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1. Introduction

Let A and G be finite groups and suppose A acts on G by automorphisms.
We denote by Irr(G) the set of ordinary (complex) irreducible characters
of G. For a prime py IBr^(G) denotes the set of all irreducible Brauer
characters of G with respect to p. If φ is a class function of G and a^A,
φa

t defined by φ"(ga) = φ(g) for g e G, is again a class function. For a set
S of class functions of G which is stable under the action of A, we write SA

to denote the set of all ^-invariant elements of S. Let π be a set of prime
numbers and let n' be the set of primes complementary to π. For %e!rr(G),
we denote by % the restriction of X to the set ό of all τr-elements of G. If %
can not be written in the form %=ζ-{-'^r with ordinary characters ζ, ψ of G, then

we say that % is r-irreducible and that % is a τr-irreducible character of G. We
denote the set of all ττ-irreducible characters of G by I<(G). We say that G is
7r-seρarable if every composition factor of G is either a τr-group or a π '-group.

For a r-separable group G, Isaacs [8] considered the vector space c.f. (ό)
of all complex-valued class functions defined on G and showed that IΛ(G) is a
basis of c.f. (ό) which has the following properties.

(1) If %e!rr(G), then X is a nonnegative integer linear combination of
elements of I*(G).

(2) If φ&IJ(G), then φ=X for some Xelrr(G). These imply that
!<((?) behaves as a ?r-generalization of Brauer characters.

Now assume that A acts on G by automorphisms and ( \ A \ 9 |G|)=1.
Under the assumption that A is solvable, Glauberman [2] established a natural
bijection from Irr(G)^ onto Irr (CG(A)). If A is non-solvable, then \A\ is even
by the Odd-order Theorem and hence | G | is odd. In that case, Isaacs [4]
showed that there also exists a similar bijection from Irr(G)^ onto Irr (CG(A)).

On the other hand, Uno [10] studied a character correspondence between
Brauer characters. He proved that if G is jp-solvable, then there exists a bijection
from IBr^G)^ onto IRrp(CG(A)) and this has similar properties as those of
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Glauberman and Isaacs.

The purpose of this paper is to generalize this result to ^-separable groups
by applying Isaacs's ττ-generalization of Brauer characters. Namely, we have
the following theorem.

Theorem. Let A act on G such that (\G\, |-4|)=1. Suppose G is π-
separable. Then there exists a natural bijection

and the following hold.

(1) IfB<A, then Π(G, A)=ϊl(G, B)ϊί(CG(B), A/B).

(2) If A is a q-group for a prime q and ψ&I«(G)Aj then ( ψ )Π(G, A) is a
unique π-ίrreducίble constituent of ψcβ(A) wftλ multiplicity prime to q.

A ^-solvable group is just a {p} '-separable group, and Uno's methods work
mostly in our case, with slight modifications. However we shall reproduce them
for the completeness. Also, we shall start with a review of the character cor-
respondences of Glauberman and Isaacs, and collect, in section 3, some facts on
characters of τr-separable groups ([8], [9]) that will be needed to prove the above
theorem. In section 4, we shall consider a correspondence of τr-irreducible
characters of τr-seρarable groups and prove the theorem.

Concerning our terminologies and notations, we refer to Gorenstein [3] and
Isaacs [6].

2. Character Correspondences of Glauberman and Isaacs

Here we summalize some properties of the character correspondences of
Glauberman and Isaacs.

HYPOTHESIS 2.1. A acts on G such that ( \ A \ 9 |G|)=1. Put C=CG(A)
and let Γ—GA be the semidirect product of G by A.

Theorem 2.2. Assume Hypothesis 2.1. Then there is a natural bijection

Π(G,A):

and the following hold.

(1) IfB<A and D=CG(B), then Π(G, B) maps Iτr(G)A onto Irr(D)A.
(2) In the situation of (1), Π(G, A)=Π(G, B)Π(D, A/B).
(3) If A is a p-group and %elrr(6f)^, then (χ)Π(G, A) is a unique

irreducible constituent of %c such that

pXtyc, (%)Π(<7, A)].
(4) If a is an automorphism of T which leaves G and A invarinty then C is

a-invariant and (X,*)Π(G, A)={(X)Π(G, A)}Λ for every XeIrr(G)x.
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(5) Let XtΞlτr(G)A and ξ=(X)Π(G, A). Then Q(X)=Q(ξ), where Q(X) is
the field obtained by adjoining all the values of % to the rational field Q.

