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1. Introduction

Let A4 and G be finite groups and suppose 4 acts on G by automorphisms.
We denote by Irr(G) the set of ordinary (complex) irreducible characters
of G. For a prime p, IBr,(G) denotes the set of all irreducible Brauer
characters of G with respect to p. If @ is a class function of G and a4,
@°, defined by @°(g*)=¢(g) for g G, is again a class function. For a set
S of class functions of G which is stable under the action of A, we write S,
to denote the set of all 4-invariant elements of S. Let 7 be a set of prime
numbers and let z’ be the set of primes complementary to z. For X&Irr (G),
we denote by X the restriction of X to the set G of all z-elements of G. If %
can not be written in the form X=¢- with ordinary characters ¢, 4r of G, then
we say that X is z-irreducible and that X is a z-irreducible character of G. We
denote the set of all z-irreducible characters of G by I(G). We say that G is
m-separable if every composition factor of G is either a z-group or a z’-group.

For a m-separable group G, Isaacs [8] considered the vector space c.f. (G)
of all complex-valued class functions defined on G and showed that I(G) is a
basis of c.f. (G) which has the following properties.

(1) If XIrr(G), then X is a nonnegative integer linear combination of
elements of I(G).

(2) If pI(G), then =X for some X € Irr(G). These imply that
I(G) behaves as a w-generalization of Brauer characters.

Now assume that A acts on G by automorphisms and (|4][, |G|)=1.
Under the assumption that A4 is solvable, Glauberman [2] established a natural
bijection from Irr (G), onto Irr (Cy(A4)). If A is non-solvable, then | 4] is even
by the Odd-order Theorem and hence |G| is odd. In that case, Isaacs [4]
showed that there also exists a similar bijection from Irr(G), onto Irr (Cg(A4)).

On the other hand, Uno [10] studied a character correspondence between
Brauer characters. He proved that if G is p-solvable, then there exists a bijection
from IBr,(G), onto IBr,(C;(A)) and this has similar properties as those of
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Glauberman and Isaacs.

The purpose of this paper is to generalize this result to z-separable groups
by applying Isaacs’s z-generalization of Brauer characters. Namely, we have
the following theorem.

Theorem. Let A act on G such that (|G|, |A|)=1. Suppose G is -
separable. Then there exists a natural bijection

I(G, 4): 1(G)4 — I(Ce(4))

and the following hold.

(1) If BA, then TI(G, A)=II(G, B)II(C¢(B), 4/B).

(2) If Ais a g-group for a prime q and EI(G),, then (Y)I(G, A) is a
unique m~irreducible constituent of 4y with multiplicity prime to q.

A p-solvable group is just a {p} '-separable group, and Uno’s methods work
mostly in our case, with slight modifications. However we shall reproduce them
for the completeness. Also, we shall start with a review of the character cor-
respondences of Glauberman and Isaacs, and collect, in section 3, some facts on
characters of z-separable groups ([8], [9]) that will be needed to prove the above
theorem. In section 4, we shall consider a correspondence of z-irreducible
characters of z-separable groups and prove the theorem.

Concerning our terminologies and notations, we refer to Gorenstein [3] and
Isaacs [6].

2. Character Correspondences of Glauberman and Isaacs

Here we summalize some properties of the character correspondences of
Glauberman and Isaacs.

HypotHuesis 2.1. A acts on G such that (|4[, |G|)=1. Put C=Cy(4)
and let '==G4 be the semidirect product of G by 4.

Theorem 2.2. Assume Hypothesis 2.1. Then there is a natural bijection
II(G, 4): Irr (G), — Irr (C)

and the following hold.

(1) If B<A and D=Cy(B), then II(G, B) maps Irr (G)4 onto Irr (D),.

(2) In the situation of (1), II(G, A)=I1(G, B)II(D, A/B).

QR) If A is a p-group and X € Irr (G),, then (X)II(G, A) is a unique
irreducible constituent of X such that
X Xer COTLG, A)].

