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0. Introduction

Consider the standard SO(p)x SO(g)-action on S?*¢7!, This action has
codimension one principal orbits with SO(p—1)x SO(¢—1) as principal isotropy
group. Furthermore, the fixed point set of restricted SO(p—1)xSO(g—1)-
action is diffeomorphic to S*.

In this paper, we shall study smooth SO, (p, ¢)-actions on S?*¢7}, each of
which is an extension of the above action, and we shall show that such an action
is characterized by a pair (¢, f) satisfying certain conditions, where ¢ is a smooth
one-parameter group on S and f: S’>P,(R) is a smooth function.

In his paper [1], T. Asoh has classified smooth SL(2, C)-actions on S*
topologically. In particular, he has introduced such a pair to study the case
that the restricted SU(2)-action has codimension one orbits. We shall show
that Asoh’s method is useful to our problem.

1. Subgroups of SO(p, q)

Let SO(p, q) denote the group of matrices in SL(p+g¢, R) which leave
invariant the quadratic form

2 2 2 2
— X =Xy T Xpar T g -

In particular, SO(p, q) contains S(O(p) X O(¢)) as a maximal compact subgroup.

Put
—I, 0
Iﬁ.q = I: ’ }
0 1],

where I, denotes the unit matrix of order n. It is clear that for a real matrix
g of order p+gq, g=SO0(p, q) if and only if %gI, ,g=I,, and detg=1.

* Partly supported by the Grants-in-Aid for Scientific Research, The Ministry of Education,
Science and Culture, Japan.
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Let 80(p, g) denote the Lie algebra of SO(p, ¢). Then, for a real matrix
X of order p+q, X =80(p, ¢) if and only if

(1.1) X1, ,+1,,X=0.
Writing X in the form
X — [Xl X2:| ,
X; X,

where X, is of order p and X, is of order ¢, we see that the condition (1.1) is
equivalent to X;='X, and X, X, are skew-symmetric.

Here we consider the standard representations of SO(p, g) and 3o(p, ¢) on
R?*4, Let e, -, e,,, denote the standard basis of R?*¢. Let H(a:b) (resp.
BH(a: b)) denote the isotropy group (resp. the isotropy algebra) at ae,+be,., for
(a,5)=(0,0). It is clear that h(a:bd) is the subalgebra of 30(p, ¢q) consisting
of matrices in the form

0 |—&U| O bV

bU * —aU| =
(1.2)

;. UeRFf-Y, VeR!.
0 |—aU| O a'V

bV | % | —aV | =

Moreover, we see H(1: 0)=SO0(p—1, q) and H(0: 1)=8SO0(p, g—1). Put

cosh @ sinh @

-1
(1.3) m(@) — ’ . 0cR.
sinh & cosh 6

It is clear that m(8)=SO(p, q) and
(1.4) m(0) (ae,+be,.,) = a'e,+b'e,y,, ,

where a’=acosh @ +bsinh @, b'=asinh @+ bcoshd. Let M(p, q) denote
the subgroup of SO(p, ) consisting of matrices m(f), 6 ER.

Lemma 1.5. SO(p, 9)=S(0(p) < 0(9))M(p, )SO(p—1, 9)
=8(0(p) X 0(9))M(p, 9)SO(p, 4—1).
The coset space SO(p, q)/SO(p—1, q) (resp. SO(p, q)/SO(p, g—1)) is homeomorphic
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to S*71 X R'(resp. R? X S17Y).
Proof. Let g&S0(p, q) and ge,=uPvsR*PR’. There exist k&S (0(p)
X 0(q)) and E=--1 such that
k7'ge, = |lule+€llvlle,, -
Since ||u||*—||v||?=1, there exists § € R such that
|lu|]| = cosh 8, ¢&|Jv|| = sinh @ .

Then we see that m(—8)k™'g=S0(p—1, g), and hence we obtain the first equa-
tion. The correspondence gSO(p—1, ¢)—(||u||u, v) gives a homeomorphism
from SO(p, q)/SO(p—1, q) onto S?"'x R’. The second half can be proved
similarly by considering the orbit of e,,. q.e.d.