Proof, See Corollary 5.2 of [11], Theorem 2.2 and Lemma 4.2 of [10].

Theorem 2.3. Assume Hypothesis 2.1 and let N be an A-ίnvariant normal

subgroup of G. Let X<=Iπ(G)A, 0eIrr(Λfyι, T=IG(Θ], ψ= (X)Π(G, A) and
φ=(θ)Π(N, A) where IG(Θ) denotes the inertia group ofθ in G. Then the follow-
ing hold.

(1) [XN,θ]*Oifandonlyif[ψNnc, φ]Φθ.

(2) T Π C=/c(φ) and (φG)Π(G, A)= {(φ)Π(T, A)}c for every φ(Ξ Irr (T \ θ).

Proof. See Lemma 2.5 of [12].

Assume Hypothesis 2.1. Then for Xelrr(G)^, there exists a unique
extension %' of % to Γ such that ^4^ker(dct %'). We call %' the canonical
extension of % (cf. [6], Chapter 13).

Theorem 2.4. Assume Hypothesis 2.1 and let A is cyclic. Let
and %' be the canonical extension ofKtoT. Then there exists £=±1 such that

X'(ca)= £(%)Π(G, A)(c) for all c<=C and all generators a of A.

Proof. See Theorem 3.3 of [2].

3. Results of Isaacs on B«(G) and /„(£?)

Suppose that G is a ^-solvable group. By the Fong-Swan Theorem (cf.
[1], Theorem 72.1), each φ^lΆrp(G) is the form φ=X for some %e!rr(G),
where % denotes the restriction of % to the set of //-elements of G. From this
point of view, Isaacs [7] defined a characteristic subset ^V(G) £ Irr (G) such that

the restriction map %— »% defines a bijection from ^(G) onto IBr^G). Later
he generalized its construction to τr-separable groups and constructed a subset
-βrt(G)£lrr(G) such that the restriction to the set of τr-elements induces a
bijection from BJ^G) onto I«(G). Moreover B^(G) is stable under the natural
action of Aut(G) on Irr(G).

We do not mention here the definition of B^(G)y but the main result of
Isaacs [8] can be stated as follows :

Theorem 3.1. Let G be π -separable. Then the following hold.
(1) The restriction map -v/r-^ψ defines a bijection from B«(G) onto I^(G).

In partiqular I^(G) is a basis of c.f. (G).
(2) There exist nonnegatίve integers d^φ for Xelrr(G) and φ^BJfl) such

Proof. See Corollary 10.1 (a) and Corollary 10.2 of [8].
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Let us write Q« to denote the field obtained by adjoining all the complex
n-th roots of unity to Q, for all ττ-numbers n.

The following two results are concerned with the characterizations of char-
acters in BJ(G).

Theorem 3.2. Let G be π-separable and let %e!rr(G).

(1) IfXGBJ[G),thenX(g)eQ*foraUgGG.
(2) Assume 2&π or 2 J f \ G \ . Let X have values in Q« and suppose that

Then

Proof. See Corollary 12.1 and Theorem 12.3. of [8].

Theorem 3.3. Let G be π-separable and let N<\G.

(1) IfX&B^G), then every irreducible constituent ofXN belongs to B«(N).
(2) // GIN is a π-group and ψ e Irr (N) and % e Irr (G \ ψ), then ψ> <Ξ BJ(N)

if and only ifX<=B«(G).
(3) If GIN is a π' -group, then for ψ»e B^(N], there exists a unique

irreducible constituent % 0/-ψ»G which belongs to B*(G). If ψ is G-invariant, then
% is an extension of t/r.

Proof. See Theorem 6.2, Corollary 6.3 and Theorem 7.1 of [8].

In the rest of this section, we give facts about τr-irreducible characters.
The next result is an analog of Clifford's character correspondence.