(4) If a is an automorphism of T' which leaves G and A invarint, then C is
a-invariant and (X")II(G, A)={(X)II(G, A)}* for every XEIrr (G),.
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(5) Let XIrr (G), and E=(X)II(G, A). Then Q(X)=Q(), where Q(X) is
the field obtained by adjoining all the values of X to the rational field Q.

Proof. See Corollary 5.2 of [11], Theorem 2.2 and Lemma 4.2 of [10].

Theorem 2.3. Assume Hypothesis 2.1 and let N be an A-invariant normal
subgroup of G. Let XEIrr (G),, 0€Irr (N),, T =140), vr=(X)II(G, 4) and
o=(0)II(N, A) where 1 (0) denotes the inertia group of 6 in G. Then the follow-
ing hold.

(1) [Xw, 610 if and only if [yrwnc, $10.

(2) T NC=Iy¢)and (p°)I(G, A)={(p)II(T, A)}¢ for every p&Irr(T | ).

Proof. See Lemma 2.5 of [12].

Assume Hypothesis 2.1. Then for X € Irr(G),, there exists a unique
extension X' of X to I' such that A=<ker(detX’). We call X’ the canonical
extension of X (cf. [6], Chapter 13).

Theorem 2.4. Assume Hypothesis 2.1 and let A is cyclic. Let X< Irr (G),
and X' be the canonical extension of X to T'. Then there exists E=-1 such that
X' (ca)=E(X)IL(G, A)(c) for all c€C and all generators a of A.

Proof. See Theorem 3.3 of [2].

3. Results of Isaacs on B(G) and I(G)

Suppose that G is a p-solvable group. By the Fong-Swan Theorem (cf.
[1], Theorem 72.1), each @<1Br,(G) is the form =X for some X&Irr(G),
where X denotes the restriction of X to the set of p’-elements of G. From this
point of view, Isaacs [7] defined a characteristic subset Y(G) S Irr (G) such that
the restriction map X—X defines a bijection from 2J(G) onto IBr,(G). Later
he generalized its construction to z-separable groups and constructed a subset
B,(G)EIrr (G) such that the restriction to the set of z-elements induces a
bijection from B, (G) onto I(G). Moreover B,(G) is stable under the natural
action of Aut(G) on Irr (G).

We do not mention here the definition of B,(G), but the main result of
Isaacs [8] can be stated as follows:

Theorem 3.1. Let G be n-separable. Then the following hold.

(1) The restriction map »— - defines a bijection from B.(G) onto I,(G).
In partiqular I(G) is a basis of c.f. (G).

(2) There exist nonnegative integers dyy for XEIrr (G) and & B,(G) such
that 7A<=¢632m)dw P.

Proof. See Corollary 10.1 (a) and Corollary 10.2 of [8].
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Let us write @, to denote the field obtained by adjoining all the complex
n-th roots of unity to @, for all z-numbers z.

The following two results are concerned with the characterizations of char-
acters in B, (G).

Theorem 3.2. Let G be n-separable and let X € Irx (G).

(1) If X€B/G), then X(2)EQ, for all g=G.

(2) Assume 2€x or 2/ |G|. Let X have values in Q, and suppose that
ReI(G). Then XEB/G).

Proof. See Corollary 12.1 and Theorem 12.3. of [8].

Theorem 3.3. Let G be n-separable and let N <G.

(1) If X€B.(G), then every irreducible constituent of X belongs to B.(N).

(2) If GIN1is am-group and pEIrr (N) and X E1Irr (G | ), then | B, (N)
if and only if XE B, (G).

(3) If GIN is a =n'-group, then for = B, (N), there exists a unique
trreducible constituent X of ¢ which belongs to B,(G). If 4 is G-invariant, then
X 15 an extension of .

" Proof. See Theorem 6.2, Corollary 6.3 and Theorem 7.1 of [8].