Let SO,(p, q) denote the identity component of SO(p, q). By the above
lemma, we see that SO(p, ¢) has two connected components for p,g=1. Writing
£2€8S0(p, q) in the form

A B
e=e 1

where A4 is of order p and D is of order g, we see that g&80,(p, ¢) if and only
if det A>0.
Considering the orbit of ae,+be,.,, we obtain

(1.6) SO(p, 9) = S(0(p) < 0(9))M(p, q)H(a: b)
for each (a, )=(0, 0). It is clear that
N H(a: b) = S0(p—1, ¢g—1),

(a,b)
where the intersection is taken over all (a, b)== (0, 0).

Lemma 1.7. Suppose p,q=3. Let g be a proper subalgebra of go(p, q)
which contains 8o(p—1)P8o(¢—1). If

*) dim 80(p, g)—dim g<p-+q—1.

then g=Y(a: b) for some (a, b)= (0, 0) or g=9(1: )P EG* for E=-+1, where the one-
dimensional space 0" is generated by a matrix E, ,,,+E,., ;.

Proof. By considering the adjoint representation of SO(p—1)xS0(¢g—1)
on 80(p, q), we see first that g contains 80(p—1, g—1) under the condition (¥*).
Next, we obtain the desired result by considering the bracket operations on

SO (p—1)xXSO(q—1)-invariant subspaces. We omit the detail (cf. [4], §2).
q.ed.
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2. Smooth SO(p, q) actions on S?*¢!

Let ®@,: SO(p, g) X S?*471— S?*471 denote the standard action defined by

(2.1) D(g, u) = ||gull"'gu .

Its restricted SO(p) X SO(q)-action  is of orthogonal transformations and has
codimension one principal orbits with SO(p—1) X SO(q— 1) as principal isotropy
group. Moreover, the fixed point set of its restricted SO(p—1)xXSO(g—1)-
action is one-dimensional. Put

G = 504(p, 9), K = SO(p)xS0(g), H = SO(p—1)x SO(g—1),

2.2
B2 = | Kx 8471, F(H) = {xeytyepss |1yt = 1} ,

where F(H) is the fixed point set of the restricted H-action. In the following,
we shall identify F(H) with the circle S* by the natural diffeomorphism #: S'—
F(H) defined by A(x, y)=xe,+ye,.,.

Let @: G x S?*e7'— S§?*¢71 be a smooth G-action on S?*77!(p, ¢=3) such that
its restricted K-action coincides with the action 4, i.e. @| KX ST 1=q)r.

First, we shall show that there exists a smooth function f: F(H)—P(R)
uniquely determined by the condition

(2.3) b(f()ce.; =zeFH),

where P,(R) is the real projective line, g, is the isotropy algebra at = with respect
to the given G-action @, and §(f()) is a subalgebra of 30(p, g) defined by (1.2).

Because g, is a proper subalgebra of 80(p, ¢) which contains Lie H=38o(p—1)
@3o(q—1), there exists uniquely (a: b) € P,(R) such that

(2.4) H(a: b)Cg,

by Lemma 1.7. It remains only to show the smoothness of f. By (1.2), (2.4),
we obtain

b(Eil’_Eli)_a(Ei,p+1+Ep+l,i) €4, (2=i=p),
b(El,p+j+Ep+j.l)+a(Ep+1,p+j— ptipt1) E8: 2=j=9,
and hence
b”Eil—Elillg_’a<Ei,p+1+Ep+l,i) E,—E>», =0,
b<E1,p+j+Ep+j.1a Ep+1,p+j*' p+j,p+l>z+a,IEjz+l,p+j—Ep+j,p+1||§ =0 ’

where <, > denotes the standard Riemannian metric on S?*¢°! and each element
of 80(p, q) can be considered naturally as a smooth vector field on S?*¢7! (cf.
[3], ch. II, Th. II). These equations assure the smoothness of f.



