-homotopy equivalences, it fol-
lows that k(Φ, r^ is a G-homotopy equivalence.

In the following we shall leave out from our notation the natural G-homeo-
morphisms appearing in the above composite map as the first and last map, and
simply write
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Here i0 now denotes the inclusion A-*AxI> given by a\->(a, 0), but one must
keep in mind that rx is a G-retraction from Ax I onto ^4x{l}UJ5χ/so that ^
is well-defined.

Any two G-retractions from Ax I onto Ax{\) \JBXI are G-homotopic rel
(Ax {1} \jBxI) and thus in particular rel BxL Hence the choice of another
G-retraction r'\ AxI-^Ax {1} [jBxI gives rise to a G-homotopy equivalence
k(Φ, r[): X U Ψo A->X U Ψl Ay which is G-homotopic to k(Φ, rλ) rel X. Thus we
see that the G-homotopy class rel X determined by k(Φ, rx) is independent of
the choise of the retraction rx. We shall in fact, by a slight abuse of notation
and terminology, often use

k(Φ):X\J9oA-»XΌ9ιA

to denote any G-homotopy equivalence of the form k(Φyr1) and call &(Φ) the
G-homotopy equivalence determined by Φ. Observe that we have &(Φ) | X = i d z .
If we by Φ" 1 denote the inverse homotopy of Φ we have that k(Φ~1) is a G-
homotopy inverse of k(Φ) rel X.

In 3.1-3.3 below X and Y denote arbitrary G-spaces and (A, B) denotes a
G-pair which has the G-homotopy extension property and where B is closed in
A. Furthermore, φ\ B->X is a G-map. Our discussion above already proved
the following result.

Proposition 3.1. Suppose that the G-tnaps φ§,φx\ B-+X are G-homotopic
and that Φ: BxI-^-X is a G-homotopy from φ0 to φλ. Then

k(Φ):Xl)φoA->X{JφΊA

is a G-homotopy equivalence and k(Φ)\X=iάx. Furthermore, k(Φ~ι) is a G-
homotopy inverse of k (Φ) rel X. •

If/: X-> Y is a G-map we define

f:XUφA-> YϋfφA

to be the G-map induced by/and the identity map on A. We call / the canoni-
cal extension of/.

Lemma 3.2. Suppose that the G-maps fQ,fx: X-+Y are G-homotopic and
that F: XχI->Y is a G-homotopy from f0 to fv Then the diagram
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is G-homotopy commutative. Here θ=Fo(φχid): BχI->Y and k(θ) denotes
the corresponding G-homotopy equivalence as given by Proposition 3.1.

Proof. The composite map

F fr
( l U , i ) x / - ( I x / ) U , x i d ( ^ X ^ YUθ{AxI)-± Y\Jfι9A,

is a G-homotopy from k(θ)°f0 to fv Π

Proposition 3.3. If f: X—> Y is a G-homotopy equivalence then so is its ca-
nonical extension f: X U φ A-> Y \J fφ A.

Proof. Let h: Y-+X be a G-homotopy inverse of /. Since hof is G-
homotopic to id x we have by Proposition 3.1 and Lemma 3.2 that there is a G-
homotopy equivalence k: X \J hfφ A-+X \JφA such that the composite map

H k
XUφA > X\JhfφA > XUφA

is G-homotopic to the identity; i.e., kohof~id. Thus koh is a left G-homotopy
inverse of / . In the same way one shows that h has a left G-homotopy inverse.
Since k is a G-homotopy equivalence it is now an easy formal consequence of
the above facts that f is a G-homotopy equivalence, with koh as a G-homotopy
inverse (cf. [15, p. 22-23]). •

The result in Proposition 3.1 is a generalization of the classical result by
J.H.C. Whitehead [19, Lemma 5] on the homotopy type of a space with a cell
attached, and Proposition 3.3 gives a similar extension of an old result (cf. Milnor
[15, Lemma 3.7.] and Hilton [5, Proposition 6.8]). Both Proposition 3.1 and
3.3 are well known facts, the presence of a transformation group does not in
this case add anything essentially new.

4. The telescope construction

We shall use a straightforward equivariant generalization of the ordinary
telescope construction. (We refer to the Appendix of Milnor [15] for a des-
cription of the ordinary telescope construction and its basic properties.) As in
Section 3, the group G may in this section be an arbitrary locally compact group
but we will use the results of this section only in the case when G is a Lie group.