In the rest of this section, we give facts about z-irreducible characters.
The next result is an analog of Clifford’s character correspondence.

Theorem 3.4. Let G be n-separable and N <IG. Let §I(N) and T=
1,(0). Then induction defines a bijection from I (T |0) onto I (G |6).

Proof. See Proposition 3.2 of [9].

Now we show the following character correspondence which can be con-
sidered as a w-generalization of Theorem 3.1 of [5], and the proof there also
works in our case. However we give here a rather short proof.

Theorem 3.5. Let G be n-separable and N be a normal subrgoup of G
such that G|N is a w-group. Let & Irr (N) and assume

(1) FeLN)

(2) ApE=nr for those g€ G with JE=Ar.
Then N defines a one to one correspondence between Irr (G| ) and I(G | ).

Proof. Let ¥ &B,(N) be such that J'=+r, S=Irr (G |v¥), T=L(G|¥)
and U={pEB,(G); [y, ¥']F=0}. Note that the map A gives a one to one
correspondence between 7' and U. Write ¢G=)§axx, 1]»’G=¢§;76¢¢ with
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positive integers a,, by and 9AC=AZ dyo P with d,o>0. Since J¢=1+", we have
b¢=x%axdx¢. On the other h:l?ll('i, we get I;(Y)=Io(yr)=I5(¥') from the as-

sumption. If we denote this common group by I, then we have
Eaazc= [,‘pG’ ‘:b‘c] =|I: N|= ["1",6’ ‘P‘,G] = zbf"
xes (15175
So
2 (D aydye) =) a .
$ET %ES xes

Expanding the left-hand side of the above equation, we find easily

wédiq, =1 and dyd,w=20 for »=X in S.
Thus d,p=1 for some p& U, while dyy=0 if ¢’'#@. Therefore X=Pp=T. If,
for S different from X, =@’ with @’€U, then we get p+¢’ from the
above. Hence ##X and thus A defines an injection from S into T. If pT
with & U, then b, 0 and hence d,p30 for some X& S. This yields that X=¢.
Therefore A is a bijection.

4. Correspondences of 7-Irreducible Characters

Let Q be a subset of Irr(G). For a subgroup H of G, we set Q(H)=
{yelr (H); [Xg, ¥]30 for some XEQ}.

DeriNiTION. Let G be m-separable and assume that A4 acts on G. Let
G=G,>G,>---I>G,= {1} be a normal series of G and let Q be a subset of
Irr (G). If Q satisfies the following two conditions:

(1) Qis A-invariant

(2) the map A is a bijection from Q(G;) onto I (G;) for each 7, 0<i<n,
then we say, following Uno [10], that Q has the #-lifting property with respect
to 4 and {G;}:%,. If Q has the =-lifting property with respect to 4 and every
normal series of G, then we simply say that 'Q has the =-lifting property with
respect to 4. If Q has =-lifting property with respect to A4, then Q has z-
lifting property with respect to B for any subgroup B of 4. Furthermore, we
note that B,(G) has the =-lifting property with respect to 4.

The next lemma is a generalization of Lemma 3.4 of Uno [10].

Lemma 4.1. Assume A acts on G. Let G=G,>G,>-->G,= {1} be a
normal series of G. If QC&Irr (G) has the n-lifting property with respect to A
and {G} %o, then the following hold.

(1) If Gi|Giy, is a m-group, then Irr (G;|0) SQUG;) for every § €Q(Giy,y).

(2) If Gi|Giy, is a n'-group, then Irr(G;|0)NQG,;) consists of a single
element for every 0€Q(G;y,). If 0 is Gi-invariant, then the element of
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Irr (G;|6) N Q(G;) is an extension of 0.