SOy(p, g)-ACTIONS 779

Comparing H(a: b) with isotropy algebras of the restricted K-action, we
obtain
5 fi&) = (1:0) & = = e,
fR)=0:1)e 2= +e,,.

Let m(0) be the matrix defined by (1.3). Then, the set F(H) is invariant
under the transformation ®(m(f), —), because m(f) commutes with each element
of H. Let ¢: Rx F(H)—F(H) denote the smooth R-action on F(H) defined by
¢(0, 2)=D(m(0), 2). Then, we obtain

(2.6) f(z) = (a: B) = f($(0, 2)) = (a': b"),

where a’=a cosh +4-bsinh 0, b’'=a sinh §+b cosh §. This follows from (1.4),
(2.3) and the definition of §(a: b).

Let J;: F(H)—F(H) (i=1, 2) denote involutions defined by J(x, y)=(—=, ¥)
and J,(x, y)=(x, —y). Then, we obtain

(2.7) f(z) = (a: b) = f(Ji(2)) = f(J(=)) = (a: —b).
This follows from the fact J;(2)=+(j;, %) ((=1, 2), where
—I L
@9) R
ptg-2 Iq_z

There is a following relation of the involution J; with the transformation

$(0, —)=2(m(8), —):

(2.9) Jip(0, 2)) = ¢(—6, Ji(z))  (=1,2).
This follows from the fact: j;m(0)=m(—80)j;.

Let o: 8O, (p, 9)— SO, (p, 9) denote an automorphism defined by o (g)=
tg7'=1, .81, ,. Wemay give a new G-action ®° defined by ®°(g, u)=>(o(g), %)-
It is clear that

P KX St = | K xSt

Let f°, ¢° denote the smooth function f: F(H)—P,(R) and the smooth R-action
¢: RXF(H)—F(H), respectively, with respect to the G-action ®°. Then we
see that

(60, 3) = $(—0, ),

2.10
(2.10) f(2) = (a: b) = f7(2) = (a: —D).

3. Properties of (@, f)
Let P be a symmetric matrix of order p+g¢, and let U(P) denote a closed
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subgroup of G=S0(p, q) defined by
UP) = {g=G|gP'g = P} .

Let f: F(H)—P,(R) be a smooth function. Let P(2) denote a symmetric
matrix defined by
3.1 P(2) = (a*+b?)"Y(ae,+be, ) (ae,+be,.,)
for f(z)=(a: b), and let U(2) denote the identity component of U(P(2)). Then,
it is clear that (see §1)
(3.2) U(2) = the identity component of H(a: b).

Let (¢, f) be a pair of a smooth R-action ¢ on F(H) and a smooth func-
tion f: F(H)—P,(R) satisfying the following conditions:

(i) J{6(0: 2)) = $(—6, J=)

(i) f(z) = (a: b)= f(J(»)) = (a: —b),
where ], J, are involutions on F(H) defined in §2,

(il)) f(=) = (a: B) = f($(6, ) = (a: b,
where a'=acosh@-+bsinh @, b'=asinh @-+bcoshd,

(iv) f(2)=(1:0)e2= +te; f(zr) =(0:1)oz= 1te,..

By (1.4), (3.1) and the condition (iii), we obtain

(3.3) m(6)P(z)m(0) = M0, 2)P(p(0, 2)),
where A(0, 2) is a positive real number defined by
M0, 2) = (a>+b%)~*{(a cosh §+b sinh B)*+(a sinh 6+b cosh 8)} ,
for f(z)=(a: b). By the conditinon (iv), we obtain
(34) KnU@E)=K,,

where K, denotes the isotropy group at & F(H) with respect to the K-action
V.

Lemma 3.5. Suppose kP(2)'k=P(w) for some k€K and z, wEF(H).
Put f(z)=(a: b).

(1) If ab=+0, then f(z)=f(w) and k€HU jj,H, or f(2)=f(J(w)) and
kejHU j,H.

(2) If ab=0, then f(2)=f(w) and k< U(z) U j,j,U(2).