Theorem 3.4. Let G be π-separable and N<G. Let Θ^IJ^N) and T=
IG(Θ). Then induction defines a bijection from I«(T \ θ] onto IJ(G \ θ).

Proof. See Proposition 3.2 of [9].

Now we show the following character correspondence which can be con-
sidered as a π -generalization of Theorem 3.1 of [5], and the proof there also
works in our case. However we give here a rather short proof.

Theorem 3.5. Let G be π-separable and N be a normal subrgoup of G
such that G/N is a π-group. Let -ψ»e Irr (N) and assume

(1) ψe/ΛΛΓ)
(2) tyg=tyfor those g^G zϋith $*=•$>.

Then Λ defines a one to one correspondence between Irr(G|ψ) and

Proof. Let ψ'εΞB«(N) be such that ^'=ψ, S=Irr(G| ψ ), Γ=/β(
and U={φ&B*(G)'y [<pN, Λ//JΦO}. Note that the map Λ gives a one to one
correspondence between T and U. Write ψ°= *Σ dyX, -ψ»/G= 2j bφφ with
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positive integers #χ, bφ and X= Σ ^φΦ with d^φ>0. Since ^rG=^rfG

y we have

bφ=Σay.dχφ. On the other hand, we get IG(^jr)=IG(^r)=IG(
i\fr/) from the as-

sumption. If we denote this common group by /, then we have

So

Expanding the left-hand side of the above equation, we find easily

φ = I and d^d^ = 0 for 97=!=% in S .

Thus d*φ=l for some ??<Ξ U, while rfχφ/=0 if '̂φ^. Therefore %=$e Γ. If,
for 97^5 different from %, ή=Φ' with φ'^U, then we get φ^φ from the
above. Hence ^Φ% and thus Λ defines an injection from S into T. If Φ^T
with 9? e C7, then δ^ Φ 0 and hence rfxφ Φ 0 for some X e 5. This yields that %=φ.
Therefore Λ is a bijection.

4. Correspondences of ir-Irreducible Characters

Let Ω be a subset of Irr(G). For a subgroup H of G, we set Ω(H)=
{<ψ>€Ξlrr(7f); [%*, ι/r]Φθ for some

DEFINITION. Let G be τr-seρarable and assume that A acts on G. Let
G=G0>G1> ">Gn=il} be a normal series of G and let Ω be a subset of
Irr (G). If Ω satisfies the following two conditions:

(1) Ω is ^4-ίnvariant
(2) the map Λ is a bijection from Ω(Gt ) onto /^(Gt ) for each z, 0<ί<n,

then we say, following Uno [10], that Ω has the τr-lifting property with respect
to A and {GJ/lo If Ω has the zr-lifting property with respect to A and every
normal series of G, then we simply say that Ώ has the τr-lifting property with
respect to A. If Ω has τr-lifting property with respect to A, then Ω has π-
lifting property with respect to B for any subgroup B of A. Furthermore, we
note that B^(G) has the τr-lifting property with respect to A.

The next lemma is a generalization of Lemma 3.4 of Uno [10].

Lemma 4.1. Assume A acts on G. Let G-=G0>:G1> ^Gn={l} be a
normal series of G. If Ω£lrr(G) has the π-lifting property with respect to A

and {Gt } t ϋ,0, then the following hold.
(1) // G, /G, +1 is a π-group, then Irr(Gt |0)£Ω(G, )/0r every 0eΩ(Gί+1)
(2) If Gi/Gi+1 is a π' -group, then Irr (G, | Θ) Π Ω(G, ) consists of a single

element for every 0eΩ(Gί+1). If θ is GΓinvariant, then the element of
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Irr (Gi I θ) Π Ω(G, ) is an extension of θ.