Proof. (1) Let 0€Q(G;,,) and X<Irr(G;]6). By the #-lifting property
of Q, it follows that 9eIﬁ(G,-+l) and IG'.(G)=IG,.(9). So by Theorem 3.5.
XeI(G;). Again by the z-lifting property of Q, there exists »&Q(G;) such
that ¥=X. Set v, =>L1n; where each 7,EQ(G;;,). Then every #;€
I(G;4,) and 8 is m-irreducible constituent of V¢, By Theorem 3.1 (1), é:ﬁj
for some j. Since A is a bijection from Q(Gy,) onto I(G;,,), it follows that
0=n; and Yy €Irr(G;|6). Thus by Theorem 3.5, we conclude that X=+r&
Q(G)).

(2) Let 0€Q(Giyy) and X€Q(G)) NIrr (G;|0). By the =-lifting property
of O, €1,(G;,,) and XEI(G;]10). Let X’ (resp. 6’) be an element of B(G;)
(resp. B,(G;,,)) such that X'=%X (resp.é':é). By Theorem 3.3(1), we can
write X'¢,, =33;n; where n,E B,(G;,,). Thus By Theorem 3.1 (1), 72'0,-“:
>3, %; where 9,€1,(G;4,). Thus ﬁjzé' for some j and so ;=6’. Applying
Theorem 3.3 (3), we see that B,(G;)N1Irr(G;|6’) consists of the single element
X'. Therefore, we obtain from Theorem 3.1 (1) that I,,(G,-Ié) ={X}. If
teQ(G) NIrr (G;16), then L‘EI,,(G,-I@) and so £=X. Thus by the z-lifting
property of Q, {=X. Therefore Q(G;) N Irr (G;|0) consists of a single element
X. 1If @ is G;-invariant, then @’ is also G;-invariant. Thus by Theorem 3.3(3),
X(1)=0(1). this implies that X is an extension of 4.

The next lemma corresponds to Proposition 3.6 of Uno [10]. However the
proof needs some elabolations in part.

Lemma 4.2. Assume Hypothesis 2.1 and that G is rm-separable. Let
G=G,>G>>G,= {1} be an A-composition series of G and let Q&Irr (G)
have the r-lifting property with respect to A and {G;} %o. Then the image of Q4
by II(G, A) has the =-lifting property with respect to {1 4,4} and {G; N C}i%o.

Proof. We proceed by induction on |G |.

Set C;=G;NC, 0<i<n and let A={Q }II(G, A). First we claim that
A(C)={QG)) }II(G;, A) for each 7, 0<i<n. Let 5 be any element of Q(G;),.
If G;_,/G; is a m-group, then by Lemma 4.1 (1), Irr(G;_,|7),SQG;_,), and
Irr (G;-,|9) 4 is nonempty (cf. [6], Chapter 13). If G;_,/G, is a =’-group, then
by Lemma 4.1 (2), Q(G;_,))NIrr(G;_,|») has just one element. Since both
Q(G;-,) and Irr(G;_,|y) are A-invariant, (Q(G;-,) N Irr (G;_,|1))a=Q(G;-) N
Irr (G;_,|3). Therefore Q(G;_,),N1Irr(G;_,|n) is nonempty in any case. Ap-
plying Theorem 2.3 (1) repeatedly, we can find an element X € Q,N Irr(G|7)
such that (X)II(G, A)€Irr (C | (5)I1(G;, A)). This implies that {Q(G;) 4} II(G, 4)
S A(C;). Conversely, let £ be any element of A(C;) and let =(&)I1"Y(G;, 4).
From the definitions of A and A(C}), there exists X€Q(G), such that £ is a
constituent of (X)II(G, A);,, By Theorem 2.3 (1), we see XEIrr (G|y). Thus
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n€Q(G;). This implies that A(C;) S {Q(G;)}I(G, A) and the claim is proved.

Now, if we set Q,=0Q(G,), then Q, is 4-invariant and Q,(G;)=Q(G;) for all
¢ >1. So, by the inductive hypothesis applied to G,, we may assume that the
restriction map A from A(C;) to I(C;) is a bijection for each z, 1<i<n. So, it
suffices to show that A gives a bijection from A onto I(C).