Proof. The result follows by a routine work from the fact that X!X=
Y*Y implies X=+47Y for column vectors X, Y. So we omit the detail. q.e.d.

Lemma 3.6. Put f(z)=(a:d). If f(¢p(0, 2))=f(J(2)), then |a|=+|b],
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&0, 2)=Ji(=) for |a| <|b], and $(0, 2)=],(2) for |a|>|b].

Proof. f(Ji(?)) = (a: —b) by the condition (ii). On the other hand, if
la|=16], then f(¢(0, 2))=f(2)=(a: b)=(a: —b) by the condition (iii). Hence
we obtain |a|=|b|. Suppose |a|<|b|. Then z=¢(r, Ee,,,) for some TER
and é=4-1 by the conditions (iii), (iv). Hence we obtain

Ji(z) = d(—=7, €e,11),  Jo2) = $(—7, —Eepu1),
f(J2)) = (—tanh7: 1), (6, 2) = $(0+7, Ee,1.)
f(¢(0, 2)) = (tanh (+7): 1).
Therefore, 7=—6/2 and ¢(0, 2)=J,(2). The remaining case is similarly proved.
q.e.d.

Lemma 3.7. Put f(z)=(a:b). If jm@)<U(?), then |a|=|b|, i=1 for
la| <|b]|, and i=2 for |a|>|b]|.

Proof. By (3.2) and our assumption, we obtain
[coshe sinh @) [a] nil @
sinh@ cosho] 5] | s
This implies (—1)i(a®+5b%)=(a*—%*) cosh§. Hence we obtain the desired

result. q.e.d.

4. Construction of SO,(p, gq)-actions

4.1. Let (¢,f) be a pair of a smooth R-action ¢ on F(H) and a smooth
function f: F(H)—P,(R) satisfying the four conditions in §3. We shall show
how to construct a smooth G=SO0(p, g)-action on S?*¢7! from the pair (¢, f).
We use the notations (2.2), (2.8).

By (1.6), (3.2), we obtain
(4.1) G = KM(p, q)U(%)
for each z& F(H). Take (g,p)=Gx S**1"1. Let us choose
keK, zeF(H): p = (&, 2),

(*+2) k'ekK, R, ucU(2): gk =k'm@u,
and put
(#3) (g, p) = V(' $(6, ) E ST,

We shall show that & is a smooth G-action on S?*¢"!, To show this, we
prepare the followings.

Lemma 4.4. Suppose km(0@)u=k'm@"u' for k,k'€K and u,u’ € U().
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Then, \r(k, ¢ (0, )= (k’, ¢ (0", 2)).
Proof. We obtain
km(0)P(2)ym(0)'k = k'm(0")P(z)m(8" )k’ .
Then, by (3.3)
M6, 2)kP(p(0, 2))k = N0, 2)k'P($(0', =)'k .

Comparing traces of both sides, we obtain
A0, 2) =0, ?),
kP($(0, 2))k = k'P(¢(0’, 2))'k’ .

By the second equation, Lemma 3.5 and the conditions (i), (iii), we obtain the
following possibilities:

(a) f($(0—0",2) = f(z),  or
(b) A($(0+6", 2)) = f(J(2)) .
Put f(2)=(a: b). We see that if |a|=b| (resp. |a| = |b]), then the equation
A (G, 2)=n (0, 2) (resp. f(Pp(0—0’, 2))=f(2)) implies §=0'. Suppose 0=0".
Then

kR = m(0)uu'"'m(0) ' €m(0)U(z)m(0) ' = U($(0, =))

by (3.3), and hence y(k7'k’, (0, 2))=¢(0, =) by (3.4). Therefore, if §=0" then
Yk, $(0, )= (%', $(6', 2))-