Proof. (1) Let 0eΩ(Gί+1) and %<Ξ Irr (Gf | θ). By the ^-lifting property
of Ω, it follows that ^e/Λ(Gί+1) and IG.(θ) = IG.(d). So by Theorem 3.5.
Xe/^G;). Again by the 7r-lifting property of Ω, there exists ψ»eΩ(Gf ) such

that ι£ =%. Set ψc,+1=Σj/lιi7, where each 97yeΩ(Gί +1). Then every ^e
I«(Gi+1) and $ is τr-irreducible constituent of ΨG,+1 By Theorem 3.1 (1), $=#y
for some 7. Since Λ is a bijection from Ω(Gi+1) onto /Λ(G, +1), it follows that

θ=ηj and i^eIrr(Gf|0). Thus by Theorem 3.5, we conclude that %=-

(2) Let θ e Ω(G, +1) and % e Ω(Gt ) Π Irr (Gf \θ). By the τr-lifting property
of Ω, d<=Ξl«(Gi+1) and χe /*(&,!<?). Let %' (resp. 5') be an element of fi^G,-)
(resp. B«(Gi+1)) such that £'= % (resp. $' = #). By Theorem 3.3(1), we can

write %'G,+1=Σ,i7y where η^B^G^}. Thus By Theorem 3.1 (1), %'G,+1=
Σjήj where ^ e/rf(Gt +1). Thus ίy=$' for some; and so τjj=θf. Applying
Theorem 3.3 (3), we see that jB*(G, ) nlrr(G, |0 /) consists of the single element
%'. Therefore, we obtain from Theorem 3.1(1) that /^G,- 1 $)={%}. If

?eΩ(Gf )nΓrr(G f |0), then fe/^G,-!^) and so ζ=X. Thus by the τr-lifting
property of Ω, f=%. Therefore Ω(G, ) Π Irr (Gt | θ) consists of a single element
%. If ^ is Grinvariant, then θ' is also Grinvariant. Thus by Theorem 3.3(3),

)=0(1). this implies that % is an extension of θ.

The next lemma corresponds to Proposition 3.6 of Uno [10]. However the
proof needs some elabolations in part.

Lemma 4.2. Assume Hypothesis 2.1 and that G is π-separable. Let

G=G0\>G1ΐ> >Gn={l} be an A-composition series of G and let Ω£lrr(G)
have the π -lifting property with respect to A and {GJίϋo Then the image of ΩA

by Π(G, A) has the π -lifting property with respect to {\Aut(cϊ} and {Gi Π C}t !Lo.

Proof. We proceed by induction on | G | .
Set C^GiΠC, 0<i<n and let Λ={ΩJ Π(G, A). First we claim that

A(Q)= {Ω(Gί)^}Π(Gί, A) for each i, 0<i<n. Let 77 be any element of Ω(Gi)A.
If G^/G; is a 7r-group, then by Lemma 4.1 (1), Irr(Gί_1|?7)^£Ω(Gί_1)^ and
Irr (G^j I η)A is nonempty (cf. [6], Chapter 13). If G^/G, is a τr'-group, then

by Lemma 4.1 (2), Ω(G, _1)Π Iπ^Gί. J??) has just one element. Since both
ΩίG^j) and ̂ (G^η) are ^[-invariant, (^(G^) Π Irr(Gi_1\η))A = Ω,(Gi,1) Π
Irr (Gi.l I η). Therefore Ω(Gl _1)^nlrr(G l _ 1 | i7) is nonempty in any case. Ap-
plying Theorem 2.3 (1) repeatedly, we can find an element %eΩ^Π Irr(G|?7)
such that (X)Π(G, A) e Irr (C \ (η)U(Gif A)). This implies that {Ω(Gt )^} Π(G, A)
SΛ(Ct ). Conversely, let ξ be any element of Λ(Cf ) and let η=(ξ)U-l(Gif A).
From the definitions of Λ and Λ(Ct ), there exists %eΩ(G)^ such that ξ is a
constituent of (X)Π(G, A)c.. By Theorem 2.3 (1), we see %<Ξlrr (G|?). Thus
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This implies that Λ(C, )C {Ω(G, )^}Π(GJ A) and the claim is proved.

Now, if we set Ω1=Ω(G1), then Ωx is yί-invariant and Ω1(G,)=Ω(Gί) for all

i>\. So, by the inductive hypothesis applied to G19 we may assume that the

restriction map Λ from Λ(C, ) to /^(C,) is a bijection for each i, l<i<n. So, it

suffices to show that Λ gives a bijection from Λ onto I«(C).