If C<G,, then A=A(C)) and the assertion holds by the inductive hypo-
thesis. Now we assume C £G,. Let 8,, -+, 8, be representatives of C-orbits
on Q(G)), and set ¢;=(0,)II(G,, 4), 1<i<k. By Theorem 2.2 (4),

$¢ = {(OII(G,, A)° = ()G, 4)  forall c=C.

Thus we find that ¢,, -+, ¢, are representatives of C-orbits on A(C;). Further-
more, since Q(G,) is G-stable, it is easy to see that I(8;)=1I¢(d;) for all i. Also,
we have I(9;)=1(;) for all , because we have assumed that {(Q,)}I1(G,, 4)
has the z-lifting property. In particular, it follows that ¢,, -+, ¢, are represen-
tatives of C-orbits on I(C)).

We divide the proof into two cases.

Case 1. GJ/G, is a m-group.

IfX € Q,, then X€Irr (G|6;) for somei. So, by Theorem 2.3(1), we have

(X)II(G, A)Irr (C| ¢;) and thus Ag.l; Irr (C| ¢;). Conversely if yrE1Irr (C| ),

then from Theorem 2.3 (1) and Lemma 4.1 (1), (Y)II7X(G, 4)€Irr(G|0,) s S Q4.
Thus yJr€ A and we conclude that

A=UTrr(Cl ).

On the other hand, we have clearly I (C)= QI,,(CIqS;). So, by Theorem 3.5,
A defines a bijection from A onto I(C). =

Case 2. G/G, is a z'-group. R

If X€Q,, then XIrr (G|6;) N Q, for some 7. Thus .Q.A=_UlIrr (Gl16:)n

Q4. By Lemma 4.1(2), each Irr(G|0,)NQ consists of a single element.
Since both Irr(G|6;) and Q are A-invariant, it follows that Irr(G|6;)NQ=
Irr (G0,)NQy, 1<i<k. Set Irr (G|6,)NQ,={X;}, 1<i<k. By Lemma 4.1
(2), X;=X; for i#j. Thus Q,={X,, -, X;} and A={(X,)II(G, 4); 1<i<k}.
Furthermore, we obtain from Theorem 2.3 (1) that each ¢; is a z-irreducible

/’/—\ - A
constituent of (X;)II(G, A)c,. Let v be any element of I(C|¢;). Let ¢! be
the element of B,(C,) which corresponds to ¢;. Since B,(C) has the z-lifting
property (with respect to the trivial action of 4 on C), we see from Lemma 4.1(2)
that B,(C|¢!) consists of a single element. Set B(C|¢!)={y}, 1<i<k, so
we have I(C|d;) =1}, 1<i<k and I(C)={y, -+, Ju}. Set Ti=15(0,),
1<i<k. For each X;, 1<7/ <A, there exists a unique irreducible character
g.€Irr(T;16,) such that £§=X;. Then & &Irr(7;]0,)NQ(T;) and it follows
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from Lemma 4.1 (2) that &; is an extension of 6;. Since X; and §; are A4-
invariant, ; is also A-invariant and (&,)II(7;, 4)°=(X;)II(G, 4) by Theorem
2.3(2).

If each (£,)I1(T;, A) is z-irreducible, then (X,)II(G, 4) is also z-irreducible
by Theorem 3.4 and thus m=1@n 1<i<k. This implies that A is
a bijection from A onto I(C).

In order to prove the z-irreducibility of (&)II(T};, A), we consider two
cases.

(a) |A] is even.

From Hypothesis 2.1 and the Odd-Order Theorem, G is solvable. Thus
G|G, is abelian and so G=G,C. Now, we know that Irr (T;|8,)={&;\; AE
Irr (T;/Gy)} (cf. [6], Corollary 6.17). For any Ex&Irr (T;|0;), we have

(EN)(D) = EIN(t) = EONMFTT) = E() forall a4 and teT;.
Therefore by Theorem 2.3(1), we have
Tre (TsN Cl) | = |Tre (T316,) | = e (T4/Gy) | = | TN C: Gyl

This implies that every element of Irr (T;NC|¢;) is an extension of ¢;. In
particular, we see that (§,)II(T;, A) is z-irreducible.