Finally, we consider the case (b). Then 7'k’ jH U j,H by Lemma 3.5,
and hence k'=kj;h for some 7 and A& H. Then

m(0)u = j;hm(0'Yu’ = jm(0 Yhu' = m(—0')j;hu’ ,

and hence jm(@+0')=hu'u"'€ U(z). Therefore, we obtain |a|=|b|, i=1 for
|a| <|b|, and i=2 for|a|>|b| by Lemma 3.7. On the other hand, the equa-
tion (b) implies ¢p(6+0’, 2)=J,(z) for |a|<<|b| and $(6+0’, 2)=J,(z) for
|a|>|b| by Lemma 3.6. Therefore, we obtain k'=Fkj;h and ¢p(0+6’, 2)=](3)
for some 7 and A& H. Then

V&', $(0', 2)) = Y(kjsh, $(6, 2))
=Pk, Ji $(0', ) = Vr(k, $(—0", Ji(2))
= Pk, $(—0", $(6+0", 2))) = ¥(k, $(0, 2)) - q-e.d.
Proposition 4.5. @ of (4.3) defines an abstract G-action on S**97' such that
DK XS =,

Proof. For (g,p)€G x S?*171, let us choose as in (4.2);
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P = w(kl’ 2‘1) = ‘I’(kZ) zz) ’
gki = k:m(e,)u,, u,e U(z,) .

By the first equation, we obtain 2, = J3 Ji(,) for some integersvs, t. Then,
ki'kijijieK,C U(z,) by (3.4). Therefore, k,= ki jijiu; for some u;€ U(z,).
Then, we obtain

kim(0,)u, = gk, = ghijijiut = kim(6,)u 3 jius
= (kijije)m((—1)"0,) (jijanjijeus -

It is clear k5'=Fk{jijs= K, and we see

(Jijtmgijz)uie Uz,)
by the equation P(J;(2))=j;P(2)j;- Then,

Y(kz, $(02 22)) = V(R ((—1)°710,, 2,))
by Lemma 4.4. On the other hand,
Yk, p((—1)16, 2,)) = ki, JiT:6((—1)70,, 23))
= Y(ki, $(01 JiJ2(22))) = v(ki, (61, 21)) -

This shows that @ of (4.3) is a well-defined mapping.
Take g, g'€G and pe.S?*7'.  Let us choose as in (4.2);

p="v(k 2), gh=FkmOu, gk =K'm0)W,
where u€ U(z) and ' € U(¢(9, 2)). Then,
(I)(gl’ D(g, P)) = q)(glr (&', (0, 2)))
=YK, (0", $(6, 2)))
= P&, p(0+0", 2)) = D(g'g, p) -
Because
g'gk = g'kK'm(0)yu = E'm(0")u'm(0)u
= K"'m(04-0") (m(—0)u'm(0))u ,
and m(—0)u'm(@) U(=) by (3.3). This shows that @ of (4.3) is an abstract

G-action.
Finally, take (k, p)€ K x S?**7! and put p=+r(k’, ) as in (4.2). Then,

D(k, p) = P(kk', 2) = Yr(k, Y(k', 2)) = Yo(k, P) - q.e.d.

Notice that the continuity of @ is unknown in this stage. In the remain-
ing of this section, we shall show the smoothness of the G-action ®.
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4.2. Put f(z)=(a:b) and z=(x,y). It is clear that ab30 if and only if
xy=0 by the condition (iv). To simplify the following discussion, we add a
condition on the pair (¢, f)

(v) xy>0= ab>0.

Notice that the condition (V) is inessential, by (2.10).
Define

Sy = {z=(», y)€F(H)|x>0, y>0} .

By the condition (v), there is a smooth positive valued function 8 on S, such
that f(2)=(1: B(2)).

Lemma 4.6. For (0,2)€RXS,, $(0,2)ES. if and only if
(4.6) (14 8(2) tanh 0) (B(=)+tanh 6)>0.

Proof. f(¢(6, 2))=(1+ B(2) tanh 8: B(z)+tanh ) by the condition (iii).
Then, only if part is clear. Suppose (4.6). Then,

(0, )€ S, U J1JAS+)

and we see that ¢(0, 2)& ], J,(S+) by considering orbits of the R-action ¢.
q.e.d.