Let X be a G-space and let X0dX1<zX2c: be an expanding sequence of
closed G-subsets of X such that X= U Xn> Then we define the corresponding
telescope to be the space

Xτ = X0X [0, 1] UXiX [1, 2]UI 2 X[2, 3] U -

with the induced action of G. The topology of X is the relative topology from
XxR. We say that X is the G-homotopy direct limit of the sequence
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if the natural projection^): JSCS~>X, given byp(x, t)=x, is a G-homotopy equi-
valence. A completely straightforward equivariant version of the proof of The-
orem A in the Appendix of [15] proves the following result.

Proposition 4.1. Suppose that X is the G-homotopy direct limit of
and Y is the G-homotopy direct limit of {Yn}n^Q. Let f: X-> Y be a G-map which
induces G-homotopy equivalences fn=f\ X»-*Yn for all n>0. Then f is a G-
homotopy equivalence. •

For any w^Owe denote

χτn = XQχ [0, 1] UXXX [1, 2] U - UI«X [n, n+l] .

First we need the following fact.

Lemma 4.2. Assume that X is compactly generated and that the topology
of X is coherent with {Xn}n^0. Then the topology of X^ is coherent with {Xs.nK^o

Proof. Suppose i c Z 2 is such that A{\X^%n is closed in X%n for all
We shall show that A is closed in X 2 Since X is compactly generated and R
is locally compact it follows that XxR is compactly generated (see Theorem
4.3 in [17]). Hence X-% is compactly generated since it is a closed subset of
XxR. Thus it is enough to prove that C ΓiA is closed for every compact sub-
set C of X^. That this fact holds is seen as follows.

Let C c X s be compact. Then there exists an m>0 such that p2(C)a
[0, wz+1], where p2: XxR-^R denotes the natural projection. Then C c J 2 > w

and thus C Γ[A=C Γ)Af) X^ttn. Since A Π X^,m is closed, by assumption, it now
follows that C f] A is closed. •

Proposition 4.3. Let X be a G-CW complex and let XQCZX^'- be an
expanding sequence of G-subcomplexes of X such that U Xn=X. Then the cor-

responding telescope X^ is a G-CW complex, with each X^>n as a G-subcomplex.
Furthermore, X is the G-homotopy direct limit of

Proof. Clearly each Xτtfl is a G-CW complex with Xs,«-i as a G-subcom-
plex. Thus, in order to prove that X^ is a G-CW complex we only need to
show that the topology of X^ is coherent with the family {^s.nK^o This is
seen as follows.

We know by Lemma 1.1 that X is compactly generated. Since the topo-
logy of the G-CW complex X is coherent with the family of all closed G-cells it
also follows that the topology of X is coherent with the family {Xn}n^o. Thus
Lemma 4.2 implies that the topology of X^ is coherent with {Xs,Λ}M^0

In order to establish the last claim in Proposition 4.3 we must prove that
p: X^->X is a G-homotopy equivalence. Since X^ and X are G-CW complexes,
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it is, by the equivariant Whitehead theorem, enough to show the following:

For each K<G the map pκ\ X\->XK induces isomorphisms

(1) P^πq(XlxQ)-^πq(Xκ,p(x0))

for every q>0 and any xo^X^.

Clearly pn—p | : X^ttι->Xn is a G-homotopy equivalence for all n>0. Hence

we have for each K<G thztp%: Xξtn-^X% is an ordinary homotopy equivalence

and therefore we have for all n>0 that the maps

(2) (/£)*: πt{Xξ,., x0) - πq{Xξ,p(x0))

are isomorphisms for every q>0 and any xo^X%>M. Since X and X^ are G-CW

complexes it follows that a compact subset of X or of X^ is contained in some

Xm or in some X<s,tk> respectively, where m,k^N. This fact together with the

fact that (2) holds for all n>0 implies that (1) holds. Q

Corollary 4.4. Let XQCIX^- - be a filtration of a G-CW complex X by

G-subcomplexes 3 and Y Q C Y ^ a filtration of an H-CW complex Y by H-

subcomplexes, where H is a closed subgroup of G. Suppose f: X-> Y is an H-map

which induces H-homotopy equivalences fn=f\: Xn->Yn for all n>0. Then

f: X-> Y is an H-homotopy equivalence.