(b) 4] is odd.

Then A4 is a solvable group. Let A=A>A,>:->A4,={1} be a com-
position series of 4 and let {4;=A4;_,/A;}:", be composition factors of 4. Let
Xj=Ce(4;), Y;=Cr(4)), o;=(0:)11(Gy, 4;) and 7;=(E)I(T;, 4;) for j=
0, ---,m. Then

Xi = CXj+1(A_j+l)’ Yj =Cy,-+l(Aj+1), Xjﬁl Yj ’

o;€Irr (X;),,_, and 7;€Irr (V)4 _, for j=1,-,m.
Tw=E&; is an extension of o,,=6;. Now, we assume that 7; is an extension of o ;
for some j>1. Let us denote by A (resp. A’) the semidirect product X;4;
(resp.Y;A;) and let o &€Irr(A) (resp. € Irr(A’)) be the canonical extension
of o; (resp.7;). Then 7, is irreducible and it satisfies ker (det ,) = 4;. So,

by the uniqueness of the canonical extension of o;, we obtain that 1,=0. Since
ZJ- is cyclic, there exist, by Theorem 2.4, &=-41 and & =41 such that

7(x8) = &1;_y(x), o(¥@) = E'a;_(x)  foral xeX; ,and acd;,—{1}.

So,
7;-1(1) = E1a(@) = €0 (@) = €70 j4(1) .

This implies &=€&’ and hence 7;_, is an extension of o;_,. Repeating the same
argument, we conclude that 7, is an extension of o, and the proof is complete.
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From Lemma 4.2, we immediately obtain the following corollary.

Corollary 4.3. Assume Hypothesis 2.1 and that G is m-separable. Let
QEIrr (G).  If Q has the n-lifting property with respect to A, then the restriction
map A gives a bijection from (Q,)II(G, A) onto I(C).

Assume Hypothesis 2.1 and that G is z-separable. Suppose Q&Irr(G)
has the z-lifting property with respect to 4. Then A: X—¥X gives a bijection
from Q, onto I(G), and we have the sequence of bijections:

I(G)4 A% Q, e, 4) (Q)ILG, A) AR L(C)

where A~ is the inverse map of A. Thus the composite map II(G, 4)=
ATHI(G, A)A gives a bijection from I (G), onto I(C). From its construction,
it seems likely that TI(G, 4) depends on the choice of Q. However, as we shall
see below, if A be solvable, then II(G, 4) does not depend on the choice of Q.
On the other hand, if 4 is non-solvable, then |G| is odd by the Odd-Order
Theorem. When |G| is odd, we shall show that II(G, A4) actually gives a
bijection from B,(G), onto B,(C). So the bijection map II(G, 4) is naturally
defined anyway.

The following Lemmas 4.4 and 4.5 correspond to Lemma 3.9 and Propo-
sition 3.8 of Uno [10] respectively, and his proof also works in our case.

Lemma 4.4. Assume Hypothesis 2.1 and that A is cyclic of prime order.
Let, X, y€Irr (G), be such that X =+ €I.(G). Then m=m
Proof. Let |A4]|=g¢.

Case 1. gEmr.

In this case, I'/G is cyclic g-group and T" is z-separable. Since X and +r
are A-invariant, it follows from Theorem 3.5 that the restriction maps

Irr (T'|X) = I(T'|X) and Irr (D) — I(T'|)

are bijections.
Let X' (resp. ') be the canonical extension of X (resp.4r) to I'. Then

A
Irr (T |X)={uX’; p€Itr (A)}. So ¥’ = uX’ for some pEIrr(4). By Theo-
rem 2.4, there exist E=-41 and &’=+1 such that

(OTL(G, A)(c) = €X'(ca) and
(WII(G, A)(c) = &Y'(ca)  forall c=C and acA—{1}.