Define
D, = {(6, 5)ER X S,1$(6, z)E5.} ,
W, = {(g, ) €G X S, | Ltrace (gP(z)'g) +(1—B(2)*) (1+B(2)") 7"} .

Lemma 4.7. For any (g, 2)E W, there exist uniquely kH € K|H and 6 =R
such that

“.7) g = km(@)u; uc U(z), (6, z)eD, .

Furthermore, the correspondence A: W.—K|H X D, defined by A(g, 2)=(kH, (6, 2))
is smooth.

Proof. First, we show the uniqueness of the decomposition (4.7). Suppose
g = km(Q)u = k'm(0')u’

for k, K€K, u,u’' € U(z) and (6, 2), (6’,2)D,. Then, (&, ¢(0, 2))=
(&', $(0’, 2)) by Lemma 4.4. Since ¢(0, 2) and ¢(0’, 2) are contained in S,,
we see ¢(0,2)=¢(0’,2). Then, k7'’ € K4y, =H, and hence kH=Fk'H.
Furthermore, we obtain §=6’ by the same argument as in the proof of Lemma
4.4.

Next, we show the existence of the decomposition (4.7). Choose k€K,
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0= R and uc U(2) such that g=Fkm(@)u. Then,
(*) trace (gP(2)*g) = cosh 20+28(2) (14 B(2)?) ! sinh 26 .

Suppose (0, 2)&D,. If B(z)=1, then ¢(@, 2)E S, for any §=R. Hence we
see B(2)=*1. (i) Suppose 0<B(2)<<1l. We can find 7 E R satisfying 2=¢(, €,)
and B(z)=tanhr. The assumption ¢(, 2)& S, implies tanh(§ +7)<0 by
Lemma 4.6, and hence 8 ++=<0. If §4++=0, then we obtain

trace (gP(2)'g) = (1+8(2)") " (1—B(=)") .
This is a contradiction to (g, 2) W,, and hence §+7<0. Then,
$(—0—2r, 2) = $(—0—, &) = (6 +7, €)
and ¢(—60—21, 3).S, by Lemma 4.6. Furthermore,
Jom(—27) = m(r)j;m(—7) € U(2)
by j,€U(e,). Then
& = km(0)u = (kj;ym(—0—2r) (j;m(—27)u),

where kj,€K, jym(—2r)ucU(2) and (—0—27,2)eD,. (ii) Suppose B(z)>1.
We can find & R satisfying 2=¢(r, e,4,) and B(z) '=tanhr. Then we obtain
similarly

g = km(Q)yu = (kj))m(—6—27) (jym(—27)u),
where kj, €K, jym(—27)ucs U(2) and (—0—21, 2)D,.

Finally, we shall show the smoothness of A. Put 8 =86(g, 2) and kH=
8(g, 2) for A(g, 2)=(kH, (0, 2)), and we shall show the smoothness of 6(g, =)

and 8(g, 2).
Consider the smooth function v on W, X R defined by

v(g, 2, 0) = cosh 20+23(2) (14 8(2)?) ! sinh 26 —trace (gP(2)"g) -
Then, (g, 2, 6(g, 2))=0 by (4.7) and (*). Furthermore, if (g, 2, 9)=0, then

g_';(g, %, 0) = 2 cosh 26 (tanh 20+28(2) (1+8(2)2) ") %0

by the definition of W,. Then, we see that the function 6(g, 2) is smooth by
Lemma 4.6 and the implicit function theorem.
Consider the smooth function §,: W,—R?*? defined by

818, 2) = (14+B(2)) gler+B(2)es+) -
Put A(g, 2)=(kH, (0, 2)), and define
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x = (14 B8(2)%)""*(cosh 8+ B(z) sinh 9) ,

y = (14 B(2)*)"*(sinh 0+ B(2) cosh 9) .
Then, we see that 8,(g, 2)=Fk(xe,+ye,.,) and x>0, y>0 by Lemma 4.6. Since
the correpsondence of kH to k(e,+e,.,) defines an embedding of K/H into R?*9,

we see that the function §(g, 2) is smooth, by considering a correspondence of
u®v (u+0, v+0) to ||u|| ud||v|| " v. q.e.d.