If C^G!, then A=A(C1) and the assertion holds by the inductive hypo-

thesis. Now we assume C^G:. Let Θ19 ••-,#* be representatives of C-orbits

on Ω(GJ)Λ and set φ^θ^G^ A), l<i<k. By Theorem 2.2(4),

φf = i(θi)U(Gί9 A)}c = (Θ?)Π(G19 A) for all

Thus we find that φly ••-, φk are representatives of C-orbits on Λ^). Further-

more, since Ω(Gj) is G-stable, it is easy to see that /c(0ί)=Λ;(0ί) f°Γ a^ **• Also,
we have 7c(φί)=/c(^l ) for all z", because we have assumed that {(Ω }̂ Π (Glf A)

has the ^--lifting property. In particular, it follows that φ1? ••-,<£* are represen-

tatives of C-orbits on I*(C^.

We divide the proof into two cases.
Case 1. G/GX is a τr-group.
If X e Ω^, then Xe Irr (G | (9, ) for some z. So, by Theorem 2.3(1), we have

(%)Π(G, A) e Irr (C | φ,.) and thus Λ£ U Irr (C | φ. ). Conversely if ψe Irr (C | φ, ),
ί = l

then from Theorem 2.3 (1) and Lemma 4.1 (1),
Thus ψ^Λ and we conclude that

Λ = Irr(C|φ,).
ι = l

On the other hand, we have clearly I«(C)= U/*(C|φ t ). So, by Theorem 3.5,

Λ defines a bijection from Λ onto /^(C).
Case 2. G/G1 is a π '-group.

If X eΩ^, then % <Ξ Irr (G 10, ) Π Ω^ for some i. Thus Ω,A= U Γrr (G | (9, ) Π
i = l

Ω^. By Lemma 4.1(2), each Irr (G 10t ) Π Ω consists of a single element.
Since both Irr(G|0/) and Ω are ^4-invariant, it follows that Irr(G|0 t )ΠΩ=

Irr (G I (9t ) Π Ω^, 1 <ί <k. Set Irr (G | (9t) Π Ω^= {%,} ,l<i<k. By Lemma 4.1

(2), %,.φ%y for ίφj. Thus Ωκ={X1, -, %,} and A={(Xi)n(G, -4); l<ί<A}.
Furthermore, we obtain from Theorem 2.3(1) that each φ, is a τr-irreducible

constituent of (%t )Π(G, A)CI. Let -̂  be any element of /Λ(C|φ t). Let φ£ be

the element of B«(C^) which corresponds to φ,. Since B^(C) has the τr-lifting

property (with respect to the trivial action of A on C), we see from Lemma 4.1(2)

that BΛ(C\φ'i) consists of a single element. Set 5*(C|φ/)={ψv}, \<i<ky so

we have Wlώ) = «•<>> !<*'<* and IJ(C) = {$19-M Set Γ, =/G(0,.),
\<i<k. For each %t , l<t<k, there exists a unique irreducible character

such that £?=%,-. Then f. elrrίT1,.!^) nΩ(Γ f) and it follows
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from Lemma 4.1 (2) that ft is an extension of 0, . Since %t and 0, are A-
invariant, ft is also ^4-invariant and (ξ,•)!!( Th A)c=(Xi)Ώ(G, A) by Theorem

2.3 (2).
If each (ft)Π(T,, ^4) is r-irreducible, then (Xg)Π(G, ^4) is also τr-irreducible

by Theorem 3.4 and thus (%,•)!!(<?, A)=ψiy \<i<k. This implies that Λ is

a bijection from Λ onto /*(C).

In order to prove the τr-irreducibility of (ft) 11(7̂  A), we consider two
cases.

(a) I A I is even.

From Hypothesis 2.1 and the Odd-Order Theorem, G is solvable. Thus

G\Gl is abelian and so G=GλC. Now, we know that Irr(Γ£|^.)={ftλ;

\n(Tt\GU} (cf. [6], Corollary 6.17). For any ftλelrr(7;.|<9,.)> we have

(ftλ)'(f) - ξai\\t) = ftίW"1) = ftλ(ί) for all α<Ξ,4 and ίeTt .