Thus for every z-element c€C and ac 4— {1},

(WG, A)(e) = Ev/(ca) = & p(a)X/(ca) = Eep(@)X)II(G, A)(o),
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and in particular, (Y)II(G, A)(1)=¢€"€n(a)(X)II(G, A)(1). Since u(a) is a root

of unity, we obtain ¢'u(a)=1. Thus (X)II(G, A) m as required.
Case 2. gen'.
Set my=mU {¢}. Then G is = -separable. Since ¢ does not divide |G|,

1. (G)=1,(G) and X =1} is a my-irreducible character. So the assertion is clear
from the case 1.

Lemma 4.5. Assume Hypothesis 2.1 and that G is r-separable and A is
solvable. Let B<A, D=C¢(B) and assume that Q< Irr (G) and ASIrr (D) both
have the n-lifting property with respect to A. Let XEQ, and let ¢ be the unique

element of A,y such that cb:m (Note that (X)II(G, B) is n-irreducible
—_— /’\
by Corollary 4.3). Then (X)II(G, A)=(¢$)II(D, 4/B).

Proof. We proceed by induction on |A4].
We may assume A+B. Let H be a maw subgroup of 4 con-
taining B. By Corollary 4.3, (X)H(G H) and (¢)II(D, H|B) are both contained

in I(Cy4(H)). From the inductive hypothesis, we may assume that ’(XI)E(TH)

=m Since A/H is a cyclic group of prime order, it follows from
Lemma 4.4 that
{OI(G, H}I(Cy(H), A|H) = {($)IL(D, H/B)}II(Ce(H), A/H) .

Thus the assertion follows immediately from Theorem 2.2 (2).

We are now ready to prove the following theorem.

Theorem 4.6. Assume Hypothesis 2.1 and that G is n-separable and A is
solvable. Then there exists a bijection

ﬁ(G, A)I Iqt(G)A - ¢(C) ’

which is independent of the choice of Q which satisfies the m-lifting property with
respect to A. And the following hold.

(1) If B A, then TI(G, A)=II(G, B)II(C4(B), A/B).

(2) If A is a g-group for a prime q and EI(G),, then (W)I(G, A) is a
unique m-irreducible constituent of \rc with multiplicity prime to q.

Proof. In Lemma 4.5, let B={1}. Then we see that II(G, A) is inde-
pendent of the choice of Q which satisfies the z- hftmg property with respect to
A. If BQA, it is easily seen by Lemma 4.5 that I1(G, A)= H(G B)II1(C¢(B),
A|B). Now fix Q which satisfies z-lifting property with respect to 4. For
YEIL(G),, there exists XEQ such that X=+. If 4 is a g-group, then by
Theorem 2.2 (3), Xc=m(X)II(G, A)+q¢ where m is a positive integer prime to
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g and ¢ is zero or a character of C. Therefore by the definition of II(G, A),
Yo=m(y)II(G, A)+gf. This completes the proof.

Finally we note the following fact which asserts that II(G, 4) induces a
bijection between B,-characters under certain circumstances.

Theorem 4.7. Assume Hypothesis 2.1 and that G is n-separable. If either
2ern or 2 |G|, then II(G, A) gives a bijection from B(G), onto B(C).

Proof. It suffices to show that if X € B,(G),, then E=(X)II(G, A)EB,(C).
We know that fEI,,(C’) by Corollary 4.3 (applied to Q=B,(G)) and £ has values
in @, by Theorem 2.2(5) and Theorem 3.2 (1). Thus we conclude from
Theorem 3.2 (2) that £ B,(C).

Under the assumption of the above theorem, we get the natural bijection
(G, A): I(G)—I(C). And clearly this coincides with the bijection TI(G, 4)
given in Theorem 4.6, provided A4 is solvable. Thus the proof of our main theo-
rem is completed.
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