Proof. We know by Proposition 4.3 that the G-CW complex X is the G-

homotopy direct limit of {Xn}n^0. It follows that the iϊ-space X is the H-

homotopy direct limit of the ίf-spaces {Xn}n^0. Since we also know by Prop-

osition 4.3 that the H-CW complex Y is the /f-homotopy direct limit of {Yn}n>0,

the result follows by Proposition 4.1. Π

5. Proof of Theorem A

In this section G denotes an arbitrary Lie group and H is a fixed compact

subgroup of G. Recall that the notation P<G means that P is a closed sub-

group of (jr.

Proof of Theorem A. Let X be an arbitrary G-CW complex and let X0(Z

Xι<Z.X2a-" be the filtration of X by skeletons. The 0-skeleton X° is a dis-

joint union of various G-orbits of the form GjP, where P<G. When we con-

sider X° with the induced action of H we have that H acts smoothly on each

homogeneous space GjP by multiplication on the left. Thus, by Theorem 1.3

there exist an H-CW complex (X°)v and an #-homeomorphism η0: X°^(X°)V.

Then (X0)
y of course satisfies properties (l)-(3) in Theorem A, with respect to

X°, and in particular η0: X°->(X°)V is an i/-reduction of X° in the sense of

Definition C.
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Now let w>l, and assume inductively that we have constructed an //-re-
duction η^ηn^: XΛ"1->(XΛ-1)V of Xn~\ The rc-skeleton Xn of X is given as
an adjunction space

where Pj<G, for each; e / , andψ: LJ (S*-1 X G/P^X^1 is a G-map. When

we consider the induced action of H, each Dn X G/P; is a smooth iϊ-manifold with

boundary equal to Sn~1xG/Pj. Hence there exist by Theorem 1.3 an H-CW
pair (A, E) and an i/-homeomorphism

a:(A,B)^>( LJ ITxGIPj, ύ S^

Thus we obtain an induced iί-homeomorphism

where 9>= ψ o(α|): B-+Xn~ι. Furthermore ά l ^ - 1 ^ i d .
Since 97: XM~1->(XW~1)V is an if-homotopy equivalence its canonical ex-

tension

is also an jfί-homotopy equivalence by Proposition 3.3. By the equivariant
skeletal approximation theorem (see Matumoto [13, Theorem 4.4] or Illman [6,
Proposition 2.3]) the iί-map ηoφ; B->{Xn~x)y, between two H-CW complexes,
is iί-homotopic to a skeletal Jϊ-map μ: B->(Xn-ψ. We now define (Xn)v to
be the adjunction space

Since μ\ B-^{Xn~ιy is a skeletal ίf-map it follows that (Xn)w is an H-CW com-
plex which contains (Xw~1)v as an i/-subcomρlex. Because the if-maps ηoφ and
μ: B^(Xtt~iy are i/-homotopic there exists by Proposition 3.1 an iί-homotopy
equivalence

*: (Xn-ψUηφA^ (X»-γΌμA = (Xny ,

such that k I (Xw" 1) v-id. Thus,

is an jH"-homotopy equivalence, and η\Xn~1=η: Xn~1->(Xn~iy.
We shall now prove that (Xn)w satisfies properties (l)-(3) of Theorem A,

with respect to Xn. This will then show that ηn=y: Xn-^(Xny is an ίί-reduc-
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tion of Xn

y which extends ηM.1=η: Xn-l->{Xn~lf'.
Let us first verify that (Xn)w satisfies condition (1) of Theorem A, with re-

spect to X". Assume that K<H is such that (Xn)κ is compact. Then also
(Xn~ι)κ is compact and hence by the inductive assumption ({Xn~ι)y)κ is compact.
We now make the following simple observations. The disjoint union U (-D1/2 X

G/Pj)f where Dn

l/2={x(=Dn\ | |* | |<l/2}, is a closed G-subset of X*. Further-

more, U (D1/2 X GjPj) is, in the obvious way, G-homeomorphic and hence also

ίf-homeomorρhic to the space U(Z)nX G/P,), which in turn is i/-homeomorρhic

to A. Since (Xn)κ is compact it now follows from the above observations that
also Aκ is compact. Hence we now have that ((Xn)y)κ={{Xn'lY)K \J y, Aκ is
compact. A completely similar argument shows that if ((X*)v)κ is compact,
then so is (Xn)κ.

Next we prove that (Xn)y satisfies condition (2) of Theorem A. Let K be
a closed subgroup of H. It follows by Lemma 1.1 that X* and (Xn)v are normal
spaces, and hence also the fixed point sets (Xn)κ and {{Xn)y)κ are normal. By the
inductive assumption we have that

άim{X»-ι)κ = dim((Jr) v)* = d'.