4.3. Define
So(®@) = {D(g, &) [gEG}, Sy(Po) = {D(8, €)|gEG}

for the G-action ® of (4.3) and the standard G-action @, of (2.1), respectively.
By (4.3) and the conditions of (¢, f), there exists a positive real number r<1
such that

S4@) = {uBve SRGR||lvl|<r} .
On the other hand, it is clear that
So(®) = {udve S(R*OR’) | |lu||>lo]l} .
Lemma 4.8. The restriction of ® to G X Sy(P) is smooth.

Proof. Put D(8)={veR’|||lv||<8}, and define a diffecomorphism a: S?~* %
D*(1)—Sy(®,) by

au, v) = (1+|v|?) " A(udv) .

Let us define a diffeomorphism F,: Sy(D)— Sy(P,) by Fo(uPv)=a(||u|| 'u, F(v)),
where F: D%(r)—D"(1) is a diffeomorphism not yet introduced.

There is a smooth real valued function % on (—7, 7) such that f((1—y*)"2, y)=
(1: (). It is clear that A(y)>0 for 0<<y<r by the condition (v). Further-
more, & is a diffecomorphism from (—r7,r) onto (—1, 1) by the conditions (iii),
(iv). Since

(1: (=) = A(A=9")", =) = F(J((1=5")", ) = (1: —h(y)),

we obtain A(—y)= —h(y), and hence y— y~'A(y) is a smooth even function.
Therefore, v—||v||"'A(||v]]) is a smooth function on D’(r) (cf. [2], ch. VIII, § 14,
Problem 6-c). Then we can define F(v)=/|lv||"'(%|[v]|)v.

Now we shall show that the diffeomorphism Fy: So(®)— Sy(D,) is G-
equivariant. It is clear that F, is K-equivariant. By definition of % and the
conditions (iii), (iv), we obtain

Fo(‘l)(e’ el)) = q)o(m(e)’ el); ST (A
Take g G and put g=km(0)u for ke K, uc U(e,)=80,(p—1, q). Then,
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Fy(®(g, e,)) = Fo(yr(k, (0, e1))) = Do(k, Fo(p(6, 1))
= Dy(k, Do(m(0), €,)) = Do(km(0), e,) = D(g, &) -

Therefore, the diffeomorphism F, is G-equivariant, and hence the restriction
D| G X S(®P) is smooth. q.e.d.

Now we can prove the smoothness of ®. By Lemma 4.8 and a similar
argument, we see that the restrictions of @ to

Gx{D(g e)lgeG} and GXA{D(g, e,+.)|g=G}

are smooth. Define W(®)={(g, ¥ (&, 2))|(gk, 2)€W,}. Then, we see that
W(®) is an open set of GX S?*97}, since W, is an open set of GXS,. Further-
more, we see that @|W(P) is smooth, since A is smooth by Lemma 4.7.
Consequently, we obtain the smoothness of ® on G x S?*¢71, because three open
sets G X {®(g, e,)| gEG},G X {D(g, €,+1)| gEG} and W(D) cover G X SP*e1,

5. Conclusion

Theorem. Suppose p=3, q=3. Then, there is a one-to-one correspondence
between the set of smooth SOy(p, q)-actions P on S***~' whose restricted SO(p) <
SO(q)-action is the standard orthogonal action and the set of pairs (¢, f) satisfying
the conditions (i) to (1v) in §3, where ¢ is a smooth one-parameter group on S* and
f:S*>Py(R) is a smooth function.

Proof. The correspondence of & to (¢, f) is given in §2, and its reversed
correspondence of (¢, f) to P is given in §4. q.e.d.

By Asoh’s consideration (cf. [1], §9-§ 11), we can show that there are infinite-
ly many topologically distinct smooth SO(p, g)-actions on S?*77! whose restricted
SO(p) X SO(g)-action is the standard orthogonal action. We omit the proof.
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