Therefore by Theorem 2.3(1), we have

I T«-«- /T1 P» ί~*\ JL \ I I T«-«. /T1 I /I \ I I T *. /T1 I/"1 \ I I T1 ΓΊ /^ /^ II irr (1 i Γ I C I φt ) I = I Irr (1 f 16/ f J | = | Irr (7 i/^ij I — | J , Π C. Cj |.

This implies that every element of Irr(Tt Π C |φ f ) is an extension of φ, . In

particular, we see that (ft)Π(Γ, , A) is τr-irreducible.

(b) \A\ is odd.
Then ^4 is a solvable group. Let A=AQΐ>A1ΐ> ΐ>Am—{l} be a com-

position series of A and let {Ai=Ai^lIAi}ί

1^ι be composition factors of A. Let

X^C^Aj), Yj=CTi(Aj), σj = (θi)U(G1>Aj) and τy = (ft)Π(Γ/> ̂  ) for j=
Q, ,m. Then

σyeIrr(-Xy)Xy.1 and τyelrr(yy)^._1 for = 1, •••, m .

τm=ξi is an extension of crm=θi. Now, we assume that τy is an extension of σ;

for some j'^rl. Let us denote by Δ (resp. Δ') the semidirect product XjAj
(resρ.yyJ[y) and let σeΙrr(Δ) (resp. τe!rr(Δr)) be the canonical extension

of σy (resp. τy). Then TΔ is irreducible and it satisfies ker (det TΔ) ̂  Aj. So,

by the uniqueness of the canonical extension of σy, we obtain that TΔ— σ. Since

AJ is cyclic, there exist, by Theorem 2.4, £=±1 and £'= ±1 such that

τ(#fl) = £τy_x(.χ:), σ(#fl) = eVy.^je) for all x^Xj^ and

So,

This implies £=£' and hence τy_! is an extension of σ^Γ Repeating the same

argument, we conclude that TO is an extension of σ0 and the proof is complete.
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From Lemma 4.2, we immediately obtain the following corollary.

Corollary 4.3. Assume Hypothesis 2.1 and that G is π -separable. Let
Ω£lrr (G). IfΩ has the π-lίfting property rtith respect to Ay then the restriction
map Λ gives a bijection from (Ω^)Π(G, A) onto

Assume Hypothesis 2.1 and that G is τr-seρarable. Suppose ΩCIrr(G)
has the τr-lifting property with respect to A. Then Λ : X-»X gives a bijection
from ΩA onto f^(G)A and we have the sequence of bijections:

, A) -^ IJiC)

where Λ" 1 is the inverse map of Λ. Thus the composite map Π(G, A) =
Λ~1Π(G> A}/\ gives a bijection from IΛ(G)A onto I*(C). From its construction,

it seems likely that Π(G, A) depends on the choice of Ω. However, as we shall

see below, if A be solvable, then Π(G, A) does not depend on the choice of Ω.
On the other hand, if A is non-solvable, then | G | is odd by the Odd-Order
Theorem. When | G | is odd, we shall show that Π(G, A) actually gives a

bijection from Bιe(G)A onto B^(C). So the bijection map Π(G, A) is naturally
defined anyway.

The following Lemmas 4.4 and 4.5 correspond to Lemma 3.9 and Propo-
sition 3.8 of Uno [10] respectively, and his proof also works in our case.

Lemma 4.4. Assume Hypothesis 2. 1 and that A is cyclic of prime order.

Let, X, ̂ e!rr(G),4 be such that X^ψeΞ/^G). TA^(%)Π(G^

Proof. Let \A\=q.
Case I. q&π.

In this case, Γ/G is cyclic ^-group and Γ is τr-seρarable. Since X and -ψ*
are ^4-invariant, it follows from Theorem 3.5 that the restriction maps

Irr(Γ|X)->4(Γ|X) and Γrr (I» -* 4(Γ | ψ)

are bijections.
Let X' (resp. ψ') be the canonical extension of X (resp. ψ) to Γ. Then

Irr(Γ|X)={μX'; μ£Ξlrr(A)}. So ψ' = μ%' for some ^elrr(^). By Theo-
rem 2.4, there exist 8 = ±1 and £'=±1 such that

(X)Π(G, A)(c) = SX'(ca) and

(ψ)Π(G, A)(c) = B'ψ(ca) for all ctΞ C and a&A- {1} .