Both Xn—P"1 and (Xn)v—(ZM"1)V are iϊ-homeomorphic to the disjoint union

U bnxGjPj. Hence the fixed point sets (Xn—Xn~1)κ and ((Xn)v—(X*1'1)^)1^

are normal and homeomorphic to each other. In particular they have the same
dimension; i.e.,

dim(Xn-Xn-1)κ = dim((XΛ) v-(XM-1) v)^ = d" .

For any closed subset C of (Xn)κ such that Cd{Xn—Xn-ι)κ we have that dim
C<d'\ and clearly there exists such a closed subset C with dim C=d". It now
follows by [16, Theorem 9.11], and the fact that the covering dimension is mono-
tonic on closed subsets, that

In exactly the same way we see that dim ((Xn)v)κ~max{d'j d;/}, and hence
dim (X*)*=dim((.r) v)*. This shows that (Xn)v satisfies property (2) of Theo-
rem A.

In order to see that the ίf-isotropy types occurring in X* and in (Xn)y agree
one only needs to observe the following. By the inductive assumption the H-
isotropy types occurring in Xn~ι are the same ones as in (Xn~ι)v. Also the H-
isotropy types occurring in Xn—Xn~ι= \J (D'xG/Pj) and in {Xn)y—(X)n-1=

A—B agree since these two i/-sρaces are iϊ-homeomorphic.
We have now completed the inductive step and proved that ηn—η: Xn->
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{Xny is an .^-reduction of X", which extends v«-i=V X""1->(X""1)V.
v v

Now define X— U (X")v, where X is given the topology coherent with the
n>0

family i(Xn)v}n^Oy and let η: X-+X be the ίί-map that extends every ηn: Xn-+

(Xn)v, n>0. Then X is an H-CW complex and η is an ίf-homotopy equivalence

by Corollary 4.4. Suppose that K<H is such that Xκ is compact. Then there

exists an m>0 such that Xκ(zXm, and hence Xκ=(Xm)κ. Thus we have that

(Xn-Xn-γ=0 for all n>m+ί. Since Xn-Xn~1 is tf-homeomorphic to {Xnf

-(X»-γ, for eachτz>0, it follows that also {{Xn)w-{Xn-ι)y)κ=φίor alln>tn+l.

Therefore (X)κd(Xm)v, and hence (X)κ={{Xmf)κ. But by what we already

proved above, the fact that (Xm)κ is compact implies that ((Xm)v)κ is compact.

This shows that if Xκ is compact then also Xκ is compact. A completely similar

argument shows that if Xκ is compact then also Xκ is compact.

Now let K<H. It follows by Lemma 1.1 that both X and X are nor-

mal spaces, and hence also the fixed point sets Xκ and Xκ are normal. We have

that Xκ= U {X*)κ and (X)κ= U ((Xn)y)κ. Since we already proved that
«^0 »>0

dim(JY"M)*=dim((X*)v)* for all n>0, it now follows by the countable sum
theorem for the covering dimension (see e.g. [16, Theorem 9.10]) and the fact
that dim is monotonic on closed subsets, that dim X^—dim Xκ. The fact that
for each n>0 the i/-isotropy types occurring in Xn are the same as the ones oc-
curring in (Xny implies that the iϊ-isotropy types occurring in X and in X are
the same. This completes the proof of Theorem A. •

Proof of Theorem A (rel). Given a G-CW-pair (X, Xo) and an if-reduc-
tion η0: X0->X0 of Xo one constructs an i/-reduction η: X-^X of X which
extends η0 exactly in the same way as in the above proof of Theorem A. This
time the induction is over the filtration of X by the skeletons of (X, Xo); i.e.,
over the filtration Xod(X, X0)°c:(X, Xofc:(X9 Xofa-, where (X, X0)

n=X0{J
Xn for each n>0. •

Proof of Theorem A (filt). Repeated use of Theorem A (rel) gives us an

iϊ-reduction η{: X^X^ such that η{ extends 37I _1, for every z*>0. This gives

us an H-CW complex X— U Xi and an iΐ-map η\ X-+X such that η\Xi^=-ηi

for all i>0. It follows by Corollary 4.4 that η is an ff-homotopy equivalence.
The fact that η: X-^X is an iϊ-reduction of X; i.e., the fact that X satisfies
conditions (l)-(3) in Theorem A, is seen exactly in the same way as the cor-
responding fact is proved in the proof of Theorem A. •
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