Thus for every τr-element ceC and a&A— {!},

, A)(c) = ε'ψ(ca) = €*μ(a)X'(ca) = £'6μ(a)(X)Π(G, A)(c) ,
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and in particular, (ψ )Π(G, A)(l)=e'£μ(ά)(X)Π(G, A)(l). Since μ(a) is a root

of unity, we obtain 66'μ(a) = l. Thus "(X)Π(GΓ2)=(ψ)Π(G7^4) as required.
Case 2. 2<Ξτr'.

Set 7r0=τrU {q}. Then G is τr0-seρarable. Since # does not divide | G | ,

/^(G)—/^(G) and %=ψ is a τr0-iπ;educible character. So the assertion is clear

from the case 1.

Lemma 4.5. Assume Hypothesis 2.1 and that G is π-separable and A is

solvable. Let B<A, D=CG(B) and assume that Ω£Irr(G) and Λ£lrr(D) both

have the π-lifting property with respect to A. Let %^ΩA and let φ be the unique

element of AA/B such that <£="(χ)Π(GJ3)l (Note that (X)Π(G, B) is π-irreducible

by Corollary 4.3). Then"(X)Π(GΓ3J=(

Proof. We proceed by induction on \ A \ .
We may assume Aή=B. Let H be a maximal normal subgroup of A con-

taining B. By Corollary 4.3, (%jΐl(G7^?) and 1^)U(Ό^HΪB} are both contained

in Iιe(CG(H)). From the inductive hypothesis, we may assume that (%)Π(G,.H)

=(φ)Π(Zλ, H/B). Since A\H is a cyclic group of prime order, it follows from

Lemma 4.4 that

~WW^^
Thus the assertion follows immediately from Theorem 2.2 (2).

We are now ready to prove the following theorem.

Theorem 4.6. Assume Hypothesis 2.1 and that G is π-separable and A is
solvable. Then there exists a bίjection

which is independent of the choice of Ω which satisfies the π-liftίng property with
respect to A. And the following hold.

(1) IfB<A, then Π(G, ^)-Π(G, B)Π(CG(B), A/B).

(2) If A is a q-group for a prime q and -^τ^I^(G)A) then (ψ)Π(G, A) is a
unique π-irreducible constituent of ι|rc with multiplicity prime to q.

Proof. In Lemma 4.5, let B = {\}. Then we see that Π(G, A) is inde-
pendent of the choice of Ω, which satisfies the τr-lifting property with respect to

A. If B<A, it is easily seen by Lemma 4.5 that Π(G, A)=Π(G, B)Π(CG(B),
A IB). Now fix Ω which satisfies τr-lifting property with respect to A. For
ψe/Λ(G)^, there exists %eΩ such that X=ty. If A is a #-group, then by
Theorem 2.2 (3), %c—w(%)Π(G, A)+qζ where m is a positive integer prime to
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q and ζ is zero or a character of C. Therefore by the definition of Π(G, A),

, A)+qζ. This completes the proof.

Finally we note the following fact which asserts that Π(G, A) induces a

bijection between ^-characters under certain circumstances.

Theorem 4.7. Assume Hypothesis 2.1 and that G is π-separable. If either
2eτr or 2)( \ G \ , then Π(G, A] gives a bijection from B*(G)A onto B«(C).

Proof. It suffices to show that if XeB^G)^ then £=(%)Π(G, A)<=B«(C).
We know that ξ^I^(C) by Corollary 4.3 (applied to Ω— B*(G)) and ξ has values
in Q,£ by Theorem 2.2 (5) and Theorem 3.2 (1). Thus we conclude from

Theorem 3.2 (2) that

Under the assumption of the above theorem, we get the natural bijection

Π(G, A): I«(G)-*I«(C). And clearly this coincides with the bijection Π(G, A)
given in Theorem 4.6, provided A is solvable. Thus the proof of our main theo-
rem is completed.
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